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Abstract

Building on a version of Lorenzen’s dialogue founda-
tion for intuitionistic logic, we show that Gödel-Dummett
logic G can be characterized by a suitable game of commu-
nicating parallel dialogues. This provides a computational
interpretation of Avron’s hypersequent calculus for G.

I. Introduction

Gödel-Dummett logic (called G here, from now on)
arguably is one of the most interesting many-valued log-
ics. It naturally turns up in different fields in logic and
computer science. Already in the 1930’s Gödel [9] used
it to shed light on aspects of intuitionistic logic; later
Dunn and Meyer [6] pointed out its relevance for relevance
logic; Visser [16] employed it in investigations of the
provability logic of Heyting arithmetic; and eventually it
was recognized as one of the most useful ‘fuzzy logics’
(see [10], [15]).

Considered as a fuzzy logic, propositional G is charac-
terized by evaluations v of the variables in the real closed
unit interval

�
0 � 1 � and the following truth functions for

connectives:

v � A � B ��� min � v � A �	� v � B �
� v � A � B ��� max � v � A �
� v � B ���
v ������� 0 v � A � B ���

�
1 if v � A ��� v � B �
v � B � otherwise

As usual, � A can be defined as A ��� . For sake of clarity
we stick to the propositional level in the whole paper; but
we conjecture that our results can be extended to first-order
(and even propositional) quantification.

G bears a special relation to intuitionistic logic I: it
can be characterized not only by referring to the above
truth functions over

�
0 � 1 � , but also by imposing a linearity

�
Proofs are omitted in this version due to space restrictions.

condition on intuitionistic Kripke structures or Heyting
algebras. Indeed, as shown already in [5], Hilbert-type
systems for G can be obtained by adding the linearity
axiom— � A � B ����� B � A � —to any standard system for I.

In our context it is important that, in contrast to other
fuzzy logics, convincing analytic proof systems have been
presented for G. In particular, we refer to Avron’s elegant
hypersequent calculus HLC [3] for G. HLC contains
Gentzen’s sequent calculus LI for I as a sub-calculus, and
simply adds an additional layer of information by allowing
LI-sequents to live in the context of finite multisets of
sequents (called hypersequents). Additional structural rules
allow to manipulate sequents with respect to their contexts.
The crucial new rule of the calculus HLC, is the so called
communication rule (see Section IV), which is intended
to model the ‘exchange of information’ between differ-
ent (hyper)sequents. To substantiate this latter intuition a
‘computational interpretation’ of hypersequents is needed.

In this paper, we introduce a version of parallel dialogue
games to serve as a dynamic structure in which (analytic)
hypersequent proofs for G can be interpreted faithfully.
Besides providing a ‘computational interpretation’ for G,
dialogue games are an interesting framework for investi-
gating foundational issues and modeling proof search (as
will be shown in a sequel to this paper).

II. Lorenzen style dialogue games

Logical dialogue games come in many forms and ver-
sions, nowadays. Here, we do not use more recent formu-
lations in the style of Blass [2] or Abramsky [1], but rather
refer directly to Paul Lorenzen’s original idea (dating back
to the late 1950s, see e.g., [13]) to identify logical validity
of a formula A with the existence of a winning strategy
for a proponent P in an idealized confrontational dialogue,
in which P tries to uphold A against rational ‘attacks’
by an opponent O. Although the claim that this leads to



an alternative characterization—or even: ‘justification’—
of intuitionistic logic was implicit already in Lorenzen’s
early essays, it took more then twenty years until the first
rigorous, complete and error free proof of this central claim
was published in [7]. Many variants of Lorenzen’s original
dialogue games have appeared in the literature since. (See,
eg., [8], [11] for relevant references.) Here, we define a
version of dialogue games that are: 1) well suited for
demonstrating the close relation to analytic Gentzen-type
systems; 2) easily shown to be equivalent to other versions
of dialogue games for intuitionistic logic, that can be found
in the literature; 3) straightforward to consider ‘in parallel’.

Notation. An atomic formula (atom) is either a propo-
sitional variable or the 0-ary connective � (falsum). As
usual, compound formulas are built up from atoms using
the connectives � , � , � . In addition to formulas, the
special signs ?, � ?, � ? can be stated in a dialogue by the
players P and O, as specified below.

Dialogue games are characterized by two sorts of rules
(moves): logical rules and structural rules.

The logical rules define how to attack a compound
formula and how to defend against such an attack. They are
summarized in the following table. (If X is the proponent P
then Y refers to the opponent O, and vice versa.)

Logical dialogue rules:

X: attack by Y defense by X
A � B � ? or � ? (Y chooses) A or B, accordingly
A � B ? A or B (X chooses)
A � B A B

We will see below that atoms (including � ) can be
attacked too (by player O). Such an attack also consists in
stating ‘?’. ( � is understood as an undefendable statement,
as gets clear from the structural rule Atom and the winning
condition W � , formulated below.)

A dialogue is a sequence of moves, which are either
attacking or defending statements, in accordance with the
logical rules. Each dialogue refers to a finite multiset of
formulas, that are initially granted by O, and to an initial
formula to be defended by P.

Moves can be viewed as state transitions. In any state
of the dialogue the (multiset of) formulas, that have been
either initially granted or stated by O so far, are called the
granted formulas (at this state). The last formula that has
been stated by P and that either already has been attacked
or must be attacked in O’s next move is called current
formula. With each state of a dialogue we thus associate
a dialogue sequent Π � A, where Π denotes the granted
formulas and A the current formula.

Remark 1: The current formula, in general, is not the
last formula stated by P. (Since P may have stated formulas
after the current formula that are not attacked by O.)

Remark 2: We stipulate that each move carries the in-
formation (indices) necessary to reconstruct which formula
is attacked or defended in which way (if there are different
possibilities) in that move. However, we do not care about
the exact way this information is coded.

Structural rules (Rahmenregeln in the diction of Loren-
zen and his school) regulate the succession of moves. Quite
a number of different systems of structural rules have been
proposed in the literature (See e.g., [14], [8], [11]. In
particular, [11] compares and discusses different systems.).
The following rules, together with the winning conditions
stated below, amount to a version of dialogues traditionally
called Ei-dialogues (i.e., Felscher’s E-dialogues combined
with the so-called ipse dixisti rule; see, e.g., [11]).

Structural dialogue rules:
� Start: The first move of the dialogue is carried out

by O and consists in attack on the initial formula.
� Alternate: Moves strictly alternate between player O

and P.
� Atom: Atomic formulas, including � , may be stated

by both players, but can neither be attacked nor
defended by P.

� E: Each (but the first) move of O reacts directly
to the immediately preceding move by P. I.e., if P
attacks a granted formula then O’s next move either
defends this formula or attacks the formula used by
P to launch this attack. If, on the other hand, P’s
last move was a defending one then O has to attack
immediately the formula stated by P in that defense
move.

Winning conditions (for P):
� W: The game ends with P winning if O has attacked a

formula that has already been granted (either initially
or in a later move) by O.

� W � : The game ends with P winning if O has
granted � .

A dialogue tree τ for Π � C is a rooted, directed and
labelled tree with nodes labelled by dialogue sequents and
edges corresponding to moves, such that each branch of τ
is a dialogue with initially granted formulas Π and initial
formula C. We thus identify the nodes of a dialogue tree
with states of a dialogue. We distinguish P-nodes and O-
nodes, according to whether it is P’s or O’s turn to move
at the corresponding state.

A finite dialogue tree is called winning strategy (for P)
if the following conditions are satisfied:

1) Every P-node has at most one successor node.
2) If a P-node is a leaf node, then the winning condi-

tions for P are fulfilled at this node.
3) Every O-node has a successor node for each move by

O that is a permissible continuation of the dialogue
at this stage.
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Remark 3: Winning strategies for a player in a non-
cooperative two-person game are more commonly de-
scribed as functions assigning a move for that player to
each state of the game, taking into account all possible
moves of the opponent. Observe that our tree form of a
winning strategy just describes the corresponding function
in a manner that makes the step-wise evolution of permis-
sible dialogues more explicit.

Henceforth we use the following notation: For every
compound formula F of form C � D, Fp denotes C and Fc

denotes D. If F is atomic then Fp is empty (and Fc remains
undefined). Fpp is Cp if F � C � D.

As already mentioned, a dialogue game may be viewed
as a state transition system, where moves in a dialogue
correspond to transitions between P-nodes and O-nodes.
A dialogue then is a possible trace in the system; and a
winning strategy can be obtained by a systematic ‘unrav-
eling’ of all possible traces.

To illustrate the latter point, consider the implicational
fragment of the language; i.e., the set of formulas not
containing � or � . Figure 1 represents all permissible
moves in a dialogue for this fragment. By labelling a

transition with Π
���� F we denote that F is added to

the multiset Π of granted formulas. A � C means that
C replaces A as a result of the corresponding move.

Fig. 1. Dialogue as state transitions ( � )
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Note that the encircled labels denote the dialogue
sequent at the corresponding state. The edges from the
P-node to the two O-nodes correspond to the principal
choice of player P: either to defend the current formula
or to attack a compound formula B among the granted
formulas. (The fact that Ac is undefined if A is atomic
means that in this case the transition from node P to node
Oα is not possible. This corresponds to the stipulation that
atomic formulas cannot be defended by P, according to the
structural rule Atom. However, remember that the dialogue
is already in a winning state for P if the current formula
A is among the granted formulas Π.)

On the other hand, according to the structural rule E,
player O has no choice but to attack the last formula of P

if P’s last move was a defending move (i.e., if we are in
state Oα.) In state Oβ, however, O may either defend the
attacked formula or (counter-)attack the formula used by
P in launching the last attack.

(The fact that Bpp is empty if the premise Bp of B is
an atom means that the atom Bp is attacked by O and thus
becomes the current formula.)

The winning conditions have to be checked at state P
only. If �0/ Π or A / Π then the game ends in that state
with P winning.

Adding � and � to the language amounts to adding
further possible transitions (between the nodes P and Oα,
and P and Oβ, respectively) that correspond to moves as
specified by the logical rules.

Basic adequateness of dialogues
Proving the adequateness of dialogue games for intuitionis-
tic logic consists in showing that winning strategies can be
transformed into (analytic) proofs of Gentzen’s well known
sequent calculus LI for intuitionistic logic, and vice versa.
To do this, we use the following variant LI 1 of LI:
Axioms: � � Π 2 C and A � Π 2 A
Logical rules:

A � A � B � Π 2 C B � A � B � Π 2 C
A � B � Π 2 C

� � � l �
Π 2 Ai

Π 2 A1 � A2
� � i � r � Ai � A1 � A2 � Π 2 C

A1 � A2 � Π 2 C
� � i � l �

Π 2 A Π 2 B
Π 2 A � B

� � � r � A � Π 2 B
Π 2 A � B

� � � r �
A � B � Π 2 A B � A � B � Π 2 C

A � B � Π 2 C
� � � l �

Structural rules: These are the usual weakening, contrac-
tion and cut rules.

It is straightforward to check that LI 1 is sound and
complete for intuitionistic logic. One can prove

Theorem 1: [Adequateness] Every winning strategy
for Γ � C can be transformed into a (cut-free) LI 1 -proof
of Γ 2 C and vice versa.

From now on we use the term I-dialogues to denote the
dialogues described in this section.

III. Parallel dialogue games

What happens to the winning powers of P, if we
consider a game where dialogues may proceed in parallel?
Of course, this question can only be answered once we
have defined more precisely what we mean by ‘parallel
dialogue games’. Many options are open for exploration.
Here, we propose and investigate just one particular form
of parallelizing I-dialogues, that is characterized by the
following features:

1) The logical and structural rules of I-games remain
unchanged. Indeed, ordinary I-game dialogues appear as
sub-case of the (more general) parallel framework.
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2) The proponent P may initiate additional I-dialogues
by ‘cloning’ the dialogue sequent of one of the parallel
I-dialogues in which it is P’s turn to move.

3) To win a set of parallel dialogues the proponent P
has to win at least one of the component dialogues.

4) ‘Communication’ between parallel I-dialogues con-
sists in P’s decision to merge two I-dialogues into one
by taking the union of the granted formulas of the two
dialogues as the granted formulas of the joint dialogue. O,
in turn, can choose with which of the two current formulas
of the merged components to continue the joint dialogue.

Features 1-3 reflect basic decisions concerning ‘paral-
lelization’. In particular, it should be clear that we want
to separate the level of individual dialogue moves strictly
from the initiation of new dialogues and the interaction
between dialogues. Moreover, we like to consider P as
the (sole) ‘scheduler’ of parallel dialogues. Feature 4 will
be shown below to correspond closely to the central rule
(‘communication’) of Avron’s hypersequent calculus HLC
[3] for G. In a sense, our parallel dialogues amount to a
computational interpretation of (analytic) HLC-proofs. In
particular, they are suited to illuminate Avron’s bold claim
that G (via HLC) allows to model communication between
concurrent processes.

Before exploring ‘communication’ between I-dialogues,
we will investigate parallel I-dialogues as specified by
conditions 1-3, alone. We will see (in Proposition 1, below)
that this results in a game that does not change the winning
powers of P over the (single) I-dialogue game.

Notation. A parallel I-dialogue (P-I-dialogue) is a
sequence of nodes connected by moves. Each node ν is
labelled by a global state Σ � ν � . A global state is a non-
empty finite set � Π1 � ι1 C1 ������� � Πn � ιn Cn � of indexed I-
dialogue sequents. Each index ιk uniquely names one of
the n elements, called component dialogue sequents or
simply components, of the global state. In each of the
components it is either P’s or O’s turn to move. We will
speak of a P-component or an O-component, accordingly.
We distinguish internal and external moves.

Internal moves combine single I-dialogue moves for
some (possibly also none or all) of the components
of the current global state. An internal move from
global state � Π1 � ι1 C1 ��������� Πn � ιn Cn � to global state
� Π 11 � ι1 C 11 ������� � Π 1n � ιn C 1n � consists in a set of indexed
I-dialogue moves � ιi1 : ���	� � 1 ��������� ιim : �
��� � m � such that
the indices ιi j , 1 � j � m, are pairwise distinct elements
of � ι1 ��������� ιn � . Π 1k � ιk C 1k denotes the component corre-
sponding to the result of �
��� � k applied to the component
indexed by ιk if k /�� i1 ��������� im � ; otherwise Πk � Π 1k and
Ck � C 1k.

External moves, in contrast to internal moves, may add
or remove components of a global state, but do not change
the local status (P or O) of existing components.

For now, we define only two external moves, called
� � � �

and � 
 � � � � , respectively.� � � � is a move by P and consists in duplicating one
of the P-components of the current global state and
assigning a new unique index to the added component.� 
 � � � � also is a P-move and consists in removing an
arbitrary P-component from the global state.

Remark 4:
� � � � corresponds to item 2 in the above list

of basic features of our parallel dialogue games. By item 3
of the list, �+
 � � � � does not affect the winning power of the
proponent. (P cannot be forced to � 
 � � � � , and therefore, in
following a winning strategy, will only do so if P does not
attempt to achieve the winning conditions at the removed
component.)

The central condition in the definition of a P-I-dialogue
is the following:

� for every index ι, the sequence of internal moves that
refer to components indexed with ι is an I-dialogue.

Observe that the initial global state Σ � ν � —that is the
state labelling the root node ν of a P-I-dialogue—consists
of O-components only. We speak of a P-I-dialogue for
Σ � ν � if ν is its root node. If Σ � ν � is of form � � ι A � , we
will speak of a P-I-dialogue for A.

There remains a trivial source of unfairness (to P) that
we shall deal with right away: If the initial global state
contains more than one component, then the opponent O
might refuse to make the initial move for some of the
components, spoiling the existence of a winning strategy
for, e.g., � � ι1 A � A � � ι2 B � . (Remember that to win the
game just one of the components has to satisfy the winning
conditions for P.) We therefore require every P-I-dialogue
to begin as follows:

� Every P-I-dialogue starts with an initial segment,
which is a sequence of internal moves, each con-
taining only first moves (by O) for the component
dialogues, such that there is exactly one first O-move
for each component of the initial global state.

Note that, the initial segment ends in a global state that
consists only of P-components.

Example 1: Figure 2 exhibits a P-I-dialogue for � a �
b � � � b � a � , where a and b are atoms.

Although alternative P-I-dialogues for � a � b � � � b � a �
are possible it should be clear that all such dialogues
eventually have to lead to a state where player P is not
winning, and where also no further move for P is available,
that results in an essentially new global state. In the
particular dialogue of Figure 2, P may only continue with
a
� � � � -move, which however does not change the state,

if we identify dialogue sequents that only differ in their
indices.

Our definition of parallel I-dialogues implies that the
parallel version of the game may be viewed as a finite
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Fig. 2. P-I-Dialogue for � a � b � � � b � a �
������
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collection of state transition systems that are coordinated
by referring to a global, discrete flow of time. At each time
step some (possibly also none or all) of the component
dialogues advance by one move. In a

� � � � -move the com-
ponent dialogues remain in their individual current states
but a new dialogue, that copies the state of one of the old
ones, is created. In a � 
 � � � � -move one of the components
(i.e., dialogues viewed as processes) is destroyed.

Observe that the definition of a P-I-dialogue game
allows for considerable flexibility in ‘implementing’ the
involved parallelism. We may, for example, require that
all component dialogues have to advance at each time
step; or, alternatively, that at most k dialogues may advance
simultaneously (even if there are more than k components.)
The latter option might, e.g., be understood as modeling
a dialogue game were P and O, are not single persons,
but rather consist of teams of k players each, and where
each component dialogue is conducted by a different pair
of opposite players. If, instead, we stick with a single
proponent and a single opponent (i.e., k � 1) it seems
natural to ‘sequentialize’ by dove-tailing the components
of parallel moves. This motivates the following definition:

� A P-I-dialogue is called sequentialized if every inter-
nal move is a singleton (multi-)set.

To prove Theorem 1 it is essential that full cycles of
moves in a winning strategy—from a P-state to an O-
state and back again to a P-state with an immediately
responding move of O—correspond to a single inference
step in LI 1 . However, even in sequentialized P-I-dialogues
such cycles may be interrupted, not only by internal

moves that refer to other component dialogues, but also
by external moves. We therefore define a P-I-dialogue to
be normal if the following condition holds. Every internal
move that contains a P-move, indexed with ιk,

� either is the last move in the component dialogue
referred to by ιk,

� or else is immediately followed by another internal
move with a ιk-indexed element.

Remark 5: In combination with structural rule E (see
Section II), the conditions for normality can be understood
as the stipulation that the proponent of a parallel dialogue
game is the sole ‘scheduler’. In other words—although
P has no control over choices of O as long as they are
immediate replies to her own previous move—P always
determines at which dialogue component the game is to
be continued.

Theorem 2: Every finite P-I-dialogue δ for Σ can be
translated into a sequentialized normal P-I-dialogue for Σ
ending in the same global state as δ.

Note [Important]. For the rest of the paper we will con-
sider all parallel dialogues to be sequentialized and normal.
Sequentialization implies that, just like for I-dialogues, we
can speak of P-moves and O-moves of P-I-dialogues. (

� � � �
and �+
 � � � � are P-moves.) Since the set parentheses are
redundant in denoting moves of sequentialized dialogues,
we will omit them from now on.

A P-I-dialogue tree τ for Σ is a rooted, directed tree
with global states as nodes and edges labelled by (internal
or external) moves such that each branch of τ is a P-I-
dialogue for Σ.

A finite P-I-dialogue tree is called a winning strategy
if the following condition is satisfied for every node ν:

(p) either ν has a single successor node, the edge to
which is labelled by a P-move,

(o) or for each O-move that is a permissible continu-
ation of the dialogue at global state Σ � ν � there is
an edge leaving ν that is labelled by this move,

(l) or ν is a leaf node and at least one of the com-
ponents of Σ � ν � fulfills the winning conditions.

Nodes satisfying (p) are called P-nodes; and nodes satis-
fying (o) are called O-nodes. Observe that, by normality,
P-moves and O-moves strictly alternate in each branch,
except for the initial segment (consisting of more than
one consecutive O-nodes, in general) and external moves
(which, in general, result in consecutive P-nodes.)

We have already observed that—with
� � � � and �+
 � � � �

as the only additional rules—parallelization does not affect
the ‘winning power’ of the proponent. More formally, we
may state the following:

Proposition 1: There exists a winning strategy for P-I-
dialogues for � Γ � C � if and only if there exists a winning
strategy for I-dialogues for Γ � C.
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To go beyond the realm of intuitionistic logic we have
to allow some interaction between different component
dialogues.

IV. Communicating dialogues

Communication between I-dialogues is formalized ac-
cording to feature 4 (from the beginning of Section III):
first P selects (for merging) two P-components from the
global state, then O chooses one of the two possible current
statements for the merged component.

This results in the following additional external (two-
part) dialogue rule � � ��� � .
� � ��� � consists of two consecutive external moves:
1) [P-part] P picks two (indices of) P-components
Π1 � ι1 C1 and Π2 � ι2 C2 from the current global state
and indicates that Π1 � Π2 are the granted formulas of
the resulting merged dialogue sequent.
2) [O-response] In response to this external P-move,
O chooses either C1 or C2 as the current formula of
the merged component, which is indexed by ι1 or ι2,
correspondingly.

P-G-dialogues are defined exactly as P-I-dialogues, except
for allowing also applications of � � ��� � . In particular, the
notions of normal and sequentialized dialogues carry over
directly from P-I-dialogues to P-G-dialogues.

Unlike the other external moves, � � ��� � increases the
winning powers of the proponent: for P-G-dialogue games
there exists a winning strategy for every instance of the
linearity axiom � A � B ��� � B � A � . We show this by
referring to the P-I-dialogue of the previous example for
� a � b � � � a � b � , as presented in Figure 2. It is not difficult
to see that, even in the case of non-atomic instances of
the linearity axiom, P can always force the dialogue to
enter a global state � A � Bp � 1 B � B � Ap � 2 A � , where both
components are P-components. Thus, using the � � ��� � -rule
a winning strategy is obtained by matching the last node
in Figure 2 with the first node of the following tree:

� �� �
P1 � P2

� �� �
P1 � P2

� �� �
P1

� �� �
P2

� �� � �
A � Bp � 1 B � B � Ap � 2 A �

� �� � �
A � Bp � 1 B � B � Ap � 2 A �

� �� � �
A � Bp � Ap � B � 2 A �� �� ��

A � Bp � Ap � B � 1 B � � �� �

P wins!

� �� �

P wins!

�
	���
 ��� [P-part]: 1 � 2' ')(
	���
 ��� [O-response]: 2

  !	���
 ��� [O-response]: 1

Adequateness of P-G-dialogues for G
To match winning strategies of parallel dialogues with
proofs, we have to switch from sequent to hypersequent
calculi. The latter arise by generalizing standard sequent
calculi to refer to whole contexts of sequents instead of
single sequents. In our context, a hypersequent is defined

as a finite, non-empty multiset of LI-sequents, written in
form Γ1 2 C1

� ����� � Γn 2 Cn.
The symbol “

�
” denotes disjunction at the meta-level.

A hypersequent calculus HLG 1 for Gödel-Dummett
logic G is obtained by adding the following version of
Avron’s ‘communication rule’ [3]

Π1 � Π2 2 C1
�
H Π1 � Π2 2 C2

�
H

Π1 2 C1
�
Π2 2 C2

�
H

� com �
to the hypersequent calculus whose axioms and rules
are those of LI 1 augmented by a side hypersequent H ,
representing a (possibly empty) hypersequent. Moreover,
external weakening and external contraction are needed as
in Avron’s HLC.

Theorem 3: [Adequateness] Every winning strategy τ
for sequentialized normal P-G-dialogues with initial global
state Σ can be transformed into an HLG 1 -proof of

�
Σ � , the

hypersequent corresponding to Σ, and vice versa.
Remark 6: The proof proceedes by showing that rule

� � ��� � corresponds to the communication rule, and
� � � �

and �+
 � � � � correspond to external contraction and external
weakening, respectively.
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