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Abstract. Using substructural and modal logics as case studies, a uni-
form method is presented for transforming cut-free hypersequent proofs
into sequent calculus proofs satisfying relaxations of the subformula prop-
erty. As a corollary we prove decidability for a large class of commutative
substructural logics with contraction and mingle, and get a simple syn-
tactic proof of a well known result: the sequent calculus for S5 is analytic.

1 Introduction

In 1935, Gentzen introduced the sequent calculi LJ and LK for intuitionistic
and classical logic as alternatives to the prevailing axiomatic systems. For this
purpose, he replaced the rule of modus ponens in the latter with the more gen-
eral cut rule. His motivation was to obtain the subformula property (also called
analyticity) which asserts that a proof need only contain subformulas of the end
formula. This was achieved by exploiting the additional structure in the sequent
calculus formalism to show the redundancy of the cut rule. Analyticity yields
a strong restriction on the proof search space and it is this that is the key for
using a proof calculus to prove metalogical results (e.g. decidability, complexity,
interpolation, disjunction properties) and for automated reasoning.

Unfortunately, the sequent calculus is not expressive enough to support an-
alyticity for most logics of interest. The structural proof theoretic response has
been the development of numerous exotic proof formalisms (e.g. hypersequent,
nested sequent, display, labelled calculi, tree-hypersequent)—typically extending
the syntax of the sequent calculus—with the aim of regaining analyticity via cut-
elimination. The hypersequent calculus, introduced independently by Mints [19],
Pottinger [22] and Avron [1], is one of the most successful such formalisms. Cut-
free hypersequent calculi have been presented for many non-classical logics that
resist an analytic sequent calculus formulation. Especially noteworthy are the
uniform constructions of cut-free hypersequent calculi via structural/modal rule
extensions for commutative substructural [6] and modal [14, 13, 16] logics.

Many non-classical logics possess a cut-free calculus in some exotic formalism
but such calculi tend to be less useful than cut-free sequent calculi because the
presence of the extended structure is a hinderance to proving metalogical results.

Here we propose an alternative: retain the sequent calculus and seek system-
atic relaxations of analyticity. Of course, most logics will have a sequent calculus



with arbitrary cuts that is complete for it, but this does not meaningfully re-
strict the proof search space. Therefore what we seek here a restriction on the
‘quality’ of the cut-formula in terms of shape, complexity and composition. Such
a cut-restricted sequent calculus will be called a bounded sequent calculus.

In this work we obtain bounded sequent calculi by transforming cut-free hy-
persequent calculi. This is a natural starting point: hypersequents are simple
extension of sequents (in fact, just one step further); the existing uniform con-
structions of cut-free hypersequent calculi can be exploited to obtain a uniform
method for constructing bounded sequent calculi; and, given the novelty and
inherent technicalities in our proposal, there is an advantage in simplifying one
aspect of the problem by starting from proofs that already possess a nice struc-
ture (i.e. cut-free hypersequent proofs). The bounded sequent calculi that we
obtain in this way are novel: a consideration of the quality of cut-formulas has
never been attempted for logics lacking an analytic sequent calculus.

Specifically, we present a methodology to uniformly transform cut-free hy-
persequent calculi for a large class of propositional non-classical logics (sub-
structural, intermediate and modal logics) into bounded sequent calculi. As a
corollary we obtain the decidability of all acyclic P ′3-axiomatic extensions (c.f.
the substructural hierarchy [6]) of the commutative Full Lambek calculus with
contraction and mingle [11] (including, e.g., UML [18]). This implies the de-
cidability of the equational theory of the corresponding classes of residuated
lattices [8]. We also obtain a simple and new syntactic proof of a well-known
result [7]: analyticity of the sequent calculus for the modal logic S5. We note
that the syntactic proof from the literature due to Takano [23] is highly intricate.

Related Work. Using algebraic methods, Bezhanishvili and Ghilardi [4]
show that several modal logics satisfy the bounded proof property, a restric-
tion on the modal complexity of formulas that need appear in a Hilbert-style
proof. However all those logics already have well-known analytic sequent calculi.
Bezhanishvili et al. [5] extend these methods to cut-free hypersequent calculi
for intermediate logics. In particular, it is shown that is it possible to restrict
hypersequent calculus proofs (with cuts) to proofs consisting of formulas whose
implicational depth is bounded by the implicational depth of the endsequent.
This is in the spirit of this work (systematic relaxations of analyticity), although
here our aim is not only to restrict the formulas in the proof but to eliminate the
hypersequent structure as well. Moreover, our methods apply also to substruc-
tural logics. Lahav and Zohar [15] establish syntactic criteria for determining if
a pure sequent calculus has analyticity. They introduce a subformula property
modulo leading negation symbols and provide a method for constructing ana-
lytic calculi for sub-logics of a base logic from simple derivable rules in the base
calculus. In contrast, for us, relaxations of analyticity are the parameter for cap-
turing extensions of the base logic. In this sense, analyticity is the lower-limit of
our investigation: we are willing to give up analyticity in a carefully considered
way, to preserve the sequent calculus formalism. Fitting [7] proved analyticity of
the sequent calculus for several modal logics by logic-specific semantic argument
and asked if the “theorems could be established by a more uniform approach”.



A⇒ A
(id)

A,∆⇒ Π Γ ⇒ A

Γ,∆⇒ Π
(cut)

Γ ⇒ Ai

Γ ⇒ A1 ∨A2
(∨R)i∈{1,2}

Γ,A⇒ B

Γ ⇒ A→ B
(→R)

⇒ 1
(1R)

Γ ⇒ Π
Γ, 1⇒ Π

(1L)
Γ ⇒
Γ ⇒ 0

(0R)
0⇒ (0L)

Γ ⇒ > (>)
Γ,⊥ ⇒ Π

(⊥)

Γ ⇒ A ∆⇒ B
Γ,∆⇒ A ·B (·R)

Γ,A⇒ Π Γ,B ⇒ Π

Γ,A ∨B ⇒ Π
(∨L)

Γ,A,B ⇒ Π

Γ,A ·B ⇒ Π
(·L)

Γ ⇒ A ∆,B ⇒ Π

Γ,∆,A→ B ⇒ Π
(→L)

Γ ⇒ A Γ ⇒ B
Γ ⇒ A ∧B (∧R)

Γ,Ai ⇒ Π

Γ,A1 ∧A2 ⇒ Π
(∧L)i∈{1,2}

Fig. 1. The single-conclusioned sequent calculus FLe

Our methodology suggests that it may indeed be possible to obtain analyticity
(and its relaxations) for modal logics in a uniform manner.

2 Preliminaries

In this paper we consider extensions of the commutative Full Lambek calculus
FLe (see Fig. 1), including intermediate and normal modal logics. The language
of these logics may be inferred from their calculi. The connective · is called fusion
(or multiplicative conjunction), e.g. [6, 8]. A sequent is a tuple (Γ,∆) of formula
multisets (written as Γ ⇒ ∆). It is single-conclusioned if ∆ contains at most
one formula, and multi-conclusioned otherwise. Throughout, ¬A will abbrevi-
ate A→ ⊥. A,B,C, . . . will be used for formulas/formula variables, Γ,∆,Π, . . .
for formula multisets/formula multiset variables. Π is taken to contain at most
one formula. A Ω-instantiation of a formula A is a uniform substitution of the
propositional variables of A by elements from the set Ω.

Rules and Rule Instances. An explicit distinction between a rule and a
rule instance will be made only where required. An instance of a rule (r) is
denoted σ(r), where σ is a function mapping the structure variables in (r) to
concrete elements of the corresponding type. E.g. in an instance σ(cut) of (cut)
(Fig. 1), σ maps the multiset variables Γ and ∆ to (possibly empty) multisets
of formulas, the formula variable A to a formula, and the structure variable Π
to a multiset of formulas of size ≤ 1.

Axiomatic Extensions. Let S be a sequent calculus and F a set of formulas.
S + F denotes the extension of S with initial sequents {⇒ A|A ∈ F}. Initial
sequents are rules with no premises. Except in special cases, it is easily seen
that S + F fails cut-elimination even if S has cut-elimination.

Derivability. For a set F ∪{S} of sequents, F `S S (resp. F `cfS S) denotes
that S is derivable (resp. cut-free derivable) from F using the rule instances in
S. If F = ∅, then we say that S is derivable (cut-free derivable) and write `S S
(`cfS S). Note: F `S S denotes a derivation from a fixed set F . In contrast,
substitution instances of F can be used in `S+F S.

Let subf(S) denote the set of subformulas in a formula/sequent S. For a
multiset F of formulas, let �F be the fusion of all formulas in F (1 if F is



empty). For sequent calculi where conjunction ∧ and fusion · conflate (i.e. in the
presence of contraction c and weakening w), we use just the single connective ∧.
Then �F is defined as a conjunction of all formulas in F (> if F is empty).

A bounding function is a map from a sequent to a set of formulas. In the
following two definitions, S is a sequent calculus, g is a bounding function, S is
an arbitrary sequent and F is a set of initial sequents of S.

Definition 1 (g-, (g,F)-bounded derivation). A derivation of S in S is
g-bounded if every formula in the derivation is a subformula of an instanti-

ation of an initial sequent of S by formulas in g(S).
(g,F)-bounded if it is g-bounded and additionally every cut rule instance

and every initial sequent instance ⇒ A from F occurs together as shown below,
where A is a g(Γ ⇒ Π)-instantiation of a formula in F .

⇒ A Γ,A⇒ Π
(cut)

Γ ⇒ Π

Intuitively, g-boundedness is a global relaxed-analyticity property on the deriva-
tion. Meanwhile, (g,F)-boundedness specifies also that cuts and initial sequent
instances of F occur together and only together, and that the cut-formula sat-
isfies a local relaxed-analyticity property.

The particular relaxation of analyticity is determined by the bounding func-
tion g. In particular, a ga-bounded derivation of S with ga(S) = {A|A ∈ subf(S)}
is essentially an analytic derivation (but not quite, since subformulas of the initial
sequents may also occur).

The global/local relaxed analyticity properties are analogous to the global/local
subformula properties considered in Kowalski and Ono [12].

Definition 2 (g-, (g,F)-bounded sequent calculus). A sequent calculus S
is g-bounded ((g,F)-bounded) if every sequent derivable in S has a g-bounded
(resp. (g,F)-bounded) derivation.

A g- or (g,F)-bounded derivation/sequent calculus for some g and F is referred
to as a bounded derivation/sequent calculus.

For an associative binary connective ♥, define the bounding functions:

g♥(S) := {A1♥ . . .♥An|Ai ∈ subf(S)}
g1♥(S) := {A1♥ . . .♥An|Ai ∈ subf(S), and Ai = Aj iff i = j}

Note that the set g1♥(S) is always finite, whereas g♥(S) is not. As an exam-
ple, g1·(p ⇒ q) = {p, q, p · q, q · p}. A g♥-bounded derivation of S would only
contain subformulas of instantiations of the initial sequents by formulas of the
form A1♥ . . .♥An where Ai ∈ subf(S). A g1♥-bounded derivation additionally
requires that there is no repetition in A1, . . . , An.

Hypersequent calculi are a generalisation of sequent calculi. Each proof
rule is built from hypersequents i.e. finite multisets of sequents S1 | . . . | Sn.
Each Si is said to be a component of the hypersequent.



Every sequent calculus S can be embedded into a hypersequent calculus HS;
replace each rule (r) in S with (Hr) (see below) where the new structure vari-
able G can be instantiated with a hypersequent (possibly empty). In addition
to the rules (Hr), HS contains the structural rules of external weakening (ew)
and external contraction (ec).

S1 . . . Sn

S′
(r)

G | S1 . . . G | Sn

G | S′
(Hr) G

G | S
(ew)

G | S | S
G | S

(ec)

The embedding is conservative, i.e. no new sequents are provable in HS.
Some axiomatic extensions of S cannot be captured analytically by extending

S with sequent rules, but they can be captured analytically by extending HS
with “proper” hypersequent rules that act on many sequents simultaneously.

Example 3. Let lin denote (p → q) ∨ (q → p). A sequent calculus for proposi-
tional Gödel logic is obtained by adding ⇒ lin to Full Lambek calculus with ex-
change, contraction and weakening (denoted FLecw, or LJ). Cut is ineliminable.
A cut-free hypersequent calculus is obtained by adding (com) [2] to HLJ.

G | Σ1, Γ1 ⇒ Π1 G | Σ2, Γ2 ⇒ Π2

G | Σ1, Γ2 ⇒ Π1 | Σ2, Γ1 ⇒ Π2
(com)

Several [3, 21, 13] cut-free hypersequent calculi for S5 have been given. E.g. in [3],
a cut-free hypersequent calculus for S5 is obtained by adding (MSAv) to HS4.

G | Γ1,�Γ2 ⇒ �∆2, ∆1

G | Γ1 ⇒ ∆1 | �Γ2 ⇒ �∆2
(MSAv)

In the above examples, the structure variable G is called the context. The
remaining components in the rule are called the active components.

3 A guided example demonstrating the methodology

We demonstrate by transforming a cut-free hypersequent derivation dh of ⇒ F
in HLJ + (com) into a bounded sequent derivation ds of ⇒ F in LJ + lin
through an example. Assume that dh contains a single instance of (com) above
an instance of (ec). Then it has the following form:

π1
Σ1, Γ1 ⇒ Π1

π2
Σ2, Γ2 ⇒ Π2

(com)
Σ1, Γ2 ⇒ Π1|Σ2, Γ1 ⇒ Π2

· · ·
Γ ′ ⇒ Π ′|Γ ′ ⇒ Π ′

(ec)
Γ ′ ⇒ Π ′

· · ·
⇒ F

Construct the sequent derivation ds as follows, utilising portions of dh:



⇒ α

Γ2 ⇒ ∧Γ2

π1
Σ1, Γ1 ⇒ Π1

. . .
Σ1,∧Γ1 ⇒ Π1 →L∧Γ2 → ∧Γ1, Σ1, Γ2 ⇒ Π1

· · ·
∧Γ2 → ∧Γ1, Γ

′ ⇒ Π ′

Γ1 ⇒ ∧Γ1

π2
Σ2, Γ2 ⇒ Π2

. . .
Σ2,∧Γ2 ⇒ Π2 →L∧Γ1 → ∧Γ2, Σ2, Γ1 ⇒ Π2

· · ·
∧Γ1 → ∧Γ2, Γ

′ ⇒ Π ′ ∨L
(∧Γ2 → ∧Γ1) ∨ (∧Γ1 → ∧Γ2), Γ ′ ⇒ Π ′

cut(α)
Γ ′ ⇒ Π ′

· · ·
⇒ F

The cut formula α is σ(lin) where σ(p) = ∧Γ2 and σ(q) = ∧Γ1. Since dh is
cut-free: Γ1 ∪ Γ2 ⊆ subf(F ). So ds is a g∧-bounded derivation. By construction,
the cut-rule occurs together with and only with the lin initial sequent instance.
Furthermore, again because dh is cut-free: Γ1 ∪ Γ2 ⊆ subf(Γ ′ ∪ Π ′). Thus a
stronger result holds: ds is a (g∧, {lin})-bounded derivation.

4 The disjunction form of a rule: a formal definition

Let us summarise the idea in the previous section. Given a cut-free hyperse-
quent derivation of ⇒ F , we aim to obtain a sequent calculus derivation of each
component of each hypersequent in it. If the hypersequent derivation contains
an instance of a “proper” structural rule (r), the sequent calculus derivation is
forced to append to the LHS of its ith active conclusion component a suitable for-
mula Di. The formula ∨iDi can be defined explicitly (Def. 9) from the form of (r)
such that it satisfies (Thm. 12) the properties of a disjunction form (Def. 5),
which is formally defined in this section; these conditions make the transforma-
tion work. E.g. (provability) guarantees that ∨iDi is no stronger than the axiom
corresponding to (r). Thus⇒ ∨iDi is used as an initial sequent without extend-
ing the logic. The disjunction form formulas are eliminated at the bottom of the
sequent calculus derivation of ⇒ F via bounded cuts on these initial sequents.

Definition 4. For a multiset ∆ of formulas, define ∆#(Γ ⇒ Π) as ∆,Γ ⇒ Π.

Let Γ1, . . . , Γm be the structure variables in a hypersequent rule (r); associate

with each Γi a propositional variable Γ̂i. Given an instantiation σ on (r), define

the extended instantiation σ̂ which maps each Γ̂i to the formula �σ(Γi).

Definition 5 (disjunction form of a rule). Let H be a hypersequent calculus
and (r) a hypersequent rule with set H of premises and conclusion G|S1| . . . |Sn
built from the structure variables Γ1, . . . , Γm. A formula A1 ∨ . . .∨An built from
the propositional variables Γ̂1, . . . , Γ̂m is a disjunction form of (r) if:

(splitting) For every rule instance σ(r) and every i ≤ n:

σ(H) `cfH σ(G | σ̂(Ai)#Si)



(provability) `H+(r) A1 ∨ . . . ∨An
We use the term “splitting” because the condition asserts that we can split the

active components of a structural rule instance: the ith active component σ(Si)
appended with the disjunct σ̂(Ai) in the antecedent is cut-free derivable from
the premises of the rule without using (r). In effect:

σ(H)

σ(G | S1 | . . . | Sn)
(r)
 


σ(H)

.... H

σ(G | σ̂(A1)#S1) , . . . ,

σ(H)
.... H

σ(G | σ̂(An)#Sn)


There are pathological ways to obtain (splitting), for example by setting each Ai
as ⊥. Such formulas are ruled out by the (provability) condition.

Example 6. (Γ̂2 → Γ̂1) ∨ (Γ̂1 → Γ̂2) is a disjunction form of (com) in Eg. 3.

5 Disjunction forms for commutative substructural logics

We show how to compute a disjunction form of analytic rules for substructural
logics. The logics we consider are extensions of FLe by axioms in the class P3

(P ′3) of the substructural hierarchy [6]. Recall that the class P ′3 is a modification
of P3 used in absence of weakening. Let us write B∧1 to denote B ∧ 1. For
A = A1∨ · · ·∨An (head connective of Ai is not disjunction), set A∨ := (A1)∧1∨
· · · ∨ (An)∧1 and let P ′3 := {A∨|A ∈ P3}. Let F∨ denote {A∨|A ∈ F}.
Definition 7 (amenable). A set F of formulas is amenable if (i) F ⊆ P3 and
contains weakening p · q → p, or (ii) F ⊆ P ′3 consists of acyclic formulas.

The interest in amenable axiomatic extensions is that they admit a cut-free
hypersequent calculus. This result is established in [6] and summarised below.

Theorem 8 ([6]). From every finite set F of amenable formulas, a finite set RF
of (‘analytic’) structural hypersequent rules can be computed such that

for every sequent S: `FLe+F S if and only if `cfHFLe+RF
S

E.g., F = {p · q → p, lin} is an amenable set of formulas and RF is the set
containing the rules of weakening and (com) (Ex. 3); hence HFLew + (com) is
a cut-free hypersequent calculus for FLew + lin. Likewise, the set F ′ = {lin∨}
is amenable (where lin∨ = (p → q)∧1 ∨ (q → p)∧1), RF ′ is the rule (com), and
so HFLe + (com) is a cut-free hypersequent calculus for FLe + lin.

Analytic structural hypersequent rules have one active component in each
premise and additionally satisfy the following properties.

(linear conclusion) All structure variables in the conclusion are distinct.
(separation) No structure variable occurs both on the left hand side (LHS)

and the right hand side (RHS) of a sequent.
(coupling) For each conclusion component with variable Π on the RHS there

is a variable Σ on the LHS such that the pair (Σ,Π) always occur together
in the premises.

(subformula property) Each variable in the premise occurs in the conclusion.



{G | Sij ,Σi ⇒ Πi}i∈I,j∈Ji {G | Tijl,Γij ⇒}i∈I,j≤ri,l∈Mij {G | Uijl,∆ij ⇒}i∈L,j≤si,l∈Nij

G | [Vi,Γi1, . . . ,Γiri ,Σi ⇒ Πi]i∈I | [Wi,∆i1, . . . ,∆isi ⇒]i∈L

Fig. 2. Association form. S, T ,U ,V,W denote multisets of structure variables. The
distinguished variable occurrences in the premises and their associated occurrences in
the components of the conclusion are indicated in boldface. The index sets I, L, Ji,Mij

and Nij are assumed to be pairwise disjoint.

Computing the disjunction form of an analytic rule. Select exactly one
structure variable occurrence in the active component of each premise (‘distin-
guished variable occurrence’). This induces an association of the distinguished
variable (and the premise it is contained in) to the unique conclusion component
containing this variable. We furthermore stipulate that every variable Σ that is
coupled (i.e. as (Σ,Π) for some Π) is chosen as distinguished.

The analytic rule together with the choice of distinguished variables can be
pictured in association form (see Fig. 2). Observe that:

– A structure variable declared as distinguished in a premise with empty RHS
may appear in a conclusion component with or without empty RHS

– Distinct premises may be associated to the same conclusion component,
although not necessarily due to the same distinguished variable.

– Some conclusion components with empty RHS might not be associated to
any premise (captured by the possibility that si = 0).

– The multisets S, T and U may contain further (non-distinguished) occurences
of the distinguished variables Γ and ∆, but no further occurences of Σ due
to the coupling property. The multisets V andW do not contain any further
occurences of distinguished variables due to the linear conclusion property.

For a multiset S = {Γ1, . . . , Γn} of structure variables, let Ŝ denote the multi-

set {Γ̂1, . . . , Γ̂n} of propositional variables.

Definition 9 (Form(r, i)). For a rule (r) in association form (Figure 2), let

Form(r, i) :=

�V̂i · �
Γ̂ij ∧ (¬

∨
l∈Mij

�T̂ijl) | j ≤ ri

→ ∨
j∈Ji

�Ŝij


∧1

(i ∈ I)

Form(r, i) :=

¬
�Ŵi · �

∆̂ij ∧ (¬
∨
l∈Nij

�Ûijl) | j ≤ si



∧1

(i ∈ L)

Finally, let Form(r) :=
∨
i∈I∪L Form(r, i).

Example 10. Here are association forms of three well-known structural rules.
In (com), the choice of distinguished variables Σ1 and Σ2 is determined by the



coupling property. In (lq) and (wc), we could also have chosen Γ resp. the second
occurence of ∆ as distinguished.

G | Γ1,Σ1 ⇒ Π1 G | Γ2,Σ2 ⇒ Π2

G | Γ2,Σ1 ⇒ Π1 | Γ1,Σ2 ⇒ Π2
(com)

G |∆, Γ ⇒
G |∆⇒| Γ ⇒

(lq)
G |∆, ∆⇒
G |∆⇒

(wc)

Example 11. Consider the (com) rule from Example 10. Pattern-matching the
rule with Fig. 2 we obtain: I = {1, 2}, L = ∅, V1 = {Γ2}, V2 = {Γ1}, J1 = J2 =
{1}, S11 = {Γ1}, S21 = {Γ2}, r1 = r2 = 0:

Form(com, 1) :=

�V̂1 · �{Γ̂1j ∧ (¬
∨
l∈M1j

�T̂1jl) | j ≤ r1
}
→

∨
j∈{1}

�Ŝ1j


∧1

Form(com, 2) :=

�V̂2 · �{Γ̂2j ∧ (¬
∨
l∈M2j

�T̂2jl) | j ≤ r2
}
→

∨
j∈{1}

�Ŝ2j


∧1

So Form(com) = (Γ̂2 · 1→ Γ̂1)∧1 ∨ (Γ̂1 · 1→ Γ̂2)∧1. Also:

Form(lq) = (¬(1 · (∆̂ ∧ ¬Γ̂ )))∧1 ∨ (¬(Γ̂ · 1))∧1 Form(wc) = (¬(1 · (∆̂ ∧ ¬∆̂)))∧1

Theorem 12. Form(r) is a disjunction form of the analytic rule (r).

Proof. Given an analytic rule (r), obtain Form(r) from its association form. We
require (c.f. Def. 5) (i) provability, i.e. `HFLe+(r)⇒ Form(r), and (ii) splitting.

(i) Apply the invertible rules (ec), (∨L), (→R), (·L) backwards from ⇒
Form(r) to obtain the hypersequent below. The substitution σ that makes it the
conclusion of an instance σ(r) of (r) in association form (cf. Fig. 2) is obtained
by pattern-matching (refer variables shown above the hypersequents),V̂i, {

Γij Σi︷ ︸︸ ︷
Γ̂ij ∧ (¬

∨
l∈Mij

�T̂ijl) | j ≤ ri} ⇒

Πi︷ ︸︸ ︷∨
j∈Ij

�Ŝij


i∈I

|

Ŵi, {

∆ij︷ ︸︸ ︷
∆̂ij ∧ (¬

∨
l∈Nij

�Ûijl) | j ≤ si} ⇒


i∈L

σ(G) := ∅ σ(Σi) := ∅ σ(Πi) :=
∨
j∈Ji

�(Ŝij) (i ∈ I)

For Vi = {Q1, . . . , Qn}, set σ(Qs) := Q̂s

σ(Γij) := Γ̂ij ∧ ¬
∨

l∈Mij

�(T̂ijl) (i ∈ I, j ≤ ri)

For Wi = {Q1, . . . , Qn}, set σ(Qs) := Q̂s (i ∈ L)

σ(∆ij) := ∆̂ij ∧ ¬
∨
l∈Nij

�(Ŝijl) (i ∈ L, j ≤ si)

Applying σ(r) backwards to the hypersequent above, it remains to derive each
premise of σ(r) in HFLe.



We illustrate with the premise G | Sij , Σi ⇒ Πi of (r) (i ∈ I, j ∈ Ji). In σ(r)

this becomes σ(Sij)⇒
∨
j′∈Ji �(Ŝij′). Obtain σ(Sij)⇒ �(Ŝij) using (∨R). Let

Sij = {P1, . . . , Pn} (each Ps is a structure variable). Applying (·R) backwards

to the latter sequent we obtain σ(Ps) ⇒ P̂s (1 ≤ s ≤ n). It remains to verify
derivability of the latter. Since Ps occurs in the premise in the LHS, it must occur
in the conclusion (subformula property) in the LHS (separation). Additionally it
cannot be a Σ variable (coupling). Therefore either Ps ∈ Vi, Ps ∈ Wi, Ps = Γuv
or Ps = ∆uv. In the first two cases, due to the definition of σ(Vi) and σ(Wi),

we have the assignment σ(Ps) := P̂s and hence derivability. In the latter two

cases we get Γ̂uv ∧¬
∨
l∈Muv

�(T̂uvl)⇒ Γ̂uv and ∆̂uv ∧¬
∨
l∈Nuv

�(Ŝuvl)⇒ ∆̂uv

respectively. Applying (∧L) backwards we get Γ̂uv ⇒ Γ̂uv and ∆̂uv ⇒ ∆̂uv.
(ii) Proving that Form(r) satisfies (splitting) follows from a straightforward

inspection so we simply set out what needs to be proved. Let (r) be given as

H
G | [Si]i∈I∪L

(r)

We have to show that for any instantiation σ and for any i ∈ I ∪ L, the hyper-
sequent σ(G | σ̂(Form(r, i))#Si) is derivable from σ(H) without invoking (r) or
(cut). For i ∈ I, the hypersequent σ(G | σ̂(Form(r, i))#Si) is

σ(G) | σ̂(Form(r, i)), σ(Vi), σ(Γi1), . . . , σ(Γiri), σ(Σi)⇒ σ(Πi) (1)

From Def. 9 we have that σ̂(Form(r, i)) has the following form:�σ(Vi) · �

σ(Γij) ∧ (¬
∨

l∈Mij

�σ(Tijl)) | j ≤ ri

→ ∨
j∈Ij

�σ(Sij)


∧1

Now σ(H) `cfHFLe
(1) can be witnessed by decomposing σ̂(Form(r, i)). �

Remark 13. Form(r) is not necessarily the P3/P ′3 formula that generates (r) and
might not coincide with the formula obtained by suitably reversing the algorithm
in [6]. E.g., in the guided example (Sec. 3) we used the formula (Γ̂2 → Γ̂1)∨(Γ̂1 →
Γ̂2) as a disjunction form of (com), but our method computes a slightly different
(though equivalent) form (Ex. 11). The advantage of the method given here
is that it works uniformly for substructural and modal logics, and it does not
require any familiarity with the algorithm in [6].

6 Bounded calculi for commutative substructural logics

Let F be a set of amenable axioms and RF the corresponding set of analytic
structural hypersequent rules. In some cases (e.g. weakening, contraction ax-
ioms), the computed rule(s) may have just a single active component conclusion
and hence they correspond to sequent structural rules. We call these sequent
axioms, and they belong to the class N2 in the (Pi,Ni) substructural hierarchy.



Theorem 14. Let Fseq ∪ F be a finite set of amenable axioms such that Fseq
is a set of sequent axioms with corresponding sequent rules Rseq. Also set F ′ =
{Form(r)|r ∈ RF}. For every sequent S, the following are equivalent:

1. `FLe+Fseq+F S

2. `cfFLe+Rseq
ΓS#S for a multiset ΓS of g·(S)-instantiations of elements in F ′.

3. S has a (g·,F ′)-bounded derivation in FLe +Rseq + F ′.

Proof. (1)⇒ (2). Suppose that `FLe+Fseq+F S. By Thm. 8: `cfHFLe+RFseq+RF
S.

Let d0 be the hypersequent derivation witnessing the latter. Define the rank of a
derivation in HFLe +Rseq +RF as the maximum number of RF -instances on a
branch. We successively eliminate all bottommost occurrences of RF , obtaining
a hypersequent derivation of ΓS#S where ΓS is an increasing (with each round
of elimination/reduction of rank) multiset of g·(S)-instantiations of F ′.

First observe that since d0 is cut-free, it has the following property:

(∗) every instance of a rule from RF instantiates its structure variables
with a multiset of elements from subf(S)

Identify the bottommost RF -instances σ1(r1), . . . , σn(rn) in d0. Denote the
conclusion of σi(ri) by G|S1

i | . . . |S
ki
i . By Thm. 12, Form(ri) =

∨
j≤ki Form(ri, j)

is a disjunction form for ri, i.e. a formula built from the structure variables in
ri satisfying (splitting) and (provability) in Def. 5. From (∗) we establish that
each σ̂i(Form(ri, j)) is an instantiation of Form(ri, j) by formulas in g·(S).

Set δ1 := d0 and fix an n-tuple (j1, . . . , jn) satisfying ji ≤ ki (i ≤ n).
for i = 1 to n do
Use (splitting) to obtain a derivation of G|σ̂i(Form(ri, ji))#S

ji
i using the

derivations of the premises of σ̂i(ri) in d0. Now use (ew) to derive the following.

G|S1
i | . . . |σ̂i(Form(ri, ji))#S

ji
i | . . . |S

ki
i (2)

Replace the subderivation (in δi) of the conclusion G|S1
i | . . . |S

ki
i of σi(ri) with

the above derivation of (2). The result object is not yet a derivation. The fol-
lowing changes are required: when an additive rule or (ec) occurs below (2) (left
column below), proceed as in the right column to add the missing formula. Here
we are making use of the fact that every Form(ri, ji) has the form B ∧ 1 and
hence can be inserted in the LHS using (1L) and (∧L).

G|Γ ′ ⇒ Π′|Γ ′ ⇒ Π′

G|Γ ′ ⇒ Π′

G|σ̂i(Form(ri, ji)), Γ
′ ⇒ Π′|Γ ′ ⇒ Π′

(1L), (∧L)
G|σ̂i(Form(ri, ji)), Γ

′ ⇒ Π′|σ̂i(Form(ri, ji)), Γ
′ ⇒ Π′

G|σ̂i(Form(ri, ji)), Γ
′ ⇒ Π′

G|Γ ′ ⇒ A G|Γ ′ ⇒ B

G|Γ ′ ⇒ A ∧ B
G|σ̂i(Form(ri, ji)), Γ

′ ⇒ A

G|Γ ′ ⇒ B
(1L), (∧L)

G|σ̂i(Form(ri, ji)), Γ
′ ⇒ B

G|σ̂i(Form(ri, ji)), Γ
′ ⇒ A ∧ B

A derivation of σ̂1(Form(r1, j1)), . . . , σ̂i−1(Form(ri−1, ji−1)), σ̂i(Form(ri, ji))#S
is obtained. Call this derivation δ′i and set δi+1 := δ′i. end for



The output is a derivation of the hypersequent below left for every (j1, . . . , jn).
Since σ̂i(Form(ri)) =

∨
j≤ki σ̂i(Form(ri, j)), repeatedly apply (∨L) to this family

of derivations to obtain ultimately the derivation d1 of below right.

σ̂1(Form(r1, j1)), . . . , σ̂n(Form(rn, jn))#S σ̂1(Form(r1)), . . . , σ̂n(Form(rn))#S

By construction, each σ̂i(Form(ri)) is a g·(S)-instantiation of Form(ri). Deriva-
tion d1 was obtained from d0 (without adding any cuts) by eliminating all bot-
tommost RF -instances, without modifying any non-bottommost RF -instances.
Thus d1 is cut-free, has lesser rank than d0 and satisfies (∗).

Identify the bottommost RF instances in d1 and repeat the above argument,
to obtain ultimately a cut-free derivation dN of ΓS#S in HFLe + Rseq + RF
with rank 0, and hence also in HFLe +Rseq. As the derivation contains no rules
which act on more than one component in the premise or conclusion, we obtain
the cut-free sequent derivation of ΓS#S in FLe +Rseq.

(2) ⇒ (3). Given a cut-free derivation of {A1, . . . , An}#S in FLe + Rseq
where each Ai is a g·(S)-instantiations of some element in F ′, perform cuts on
A1, . . . , An to obtain a derivation of S. This derivation is (g·,F ′)-bounded.

(3)⇒ (1). Thm. 12 states that each Form(r) ∈ F ′ is derivable in HFLe+RF .

So it follows from (3) that `cfHFLe+Rseq+RF
S. Then Thm. 8 implies (1). �

Corollary 15. FLe +F has a (g·,F ′)-bounded sequent calculus for every finite
set F of amenable axioms and F ′ = {Form(r)|r ∈ RF}.

6.1 Application: decidability and complexity of FLecm extensions

The bounded sequent calculi obtained above can be used to give a simple and
uniform proof of decidability for every amenable axiomatic extension of FLecm.
Here m is the mingle rule corresponding to the sequent axiom p→ p · p.

∆,Γ1 ⇒ Π ∆,Γ2 ⇒ Π

∆,Γ1, Γ2 ⇒ Π
(m)

Theorem 16. FLecm+F is decidable for each finite set F of amenable axioms.

Proof. Let F ′ := {Form(r)|r ∈ RF}. Given a sequent S, let Γ ∗ be the (finite)
multiset of all g1·(S)-instantiations of F ′ without repeats. We claim that

`FLecm+F S iff `FLecm Γ ∗#S

The result follows since FLecm is decidable [10, 11] and Γ ∗ is computable from S.
The direction right to left follows from (2) =⇒ (1) in Thm. 14.

For the other direction, (1) =⇒ (2) in Thm. 14 guarantees the existence of a
multiset ΓS of g·(S)-instantiations of F ′ such that `FLecm ΓS#S. Due to mingle
and contraction in FLecm, we have that `FLecm B ↔ Bn for every formulaB and
Bn = B·. . .·B (n ≥ 1 occurrences). It follows that for every g·(S)-instantiation A
of a formula in F ′, there is a g1·(S)-instantiation A1 of the same formula such



that `FLecm A1 ⇒ A. By applying cuts with such sequents A1 ⇒ A to the proof
of `FLecm ΓS#S, we obtain a derivation of Γ ′S#S. Applying contractions to this
sequent to remove repeated elements in Γ ′S , we obtain a derivation of Γ ′′S#S
such that Γ ′′S ⊆ Γ ∗. Now obtain Γ ∗#S by introducing the elements in Γ ∗ \ Γ ′′S
by (1L), (∧L) and (∨L) (each A1 ∈ Γ ∗ has the form (A1)∧1 ∨ . . . ∨ (An)∧1). �

From the above proof we can also obtain a complexity upper bound. The size
of Γ ∗ in the above proof is O(2|S|) and this multiset can be computed from S
in exponential time. It follows that the decision problem for each amenable
extension of FLecm is at most exponentially greater than FLecm.

Deciding if a formula is derivable in FLecm is known to be PSPACE-hard [9]
but as far as we are aware, no upperbound has been presented in the literature.
Let us sketch how to obtain an EXPTIME upperbound using forward proof
search. In the presence of contraction and mingle, we can treat the antecedent
of a sequent as a set instead of a multiset. In an analytic proof of a sequent S,
there are at most 2|S| · |S| different sequents (with sets as antecedents) that
could appear in the proof. Compute in successive steps which of these sequents
is derivable in a proof with depth at most 1, 2, 3, . . . , 2|S| · |S|, terminating if a
step does not derive any new sequents. Since each step except perhaps the last
derives at least one new sequent, and since no more than 2|S| · |S| sequents may
be derived, it follows that S is derivable iff S is encountered in one of these steps.
Each step takes O(2|S|) time so the entire procedure takes O(2|S|) ·2|S| · |S| time
and the EXPTIME upperbound follows.

In terms of the algebraic semantics [8], Thm. 16 establishes the decidability
of the equational theory for the corresponding classes of residuated lattices.

Example 17. Our decidability result applies to a large class of logics including
Uninorm Mingle Logic UML [18] (see [17] for an alternative proof of decidabil-
ity) axiomatized as FLecm+(p→ q)∧1∨(q → p)∧1, as well as FLecm+(p·¬p)→ p
(⊂ LJ), and FLecm + (Bwk) (k ≥ 2) where (Bwk) is ∨ki=0(pi → ∨j 6=ipj)∧1.

The proof of Thm. 16 also yields the following refinement of Cor. 15.

Lemma 18. FLecm +F has a (g1·,F ′)-bounded calculus for every finite set F
of amenable axioms and F ′ = {Form(r)|r ∈ RF}.

7 The methodology applied to modal logics

We shall extract bounded sequent calculi from cut-free hypersequent calculi for
three normal modal logics. First, observe that the sequent calculus S4 is obtained
by the addition of the rules (T) and (4) to the multi-conclusioned sequent cal-
culus LK for classical propositional logic. While S4 has cut-elimination, the
sequent calculus S5 = S4 + (5) famously fails cut-elimination [20] and, despite
much effort, no natural cut-free sequent calculus for the logic has been found.

A,Γ ⇒ ∆

�A,Γ ⇒ ∆
(T ) �Γ ⇒ A

�Γ ⇒ �A (4)
�Γ ⇒ A,�∆
�Γ ⇒ �A,�∆ (5)



Let HS4 denote the hypersequent version of the sequent calculus S4. Kurokawa [13]
has shown that the hypersequent calculi in the first column below satisfy cut-
elimination, and are sound and complete for the corresponding axiomatisations.

HS4 + (RMS) S4.2sc = S4 + ¬�¬�A→ �¬�¬A
HS4 + (MC) S4.3sc = S4 +�(�A→ B) ∨�(�B → A)

HS4 + (MS) S5sc = S4 + ¬�A→ �¬�A

The rules (RMS), (MC) and (MS) are given below. The methodology in Sec. 5
has been used to identify the distinguished variables (highlighted in bold). Note:
for this purpose we consider a term of the form �Γ to be a single structure
variable. Also let �̂Γ denote a propositional variable.

G|�Γ,�∆⇒
G|�Γ⇒ |�∆⇒

(RMS)
G|Γ1,�Σ2 ⇒ Π1 G|Γ2,�Σ1 ⇒ Π2

G|Γ1,�Σ1 ⇒ Π1|Γ2,�Σ2 ⇒ Π2
(MC)

G|�Γ,∆⇒ Π

G|�Γ ⇒ |∆⇒ Π
(MS)

Directly from Def. 9 we obtain:

Form(RMS) = (¬(1 · (�̂Γ ∧ ¬�̂∆)))∧1 ∨ (¬(�̂∆ · 1))∧1

Form(MC) = (�̂Σ1 · 1→ �̂Σ2)∧1 ∨ (�̂Σ2 · 1→ �̂Σ1)∧1

Form(MS) = (¬(�̂Γ · 1))∧1 ∨ (�̂Γ · 1)∧1

The modal case requires the following additional uniform amendments: (i) the ∧1
in every disjunct is replaced by a leading �, (ii) the 1 is omitted, (iii) a � is

introduced in front of every propositional variable �̂Γ , and (iv) every maximal

subformula ¬B with B not boxed is substituted by ¬�B. Let Form�(r) denote
the image under these amendments. Then

Form�(RMS) = �¬�(��̂Γ ∧ ¬��̂∆) ∨�¬�(��̂∆)

Form�(MC) = �(��̂Σ1 → ��̂Σ2) ∨�(��̂Σ2 → ��̂Σ1)

Form�(MS) = �¬�(��̂Γ ) ∨�(��̂Γ )

The motivation for these amendments is that the analogue of Theorem 12
can now be verified by inspection for r ∈ {RMS,MC,MS} i.e. provability

of Form�(r) in HS4 + r, and that Form�(r) satisfies splitting in HS4.

For example, here is a derivation of Form�(RMS) in HS4 + (RMS):

�̂∆⇒ �̂∆
¬��̂∆,��̂∆⇒

(¬L)

�(��̂Γ ∧ ¬��̂∆),�(��̂∆)⇒
(T ), (∧L)

�(��̂Γ ∧ ¬��̂∆)⇒ |�(��̂∆)⇒
(RMS)

⇒ �¬�(��̂Γ ∧ ¬��̂∆)| ⇒ �¬�(��̂∆)
(4), (¬R)

⇒ �¬�(��̂Γ ∧ ¬��̂∆) ∨�¬�(��̂∆)
(ec), (∨L)



For an instantiation σ on (r), define the extended instantiation σ̂ which maps

each �̂Γ to the formula ∧�σ(Γ ) (c.f. paragraph following Def. 4). Hence�σ(Γ )⇒
σ̂(�̂Γ ) is derivable. The following witnesses the splitting of Form�(RMS) in HS4.

�σ(Γ )⇒ σ̂(�̂Γ )

�σ(Γ )⇒ �σ̂(�̂Γ )
(4)

�σ(Γ ),�σ(∆)⇒
�σ(Γ ), σ̂(�̂∆)⇒

(∧L)

�σ(Γ ),�σ̂(�̂∆)⇒
(T )

�σ(Γ )⇒ ¬�σ̂(�̂∆)
(¬R)

�σ(Γ )⇒ �σ̂(�̂Γ ) ∧ ¬�σ̂(�̂∆)
(∧R)

�σ(Γ )⇒ �(�σ̂(�̂Γ ) ∧ ¬�σ̂(�̂∆))
(4)

�σ(Γ ),¬�(�σ̂(�̂Γ ) ∧ ¬�σ̂(�̂∆))⇒
(¬L)

�σ(Γ ),�¬�(�σ̂(�̂Γ ) ∧ ¬�σ̂(�̂∆))⇒
(T )

�σ(∆)⇒ σ̂(�̂∆)

�σ(∆)⇒ �σ̂(�̂∆)
(4)

�σ(∆)⇒ �(�σ̂(�̂∆))
(4)

�σ(∆),¬�(�σ̂(�̂∆))⇒
(¬L)

�σ(∆),�¬�(�σ̂(�̂∆))⇒
(T )

We can thus obtain the following (the proof is analogous to that for Thm. 14
and the strengthening in Lemma 18).

Theorem 19. The calculus S4.2sc (S4.3sc, S5sc) has a (g1∧,Form�(RMS))-

(resp. (g1∧,Form�(MC))-, (g1∧,Form�(MS))-) bounded sequent calculus.

A new syntactic proof of analyticity for S5

Although cut-elimination fails in S5, Takano [23] gave an intricate syntactic
proof of analyticity by establishing that only cuts on subformulas are required.
Prior to this, only a semantic argument was known, see Fitting [7].

Although the (g1∧,Form�(MS))-bounded sequent calculus we obtained in
Thm. 19 has a finite proof search space and hence is suited for meta-theoretic
argument, it is natural to ask if it is possible to modify the methodology of this
paper to obtain Takano’s (sharper) result for S5. We are able to answer this in
the affirmative. Here is a simple and rather short proof of analyticity for S5.

Theorem 20. The sequent calculus S5 is analytic.

Proof. Cut-free HS4+(MS) derives exactly the same sequents as S5sc, and the
latter is (of course) equivalent to S5. Moreover, any instance of the rule (MS)
can be replaced (without introducing cuts) using multiple instances of its single
formula version (MS1) below, so cut-free HS4+(MS1) derives exactly the same
sequents too.

G | �A,∆⇒ Π
(MS1)

G | �A⇒| ∆⇒ Π

Consider a cut-free derivation d in HS4 + (MS1) of a sequent S. For simplicity,
suppose that d contains a single instance of (MS1) (in the general case, bot-
tommost instances of (MS1) are eliminated at each step, c.f. proof of Thm. 14).
From this instance, we can obtain the following derivations in HS4 + (MS1):



�A⇒ �A (ew)
G|�A⇒ �A|∆⇒ Π,�A

G|�A,∆⇒ Π
(ew)

G|�A⇒ |�A,∆⇒ Π

Above left (right), the component �A ⇒ �A (resp. �A,∆ ⇒ Π) has a �A in
the RHS (resp. LHS) that was not present in the original derivation d. Proceed
downward from each hypersequent following the rules in d, (propagating also
these additional �A formulas downwards from premise to conclusion).

This is not possible only if (4) is encountered as this rule permits only a
single formula in the RHS and the additional �A in the RHS would violate
this. Solution: use (5) at this point instead of (4). In this way we obtain (MS1)-
free hypersequent derivations (hence in HS5) of �A#S and S#�A (the latter
denotes that �A is added to the RHS of S). Applying the cut-rule on �A on
these sequents, we obtain a derivation of S in HS5. Since �A occurred in the
cut-free derivation d, it is a subformula of S. Finally: every rule in HS5 has one
active component, so we can extract an analytic derivation of S in S5. �

Concluding Remark: We have investigated what is required in terms of a
relaxation of analyticity—represented via a bounding function—in order to trade
the extended syntax of the hypersequent calculus for a sequent calculus. This
paves the way for a new classification of logics based on their bounding functions.
Identifying which functions are amenable to various meta-theoretic arguments
(think decidability, interpolation and so on) could lead to the development of
a common toolbox of methods applicable over a range of different logics. The
immediate corollaries obtained in this paper demonstrate the potential of our
approach. Finally, our transformations may provide a means of assessing the
logical content of analyticity in the hypersequent calculus (by pegging it to its
corresponding bounded sequent calculus), a problem hitherto unstudied.
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9. Horćık, R., Terui, K.: Disjunction property and complexity of substructural logics.
Theor. Comput. Sci. 412(31), 3992–4006 (2011)

10. Hori, R., Ono, H., Schellinx, H.: Extending intuitionistic linear logic with knotted
structural rules. Notre Dame Journal of Formal Logic 35(2), 219–242 (1994)

11. Kamide, N.: Substructural logics with mingle. Journal of Logic, Language and
Information 11(2), 227–249 (2002)

12. Kowalski, T., Ono, H.: Analytic cut and interpolation for bi-intuitionistic logic.
The Review of Symbolic Logic 10(2), 259–283 (2017)

13. Kurokawa, H.: Hypersequent calculi for modal logics extending s4. In: Nakano,
Y., Satoh, K., Bekki, D. (eds.) New Frontiers in Artificial Intelligence. pp. 51–68.
Springer International Publishing, Cham (2014)

14. Lahav, O.: From frame properties to hypersequent rules in modal logics. In: LICS
2013, IEEE. pp. 408–417 (2013)

15. Lahav, O., Zohar, Y.: On the construction of analytic sequent calculi for sub-
classical logics. In: 21st International Workshop, WoLLIC 2014, Proceedings. pp.
206–220 (2014)

16. Lellmann, B.: Hypersequent rules with restricted contexts for propositional modal
logics. Theor. Comput. Sci. 656, 76–105 (2016)

17. Marchioni, E., Montagna, F.: On triangular norms and uninorms definable in  lπ 1
2
.

International Journal of Approximate Reasoning 47(2), 179–201 (2008)
18. Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. of Symbolic Logic 72(3),

834–864 (2007)
19. Minc, G.E.: Some calculi of modal logic. Trudy Mat. Inst. Steklov 98, 88–111

(1968)
20. Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi. ii. Osaka Mathe-

matical Journal 11(2), 115–120 (1959)
21. Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. The Review

of Symbolic Logic 1(1), 3–15 (2008)
22. Pottinger, G.: Uniform, cut-free formulations of T, S4 and S5 (abstract). J. of

Symbolic Logic 48(3), 900 (1983)
23. Takano, M.: Subformula property as a substitute for cut-elimination in modal

propositional logics. Mathematica japonica 37, 1129–1145 (1992)


