
Effective Applicative Structures

Andrea Asperti and Agata Ciabattoni

Dipartimento di Matematica
P.zza di Porta S.Donato 5, Bologna, Italy

{asperti,ciabatto}@cs.unibo.it

Abstract. An Effective Applicative Structure is a collection of partial
functions over an arbitrary set M, indexed by elements of the same set,
closed under composition, and containing projections, universal functions
and functions Sm

n of the s-m-n theorem of Recursion Theory. The notion
of EAS is developed as an abstract approach to computability, filling a
notational gap between functional and combinatorial theories.

1 Introduction

Suppose having a set of indexed partial functions that is closed under composi-
tion, contains all projections and an interpreter, and satisfies the s-m-n theorem
of Recursion Theory.
The question is: is it Turing complete?
The problem looks very natural: closure under composition and existence of pro-
jections are obvious properties of effective functions, while the s-m-n theorem
and the existence of universal functions are basic results of the theory of effective
computability. Many interesting results (such as Kleene’s fixed point theorem)
can be proved by the only use of the previous assumptions.
Surprisingly, it seems that the previous problem has never been really addressed
in existing literature. Indeed, there are several similar “axiomatic” approaches
to Recursion Theory, but all of them make stronger assumptions than ours. The
most relevant (and closest) approach is the Basic Recursive Function Theory
introduced by Wagner and Strong. The essential difference w.r.t. this system is
that we drop constants and definition by cases (that is a quite restrictive and
somewhat “integer-oriented” assumption).
As a matter of fact, constants and definition by cases are completely inessential
to establish the (Turing) completeness of the system: the above assumptions (we
call it an Effective Applicative Structure) are enough.
The result is obtained by proving that any EAS is actually a Partial Combina-
tory Algebra (PCA). By the Turing completeness of the latter (see [5]), we derive
the Turing completeness of the former. Moreover, we have another interesting
corollary, that was not evident a priori: it is easy to see that any PCA is an
Effective Applicative Structure, so we have a complete equivalence between EAS
and PCA.
In this way we obtain an alternative (and, in our opinion more natural and el-
egant) characterization of PCA’s, which, in some sense, have always been the

“poor relations” of Combinatory Algebras: they lack the simplicity and formal
elegance of the latters, while inheriting all their weak points: a pretty “opera-
tional” nature (that contrasts with the “denotational” idea of partiality), and a
large arbitrarity in the choice of the basic combinators (S and K).

2 Effective Applicative Structures

An Effective Applicative Structure (EAS) is a family Φn of functions

Φn : M → (Mn → M)
︸ ︷︷ ︸

partial functions

n ∈ N

over an arbitrary set M , which satisfies the following axioms1:

1. it is closed under composition, i.e.
∀s,a1,. . . ar ∈ M and ∀r, i ∈ N , ∃f ∈ M such that

Φr
s(Φ

i
a1

(x1, · · · , xi), · · ·Φ
i
ar

(x1, · · · , xi)) ≃ Φi
f (x1, · · · , xi)

∀(x1, . . . , xi) ∈ M i

2. it contains all projection functions In
i , i.e.

∀i, n ∈ N , ∃k ∈ M such that
In
i ≃ Φn

k

3. it contains the Sm
n functions of the s-m-n theorem, i.e.

∀m, n ∈ N ∃j ∈ M such that Φn+1
j is total2 and

Φm

Φ
n+1
j

(i,x1,···,xn)
(y1, · · · , ym) ≃ Φm+n

i (x1, · · · , xn, y1, · · · , ym)

with (x1, · · · , xn) ∈ Mn

and (y1, · · · , ym) ∈ Mm

4. it contains interpreters, i.e.
∀r ∈ N , ∃i ∈ M such that

Φr+1
i (x, y1, · · · , yr) ≃ Φr

x(y1, · · · , yr)

∀x ∈ M, ∀(y1, . . . , yr) ∈ M r

In this paper we prove that any EAS is Turing complete, i.e. all recursive func-
tions are representable in it.
An obvious example of EAS is the collection of (n-ary) recursive functions over
naturals. However, we have very simple Effective Applicative Structures whose

1 according to the standard notation of Recusion Theory, we write Φn
i instead of Φn(i).

2 Φn+1

j = Sm
n

domains is different from N . An interesting case derives from λ-calculus:
let M ≡ Λ/β (i.e. the set of λ-terms modulo β-equality) and let

φn
P (N1, · · · , Nn) = PN1 · · ·Nn

then {φn}n∈M is an EAS model.
In fact

1. {φn} satisfies closure under composition, i.e.
∀M1, M2, · · · , Ml, ∀n ∈ N
Mi ∈ M ∀i = 1 · · · l l ∈ N , ∃F ∈ M :

φM1(φM2 (N1, · · · , Nn) · · ·φMl
(N1, · · · , Nn)) = φF (N1, · · · , Nn)

2. {φn} contains projections, i.e.

φk
R(N1, · · · , Nk) = Ni

with R ≡ λx1 · · ·xk.xi

3. {φn} contains the Sm
n functions of the s-m-n theorem, i.e.

∀m, n ∈ N ∃Q ∈ M such that

φm
φQ(P,N1,···,Nn)(M1, · · · , Mm) = φm+n

P (N1, · · · , Nn, M1, · · · , Mm)

with Q ≡ λx1, · · ·xn+1.x1x2 · · ·xn+1

4. {φn} contains interpreters, i.e. ∀n ∈ N∃U ∈ M such that

φU (M, N1, · · · , Nr) = φM (N1 · · ·Nr)

with U ≡ λxy1 · · · yr.xy1 · · · yr

Then {φn}n∈M is an EAS model.

3 Other axiomatic approaches

The problem of defining an axiomatic approach to Recursion Theory has been
previously investigated by several authors [20, 21, 19, 9, 7, 8, 14, 17].
In particular, the Basic Recursive Function Theory (BRFT) of [19] is closely
related to EAS (let us recall that BRFT characterises the families of functions
which form Uniformly Reflexive Structures [20, 21]).

Definition 1. A BRFT (Basic Recursive Function Theory) is a structure
(D, F, (φn)n∈N) satisfying:

– D is an infinite set

– F is a collection of partial functions on D, such that:

1. it is closed under composition

2. it contains all projection functions
3. it contains all constant functions on D
4. it contains the function for definition by cases

f(x, a, b, c) =

{
b if x = a

c otherwise

5. it contains the Sm
n function of the s-m-n theorem

6. it contains an interpreter

Proposition 1. All total recursive functions can be represented in any BRFT.

Essentially, in EAS we drop constants and definition by cases. We shall prove
that they are not essential for representing partial recursive functions.
A main consequence of having definition by cases is that application is eventually
a partial operation. This can be proved by a simple diagonal argument. Take
two distinct elements a and b and consider the function

f(x) =

{
a if φx(x) = b

b otherwise

Since f ∈ F there exists an index c such that f = φc. Supposing φc(c) defined
we would get a contradiction.
Another interesting structure is the ω-BRFT, that is a BRFT (N , F, (φn)n∈N)
where N is the set of all natural numbers, and F contains the successor function.
In this case we can prove something stronger, namely:

Proposition 2. If (N , F, (φn)n∈N) is an ω-BRFT, then F contains all the
recursive functions.

Still we cannot prove that F contains exactly the partial recursive functions [7].

4 Turing completeness of PCA’s

A Partial Applicative Structure is a pair (A, ·), where A is an arbitrary set and
· is a partial binary operation over A, called application.

Notation

– Instead of a · b we write ab; moreover, we conventionally suppose that appli-
cation is left associative.

– ab↓ means “ab is defined”
ab↑ means “ab is not defined”

– If t1, t2 are applicative expressions, t1 ≃ t2 abbreviates t1 ↓ ∨ t2 ↓ ⇒ t1 = t2.

Definition 2. A Partial Combinatory Algebra (PCA) is a structure A = (A, S, K, ·),
where (A, ·) is a partial applicative structure and S and K are two distinguished
elements of A that satisfy the following conditions, for all a, b, c ∈ A:

1. Ka↓, Sa↓, Sab↓
2. Kab ≃ a
3. Sabc ≃ ac(bc)

Proposition 3. In any PCA

1. ac(bc)↓ ⇒ Sabc↓;
2. a↓ ∧ Kab↑ ⇒ b↑.

Let Q be a PCA, and let us fix some numeral system in Q, that is an interpre-
tation (numeral) m for each integer m .

Definition 3. Let f be a partial function from N to N . The element e of a
PCA Q is said to numerically represent f if:

Q |= em = k ⇐⇒ k = f(m).

Theorem 1. All partial recursive functions are numerically representable in any
PCA Q.

Proof. See Beeson [5].

We shall discuss Beeson’s proof in some detail in the following, since it seems to
contain some (minor) problems. First of all, it is rather indirect. Beeson uses two
auxiliary theories PCA+ and EON which are extensions of PCA with pairing,
numbers, definition by cases (PCA+), and induction scheme (EON). Then he
resorts to a subtle model-theoretic argument, involving Kripke models, to over-
come the difficulty of interpreting the predicate N(x) of PCA+ (representing
integers) inside the PCA (it cannot be interpreted as the set of numerals, since
it is not defined by a formula in PCA). Actually, it is not difficult to provide
a more direct argumentation. However, the main problem with Beeson’s proof
is of a different nature. All along the proof, he makes a large (and in our opin-
ion somewhat arbitrary) use of a λ-notation. His encoding of λ-abstraction into
combinators is based on the following definition:

Definition 4. 1. λ◦x.x ≡ SKK
2. λ◦x.M ≡ KM if M is a variable y 6= x, S or K.
3. λ◦x.(MN) ≡ S(λ◦x.M)(λ◦x.N)

A major consequence of this definition is that for any combinatorial expression
M , λ◦x.M ↓. This property is heavily used by Beeson, since it avoids several
annoying problems. However, λ◦x.M has a different and well known problem,
completely ignored in [5]: it does not satisfy the substitution lemma (see remark
2.16 in [10]). That is, in general,

(λ◦x.M)[N/y] 6= λ◦x.(M [N/y])

As a consequence, Beeson’s free and easy use of the λ-notation does not seem
to be completely justified. Consider for instance the recursion theorem 2.7 (see
[5] p.103), reported below with its proof:

Theorem 2. There is a term R such that PCA proves:

Rf ↓ ∧ [g = Rf ⇒ ∀x(gx ≃ fgx)]

Proof. Take R to be λ◦f.tt where t = λ◦yx.f(yy)x. Then g ≃ tt ≃ λ◦x.f(tt)x,
so gx ≃ fgx.

Actually, g ≃ tt ≃ (λ◦x.f(yy)x)[t/y] 6= λ◦x.f(tt)x. On the other side, the fact
that Rf ↓ is a consequence of λ◦x.f(yy)x ↓, that is essentially based on the
definition of λ◦.
These are indeed minor details, and they can be fixed in several simple ways.
Our sketch of solution in the following is essentially used as a pretext to present
a few results on representability of λ-terms in partial combinatory algebras.

4.1 Representability of λ-terms in PCA

Let us consider the “usual” encoding function [] from λ-calculus to Combina-
tory Logic.

Definition 5. [] : Λ → CL is defined as follows:

1. [x] ≡ x
2. [MN] ≡ [M] [N]
3. [λx.M] ≡ λ∗x.[M]

where
(a) λ∗x.x ≡ SKK
(b) λ∗x.M ≡ KM x /∈ FV (M)
(c) λ∗x.(MN) ≡ S(λ∗x.M)(λ∗x.N)

In this way a λ-term M is translated into an applicative expression [M] built
up by means of variables, S and K. The problem is to understand when [M] is
defined in any PCA, i.e. if [M]↓. Note that, in this case, the problem is not only
due to rule 2., but also to case (b) of the definition of λ∗x.M . So, in general, it
is not true that λ∗x.M ↓.
Given the translation above, there exists a well known correspondence between
weak reduction in the λ-calculus and weak reduction in Combinatory Logic.
Let us recall that the weak reduction strategy

w
→ in the λ-calculus is defined by

the following rules:
(λx.M)N

w
→M [N/x]

(M
w
→M1)

(MN
w
→M1N)

However, in the case of PCA’s, the above correspondence must be used very
carefully, due to the problem of partiality.

Theorem 3. Suppose P ↓. Then, for any M

(λ∗x.M)P ≃ M [P/x]

Proof. Easy consequence of proposition 3.

Theorem 3 should be correctly understood. In particular it does not imply that
for all λ-terms M, N if M

w
→N and [N]↓ then [M]↓. A counterexample is easily

found. Barendregt (see theorem 1.3 in [4]) proved that there are PCA’s in which

[δδ] ↑ (where δ ≡ λx.xx). Take now M = λx.y (δδ). Then M
w
→y and [y] ↓, but

obviously [M]↑.

Theorem 4. Let M be a closed λ-term in normal form. Then [M]↓.

Proof. Easy induction on the structure of M .

Definition 6. An applicative λ-term is any λ-term of the kind (M N).

Proposition 4. Let M = λx.P . Then [M] = λ∗x.[P]↑ if and only if there exists
an applicative subterm Q = (Q1Q2) of M (of P) such that

1. x 6∈ FV(Q)
2. [Q]↑
3. [Q] is a subexpression of [M]

Proof. By induction on the structure of P .

– Let P be a variable. Then the statement is trivially true, since λ∗x.[P]↓.
– Let P = (N1 N2). There are two subcases. If x 6∈ FV(P) take Q = P .

Otherwise, [M] = λ∗x.[P] ≃ S (λ∗x.[N1]) (λ∗x.[N2]), and the statement
follows by induction hypothesis.

– Let P = λy.N . By induction hypothesis λy.N ↑ iff there exists an applicative
subterm Q = (Q1Q2) of N with the properties above. If x 6∈ FV(Q) then Q
does the job. Conversely, if x ∈ FV(Q) then the application Q = (Q1Q2) is
eventually splitted by λ∗ into the defined term S (λ∗x.[Q1]) (λ∗x.[Q2])

Corollary 1. Let M be a closed λ-term. Then [M]↑ if and only if there exists
a closed applicative subterm Q of M such that [Q]↑ and [Q] is a subexpression
of [M].

An interesting consequence of the previous corollary is the following:

Theorem 5. Let M be a closed strongly normalizable λ-term. Then [M]↓.

Proof. By induction on the length l of the longest normalizing derivation.

– l = 0. In this case M is in normal form, and [M]↓ by theorem 4.
– By contradiction. Suppose that [M] ↑. Then by corollary 1 there exists a

closed applicative subterm Q of M such that [Q]↑ and [Q] is a subexpression
of [M]. Since Q is a closed applicative term,

Q = (λx.P)Q1 Q2 . . . Qn

and
(λx.P)Q1 Q2 . . . Qn

w
→P [Q1/x] Q2 . . . Qn

By induction hypothesis [P [Q1/x]Q2 . . . Qn] ↓, and also [Q1] ↓. Then, by
theorem 3

[(λx.P)Q1 Q2 . . . Qn] ≃ [P [Q1/x]Q2 . . . Qn]

that would imply

[Q] = [(λx.P)Q1 Q2 . . . Qn]↓

Corollary 2. Let M and M1 be closed strongly normalizable λ-terms. Then
M

w
=M1 ⇒ [M] = [M1]

Let us now come back to the problem of the fixpoint in PCA’s.
The term R of theorem 2 does not work with λ∗, since we cannot prove that
tt ≃ λ∗x.f(tt)x ≃ (λ∗x.f(yy)x)[t/y] is defined. The problem is due to the auto-
application of y inside t, that is not splitted any more by λ∗x. To force this
splitting it is enough to add a “dummy” occurrence of x inside one argument of
the application.
Let us define

R∗ ≡ λf.tt

with

t = λ∗yx.f((Kyx)y)x

Then we have

g ≃ tt ≃ λ∗x.f((Ktx)t)x

Now, λ∗x.f((Ktx)t)x is forcedly defined by corollary 1, since it does not contain
any closed applicative subterm Q, such that [Q] ↑. Indeed the only candidate
would be Kt, but t is obviously defined, and so is Kt.
Moreover,

∀x gx ≃ ttx ≃ (λ∗x.f((Ktx)t)x)x ≃ f((Ktx)t)x) ≃ f(tt)x ≃ fgx

4.2 The numeral system

We can now safely approach the problem of the Turing completeness of PCA’s
using the comfortable notation of λ-calculus. We shall be rather sketchy here,
both for lack of space, and because Beeson’s proof, apart some abuse of notation,
is essentially correct.
The first problem is to find a numeral system that works well with the weak re-
duction strategy. Church numerals are not adequate to our purposes; for instance
Succ n does not weakly reduces to n + 1.

Remark 1. It looks that Church numerals could be used by considering a sligtly
weaker notion of represantability, namely:

e weakly represents f in a PCA Q if: Q |= emxy ≃ kxy ⇐⇒ k = f(m)

A clear advantage of Church numerals is that we could apply theorem 5 to
prove that, as far as we consider primitive recursive functions, we do not have
problems with partiality. Indeed, all primitve recursive terms are typable in
system F, and thus are strongly normalizing. Minimalization would then be an
easy step. Unfortunately, with the numeral system below, we have no obvious
way of applying theorem 5, and we must proceede to a case by case analysis.

A numeral system that properly works with weak reductions is the following (see
Chap.6, Sec.2 in [3]):

Definition 7. Let Pair ≡ λxyz.zxy, T ≡ λxy.x, F ≡ λxy.y. Then

– 0 = I = λx.x

– n + 1 = Pair F n = [F, n]

Constants and projections are defined in the obvious way, and the system is natu-
rally closed under composition. Let us see some examples of numerical functions:

– Succ ≡ λn.[F, n]

– Pred ≡ λn.nF

– Test0 ≡ λn.nT

Turing completeness of PCA’s can then be proved following the same line of
[3] (Chap.6, Sec.3), with the obvious care due to partiality. Representability of
basic functions is trivial, and composition does not give any trouble.
A more problematic case is already provided by the primitive recursion schema
(n is a vector of variables):

f(0, n) = g(n)

f(x + 1, n) = h(f(x, n), x, n)

As a matter of fact, we do not have iterators in this numeral system, and we
are forced to use a fixpoint operator. As we have seen, computing a fixpoint is
not particularly problematic, but we must care about the correct definition of
the functional. In this case, Barendregt’s functional derived from the recursive
equation

fxy = test0 x (gy) (h(f(Pred x)y)xy)

would not work. Indeed

f0y = T (gy) (h(f(Pred 0)y)xy)

This term is defined if and only if both arguments of T are defined (and we have
no way to prove the second one is). A simple solution is to take

fxy = (test0 x (λxy.gy) (λxy.h(f(Pred x)y)xy)xy

A similar care is due when defining the operator µ of minimalization.

4.3 On separability of numerals

One could wonder if the above numeral system is “well defined” in any PCA, in

the sense that m
w

6= n ⇐⇒ [m] 6= [n]

In fact, from corollary 2 it follows that if m
w

6=n ⇒ [m] 6= [n]
Let us prove the converse.

Definition 8. For CL-terms, the class of terms in strong normal form (strong
nf) is inductively defined as follows:

– all non-redex atoms (i.e. variables or constants other than S and K) are in
strong nf.

– if X1 · · ·Xn are in strong nf, and a is any non-redex atom, then aX1 · · ·Xn

is in strong nf.
– if X is in strong nf, then so is ληx.X which is defined (see def. 2.14 in [10])

by induction on M :
• ληx.M ≡ KM if x 6∈ FV (M)
• ληx.x ≡ I
• ληx.Ux ≡ U
• ληx.UV ≡ S(ληx.U)(ληx.V)

Actually, it is easy to prove that the translation [] of definition 7 over numerals

give terms in strong normal form. Then [m] 6= [n] ⇒ m
w

6=n follows by (the
Combinatory Logic reformulation of) Böm’s separability theorem (see [6, 11]):
let M and N combinators, either in strong normal form; if M 6= N , then there
exists n ≥ 0 and combinators L1 · · ·Ln such that ∀X, Y

ML1 · · ·LnXY = X

NL1 · · ·LnXY = Y

5 Equivalence of EAS and PCA

In this section we shall prove that any Partial Combinatory Algebra provides a
model of Effective Applicative Structure and, conversely, for any Effective Ap-
plicative Structure its domain can be naturally equipped with a PCA-structure.

5.1 From PCA to EAS

Let M = (M, S, K, ·) be a PCA. Let us define a family of (partial) functions
φn : M → (Mn → M) n ∈ N as follows:

φn
p (b1, · · · , bn) ≃ pb1 · · · bn

(we shall often omit the superscript n when it clear from the context.)
We have that

1. {φn} satisfies closure under composition
in fact
∀M1, M2, · · · , Ml, ∀n ∈ N
Mi ∈ M ∀i = 1 · · · l l ∈ N , ∃F ∈ M such that

φM1(φM2 (N1, · · · , Nn) · · ·φMl
(N1, · · · , Nn)) = φF (N1, · · · , Nn)

with F ≡ λ∗x1 · · ·xn.M1(M2x1 · · ·xn) · · · (Mlx1 · · ·xn)
2. {φn} contains projection functions, i.e.

φk
R(N1, · · · , Nk) = Ni

with R ≡ λx1 · · ·xk.xi

3. {φn} contains the Sm
n function of the s-m-n theorem, i.e.

∀m, n ∈ N ∃Q ∈ M such that φQ(P, N1 · · ·Nn) is defined and

φm
φQ(P,N1,···,Nn)(M1, · · · , Mm) = φm+n

P (N1, · · · , Nn, M1, · · · , Mm)

with Q ≡ λx1, · · ·xn+1y1 · · · ym.x1x2 · · ·xn+1y1 · · · ym

4. {φn} contains interpreters, i.e. ∀n ∈ N ∃U ∈ M such that

φU (M, N1, · · · , Nn) = φM (N1, · · · , Nn)

with U ≡ λxy1 · · · yn.xy1 · · · yn

Then φn : M → (Mn → M) n ∈ N is an Effective Applicative Structure.

5.2 From EAS to PCA

Given an Effective Applicative Structure

Φn : M → (Mn → M) n ∈ N

we use the interpreter of condition 4. to define a partial binary operation · :
M × M → M :

a · b ≡ Φ2
u(a, b) ≃ Φa(b)

(u is the index of the interpreter with 2 arguments.)
S and K are defined as follows.

– Existence of K
We prove the existence of an index K in M such that, for all i, j ∈ M

(Φk(i))(j) ≃ i

In fact

i ≃ I2
1 (i, j)

from hypotesis 2. of EAS:
≃ Φ2

l (i, j)

≃ Φ1
S1

1(l,i)(j)

from hp. 3. of EAS :

≃ Φ1
Φ2

m(l,i)(j)

≃ Φ1
Φ1

S1
1
(m,l)

(i)(j)

Since Sm
n is total, setting K ≡ S1

1(m, l), we have:

≃ Φ1
Φ1

K
(i)(j)

that, for definition of application is:

≃ (K(i)) · (j)

– Existence of S
We prove the existence of an index S ∈ M such that ∀a, b, c ∈ M

((ΦS(a))(b))(c) ≃ (ac)(bc)

In fact
(ac)(bc)

from definition of application

≃ Φ2
z(Φ

2
z(a, c), Φ2

z(b, c))

that is

≃ Φ2
z(Φ

2
z(I

3
1 (a, b, c), I3

3 (a, b, c)), Φ2
z(I

3
2 (a, b, c), I3

3 (a, b, c)))

from hp. 1. and 2. of EAS
≃ Φ3

h(a, b, c)

≃ Φ1
S2

1(h,a,b)(c)

from hp. 3. of EAS

≃ Φ1
Φ3

j
(h,a,b)(c)

≃ Φ1
Φ1

S2
1
(j,h,a)

(b)(c)

from hp. 3. of EAS :

≃ Φ1
Φ1

Φ3
j
(j,h,a)

(b)(c)

≃ Φ1
Φ1

Φ1

S2
1
(j,j,h)

(a)
(b)(c)

since Sm
n is total, setting S ≡ S2

1(j, j, h) :

≃ Φ1
Φ1

Φ1
s(a)

(b)(c)

that for definition of application is:

(((S(a))b)c)

that is the definition of S.

– Kx ↓, Sx ↓ and (S(x))y ↓ for all x, y ∈ M
since Sm

n is a total function.

– It is easy to prove that if K = S then |M | = 1.

6 Conclusions

In this paper we proved that any set of indexed partial functions closed under
composition, containing projections and universal function, and satisfying the
s-m-n theorem of Recursion Theory is eventually Turing complete (i.e. all par-
tial recursive functions are representable in it). The theory of such systems, that
we called Effective Applicative Structures, is a subtheory of the Basic Recursive
Function Theory; in particular, we drop constants and definition by cases that
are inessential for completeness.
The fact that all partial recursive functions are representable inside any EAS,
is proved by establishing an equivalence between EAS’s and Partial Combina-
tory Algebras. In this way, we also fill an evident notational gap between the
“combinatorial” and the “functional” approach to computability. By providing
a common framework we help in understanding the two opposite developments
of these approaches: towards “totality” or “definition by cases”. Recall that a
BRFT cannot be a total Combinatory Algebra since application is eventually a
partial operation (see section 3).

lambda models

Combinatory
AlgebrasBRFT = URS

omega BRFT

EAS = PCA

Do their close relation with Recursion Theory, EAS’s seem to provide a more
natural and friendly framework than Partial Combinatory Algebras. In gen-
eral, it looks interesting to reprhase open problems and results from PCA’s to
EAS’s. For instance, we have recently proved that Klop’s sufficent conditions for
completability of PCA’s [12] are equivalent to the existence of an injective Sm

n

function (or to the Padding Lemma) [1].
Other promising directions for future work are that of investigating the rela-
tions between EAS’s and the categorical notion of principal morphism (see for
instance [2]), and more generally, to compare our structures with other systems
based on partial self-application, such as the partial λ-calculus [13] or related
theories [18].

References

1. A.Asperti, A.Ciabattoni. On Completability of Partial Combinatory Alge-

bras. Draft.
2. A.Asperti, G.Longo. Categories, types and structures. MIT Press. 1991.
3. H.Barendregt. The lambda calculus North-Holland. 1984.
4. H.Barendregt. Normed uniformly reflexive structures. In λ calculus and

Computer Science Theory. C.Bohm ed., LNCS 37, pp.272-286, Springer Ver-
lag. 1975.

5. M.J.Beeson. Foundation of constructive mathematics. Springer-Verlag. 1985.
6. C.Böhm, M.Dezani-Ciancaglini. A discrimination algorithm inside λ-β-

calculus. Theoret.Comp.Sci. vol.8, pp.271-291. 1979.
7. R.E.Byerly. Mathematical aspects of recursive function theory. In Harvey

Friedman’s research on the foundations of mathematics, L.A.Harrington ed.,
pp.339-352, Elsevier Science. 1985.

8. J.E.Fenstad. On axiomatizing recursion theory. In Generalized recursion the-

ory, North-Holland, pp.385-404. 1974.
9. H.Friedman. Axiomatic recursive function theory. In Logic Colloquium ’69 ,

R.Gandy e M.Yates eds., pp.113-141, North-Holland. 1969.

10. J.R.Hindley, J.P.Seldin. Introduction to combinators and λ-calculus London
Math. Soc. 1990.

11. J.R.Hindley. The discrimination theorem holds for combinatory weak reduc-

tion. Theor.Comput.Sci. vol.8. 1979. p.393-394
12. J.W.Klop. Extending partial combinatory algebras. Bulletin of the European

Association for Theoret. Comp.Sci., vol.16, pp.472-482. 1982.
13. E.Moggi. The partial λ-calculus. Ph.D. Thesis, University of Edinburgh,

1988.
14. Y.Moschovakis. Axioms for computation theories. In Logic Colloquium ’69 ,

R.Gandy e M.Yates eds., pp.199-255, North-Holland. 1969.
15. P.Odifreddi. Classical recursion theory. North-Holland. 1989.
16. H.Rogers. Theory of recursive functions and effective computability. McGraw

Hill. 1967.
17. A.Schlüter. A Theory of rules for enumerated classes of functions. Archive

for Mathematical Logic. To appear.
18. T.Strahm. Partial Applicative Theories and explicit substitutions. Journal of

Logic and Computation. To appear.
19. H.Strong. Algebraically generalized recursive function theory. IBM J. of Re-

search and Developement, vol.12, pp.465-475. 1968.
20. E.Wagner. Uniformly reflexive structures: an axiomatic approach to com-

putability. Information Sciences vol.1, pp.343-362. 1969.
21. E.Wagner. Uniformly reflexive structures: on the nature of gödelizations and

relative computability. Trans. Amer. Math. Soc., vol.144, pp.1-41. 1969.

