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Abstract. We show how to automatically generate analytic hyperse-
quent calculi for a large class of logics containing the linearity axiom
(lin) (A ⊃ B) ∨ (B ⊃ A) starting from existing (single-conclusion)
cut-free sequent calculi for the corresponding logics without (lin). As
a corollary, we define an analytic calculus for Strict Monoidal T-norm
based Logic SMTL.

1 Introduction

A central task of logic in computer science is to provide automated generation
of suitable analytic calculi for a wide range of non-classical logics. By analytic
calculi we mean calculi in which the proof search proceeds by step-wise decompo-
sition of the formula to be proved. The most famous examples of such calculi are
the Gentzen sequent calculus LK and its single-conclusion version LJ for classi-
cal and intuitionistic logic respectively. Cut-free “Gentzen-style” calculi serve as
a basis for automated deduction, and allow the extraction of important implicit
information from proofs such as numerical bounds and programs in proof-style.

The presence of the linearity axiom (lin) (A ⊃ B) ∨ (B ⊃ A) in the Hilbert-
style axiomatization of a logic ensures a total ordering among the elements of
its intended models (e.g., Kripke structures, truth-value interpretations). Several
logics have been defined adding (lin) to well known systems. E.g., all fuzzy logics
based on t-norm1 connectives [12] – a prominent example being Gödel logic2 [11,
8, 19] which arises by extending intuitionistic logic IL with (lin). Weaker logics
such as Monoidal T-norm based Logic MTL [9] – the logical counterpart of left
continuous t-norms and their residua – or both versions of Urquhart’s C [21],
have also been defined adding (lin) to suitable contraction-free versions of IL.

In this paper we show how to automatically generate analytic Gentzen style
calculi for a large class of logics containing (lin). To this end we consider a natural
generalization of sequent calculi: hypersequent calculi. Hypersequent calculi arise
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1 T -norms are the main tool in fuzzy logic to combine vague information.
2 Gödel logic is also known as Dummett’s LC [8] or Intuitionistic Fuzzy Logic [19].



by extending Gentzen calculi to refer to whole contexts of sequents instead of
single sequents. They are particularly suitable for dealing with logics including
(lin). Indeed, as shown by Avron in [2], this axiom can be enforced in LJ, once
one embeds sequents into hypersequents and adds suitable rules to manipulate
the additional layer of structure. In particular, the crucial rule added to LJ is
the communication rule (com). This design resulted in an analytic calculus for
Gödel logic. The same methodology was used e.g. in [6, 5] to introduce analytic
hypersequent calculi for some basic fuzzy logics, including MTL and Urquhart’s
C, arising by adding (lin) to suitable contraction-free versions of IL.

Here we generalize these results showing that (com) can be viewed, in fact,
as a transfer principle that translates (single-conclusion) cut-free sequent calculi
for a large class of logics that do not satisfy (lin) into cut-free hypersequent
calculi for the corresponding logics with (lin). This will give us the means to
derive systematically analytic deduction methods for logics whose Hilbert-style
axiomatizations contain (lin), starting from existing analytic calculi for the cor-
responding logics without (lin). To do this,

– we first introduce a general cut-elimination method for sequent calculi (cut-
elimination by substitutions) that can be easily transferred to the hyperse-
quent level. Sufficient conditions a calculus has to satisfy in order to ad-
mit cut-elimination by substitution are also provided. Among other things,
these conditions render our cut-elimination procedure easier to verify than
“ad hoc” procedures. (The verification of unstructured cut-elimination pro-
cedures for hypersequent calculi has been shown to be problematic in the
literature.)

– We characterize which logics admit this transfer principle, providing some
general conditions (on their sequent calculi/Hilbert-style systems) they have
to satisfy both at the propositional and at the first-order level.

– As an easy corollary of the transfer principle we define an analytic hyperse-
quent calculus for Strict Monoidal T-norm based Logic SMTL [9] – the logic
of left-continuous t-norms satisfying the pseudo-complementation property.

2 Sequent and Hypersequent Calculi

The aim of this section is to settle the (hyper)sequent calculi we will deal with.
We start by recalling some basic definitions in order to fix the notation and
terminology we shall use throughout the paper.

The sequent calculus was introduced by Gentzen [10] in 1934 (see [18] or [20]
for a detailed overview). Gentzen sequents are expressions of the form Γ ⇒ ∆

where Γ and∆ are finite sequences of formulas, respectively called the antecedent
and succedent of the sequent. If in a sequent calculus, succedents of all sequents
contain at most one formula, the calculus is said to be single-conclusion.

In general, in a sequent calculus there are axioms (or initial sequents) and
inference rules. The latter are divided into structural rules, logical rules and cut.

In each logical rule, the introduced formula and the corresponding auxiliary
formula(s) are called principal formula and active formula(s), respectively. We



will refer to the remaining formulas in logical rules as well as to the formulas
that remain unchanged in structural rules as (internal) contexts.

We call additive a multi-premises rule whose contexts in its premises are the
same. If those contexts are different and simply merged in the conclusion, the
rule is said to be multiplicative.

Recall that the structural rules introduced by Gentzen are exchange, weak-
ening and contraction, with single-conclusion versions:

Γ,B,A, Γ ′ ⇒ C

Γ,A,B, Γ ′ ⇒ C
(e)

Γ,A,A ⇒ C

Γ,A ⇒ C
(c)

Γ ⇒ C

Γ,A ⇒ C
(w, l)

Γ ⇒
Γ ⇒ C

(w, r)

As is well known, their presence or absence determines completely different
systems. For instance, a sequent formulation ScFLew for Full Lambek calculus
with exchange and weakenings3 FLew is obtained by eliminating (c) from the
LJ sequent calculus for IL see [13]. This entails the splitting of the connective
“and” of IL, into (the additive version) ∧ and (the multiplicative version) ⊙.

Further structural rules can be defined. Here below are some examples of
weaker forms of contraction i.e. weak contraction and n-contraction:

Γ,A,A ⇒

Γ,A ⇒
(wc)

Γ,An ⇒ C

Γ,An−1 ⇒ C
(nc)

where Ak stands for A, . . . , A, k times.
A derivation in a sequent calculus is a labelled finite tree with a single root

(called end sequent), with axioms at the top nodes, and each node-label con-
nected with the label of the (immediate) successor nodes (if any) according to
one of the rules. We refer to those connections as (correct) inferences.

Definition 1. We call any propositional single-conclusion sequent calculus stan-
dard when it satisfies the following conditions:

1. antecedents of each sequent are multisets of formulas (or, equivalently, the
calculus contains rule (e));

2. axioms have the form A ⇒ A or ⊥ ⇒;
3. each logical rule

(a) has left and right versions, according to the side of the sequent it modifies;
(b) introduces only one connective at a time;
(c) has no side conditions limiting its application (besides, possibly, a con-

dition saying that succedents of some sequents are empty)
(d) has active formulas that are immediate subformulas of the principal for-

mula;
4. the cut rule is multiplicative, i.e., it has the form

Γ ⇒ A A,Γ ′ ⇒ C

Γ, Γ ′ ⇒ C
(cut)

5. structural rules do not mention any connective.

3
FLew also coincides with the exponential-free fragment of affine Intuitionistic Linear
Logic ILL, i.e. ILL with weakenings.



Definition 2. We call a standard sequent calculus containing the rules for quan-
tifiers of Gentzen LJ calculus for IL, a first-order standard sequent calculus.

Henceforth we will only consider (first-order) standard sequent calculi.
Hypersequent calculi were introduced in [1] and [14]. They are a natural

generalization of Gentzen sequent calculi.

Definition 3. A hypersequent is a multiset Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn where,
for all i = 1, . . . n, Γi ⇒ Πi is a Gentzen sequent. Γi ⇒ Πi is called a compo-
nent of the hypersequent. A hypersequent is called single-conclusion if so are its
components.

The symbol “|” is intended to denote disjunction at the meta-level.
Like ordinary sequent calculi, hypersequent calculi consist of initial hyper-

sequents (i.e., axioms) as well as logical, structural rules and cut. Axioms, log-
ical rules and cut are essentially the same as in sequent calculi. The only dif-
ference is the presence of a side hypersequent, denoted by G, representing a
(possibly empty) hypersequent. E.g. the hypersequent version of the LJ rules
(⊃, r), (∨, r)1,2 and (∨, l) are4 respectively:

G | Γ,A ⇒ B

G | Γ ⇒ A ⊃ B
(⊃, r)

G | Γ ⇒ Ai

G | Γ ⇒ A1 ∨A2
(∨, r)i

G | Γ,A ⇒ C G | Γ,B ⇒ C

G | Γ,A ∨B ⇒ C
(∨, l)

Structural rules are divided into internal and external rules. The internal struc-
tural rules deal with formulas within components. They are the same as in
ordinary sequent calculi. The external structural rules manipulate whole com-
ponents of a hypersequent. Examples of this kind of rules are external weakening
(ew) and external contraction (ec):

G

G | Γ ⇒ A
(ew)

G | Γ ⇒ A | Γ ⇒ A

G | Γ ⇒ A
(ec)

Let Sc be any sequent calculus. We refer to its hypersequent version HSc as the
calculus containing axioms and rules of Sc augmented with side hypersequents
and in addition (ew) and (ec). (Note that HSc has the same expressive power as
Sc.) However, in hypersequent calculi it is possible to define additional external
structural rules which simultaneously act on several components of one or more
hypersequents. It is this type of rule which increases the expressive power of hy-
persequent calculi compared to ordinary sequent calculi. A remarkable example
of this kind of rules is Avron’s communication rule [2]:

G | Γ, Γ ′ ⇒ A G | Γ1, Γ
′

1 ⇒ A′

G | Γ, Γ1 ⇒ A | Γ ′, Γ ′

1 ⇒ A′
(com)

Adding this rule to HLJ yields an analytic calculus for Gödel logic [11].

4 We will use the same notation both for sequent and hypersequent rules. However,
the context will always provide the relevant information.



The hypersequent version of the quantifier rules we will consider are:

G | A(t), Γ ⇒ B

G | (∀x)A(x), Γ ⇒ B
(∀, l)

G | Γ ⇒ A(a)

G | Γ ⇒ (∀x)A(x)
(∀, r)

G | A(a), Γ ⇒ B

G | (∃x)A(x), Γ ⇒ B
(∃, l)

G | Γ ⇒ A(t)

G | Γ ⇒ (∃x)A(x)
(∃, r)

where the eigenvariable condition in (∃, l) and (∀, r) has to apply to the whole
hypersequent conclusion of the rule, i.e., the free variable a must not occur in the
lower hypersequent. Indeed, in hypersequent calculi with (com), if one requires
the weaker condition that a must not occur (only) in the lower sequent, then
∃xF (x) ⇒ ∀xF (x) turns out to be derivable.

Definition 4. We call a single-conclusion hypersequent calculus satisfying the
conditions of Definition 1 (and containing the above quantifier rules) a (first-
order) standard hypersequent calculus.

Let HS be any sequent or hypersequent calculus. In the following we write
d, S′ ⊢HS S if d is a derivation in HS of the (hyper)sequent S from the assump-
tion S′, i.e. a labelled tree whose nodes are applications of rules of HS and whose
leaves are either S′ or axioms.

Definition 5. The length |d| of a derivation d in HS is (the maximal number
of inference rules) + 1 occurring on any branch of d. The complexity |A| of a
formula A is defined as the number of occurrences of its connectives and quan-
tifiers. The cut-rank ρ(d) of d is (the maximal complexity of cut-formulas in d)
+ 1. (ρ(d) = 0 if d is cut free).

3 Cut-elimination by Substitutions

Cut-elimination is one of the most important procedures in logic. The removal of
cuts corresponds to the elimination of “lemmas” from derivations. This renders
a derivation analytic, in the sense that all formulas occurring in the derivation
are subformulae of the formula to be proved.

Here we prove that if a standard (first-order) sequent calculus Sc admits cut-
elimination, HSc + (com) i.e. its hypersequent version with in addition (com),
admits cut-elimination too. For this purpose, we introduce a cut-elimination
method for sequent calculi (cut-elimination by substitutions) that can be easily
transferred to the hypersequent level (and in particular to the corresponding
hypersequent calculi with (com)).

We start discussing which of, and how, the main cut-elimination methods
for sequent calculi can be used in hypersequent context. Recall that Gentzen’s
cut-elimination method proceeds by eliminating a uppermost cut in a derivation
by a double induction on the complexity c of the cut formula (+1) and on the
sum l of the lengths of its left and right derivations. In his original proof of
the cut-elimination theorem for sequent calculus [10], Gentzen met the following



problem: If the cut formula is derived by (c), the permutation of cut with (c)
does not necessarily move the cut higher up in the derivation. To solve this
problem, he introduced the mix rule – a derivable generalization of cut.

In hypersequent calculi a similar problem arises when one tries to permute cut
with (ec). (Note that the solution proposed in [6], i.e., to proceed by induction on
(#(ec), c, l) where #(ec) is the number of applications of (ec) in a derivation, does
not work.) In analogy with Gentzen’s solution, a way to overcome the problem
due to (ec) is to introduce suitable “ad hoc” (derivable) generalizations of the
mix rule for each hypersequent calculus. These rules should allow certain cuts to
be reduced in parallel. E.g. to prove cut-elimination in the hypersequent calculus
for propositional Gödel logic, Avron used the following induction hypothesis [2]
(generalized mix rule):

If H | Γ1 ⇒ A | . . . |Γn ⇒ A and H | Σ1, A
n1 ⇒ B1 | . . . |Σk, A

nk ⇒ Bk are
cut-free provable, so is H | Γ,Σ1 ⇒ B1 | . . . |Γ,Σk ⇒ Bk, where Γ = Γ1, . . . , Γn

and Anl stands for A, . . . , A, nl times.

However, this generalized mix rule does not work for calculi not admitting, e.g.,
(c) or (w). (Note that to shift upward a cut in which a component Γi ⇒ A, with
i ∈ {1, . . . , n}, is derived by (ec) or (ew), one needs to use rules (c) and (w),
respectively).

A different cut-elimination method for sequent calculus was introduced by
Schütte-Tait [15, 17]. This proceeds by eliminating a largest cut in a deriva-
tion (w.r.t. the number of connectives and quantifiers). The main feature of
this method is that a cut with a non-atomic cut formula is not shifted upward
but simply reduced (i.e., replaced by smaller cuts) using the inversion(s) of the
premises of the original cut (see, e.g. [16]). This renders the presence of (ec)
unproblematic once one uses this method in hypersequent calculi. Proofs of cut-
elimination à la Schütte-Tait for the hypersequent calculi for (first-order) Gödel
logic and MTL can be found, e.g., in [3, 5]. There in fact to eliminate a cut with
a non-atomic cut formula only one premise of this cut is inverted and used to
replace the cut by smaller ones exactly in the place(s) in which the cut formula
(of the remaining premise of the cut) is introduced.

However, cut-elimination à la Schütte-Tait cannot be straightforwardly trans-
ferred from a sequent to the corresponding hypersequent calculus. Moreover, de-
manding the invertibility (even) of (only) one of the premises of cuts seems to be
a rather strong condition. Indeed, there do exist (hyper)sequent calculi in which
cuts are eliminable but in which none of the premises of a cut is invertible. An
example of such a calculus is obtained by replacing the right rule introducing ∧
in the ScFLew calculus for FLew by the following rules:

Γ ⇒ A1 Γ ′, A1 ⇒ A2

Γ, Γ ′ ⇒ A1 ∧A2

(∧, r)1
Γ ⇒ A2 Γ ′, A2 ⇒ A1

Γ, Γ ′ ⇒ A1 ∧A2

(∧, r)2

This calculus admits cut-elimination (e.g., using Gentzen’s method, see [5]) but
neither of the premises of a cut with cut formula A ∧ B can be inverted in the
usual way.



In the proof of Theorem 1 below, we introduce cut-elimination by substitutions.
This proceeds by eliminating a largest uppermost cut in a derivation. The idea
behind this method is to eliminate a cut via suitable substitutions in the deriva-
tions d0 ⊢Sc Σ ⇒ A and d1 ⊢Sc Γ,A ⇒ C of its premises. We substitute all
the occurrences of the cut formula. When we do this we have also to replace all
the subproofs of d0 and d1 ending in an inference whose principal formula is an
occurrence of the cut-formula. This requires us to trace up the occurrences of
the cut formula through d0 and d1. For this purpose we use below the notion
of decoration of a formula A in a (hyper)sequent derivation d. This essentially
amounts to the (marked) derivation obtained by following up and marking in d

all occurrences of the considered formula A starting from the end sequent of d:
if at some stage any marked occurrence of A –indicated by A∗– is multiplied by
a certain (internal or external) structural rule we mark and trace up all these
occurrences of the formula from the premise(s). In outline, two cases can occur.

– If the cut formula (A∗) was not introduced by any logical (or quantifier) rule
in d0 (respectively d1), the cut is replaced by the derivation d0 (respectively
d1) in which one substitutes all A∗ by Γ and C (respectively Σ) (⋆).

– Suppose A∗ was introduced by some logical (or quantifier) rules in d0 and
d1. The required derivation is obtained from d0 and d1 by replacing all A∗s
via suitable substitutions (⋆), and replacing the inferences which introduced
A∗ with suitable cuts on subformulas of A (⋆⋆).

The applicability of cut elimination by substitutions relies on the fact that the
considered (standard) sequent calculus satisfies (⋆⋆) and (⋆), namely, its rules
allow the replacement of cuts by smaller ones (i.e. logical and quantifier rules are
reductive) and they lead to correct inferences once one uniformly replaces any
formula in their premises and (some occurrences of this formula in their) conclu-
sions by multisets of formulas (i.e., rules are substitutive). The latter condition
can be equivalently expressed as: the rules allow any cut to be shifted upward
replacing the cut formula in their premises by the contexts of the remaining
premise of the cut.

Before introducing the formal definition of reductive and substitutive rules
let us consider the following explanatory example:

Example 1. The contraction rule (c) is substitutive. Indeed the sequents ob-
tained by replacing any formula X ∈ Γ (or by replacing A) with a multiset Σ

in its conclusion, can be derived by applying (c) to the sequent Γ,A,A ⇒ C

after having replaced X ∈ Γ (or the two occurrences of A) with Σ. Moreover,
the sequent Γ,A,Σ ⇒ D, obtained by substituting C in the conclusion of (c)
with Σ and D, can be derived by applying (c) to Γ,A,A ⇒ C in which one
carries out the same substitution. By contrast, the n-contraction rule (nc) is not
substitutive. Indeed e.g. the sequent Γ,An−2, Σ ⇒ C, obtained by substituting
one occurrence of A with Σ in its conclusion cannot be derived by applying (nc)
to Γ,Σn ⇒ C.

Definition 6. Let HS be any standard (hyper)sequent calculus.



We call its (logical or quantifier) rules {(⋆, r)1, . . . , (⋆, r)n} and {(⋆, l)1,
. . . , (⋆, l)m} for introducing a connective (or a quantifier) ⋆ reductive, when-
ever the sequent obtained via (cut) on the principal formula of the conclusions
of (⋆, l)i and (⋆, r)j (for each i = 1, . . . ,m and j = 1, . . .m) can be derived from
their premises using (cut) and the structural rules of HS. Any HS-rule (n ≥ 1
and C 6= C ′)

(G | Γ ′

1 ⇒ C′

1 | )Γ1 ⇒ C1 . . . . . . (G | Γ ′

n ⇒ C′

n | )Γn ⇒ Cn

(G | Γ ′ ⇒ C′ | )Γ ⇒ C
(R)

is said to be substitutive whenever the following conditions hold:

1. Let X be any formula that is not principal in (R) occurring in Γ (or Γ ′) and
let H be the (hyper)sequent arising by replacing some occurrences of X in
Γ or Γ ′ with any multiset of formulas Σ. H can be derived using only (R)
and the structural rules of HS from the premises of (R) with Σ uniformly
substituted for every occurrence of X in each Γi and Γ ′

i (i = 1, . . . , n).
2. If C (respectively C ′) is neither empty nor principal in (R), the (hy-

per)sequent (G | Γ ′ ⇒ C ′ | )Σ,Γ ⇒ D (respectively (G | Γ ′, Σ ⇒ D) | Γ ⇒
C), for any Σ and D, is derivable only using (R) and the structural rules

of HS from the premises of (R) with Γ
(′)
i , Σ ⇒ D uniformly substituted for

each Γ
(′)
i ⇒ C

(′)
i in which C

(′)
i = C (respectively C

(′)
i = C ′).

Let d(s) and H(s) denote the results of substituting the term s for all free
occurrences of x in the derivation d(x) and in the (hyper)sequent H(x).

Lemma 1 (Substitution Lemma). Let HS be any standard first-order (hy-
per)sequent calculus. If d(x) ⊢HS H(x), then d(s) ⊢HS H(s), with |d(s)| = |d(x)|
and ρ(d(s)) = ρ(d(x)), where s only contains variables that do not occur in d(x).

Using the above lemma one can show

Lemma 2. The (hyper)sequent rules (∀,⊳) and (∃,⊳), with ⊳ ∈ {l, r}, are
substitutive in any standard first-order (hyper)sequent calculus.

Theorem 1. Any standard (first-order) sequent calculus Sc in which (a) logical
rules are reductive and (b) rules are substitutive, admits cut-elimination.

Proof. Let d ⊢Sc S, with ρ(d) > 0. The proof proceeds by induction on the
pair (ρ(d),#ρ(d)), where #ρ(d) is the number of cuts in d with cut-rank ρ(d).
Suppose ρ(d) = |A|+ 1 and let

d0 ⊢Sc Σ ⇒ A and d1 ⊢Sc Γ,A ⇒ C

be the premises of the uppermost cut in d with cut-formula A. We can find
a derivation d′ ⊢Sc Γ,Σ ⇒ C with ρ(d′) < ρ(d). Hence, replacing in d the
subderivation ending in this largest uppermost cut by d′, results in a derivation
d such that either ρ(d) < ρ(d) or #ρ(d) = #ρ(d)− 1. Two cases can occur:



1. The cut-formula A is not introduced by any logical (or quantifier) inference
in d0 or d1. Assume first that this is the case in d1. We consider the decoration
of A in d1 starting from d1 ⊢Sc Γ,A∗ ⇒ C. We then substitute A∗ everywhere
in d1 by Σ. Let us call d∗1 the obtained labelled tree. Since A is not introduced
by any logical (or quantifier) inference in d1 and Sc is a (first-order) standard
sequent calculus whose rules are substitutive, all the inferences in d∗1 are correct
(upon adding some structural inferences, if needed). Note that if A∗ originates
in an axiom A∗ ⇒ A, this is transformed into Σ ⇒ A. Hence d∗1 is a derivation
in Sc and either d∗1, Σ ⇒ A ⊢Sc Γ,Σ ⇒ C or d∗1 ⊢Sc Γ,Σ ⇒ C. A derivation
d′ ⊢Sc Γ,Σ ⇒ C with ρ(d′) < ρ(d) is thus obtained by replacing d0 and d1 in
d by (the juxtaposition of d0 and) d∗1. The case where A is not introduced by
any logical (or quantifier) inference in d0 is symmetric. Here we consider the
decoration of A in d0 starting from d0 ⊢Sc Σ ⇒ A∗ and we substitute in d0 each
sequent of the form Π ⇒ A∗ with Π,Γ ⇒ C possibly adding suitable structural
inferences, if needed. The rest of the proof proceeds (similarly) as above.

2. The cut-formula A is introduced by logical (or quantifier) inferences both
in d0 and d1. Let us consider the decoration of A in d0 and d1 starting from
d0 ⊢Sc Σ ⇒ A∗ and d1 ⊢Sc Γ,A∗ ⇒ C respectively. Suppose A = ⋆(A1, . . . Ap),
where ⋆ is any connective, or A = ∀xB(x). Let Σ1 ⇒ A∗, . . . , Σn ⇒ A∗ and
Γ1, A

∗ ⇒ C1 . . . Γm, A∗ ⇒ Cm be the conclusions of the logical (or ∀) inferences
introducing A∗ in d0 and d1. We first replace A∗ with Σ1 everywhere in d1. Note
that the resulting tree is not a derivation anymore. However, since the rules of
(first-order) Sc are substitutive, all the inferences – except those that introduced
A∗ in d1 – are correct (upon adding some structural inferences, if needed). These
incorrect inferences have the following form (assume w.l.o.g. that (⋆, l) is a one-
premise rule)

··· d
′

1

Γ
′

1, Al, . . . At ⇒ B
′

1
(⋆,l)

Γ1, Σ1 ⇒ B1

We replace them by cut(s) with d′1 ⊢Sc Γ ′

1, Al, . . . At ⇒ B′

1 and the premise(s) of
the inference rule introducing A∗ in d0, with conclusion Σ1 ⇒ A∗, (previously
applying the Substitution Lemma and), adding some structural inferences, if
needed. We call the resulting tree d∗11 . Note that if d1 also contains axioms A∗ ⇒
A, these are transformed into sequents Σ1 ⇒ A in d∗11 . These are simply replaced
by the subderivation of d0 ending in Σ1 ⇒ A. Since the rules of Sc are reductive,
d∗11 is a derivation in Sc. Moreover, it is easy to check that d∗11 ⊢Sc Γ,Σ1 ⇒ C.
Similarly, we can obtain derivations d∗12 , . . . d

∗

1n of Γ,Σ2 ⇒ C, . . . Γ,Σn ⇒ C,
with ρ(d∗1i) < ρ(d), for i = 1, . . . , n. This is not yet what we were looking for. Let
us substitute in (the decorated version of) d0 each sequent of the form Π ⇒ A∗

with Π,Γ ⇒ C, possibly adding suitable structural inferences, if needed. (If d0
also contains axioms A ⇒ A∗, these are replaced by the derivation d1). As before,
the resulting tree is not a derivation anymore and the only incorrect inferences
are those which introduced A∗ that now have the form (assume w.l.o.g. that
(⋆, r) is a one-premise rule)



···
Σ

′

i ⇒ Ak

(⋆,r)

Σi, Γ ⇒ C

To correct these inferences we replace the whole subtree ending in Σi, Γ ⇒ C

with the derivation d∗1i obtained before. Iterating this procedure for all the n

inferences introducing A∗ in d0, leads to the required derivation d′ ⊢Sc Γ,Σ ⇒ B

with ρ(d′) < ρ(d).
If A = ∃xB(x), the proof proceeds as above exchanging, however, the role of

d0 and d1. This way, one can replace the incorrect (∃, r) inferences by introducing
(∃xB(x))∗ with a cut from their premises and the premises of the (∃, l) inferences
introducing (∃xB(x))∗ in d1, previously applying the Substitution Lemma to the
latter.

Cut-elimination by substitutions can be easily used in hypersequent calculi. First
note that (ew) and (ec) are substitutive in any hypersequent calculus.

Theorem 2. Any (first-order) standard hypersequent calculus HL in which (a)
logical rules are reductive and (b) rules are substitutive, admits cut-elimination.

Proof. Let d ⊢HL H, with ρ(d) = |A| + 1 and let d0 ⊢HL G | Σ ⇒ A and
d1 ⊢HL G | Γ,A ⇒ C be the premises of the uppermost cut in d with cut-
formula A. We show that we can find a derivation d′ ⊢HL G | Γ,Σ ⇒ C with
ρ(d′) < ρ(d). The proof proceeds by induction on (ρ(d),#ρ(d)). We sketch below
the (few) additional steps – w.r.t. those outlined in the proof of Theorem 1 –
needed to cope with side hypersequents.

1. The cut-formula A is not introduced by any logical (or quantifier) inference
in d0 or d1. Assume w.l.o.g. that this is the case in d1. We first add G to all the
hypersequents in d1 and for each newly generated hypersequent G | B ⇒ B or
G | ⊥ ⇒ (if any), we add an application of (ew) to recover the original axiom
B ⇒ B or ⊥ ⇒ of d1. The remaining steps are as in the proof of Theorem 1.
The required derivation is finally obtained by applying (ec) to d∗1.

2. The cut-formula A is introduced by logical (or quantifier) inferences both
in d0 and d1. Let G1 | Σ1 ⇒ A∗, . . . , Gn | Σn ⇒ A∗ (and H1 | Γ1, A

∗ ⇒
C1 . . . Hm | Γm, A∗ ⇒ Cm) be the conclusions of the logical (or quanti-
fier) inferences introducing A∗ in d0 and d1, respectively. Assume, w.l.o.g.,
A = ⋆(A1, . . . Ap) or A = ∀xB(x). We first add Gi to all the hypersequents
in d1 and we add applications of (ew) to recover the original axioms of d1, if
needed. Following the same steps as in the proof of Theorem 1, we obtain the
derivations d∗1i ⊢HL Gi | G | Γ,Σi ⇒ C, for i = 1, . . . , n. We now first add G

to all the hypersequents in d0 and we then proceed as in the proof of Theorem
1. This leads to d′′ ⊢HL G | G | Γ,Σ ⇒ B. The required derivation is finally
obtained by applying (ec) to d′′.

Corollary 1. Let Sc be a standard (first-order) sequent calculus in which (a)
logical rules are reductive and (b) rules are substitutive. HSc + (com) admits
cut-elimination.



Proof. It is easy to verify that HSc with in addition (com) satisfies conditions
(a) and (b) too. The claim follows by Theorem 2.

4 Transfer Principle

Let Sc be a (first-order) standard sequent calculus that admits cut-elimination
by substitutions. Here we show that if Sc (or, equivalently, the formalized logic
L) is “expressive enough”, then HSc + (com) is an analytic calculus for L+
axiom schemata (A ⊃ B) ∨ (B ⊃ A) (+, in the first-order case, ∀x(P (x) ∨Q) ⊃
(∀xP (x) ∨Q), where x does not occur free in Q).

Henceforth we assume logics to be specified by Hilbert-style systems. A logic
L is identified with the set of its provable formulas. By a first-order logic L we
mean a Hilbert system whose rules are modus ponens and generalization and
whose axioms for quantifiers are those of first-order intuitionistic logic.

In order to interpret (hyper)sequents into the language of the considered
logics, we assume these contain a disjunction connective ∨, an implication ⊃
and the constant ⊥. Since sequents (respectively hypersequents) are multisets
of formulas (respectively sequents), we assume ∨ is commutative and ⊃ satisfies
exchange (i.e. (A ⊃ (B ⊃ C)) ⊃ (B ⊃ (A ⊃ C))). Moreover, ⊥ ⊃ A belongs to
the provable formulas.

Definition 7. Let A1, . . . , An ⇒ B be a sequent. Its generic interpretation I is
defined as follows:

I(⇒ B) := B
I(A1, . . . , An ⇒ B) := (A1 ⊃ . . . ⊃ (An ⊃ B) . . .)
I(A1, . . . , An ⇒) := (A1 ⊃ . . . ⊃ (An ⊃ ⊥) . . .)

Let G be the hypersequent S1 | · · · | Sn. Then its generic interpretation I(G) is
defined as I(S1) ∨ . . . ∨ I(Sn).

Definition 8. A (Hyper)sequent rule

S1 . . . Sn

S0
(r)

with n ≥ 1

is sound for a Hilbert style system L, if whenever L derives the generic inter-
pretations of its premises, L derives the generic interpretation of its conclusion
too. (r) is strongly sound for L if L derives the formula I(S1) ⊃ (. . . (I(Sn) ⊃
I(S0)) . . .). A (hyper)sequent calculus HL is called sound (resp. strongly sound)
for L if all the axioms and rules of HL are sound (resp. strongly sound) for
L. HL is called complete for L if for all formulas A derivable in L, the (hy-
per)sequent ⇒ A is derivable in HL.

Lemma 3. Let Sc be a standard sequent calculus in which the LJ rules (⊃, r),
(∨, r)1,2, (∨, l) as well as the rule

Γ ⇒ A Γ ′, B ⇒ C

Γ, Γ ′, A ⊃ B ⇒ C
(⊃, l)



are derivable. If Sc is strongly sound and complete for L then the following
properties hold:

1. (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)) ∈ L
2. A ⊃ (G ∨A) ∈ L
3. If A ⊃ B ∈ L then (H ∨A) ⊃ (H ∨B) ∈ L,
4. (A ∨A) ⊃ A ∈ L
5. If A ∈ L, B ∈ L and A ⊃ X ∨B ⊃ X ∈ L, then X ∈ L.
6. If A ⊃ B ∈ L and C ⊃ D ∈ L then (A ∨ C) ⊃ (B ∨D) ∈ L,
7. If (A ⊃ B) ∨H ∈ L and A ∈ L, then B ∨H ∈ L,
8. If A ∨B ∈ L and A ⊃ X ∈ L, then X ∨B ∈ L,
9. If A ⊃ (B ⊃ C) ∈ L, A ∨H, B ∨H ∈ L, then C ∨H ∈ L.

10. If A1 ⊃ (A2 ⊃ . . . (An ⊃ B) . . .)) ∈ L and Ai ∨H ∈ L, for each i = 1, . . . n,
then B ∨H ∈ L.

Proof. 3. By Property 2, B ⊃ (H ∨ B) ∈ L, hence by Property 1 and modus
ponens, A ⊃ (H ∨ B) ∈ L. Since H ⊃ (H ∨ B) ∈ L, follows that (H ∨ A) ⊃
(H ∨B) ∈ L.

5. From A ∈ L and B ∈ L follows (A ⊃ X ∨ B ⊃ X) ⊃ X ∈ L. The claim
follows by modus ponens.

7. From A ∈ L we get [(A ⊃ B) ∨H] ⊃ B ∨H. The claim follows by modus
ponens.

9. By Property 3, (B ⊃ C) ⊃ [(B ∨H) ⊃ (C ∨H)] ∈ L. By Property 1 and
modus ponens follows A ⊃ [(B ∨H) ⊃ (C ∨H)] ∈ L. By Property 3 and modus
ponens we get (A ∨H) ⊃ [(B ∨H) ⊃ (C ∨H) ∨H] ∈ L. By modus ponens we
obtain [(B ∨H) ⊃ (C ∨H)]∨H and by Property 7 (C ∨H)∨H ∈ L. The claim
follows since [(C ∨H) ∨H] ⊃ (C ∨H) ∈ L.

10. Follows by repetedely applying Properties 3, 7 and 9.

Theorem 3. Let Sc be a standard sequent calculus in which the rules (⊃, r), (⊃
, l), (∨, r)1,2, (∨, l) are derivable. If Sc is strongly sound and complete for L, then
HSc+ (com) is sound and complete for

L+ (A ⊃ B) ∨ (B ⊃ A)

Proof. (Soundness) The soundness of logical and internal structural rules ofHSc
follows by the strongly soundness of Sc w.r.t. L together with Property 10. The
soundness of (ec) is ensured by Properties 3 and 4, while that of (ew) follows by
Property 2. For (com) we can argue as follows: Assume I(Γ, Γ ′ ⇒ A) ∨H ∈ L
and I(Γ1, Γ

′

1 ⇒ A′) ∨H ∈ L. We show that

(∗) I(Γ, Γ1 ⇒ A) ∨ I(Γ ′, Γ ′

1 ⇒ A′) ∨H ∈ L

Indeed, let the notation [Σ], whereΣ = Σ1, . . . Σn, stand for [(Σ1 ⊃ (. . . (Σn−1 ⊃
Σn) . . .)). We have

([Γ1] ⊃ [Γ ′]) ⊃ (I(Γ, Γ ′ ⇒ A) ⊃ I(Γ, Γ1 ⇒ A)) and



([Γ ′] ⊃ [Γ1]) ⊃ (I(Γ1, Γ
′

1 ⇒ A′) ⊃ I(Γ ′, Γ ′

1 ⇒ A′)).

By Properties 2, 3, 1 and modus ponens follow

(I(Γ, Γ ′ ⇒ A) ⊃ I(Γ, Γ1 ⇒ A)) ⊃ ((I(Γ, Γ ′ ⇒ A) ∨H) ⊃ (∗)) ∈ L and

(I(Γ1, Γ
′

1 ⇒ A′) ⊃ I(Γ ′, Γ ′

1 ⇒ A′)) ⊃ ((I(Γ1, Γ
′

1 ⇒ A′) ∨H) ⊃ (∗)) ∈ L

By Properties 1, 6 and axiom (A ⊃ B) ∨ (B ⊃ A) we get

((I(Γ, Γ ′ ⇒ A) ∨H) ⊃ (∗)) ∨ ((I(Γ1, Γ
′

1 ⇒ A′) ∨H) ⊃ (∗)) ∈ L

the claim follows by Property 5.
(Completeness) Since Sc (and henceHSc) is complete for L, the claim follows

by the derivability of the linearity axiom in HSc+ (com):

A ⇒ A B ⇒ B
(com)

A ⇒ B | B ⇒ A
2x(⊃,r)

⇒ A ⊃ B | ⇒ B ⊃ A
2x(∨i,r)

⇒ (A ⊃ B) ∨ (B ⊃ A) | ⇒ (A ⊃ B) ∨ (B ⊃ A)
(ec)

⇒ (A ⊃ B) ∨ (B ⊃ A)

Corollary 2 (Transfer Principle). Let Sc be a standard sequent calculus
whose logical rules are reductive and all its rules are substitutive and in which
the rules (⊃, r), (∨, r)1,2, (∨, l) and (⊃, l) are derivable. If Sc is strongly sound
and complete for L then HSc+(com) is an analytic calculus sound and complete
for L+ (A ⊃ B) + (B ⊃ A).

If Sc contains quantifier rules, this result does not hold anymore. E.g. in LJ
the rules (⊃, r), (∨, r)i: i=1,2, (∨, l) and (⊃, l) are derivable. However the calculus
obtained by adding (com) to the hypersequent version of LJ is not sound for
first-order IL with the linearity axiom. (This logic, introduced by Corsi in [7],
is semantically characterized by linearly ordered Kripke frames.) Indeed in this
calculus one can derive the shifting law of universal quantifiers w.r.t. ∨, i.e.,
(∨∀) ∀x(P (x) ∨ Q) ⊃ (∀xP (x) ∨ Q), where x does not occur free in Q. This
law, that forces the domains of the corresponding Kripke models to be constant,
is not valid in Corsi’s logic. In fact, HLJ + (com) turns out to be sound and
complete for first-order Gödel logic [4] – whose axiomatization is obtained by
adding (∨∀) to Corsi’s logic. As the theorem below shows, this is not by chance,
but follows a general principle (note that (∨∀) is needed to prove the soundness
of the hypersequent rule (∀, r)).

Theorem 4. Let Sc be a standard sequent calculus in which the rules (⊃
, r), (∨, r)1,2, (∨, l) and (⊃, l) are derivable. If (propositional) Sc is strongly sound
and complete for L, then first-order HSc+ (com) is sound and complete for

first-order L+ (A ⊃ B) ∨ (B ⊃ A) + (∨∀)



Proof. (Soundness) By Theorem 3 it is enough to prove the soundness of the
hypersequent rules for quantifiers w.r.t. L. The cases (∀, l) and (∃, r) are easy.
For (∀, r) we may argue as follows: If I(G)∨I(Γ ⇒ A(a)) ∈ L, ∀x(I(G)∨I(Γ ⇒
A(x))) ∈ L too. Since a did not occur in I(G) or in I(Γ ⇒ A(a)), we may now
assume that x does not either. Hence I(G) ∨ ∀xI(Γ ⇒ A(x)) ∈ L + (∨∀). The
result follows by Property 8 since ∀xI(Γ ⇒ A(x)) ⊃ I(Γ ⇒ ∀xA(x)) ∈ L. The
soundness of (∃, l) can be proved in a similar way.

(Completeness) Since the generalization rule is a particular case of (∀, r), by
Theorem 3 it is enough to prove that ⊢HSc+(com)⇒ (∨∀). Indeed

A(a) ⇒ A(a)

A(a) ⇒ A(a) B ⇒ B
(com)

B ⇒ A(a) | A(a) ⇒ B B ⇒ B
2x(∨,l)+(ew)s

A(a) ∨B ⇒ A(a) | A(a) ∨B ⇒ B
2x(∀,l)

∀x(A(x) ∨B) ⇒ A(a) | ∀x(A(x) ∨B) ⇒ B
(∀,r)

∀x(A(x) ∨B) ⇒ ∀xA(x) | ∀x(A(x) ∨B) ⇒ B
2x(∨,r)

∀x(A(x) ∨B) ⇒ ∀xA(x) ∨B | ∀x(A(x) ∨B) ⇒ ∀xA(x) ∨B
(ec)

∀x(A(x) ∨B) ⇒ ∀xA(x) ∨B
(⊃,r)

⇒ ∀x(A(x) ∨B) ⊃ (∀xA(x) ∨B)

Corollary 3 (Transfer Principle). Let Sc be a standard first-order sequent
calculus whose logical rules are reductive and rules are substitutive and in which
the rules (⊃, r), (∨, r)1,2, (∨, l) and (⊃, l) are derivable. If Sc is strongly sound
and complete for L then first-order HSc + (com) is an analytic calculus sound
and complete for first-order L+ (lin) + (∨∀).

5 SMTL: a case study

As an easy corollary of the transfer principle introduced above, we define here
an analytic calculus for Strict Monoidal T-norm based Logic SMTL. This logic
was defined in [9] by adding axioms ((A ⊃ ⊥) ∧ A) ⊃ ⊥ and (lin) to FLew.
SMTL turns out to be the logic based on left-continuous t-norms satisfying
the pseudo-complementation property. To the best of our knowledge no analytic
calculi have been provided for SMTL so far.

Proposition 1. ScFLew + (wc) is strongly sound and complete for FLew ex-
tended with ((A ⊃ ⊥) ∧A) ⊃ ⊥.

Proof. (Soundness) ⊢ScFLew
I(Γ,A,A ⇒), ((A ⊃ ⊥) ∧ A) ⊃ ⊥ ⇒ I(Γ,A ⇒).

Hence the claim follows by the strongly soundness of ScFLew w.r.t. FLew ([13])
and axiom ((A ⊃ ⊥) ∧A) ⊃ ⊥.

(Completeness) By the completeness of ScFLew w.r.t. FLew it is enough to
check that ⊢ScFLew+(wc) ((A ⊃ ⊥) ∧A) ⊃ ⊥. This is straightforward.



Corollary 4. The hypersequent version of ScFLew + (wc) with in addition
(com) is an analytic calculus for SMTL.

Proof. ScFLew + (wc) is a standard sequent calculus in which the rules (⊃
, r), (∨, r)1,2,(∨, l) and (⊃, l) are derivable. Moreover its rules are reductive and
substitutive. The claim follows by Proposition 1 and Corollary 2.
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