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Abstract. We present a general framework that allows to construct
systematically analytic calculi for a large family of (propositional)
many-valued logics — called projective logics — characterized by a
special format of their semantics. All finite-valued logics as well as
infinite-valued Gödel logic are projective. As a case-study, sequent
of relations calculi for Gödel logics are derived. A comparison with
some other analytic calculi is provided.

1 Introduction

A central task of logic in computer science is to provide analytic — “Gentzen-
style” — calculi for a wide range of non-classical logics. Such calculi serve as a
basis for automated deduction and allow the extraction of more information
from proofs (compared to traditional Hilbert-style systems). A large number
of Gentzen-style systems for many-valued logics have been introduced since
the 1950s (see, e.g., the handbook article [9] for an overview). In particular,
it is now well understood how to construct efficient analytic proof systems
in a uniform manner for the whole family of finite-valued logics, using many-
placed (or labeled) sequents or, equivalently, signed tableaux. These systems
not only allow to handle connectives defined by arbitrary finite matrices,
but have also been extended to so-called distribution quantifiers, a rather
general concept of quantification in many-valued logic. However, in contrast
to the finite-valued case, there is much less literature on analytic Gentzen-
style systems for infinite-valued logics. In particular, many important infinite-
valued logics, such as two of the three fundamental formal representations of
fuzzy logic — namely �Lukasiewicz [21] and Product logic [20] — still seem
to escape satisfactory characterizations through elegant and useful analytic
proof systems. An important exception is the third main formalization of
fuzzy logic, namely Gödel logic G∞. Analytic systems for this logic — also
known as (Gödel-)Dummett logic, since Dummett [14] presented the first
axiomatization matching Gödel’s matrix characterization — can be found,
e.g., in [25, 1–3, 16, 4, 5]. The interest in G∞ is well motivated by the fact that
� Research supported by EC Marie Curie fellowship HPMF–CT–1999–00301.
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it naturally turns up in a number of different contexts. Already in the 1930s
Gödel [18] used it in investigations of intuitionistic logic; later, Dunn and
Meyer [15] pointed out its relevance for relevance logic; Visser [29] employed it
in investigations of the provability logic of Heyting arithmetic; and eventually
it was recognized as one of the most important formal representations of fuzzy
logic. In particular, the connectives of G∞ correspond to the min-max t-norm
and its residuum (see [19]).

The purpose of this contribution is not just to introduce yet another
analytic proof system for G∞, but to present a general framework that allows
to construct analytic calculi for a large family of (propositional) many-valued
logics, including G∞ as a prime example. Our calculi — called sequents of
relations — are systematically derived from a specific presentation of the
semantics of the connectives involved. This format of presentation inspires us
to call the corresponding class of logics “projective”. Our main example of a
projective logic is G∞. But also G∆

∞, i.e., G∞ enriched with the ∆ projection
modality introduced in [22] (see also [6]), as well as all finite-valued logics can
be considered projective, as we will explain. In particular, this allows us to
transfer the obvious semantic connection between G∞ and the finite-valued
Gödel logics to corresponding proof systems.

The main concepts and results of this paper summarize the two conference
contributions [8] and [7].

The paper is organized as follows: in Section 2 we define the class of
projective logics and we show that the family of (finite- and infinite-valued)
Gödel logics is a particular case of them (see Section 2.1). Section 2.2 re-
lates finite- and infinite-valued projective logics. Sequents of relations calculi
are introduced in Section 3. There we also shown how to translate a given
specification of a projective logic into such a calculus in a systematic, even
mechanizable, way. Soundness and completeness of the obtained calculi is
proved in Section 3.1. Admissibility of cut rules as well as of other structural
rules in sequent of relations calculi is discussed in Section 3.2. The special
case of Gödel logics is presented in detail in Section 4. Sequent of relations
calculi for finite and infinite-valued Gödel logic, as well as G∆

∞, are derived.
Relationships between sequents of relations and some other analytic calculi
for Gödel logics are discussed in Section 4.1.

2 Projective logics

The syntax of the propositional logics considered here is very general. The
(object) language for a logic is based on an infinite supply of propositional
variables, a finite set of connectives (with fixed arity), and a finite number
of truth constants. (Truth constants will also be considered as 0-ary con-
nectives.) As usual, the formulas of such a language are build up from its
variables, constants and connectives.
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The logics under investigation are characterized by a special format of
the definition of their semantics. Again, we take a very general approach.
To specify a semantics we refer to some (classical, first order) theory T —
called semantic theory — whose intended range of discourse is a set of truth
values V . T can, e.g., be the theory of linear orders or lattices or any other
class of relational structures. It can also be the (first order) specification of
a single structure. The only requirements we put on T are as follows:

(F) T is based on a function free language with finite signature. I.e., the
atomic formulas are of form R(t1, . . . , tk), where the ti are variables or
constants.

(D) The set of Π1-formulas that are valid in T is decidable.

We use the notation “M |= A[σ]” to denote that the formula A is satisfied
in a model M (of T) under the assignment σ of elements of the domain of
M to the free variables of A. The domain of M is called set of truth values.
By “T |= A” we mean that A is valid in T, i.e. A[σ] is satisfied in all models
of T for all assignments σ.

Constants of T denote truth values and are identified with truth constants
of the object language.

Quantifier and negation free formulas of T, i.e., formulas built up from
atomic formulas using conjunction and disjunction only, will

play a special rôle. Let us call such formulas simple.
We call an n-ary connective � projective (with respect to an interpretation

based on a semantic theory T) if the corresponding truth function
∼
� can be

written in the following form:

∼
�(x1, . . . , xn) =


t1 if A1

...
...

tm if Am

where each ti is either a truth constant or in {x1, . . . , xn}. Moreover, the con-
ditions Ai are simple formulas of the underlying semantic theory T whose free
variables are among {x1, . . . , xn}. Since

∼
� is a total function these conditions

have to satisfy the following properties:

Totality: T |= ∀x1 · · · ∀xn

∨
1≤i≤m Ai

Functionality: for all i �= j; i, j ∈ {1, . . . , m}: T |= ∀x1 · · · ∀xn¬(Ai ∧ Aj)

To specify a logic we also need a notion of designated truth values or,
shorter, designating predicate. Any simple formula Des(x) of T with exactly
one free variable x may be chosen for this purpose.1

1 If one prefers to exclude the empty logic and the inconsistent “top logics” —
consisting of all formulas of a particular signature — from the realm of logics
then one should insist on T |= ∃x Des(x) and T |= ∃x¬Des(x), respectively.
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In general, for a propositional many-valued logic, an interpretation I is
a mapping from the set of propositional variables PV into some set V of
truth values. Given truth functions

∼
� for all connectives � of the language,

an interpretation I extends to an evaluation function valI , that maps all
formulas into truth values, as follows:

valI(F ) = I(F ) if F ∈ PV

valI(�(F1, . . . , Fn)) =
∼
�(valI(F1), . . . , valI(Fn))

Note that this definition is independent of the particular semantic framework
described above.

In the context of a semantic theory T, logics arise at two different levels:
(1) The set of truth values is understood as the domain of a model of T.

The semantics depends on the corresponding interpretation of the conditions
Ai of the (projective) truth functions. In this sense, any model M of T deter-
mines a logic LM: the projective logic of M (with respect to given projective
truth functions for all connectives of the language). We call a formula F valid
in LM if for all interpretations I the designating predicate is satisfied in M
whenever the value of F is assigned to the only free variable of Des. LM is
identified with the set of valid formulas, i.e.:

LM = {F | M |= Des[valI(F )/x] for all I}.

(2) There is yet another useful interpretation of this semantic machinery
under which the semantic theory itself determines a logic. Namely, instead
of evaluating the conditions Ai in a particular model of T, we may check
whether the relevant instances A′

i of Ai and Des′ of Des are satisfied in
all models of T. This way we do not have to fix the set of truth values in
speaking of the projective logic LT associated with T and some projective
connectives (possibly including truth constants). This allows us to speak,
e.g., of the projective logic of, say, partial orders (with respect to a fixed set
of projective connectives). Formally,

LT = {F | M |= Des[valI(F )/x] for all I and M of T}

Example 1. To see that every finite-valued propositional logic is projective
we only have to consider monadic semantic theories.

Let the language of T contain a monadic predicate symbol Ci for each
truth value ci. In addition, we take the truth values as constants of the
language. For any n-valued logic, T can be axiomatized by:

∀x :
∨

1≤i≤n Ci(x)
for all i �= j, 1 ≤ i, j ≤ n : ∀x : ¬(Ci(x) ∧ Cj(x))
for all i, 1 ≤ i ≤ n : Ci(ci)
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Any particular n-valued logic is determined by truth tables for all connectives
and a choice of designated truth values, as usual. Every entry

∼
�(ci1 , . . . , cin

) = cj

in the truth table for the n-ary connective � translates into the part

∼
�(x1, . . . , xn) = cj if Ci1(x1) ∧ . . . ∧ Cin

(xn)

of the definition of the truth function as above. If {cd1 , . . . , cdm
} is the set of

designated truth values, obviously Cd1(x)∨ . . .∨Cdm
(x) serves as designating

predicate. It is easy do see that here LT = LM, for every model M of T.
Alternatively, we can base the semantics on a theory containing only

the equality predicate and all truth constants: just replace Ci(t) by ci = t.
This approach obviously results in the same logics as above, but excludes
interpretations based on “non-intended” sets of truth values with cardinality
> n for n-valued logics.

As we shall see below, even in the case of finite-valued logics, it may be
advantageous to choose a more expressive semantic theory to define the truth
functions for its connectives.

2.1 Gödel logics

Our main example of projective logics is the family of Gödel logics. To formu-
late their semantics, we assume the set of truth values to be linearly ordered
and equipped with a minimal element 0 and a maximal element 1 (distinct
from 0). A standard axiomatization of the corresponding semantic theory is
given by:

∀x : ¬(x < x) (Irrefl<) ∀x : x = 0 ∨ 0 < x (Min<)
∀x∀y∀z : (x < y ∧ y < z) ⊃ x < z (Trans<) ∀x : x = 1 ∨ x < 1 (Max<)
∀x∀y : x = y ∨ x < y ∨ y < x (Linear<) 0 < 1 (Distinct)

Although one could derive a “sequent of relations calculus” (see Section 3)
directly from this theory we prefer an alternative formulation of it. We do
not want to have to consider “=” as a basic relation, but rather base the
semantics theory, denoted by T≤,<, on the relation symbols “≤” and “<” by
adding the following to the axioms Irrefl<, Trans<, and Distinct:

∀x : x ≤ x (Refl≤) ∀x : 0 ≤ x (Min≤)
∀x∀y∀z : (x ≤ y ∧ y ≤ z) ⊃ x ≤ z (Trans≤) ∀x : x ≤ 1 (Max≤)
∀x∀y : x ≤ y ∨ y ≤ x (Linear≤) ∀x∀y : x < y ∨ y ≤ x (Conn.)
∀x∀y : x < y ⊃ ¬(y ≤ x) (Strict)

Remark 1. Efficient decision procedures for T≤,< can be found, e.g., in [11,
12]. These results, in particular, imply that T≤,< fulfills

condition (D) on semantic theories (i.e., decidability for Π1-formulas).
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We can now state the truth functions for disjunction (∨ – maximum), con-
junction (∧ – minimum), implication (⊃), and negation (¬) in such a way
that it gets clear that these connectives are projective with respect to T≤,<.

∼∨(x, y) =
{

x if y ≤ x,
y if x < y

∼∧(x, y) =
{

x if x ≤ y,
y if y < x

∼⊃(x, y) =
{

1 if x ≤ y,
y if y < x

∼¬ =
{

1 if x ≤ 0,
0 if 0 < x

Negation can be treated as derived connective by defining ¬A := A ⊃ 0.
“1” is intended to be the only designated truth value. Therefore we take

“1 ≤ x” as designating predicate.
Infinite-valued Gödel logic G∞ is the logic of models of T≤,<, that contain

infinite “<-chains”. This condition on models can be enforced by adding
to T≤,< the density axiom:

∀x∀y∃z : x < y ⊃ (x < z ∧ z < y) (Dense)

However, G∞ is not only the logic2 of the theory axiomatized by T≤,< ex-
tended with (Dense), or the logic LM for any dense infinite model M of
T≤,<, but also the logic LT≤,<

itself.
If we restrict attention to finite models of T≤,< we obtain
the family of finite-valued Gödel logics Gn. Let, e.g., M be the (up to

isomorphism) unique model of T with 4 elements, in which also ∃x∃y : 0 <
x∧x < y∧y < 1 is satisfied, then LM is the 4-valued Gödel logic G4. Instead
of focusing directly on particular models M one may equivalently augment
T≤,< to become the unique (first order) theory of M. An even simpler way
to obtain finite-valued Gödel logics consists in adding the following axiom
to T≤,<:

∃x1 · · · ∃xn∀y : y ≡ x1 ∨ . . . ∨ y ≡ xn (Finiten)

where x ≡ y abbreviates (x ≤ y ∧ y ≤ x). This results in LT≤,<
= Gn.

Remark 2. One might intend to include conditions ¬(xi ≡ xj), for i �= j,
in Finiten; however, since Gm contains Gn if m < n, these conditions are
redundant.

2.2 A relation between finite- and infinite-valued logics

It is well known that G∞ is the intersection of all finite-valued Gödel log-
ics. The concept of projective connectives allows us to grasp the connection
between logics corresponding to finite and arbitrary models of a semantic
theory, respectively, at a more general level.
2 There is only one infinite-valued propositional Gödel logic. On the first order level

different topologies on the set of truth values induce different logics.
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Proposition 1. Let T be a universal theory (i.e., axiomatized by Π1-formulas
only) and F be any formula of a projective logic over T. If a formula F is
valid in LM for all finite models M of T then F is valid in LM for all models
M of T. More concisely: ( ⋂

M finite

LM
)

= LT.

Proof. Let M be an arbitrary model of T such that M �|= Des[valI(F )/x]
forsome interpretation I. Since the connectives of F are projective its evalu-
ation only depends on the elements of M assigned by I to the propositional
variables of F and the constants of T. That is: we can filtrate M into a model
M′ with domain {I(p) | p occurs in F}∪{c | c is the value of some constant
of T}. (Remember that the signature of any semantic theory is finite.) There-
fore, if F is valid in all finite models it must be valid in arbitrary models, i.e.
in LT.

Observe that the proof provides a bound for the size of models (i.e. number
of truth values) that we have to consider if we want to check whether a formula
is valid in LT. In the case of G∞ we obtain: F ∈ G|F |+2 implies F ∈ G∞
where |F | is the number of (distinct) propositional variables occurring in F .

3 Sequent calculi of relations

There are quite different ways to interpret Gentzen’s classical sequent cal-
culus LK [17]. These lead to different types of generalizations of Gentzen’s
calculus. One — very useful — interpretation of a sequent

F1, . . . , Fn −→ G1, . . . , Gm

is to understand it as expressing the assertion that either one of the Fi (1 ≤
i ≤ n) is false or one of the Gj (1 ≤ j ≤ m) is true. In this view a classical
sequent can be identified with a sequence

False(F1), . . . , False(Fn), T rue(G1), . . . , T rue(Gm)

of (monadic) atomic formulas referring to the usual semantic theory. It is well
known how this leads to the formulation of sequent calculi for all finite-valued
logics (see, e.g., [23, 26, 10]).

However, one may prefer to think of the sequent arrow in

F −→ G

as associated with the binary semantic predicate “F implies G”. In the con-
text of a many-valued logic with an ordered set of truth value this can, e.g.,
be understood as

valI(F ) ≤ valI(G)
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for all interpretations I.
The concept of “hypersequents” (as investigated extensively by A. Avron

in, e.g., [2, 3], see Section 4.1) extends the range of logics for which analytic
Gentzen style systems can be given. Hypersequents are sequences of sequents
understood as disjunctively connected (at the external level). If external con-
traction and external weakening are present and a “splitting rule” (which
is an instance of Avron’s communication rule, introduced in [2] to define a
hypersequent calculus for G∞ based on Gentzen’s sequent calculus LJ for
intuitionistic logic) is admissible, then the hypersequent

. . . | F1, . . . , Fn −→ G | . . .

is equivalent to the hypersequent

. . . | F1 −→ G | . . . | Fn −→ G | . . .

This hypersequent can again be viewed as a sequence of (binary) atomic
formulas referring to a semantic theory. (For this one needs truth constants
that correspond to an empty left or right hand sight of the sequents.)

The connection to the semantic framework described in Section 2 is man-
ifested in the following definition:

Let R1, . . . , Rn be the predicate symbols of a semantic theory T, then a
sequent of relations is a finite multiset3 written in form

Ri1(F
1
1 , . . . , F 1

r1
) | . . . | Rik

(F k
1 , . . . , F k

rk
)

where for all 1 ≤ j ≤ k: ij ∈ {1, . . . , n}, r� is the arity of Ri�
and all F i

j

are formulas of a logic. (Strictly speaking, the relational symbols Rj just
correspond to symbols of the language of T, since the terms of T are not
formulas but variables and constants for truth values.)

We are now going to define the sequent calculus of relations RLT for a
projective logic LT defined with respect to a semantic theory T.

Axiom sequents

Let T |= ∀x̄
∨

1≤j≤n Bj where the Bj are atomic formulas and x̄ are the
free variables in

∨
1≤j≤n Bj . Let θ be any substitution of formulas for the

variables x̄. Then
B1θ | . . . | Bnθ

is an axiom of RLT.

Remark 3. Since T decides all Π1-formulas the set of axioms is recursive.

Remark 4. Instead of taking all valid disjunctions of atomic formulas to define
axioms one may just consider minimal valid disjunctions. I.e., one reduces the
set of axioms modulo the (provability) equivalence relation induced by the
structural rules described below.

3 If one prefers sequences over multisets as basic objects of inference then a per-
mutation rule has to be added to the calculus. This approach was used [8].
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Structural rules

As already mentioned above, the structural rules for relational sequents should
capture the intended interpretation of “|” as disjunction. Therefore we have
the following rules in RLT.

H
A | H weakening

A | A | H
A | H contraction

where A, B are arbitrary atomic relations on formulas and H is an arbitrary
(possible empty) side sequent.

We call these rules external since they manipulate whole components (i.e.,
relations) of sequent but do not change formulas within components.

Logical rules

Let � be an n-ary projective connective with the following truth function:

∼
�(x1, . . . , xn) =


t1 if A1(x1, . . . , xn)
...

...
tm if Am(x1, . . . , xn)

For each predicate symbol R of arity r and each position p, where 1 ≤ p ≤ r,
we obtain a rule (� : R : p) for introducing � at position p into an R-
component of a relational sequent. For this one considers the formula

α�:R:p =
∨

1≤�≤m

A�(x1, . . . , xn) ∧ R(z1, . . . , zr){t�/zp}

Take any conjunction of disjunctions of atomic formulas
∧

1≤j≤s

∨
1≤k≤uj

Bj,k

that is equivalent in T to α�:R:p. Then we have the rule

B1,1θ | ... | B1,u1θ | H . . . Bs,1θ | ... | Bs,us
θ | H

R(z1, . . . , zr){�(x1, . . . , xn)/zp}θ | H (� : R : p)

where θ substitutes formulas for the variables {x1, . . . , xn} ∪ {z1, . . . , zr} −
{zp}, and H is the side sequent of the rule.

Remark 5. We make use of the fact that the conditions Ai are simple, i.e.
negation and quantifier free.

Remark 6. In general there are many conjunctive normal forms equivalent
to α�:R:p. To obtain compact rules it is often essential to apply simplifications
justified by T-valid formulas.

Remark 7. The α�:R:p are Π1-formulas of T. Since T decides all Π1-formulas,
the transformation of the specification of a truth function into a logical rule
for sequents of relations can — in principle — be automatized.
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Example 2. Continuing Example 1 we arrive at a sequent calculus of (mona-
dic) relations for each finite-valued logic if we follow the above definitions. In
fact, because of the presence of the standard structural rules, these calculi are
just notational variants of the many-placed sequent calculi or signed calculi
as described, e.g., in [23, 10]. (The special case of classical logic — LK [17]
— was already sketched at the beginning of the section.) We can even get
rid of the truth constants in the formulation of the calculi. The reason for
this is that, obviously, any atomic formula of T that contains a constant
can only be of form Ci(cj), and thus is either simply true or false. For the
axioms and rules this means that formulas Ci(cj) where i �= j are deleted
from the sequents, and sequents containing Ci(cj) where i = j are discarded,
altogether.

3.1 Correctness, completeness, decidability

A sequent (of relations) S is called provable in RLT if there is an upward tree
of sequents rooted in S, such that every leaf (topmost sequent) is an axiom
and every other sequent is obtained from the ones standing immediately
above it by application of one of the rules of RLT.

For any sequent
S = R1(F1,1, ..., F1,r1) | . . . | Rn(Fn,1, ..., Fn,rn

)
let

βS =
∨

1≤i≤n

Ri(ti,1, ..., ti,ri
)

be the T-formula corresponding to S, where ti,j is identical to Fi,j if Fi,j

is a truth constant4 and is a new variable xi,j otherwise (xi,j = xk,� iff
Fi,j = Fk,�).

Since the designating predicate Des is a simple formula it is equivalent
to a formula Des′ of form

∧
1≤i≤p

∨
1≤j≤qi

Ai,j where the Ai,j are atomic
formulas with at most one free variable x. By

D1{x/F}, . . . ,Dp{x/F}

we denote the sequence of sequents that correspond to the conjuncts of Des′

if x is replaced by the formula F .
For the following statements let T be any semantic theory and LT be the

logic determined by T, an object language, projective truth functions for this
language and a designating predicate Des. RLT is the corresponding sequent
calculus of relations as defined above.

Theorem 1 (Correctness). If all sequents D1{x/F}, . . . ,Dp{x/F} are
provable in RLT then F is valid in LT.

4 Remember that we identify the constants of T with truth constants of the object
language.
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Proof. We show by induction on the length of proofs that for all models M
of T and all interpretations I: M |= βS [σI ] if S is provable, where σI assigns
valI(Fi,j) to the corresponding variable xi,j . From this the theorem follows
by the definition of D1{x/F}, . . . ,Dp{x/F} and the fact that F is valid if for
all M and I: M |= Des[valI(F )/x].

For axioms the claim immediately follows from their definition.
For applications of structural rules with premiss S and conclusion S ′ we

have βS implies βS′ by the fact that the T-formulas corresponding to sequents
are classical disjunctions.

For the application of a logical rule (� : R : p) it suffices to observe that,
by definition, for any σ: M |= α�:R:p[σ] implies that M |= R(z1, . . . , zr)[σ′],
where σ′ is as σ except for assigning

∼
�(σ(x1), . . . , σ(xn)) to the only variable

zp that does not already occur in α�:R:p.

Theorem 2 (Completeness). If F is valid in LT then all sequents D1{x/F},
. . ., Dp{x/F} are provable.

Proof. (Sketch) We employ Schütte’s method of reduction trees [24]. That
is, we construct a reduction tree RT for every sequent S such that either a
proof of S or a model in which βS is not valid can be extracted from RT .

The construction of the upward tree of sequents RT for the sequent S is
in stages as follows:

Stage 0: Write S at the root of RT .
Stage k: If the topmost sequent S ′ of a branch contains only propositional

variables (as arguments of its relations) then stop the reduction for this
branch. Otherwise S ′ contains a relation R(F1, . . . , Fr) where Fp ≡ �(G1,
. . ., Gn) for some 1 ≤ p ≤ r. If the indicated occurrence of �(G1, . . . , Gn)
is not the result of a reduction at this stage and has not yet been reduced
on this branch then replace S ′ by

B1,1θ | ... | B1,t1θ | S ′ . . . Bs,1θ | ... | Bs,ts
θ | S ′

S ′

where the Bi,j are as in the definition of rule (� : R : p) and θ is given
by R(z1, . . . , zr){�(x1, . . . , xn)/zp}θ = R(F1, . . . , Fr).

Since every occurrence of a formula is only reduced once in a branch, the
construction of RT stops after finitely many steps.

We say that a sequent S ′ contains an axiom if it can be derived from
an axiom using structural rules only. If each leaf of RT contains an axiom of
RLT then a proof of S is easily constructed from RT by inserting weakenings
and contractions.

Otherwise there is a leaf sequent R that does not contain an axiom.
Let βR be the T-formula corresponding to R (by replacing the proposi-
tional variables fi occurring in R by variables xi of the language of T).
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By definition of the set of axioms, there is a model M of T and an as-
signment σ such that M �|= βR[σ]. The assignment σ of truth values to
the xi induces an interpretation I of the corresponding propositional vari-
ables fi. By going down the branch from R to the root S one can augment
I to an interpretation of all propositional variables occurring in S such that
M �|= βS [valI(H1)/x1, . . . , valI(Hk)/xk], where the Hi are the formulas in S.
(For this, of course, one has to use the corresponding truth functions as in-
terpreted in M.)

F is valid in LT iff for all M and I, M |= ∀x Des[valI(F )/x]. Since
T |= ∀x Des ⇔ ∧

1≤i≤p Di it follows that all leaves of a reduction tree RT i

for a sequent Di{x/F} contain axioms. Therefore all sequents D1{x/F}, . . . ,
Dp{x/F} are provable in RLT if F is valid.

Since the construction of the reduction trees is effective we obtain:

Corollary 1. All projective logics LT are decidable.

Remark 8. The construction of the reduction tree can be seen as the search
for a proof in tableau format. Here, the atomic elements of the tableau are
not just formulas but (atomic) relations between formulas. The reduction
of compound formulas corresponds to the introduction rules of the sequent
calculus. The tableau closure rules correspond to the axioms. The close rela-
tionship between reduction trees (i.e., tableaux) and sequent proofs relies on
the fact that, like in classical logic, we can view sequents as sets (i.e., modulo
contraction) and can move all weakenings up to the axioms.

3.2 Extended structural rules

So far we only considered (analytic) rules for introducing connectives and
traditional forms of structural rules. Let us now investigate

which types of cut rules or more general forms of structural rules
(that possibly allow to exchange formulas from different relations in se-

quents) are admissible in our calculi. Although we know — by completeness
— that such rules are not needed for proof search, one should keep in mind
that vast speedups (at least with respect to proof length) can be gained by
applying such rules. This is already well known for the “simplest” case of a
projective logic, namely classical logic.

We call a rule extended structural rule if it is of the form:

H | Γ1θ . . . H | Γnθ

H | Γθ

where Γ1, . . . , Γn, Γ are sequences of atomic formulas of T (separated by “|”),
θ is a substitution of variables by formulas and H a side sequent.
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Remark 9. Because of the presence of weakening and contraction, there is no
loss of generality in considering only identical side sequents in the premisses.
Indeed this “additive” version of rules (see [28]) is more suitable in the context
of tableau style proof search.

An extended structural rule is admissible in RLT if

T |= ∀x̄
(
Γ̂1 ∧ . . . ∧ Γ̂n

) ⊃ Γ̂

where x̄ is the vector of all variables occurring in Γ1, . . . , Γn, Γ and ∆̂ is the
disjunction of the atomic formulas ∆ consists of. (∆̂ ≡ True for empty ∆.)

It follows from this definition that, indeed, all sequents provable in RLT

augmented by admissible extended structural rules are already provable in
RLT without these rules.

It is important to notice that admissibility is a decidable property of rules,
because we required all Π1-sentences to be decidable in T.

Let vars(∆) denote the set of variables occurring in the sequent ∆. We
call an extended structural rule cut rule if vars(Γ ) �

⋃
1≤i≤n vars(Γi).

(That is at least one formula is “cut out” from the premisses.) If vars(Γ ) ⊇⋃
1≤i≤n vars(Γi) we speak of an analytic structural rule.

Remark 10. In general, many different extended structural rules are admis-
sible. They constitute an open list of possible (i.e., admissible) but (for
completeness) not necessary extensions of the analytic calculi defined in Sec-
tion 3. Some examples are as follows:

Example 3. If T contains a transitive relation “≺” — e.g., “<” and “≤” in
the semantic theory T≤,< of Gödel logics — then

F ≺ G | H G ≺ H | H
F ≺ H | H (tr-cut)

is an admissible cut rule, called transitivity-cut.
If the partial ordering ≺ has a minimal element 0 and a maximal element 1

distinct from 0 — again Gödel logics are concrete examples — then

F ≺ 0 | H 1 ≺ F | H
H

is another admissible cut rule.
If ≺ is irreflexive — as “<” for Gödel logics — also the unary cut rules

1 ≺ F | H
H and

F ≺ 0 | H
H

are admissible.



Sequents of Relations Calculi 165

Example 4. Let “≤” and 0, 1 be as in the semantic theory T≤,< for Gödel
logics. Then

1 ≤ F | H
G ≤ F | H (w :≤: l)

,
G ≤ 0 | H
G ≤ F | H (w :≤: r)

and
1 ≤ 0 | H

H
are examples of admissible analytic structural rules. The first two correspond
to (internal) weakening in standard sequent calculi.

An important analytic structural rule, admissible for Gödel logics, is:

F ≤ G | H H ≤ I | H
H ≤ G | F ≤ I | H

It corresponds to an instance of Avron’s communication rule as we shall see
in Section 4.1

4 A sequent of relations calculus for Gödel logics

As an illustration of the proof theoretic framework of the last section we
present sequent of relations calculi for the sequent of relations calculus RG∞
for infinite-valued Gödel logic G∞. Calculi for Gn and for G∆

∞ are obtained
from RG∞ by adding suitable axioms or rules, as explained in Remarks 11
and 12, respectively.

The rules of RG∞ are derived using the semantic theory T≤,< (see Sec-
tion 2.1) as described in Section 3.

Remember, that the (external) structural rules are the same for all
sequent of relations calculi. For RG∞ they can be written as follows:

H
A � B | H weakening

A � B | A � B | H
A � B | H contraction

where � ∈ {<,≤}.
The axioms of RG∞ are all sequents that contain a sequent

A1 �1 A2 | A2 �2 A3 | . . . | Ak �k A1

for k ≥ 1, where �i ∈ {<,≤} for all 1 ≤ i ≤ k, but �i ≡≤ for at least one i.
In addition, all sequents that are obtained from the above ones by deleting
relations of form

A < 0, 1 < A, or 1 ≤ 0

are axioms.
In [7] the following explicit description of the above axioms has been

introduced:

(a) A1 �n An | . . . | A3 �2 A2 | A2 ≤ A1, where �i ∈ {<,≤} and the case
n = 1 is defined as A1 ≤ A1,
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(b) An ≤ An−1 | An−1 < An−2 | . . . | A1 < 1, where the case n = 1 is defined
as A1 ≤ 1,

(c) 0 < An | . . . | A3 < A2 | A2 ≤ A1, where the case n = 1 is defined as
0 ≤ A1,

(d) 0 < A1 | A1 < A2 | . . . | An < 1, where the case n = 0 is defined as 0 < 1.

The above description, corresponds to the original set of axioms up to (ex-
ternal) weakening.

Theorem 3. Axioms of type (a) − (d) are, up to (external) weakening, all
and only the atomic sequents valid in T≤,<.

It is easy to check that all of the above axioms correspond to valid statements
in T≤,<. However, to guarantee completeness we also have to show the con-
verse: namely, that all valid atomic sequents are obtained from these axioms
using external weakening only. For this purpose it is better to consider the
dual form of the axioms. I.e., we make use of the fact that valI(A) < valI(B)
iff ¬[valI(B) ≤ valI(A)], and thus may consider conjunctions of components
instead of disjunctions.

Definition 1. A set of components is called dual to axioms if it does not
contain any subset of one of the following forms:

(a) (anti-cycle) {A1 < A2, A2 �2 A3, . . . , An �n A1}, where �i ∈ {<,≤} and
the case n = 1 is defined as {A1 < A1},

(b) (anti-1-chain) {1 ≤ A1, . . . , An−2 ≤ An−1, An−1 < An}, where the case
n = 1 is defined as {1 < A1},

(c) (anti-0-chain) {A1 < A2, A2 ≤ A3, . . . , An ≤ 0}, where the case n = 1 is
defined as {A1 < 0},

(d) (anti-0-1-chain) {1 ≤ A1, A2 ≤ A3, . . . , An ≤ 0}, where the case n = 0 is
defined as {1 ≤ 0} .

It suffices to prove the following:

Theorem 4. Let Γ be a finite set of components A � B, � ∈ {<,≤}, where
A and B are either propositional variables or truth constants. If Γ is dual to
axioms then Γ is satisfiable; i.e., there exists an interpretation that satisfies
all components of Γ .

To prove Theorem 4 we extend any Γ that is dual to axioms to a “max-
imal” set Γ ∗ that is still dual to axioms. Let us write B ∈ [A] ⇐⇒ {A ≤
B,B ≤ A} ⊆ Γ ∗. It will follow from Proposition 2 and Lemma 1, below,
that this is an equivalence relation and that the set of equivalence classes
Γ ∗ = {[A] : A occurs in Γ ∗} is totally ordered with respect to [A] < [B] ⇐⇒
A < B ∈ Γ ∗. The minimal element of the ordering is [0] and its maximal
element is [1] (if 0 and 1 occur in Γ ). The ordering thus allows to match
equivalence classes with truth values in a way that induces an interpretation
satisfying Γ ∗ and therefore also Γ .

We first add A ≤ B to Γ whenever A < B ∈ Γ . This is justified by the
following simple observation:
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Proposition 2. If Γ is dual to axioms then Γ ∪ {A ≤ B : A < B ∈ Γ} is
dual to axioms, too.

The existence of Γ ∗ follows from the following:

Lemma 1. If Γ is dual to axioms then either Γ ∪ {A < B} or Γ ∪ {B ≤ A}
is dual to axioms, too.

Proof. The proof proceeds by case distinctions:

(1) Γ ∪ {A < B} contains an anti-cycle. Then either already Γ contains
an anti-cycle or {B ≤ U1, . . . , Un ≤ A} ⊆ Γ . From this it follows that
Γ ∪ {B ≤ A} is dual to axioms iff Γ is dual to axioms.

(2) Γ ∪ {B ≤ A} contains an anti-cycle. Then either already Γ contains an
anti-cycle or {A ≤ U1, . . . , Uk < Uk+1, . . . Un ≤ B} ⊆ Γ . From this it
follows that Γ ∪ {A < B} is dual to axioms iff Γ is dual to axioms.

(3) Neither Γ ∪ {A < B} nor Γ ∪ {B ≤ A} contains an anti-cycle.
(3.1) Γ ∪{A < B} contains an anti-1-chain W.l.o.g., the anti-1-chain is not

already contained in Γ . Therefore (a): {1 ≤ V1, . . . , Vn−1 ≤ A} ⊆ Γ .
(3.1.1) Γ ∪ {B ≤ A} contains an anti-1-chain that is not already con-

tained in Γ . Therefore {1 ≤ U1, . . . , Uk−1 ≤ B} ⊆ Γ and {A ≤
Uk+1, . . . , Uk+m−1 < Uk+m} ⊆ Γ . The latter subset can be com-
bined with (a) to an anti-1-chain in Γ .

(3.1.2) Γ ∪ {B ≤ A} contains an anti-0-chain that is not already con-
tained in Γ . Therefore {U1 < U2, . . . , Uk−1 ≤ B} ⊆ Γ and
{A ≤ Uk+1, . . . , Uk+m ≤ 0} ⊆ Γ . The latter subset can be com-
bined with (a) to an anti-0-1-chain in Γ .

(3.1.3) Γ ∪ {B ≤ A} contains an anti-0-1-chain that is not already
contained in Γ . Therefore {1 ≤ U1, . . . , Uk−1 ≤ B} ⊆ Γ and
{A ≤ Uk+1, . . . , Uk+m ≤ 0} ⊆ Γ . The latter subset can be com-
bined with (a) to an anti-0-1-chain in Γ .

(3.2) Γ ∪ {B ≤ A} contains an anti-1-chain that is not already contained
in Γ . Therefore
(b1): {1 ≤ V1, . . ., Vk−1 ≤ B} ⊆ Γ and (b2): {A ≤ Vk+1, . . .,
Vk+m−1 < Vk+m} ⊆ Γ .

(3.2.1) Γ ∪ {A < B} contains an anti-1-chain. This case was already
settled in (3.1.1).

(3.2.2) Γ ∪ {A < B} contains an anti-0-chain that is not already con-
tained in Γ . Then {B ≤ U2, . . . , Un ≤ 0} ⊆ Γ . This subset can
be combined with (b1) to an anti-0-1-chain in Γ .

(3.3) Neither Γ ∪ {A < B} nor Γ ∪ {A ≤ B} contain an anti-1-chain.
(3.3.1) Γ ∪ {A < B} contains an anti-0-chain that is not already con-

tained in Γ . Then (c) {B ≤ V2, . . . , Vn ≤ 0} ⊆ Γ .
(3.3.1.1) Γ ∪ {B ≤ A} contains an anti-0-chain that is not already

contained in Γ . Therefore {U1 < U2, . . . , Uk−1 ≤ B} ⊆ Γ
and {A ≤ Uk+1, . . . , Uk+m ≤ 0} ⊆ Γ . The first subset can be
combined with (c) to an anti-0-chain in Γ .
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(3.3.1.2) Γ ∪ {B ≤ A} contains an anti-0-1-chain that is not already
contained in Γ . Therefore {1 < U2, . . . , Uk−1 ≤ B} ⊆ Γ and
{A ≤ Uk+1, . . . , Uk+m ≤ 0} ⊆ Γ . The first subset can be
combined with (c) to an anti-0-1-chain in Γ .

Finally observe that if Γ ∪ {A < B} contains an anti-0-1-chain then this
anti-0-1-chain is already contained in Γ . It is easy to check that this settles
all remaining cases.

The logical rules of RG∞ — i.e., the rules for introducing connectives at
any place of a sequent — are easily derived as described in Section 3 above by
manipulating the rule-defining formulas α�:R:p in T≤,<. Here R ∈ {<,≤};
p ∈ {l, r} for the left and right argument position of the binary relations,
respectively, and � ∈ {⊃,∧,∨}.

α(⊃:<:r) ≡ (x ≤ y ∧ z < 1) ∨ (y < x ∧ z < y)
⇐⇒ (x ≤ y ∨ y < x) ∧ (x ≤ y ∨ z < y)∧

(z < 1 ∨ y < x) ∧ (z < 1 ∨ z < y)
⇐⇒ (x ≤ y ∨ z < y) ∧ (z < 1)

The rule for introducing implication at the right argument place of “<” in a
relational sequent can therefore be stated as:

A ≤ B | C < B | H C < 1 | H
C < (A ⊃ B) | H (⊃:<: r)

Similarly we have in T≤,<

α(⊃:<:l) ≡ (x ≤ y ∧ 1 < z) ∨ (y < x ∧ y < z)
⇐⇒ y < x ∧ y < z

Thus a rule for introducing implication at the left argument place of “<” is:

B < A | H B < C | H
(A ⊃ B) < C | H (⊃:<: l)

For implication at the right hand side of the ≤-relations we obtain:

α(⊃:≤:r) ≡ (x ≤ y ∧ z ≤ 1) ∨ (y < x ∧ z ≤ y)
⇐⇒ (x ≤ y ∨ y < x) ∧ (x ≤ y ∨ z ≤ y)
⇐⇒ x ≤ y ∨ z ≤ y

This induces the rule

A ≤ B | C ≤ B | H
C ≤ (A ⊃ B) | H (⊃:≤: r)



Sequents of Relations Calculi 169

A compact rule for introducing implication at the left hand side of the ≤-
relations is obtained by the following derivation in T≤,<:

α(⊃:≤:l) ≡ (x ≤ y ∧ 1 ≤ z) ∨ (y < x ∧ y ≤ z)
⇐⇒ (x ≤ y ∨ y < x) ∧ (x ≤ y ∨ y ≤ z)∧

(1 ≤ z ∨ y < x) ∧ (1 ≤ z ∨ y ≤ z)
⇐⇒ (1 ≤ z ∨ y < x) ∧ (y ≤ z)

This induces the rule
1 ≤ C | B < A | H B ≤ C | H

(A ⊃ B) ≤ C | H (⊃:≤: l)

Observe that this is the only ≤-rule exhibiting “<” in the premisses. (This
is of importance for the connection to Avron’s hypersequent calculus GLC
for G∞; see Section 4.1 below.)

Computing the rules for disjunction and conjunction is easy. They take
the same form for both relations. We therefore let � stand for either < or ≤
(uniformly in each rule):

C � A | H C � B | H
C � (A ∧ B) | H (∧ : � : r)

A � C | B � C | H
(A ∧ B) � C | H (∧ : � : l)

C � A | C � B | H
C � (A ∨ B) | H (∨ : � : r)

A � C | H B � C | H
(A ∨ B) � C | H (∨ : � : l)

Remark 11. To obtain a calculus for n-valued Gödel logic Gn one has to add
to RG∞ all axioms of form

A1 �1 A2 | A2 �2 A3 | . . . | Al �l Al+1

where �i ≡≤ for at least n different i ∈ {1, . . . , l}, where l > n. Below, we
refer to this calculus as RGn.

Remark 12. In [6] G∞ is extended with the “projection modality” ∆. In the
resulting logic G∆

∞, one can make “fuzzy” statements “crisp”, since a formula
∆P is mapped to the distinguished truth value 1 if the value of P equals 1,
and to 0 otherwise. Clearly, ∆ is projective with respect to the semantic
theory T≤,< of Section 2.1. Indeed, its truth function can be defined as:

∼
∆(x) =

{
1 if 1 ≤ x

0 if x < 1

To obtain a calculus for G∆
∞ one has to add to RG∞ suitable rules for in-

troducing ∆. These rules, defined using the algorithm described in Section 3,
are as follows:

A < 1 | 1 ≤ B

∆A ≤ B
(∆ :≤: l)

B ≤ 0 | 1 ≤ A

B ≤ ∆A
(∆ :≤: r)
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0 < B A < 1
∆A < B

(∆ :<: l)
B < 1 1 ≤ A

B < ∆A
(∆ :<: r)

Remark 13. As pointed out in Section 3.2, different forms of cuts are admis-
sible in RG∞. In [7] the following version of the cut rule has been considered

H | A ≤ B H | B < A

H (cut</≥)

and a constructive proof for the elimination of (cut</≥) from given deriva-
tions has been presented.

Focusing on (cut</≥) is motivated by the fact that it allows to simulate
other forms of cut straightforwardly. E.g., the transitivity-cut (see Section
3.2)

A ≤ B | H B ≤ C | H
A ≤ C | H (tr-cut≤)

can be derived from a 3-component-cycle by applying (cut</≥) twice in the
following way:

C < B | B < A | A ≤ C B ≤ C | H
B < A | A ≤ C | H A ≤ B | H

A ≤ C | H

Similar admissible rules involving < instead of ≤ can be treated analogously.
As we shall see in Section 4.1 below, (cut</≥) also allows to derive a

version of Avron’s communication rule.
A different type of admissible rule, related to cut, is the so-called Takeuti-

Titani rule. This rule, which expresses the density of the set of truth values,
has been used in [27] to axiomatize first-order G∞:

F ≤ p | p ≤ G | H
F ≤ G | H (tt)

where p is a propositional variable not occurring in the lower sequent. It is
interesting to observe that (tt) cannot be derived in RG∞ since — in contrast
to (cut</≥) and the other rules of RG∞ — (tt) is not strongly sound, e.g.,
in finite-valued Gödel logics.

4.1 Relationships with Hypersequent Calculi and Decomposition
Proof Systems for Gödel logics

We first relate our approach to hypersequent calculi for Gödel logics.
As already mentioned in Section 3, a hypersequent is a finite sequence

of sequents (see [3] for an overview). In [2] Avron introduced a hyperse-
quent calculus for G∞. This calculus — called GLC — is defined by embed-
ding Gentzen’s LJ-sequents into hypersequents. Suitable structural rules are
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added to manipulate the additional layer of structure to the basic objects of
inferences. More precisely, these structural rules are external permutation,
external weakening, external contraction and the communication rule:

Γ, Γ ′ ⇒ U | H Γ1, Γ
′
1 ⇒ V | H

Γ, Γ1 ⇒ U | Γ ′, Γ ′
1 ⇒ V | H (com)

This rule increases the expressive power of GLC compared to LJ but is
problematic from a computational point of view.

GLC can be viewed as a calculus of relations. For this purpose we use an
equivalent formulation, where the hypersequents are fully split (see Section 3).
This version of Avron’s calculus, consequently, consists of:

– axioms A ≤ A
– (external) structural rules
– internal weakening rules (w :≤: l) and (w :≤: r) (see Example 4)
– all ≤-rules of RG∞ with the exception of (⊃:≤: l), which is replaced by

D ≤ A | H B ≤ C | H
(A ⊃ B) ≤ C | D ≤ C | H (⊃:≤: l)∗

– the communication rule:

A1 ≤ U | . . . | An ≤ U | H B1 ≤ V | . . . | Bm ≤ V | H
A1 ≤ V | . . . | An ≤ V | B1 ≤ U | . . . | Bm ≤ U | H (rcom)

It is not hard to see that RG∞ and (the above version of) GLC are equiva-
lent. Indeed, (⊃:≤: l)∗ is derivable from (⊃:≤: l) in RG∞ using transitivity-
cuts which can be eliminated from proofs (see Remark 13 and [7]):

D ≤ A | H A ≤ B | B < A

D ≤ B | B < A | H (tr-cut)
B ≤ C | H

D ≤ C | B < A | H (tr-cut)

1 ≤ C | B < A | D ≤ C | H (weak.)
B ≤ C | H

A ⊃ B ≤ C | D ≤ C | H (⊃:≤: l)

Moreover (rcom) is derivable in RG∞ using 4-component-cycles. E.g., in
(rcom), let n = m = 1, one has:

B1 ≤ V | H
A1 ≤ U | H U < A1 | A1 ≤ V | V < B1 | B1 ≤ U

A1 ≤ V | V < B1 | B1 ≤ U | H
A1 ≤ V | B1 ≤ U | H

Consequently, RG∞ simulates Avron’s GLC.
In the other direction, it easy to show that pure ≤-sequents derivable in

RG∞ are also derivable in (the above version of) GLC: Let (A < B)d ≡
1 ≤ ((B ⊃ A) ⊃ B) and (A ≤ B)d ≡ 1 ≤ A ⊃ B. Then all d-translations
of derivable RG∞-sequents are derivable in GLC, since the translations of
RG∞-rules are derivable in GLC.
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Concerning efficient proof search, the most important feature of RG∞
is the fact that all the rules are invertible. In particular, we do not have to
use the communication rule (or any similar rule destroying the “locality” of
tableau style proof search). On the other hand, even if we enrich GLC by
the (more general) axioms of RG∞ the valid sequent

A ⊃ B ≤ C | A ≤ B | C ≤ B

is not cut-free provable without using the communication rule. In other words:
the communication rule cannot be avoided if “<” is eliminated from the
signature. This is connected with the fact that this rule cannot be permuted
over the rule for introducing ⊃ on the left while can be permuted over all the
remaining rules of GLC.

Remark 14. A hypersequent calculus GLCn for n-valued Gödel logic, with
n ≥ 2, has been introduced in [13]. This calculus is obtained by replacing, in
GLC, the communication rule with the following one:

Γ1, Γ2 ⇒ U1 | H Γ2, Γ3 ⇒ U2 | H . . . Γn−1, Γn ⇒ Un−1 | H
Γ1 ⇒ U1 | . . . | Γn−1 ⇒ Un−1 | Γn ⇒ | H (Gn)

In analogy to the case above, it is not hard to see that the sequent of relations
calculus RGn (see Remark 11) simulates GLCn (and vice versa). As an
example consider the following (sequent of relations) version of the (G3) rule

A1 ≤ U1 | A2 ≤ U1 | H A2 ≤ U2 | A3 ≤ U2 | H
A1 ≤ U1 | A2 ≤ U2 | A3 ≤ 0 | H (G3)

which can be derived in RG3 as follows:

A2 ≤ U2 | A3 ≤ U2

A1 ≤ U1 | A2 ≤ U1 A1 ≤ U1 | U1 < A2 | A2 ≤ U2 | U2 < A3 | A3 ≤ 0

A1 ≤ U1 | A2 ≤ U2 | U2 < A3 | A3 ≤ 0

A1 ≤ U1 | A2 ≤ U2 | A3 ≤ 0

RG∞ is also closely related with the decomposition proof system GLC∗
RS in-

troduced in [5]. This calculus has been defined following the general Rasiowa-
Sirkorski methodology for constructing analytic proof systems for semanti-
cally defined logics. GLC∗

RS and RG∞ are interderivable using simple no-
tational transformations. Indeed, in one direction, a sequent A1, . . . , An ⇒
B1, . . . , Bm in GLC∗

RS can be translated into a sequent of relations A1 ≤
B1 | . . . | A1 ≤ Bm | An ≤ B1 | . . . | An ≤ Bm. One can easily check that
the (translated versions of the) axioms and rules of GLC∗

RS are derivable in
RG∞. As an example we consider the following version of the rules (⇒⊃ (⊃))
and (⊃ (⊃) ⇒) of GLC∗

RS , respectively:

X ≤ B ⊃ C | X ≤ A ⊃ C | H
X ≤ A ⊃ (B ⊃ C) | H

B ⊃ C ≤ X | H A ⊃ C ≤ X | H
A ⊃ (B ⊃ C) ≤ X | H
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The above rules can be derived in RG∞ as follows (we omit side sequents
that are not involved in the derivations):

X ≤ B ⊃ C | X ≤ A ⊃ C

C < A | A ≤ C
(weak.)

1 ≤ C | C < A | A ≤ C

C ≤ C
(weak.)

C ≤ C | A ≤ C
(⊃:≤:l)

A ⊃ C ≤ C | A ≤ C
(weak.)

A ⊃ C ≤ C | B ≤ C | A ≤ C | B ≤ C
(⊃:≤:r)

A ⊃ C ≤ C | B ≤ C | A ≤ B ⊃ C
(⊃:≤:r)

A ⊃ C ≤ B ⊃ C | A ≤ B ⊃ C
(tr−cut)

X ≤ B ⊃ C | A ≤ B ⊃ C | X ≤ B ⊃ C
(contr.)

X ≤ B ⊃ C | A ≤ B ⊃ C
(⊃:≤:r)

X ≤ A ⊃ (B ⊃ C)

and

A ⊃ C ≤ X

A ≤ C | C < A
(weak.)

1 ≤ C | A ≤ C | C < A
(⊃:<:r)

1 ≤ A ⊃ C | C < A
(tr−cut)

1 ≤ X | C < A

B ⊃ C ≤ X

B ≤ C | C < B
(weak.)

1 ≤ C | B ≤ C | C < B
(⊃:<:r)

1 ≤ B ⊃ C | C < B
(tr−cut)

1 ≤ X | C < B
(⊃:<:l)

1 ≤ X | B ⊃ C < A B ⊃ C ≤ X
(⊃:≤:l)

A ⊃ (B ⊃ C) ≤ X

In the other direction, a sequent G in RG∞ can be translated into a sequent
Γ ⇒ ∆ in GLC∗

RS as follows (see Section 4 of [5]):

1. If 1 ≤ B is a component of G, then B ∈ ∆
2. If B ≤ 1 is a component of G, then B ⊃ B ∈ ∆
3. If 1 < B is a component of G, then B ⊃ B ∈ Γ
4. If B < 1 is a component of G, then B ∈ Γ
5. If A ≤ B is a component of G (A,B �= 1), then A ⊃ B ∈ ∆
6. If A < B is a component of G (A,B �= 1), then B ⊃ A ∈ Γ

One can easily check that this translation makes the axioms and rules of
RG∞ identical to those of GLC∗

RS .
We emphasize that RG∞ is just a special instance of a more general

framework for theorem proving in many-valued logics. Our approach sheds
light on the connections between G∞ and other projective logics. In partic-
ular, it allows to understand the various formulations of “signed calculi” for
finite-valued logics (see, e.g., [9]) as instances of the same methodological
principle that is used to derive RG∞.
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logic. Logic Journal of the IGPL, 7 (1999) 319–326

17. Gentzen, G.: Untersuchungen über das logische Schliessen I, II. Mathematische
Zeitschrift, 39 (1934) and (1935) 176–210 and 405–431
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