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Abstract

We introduce a first sequent-style calculus for witnessed Gödel logic. Our

calculus makes use of the cut rule. We show that this is inescapable by establish-

ing a general result on the non-existence of suitable analytic calculi for a large

class of first-order logics. These include witnessed Gödel logic, (fragments of)

Łukasiewicz logic, and intuitionistic logic extended with the quantifiers of classi-

cal logic.

1 Introduction

(First-order) Gödel logic is a prominent example of both a many-valued and a super-

intuitionistic logic. The importance of Gödel logic is emphasized by the fact that it

turns up naturally in a number of different contexts; among them relevance logics,

fuzzy logic, and logic programming. Witnessed Gödel logic G
w arises from Gödel

logic by interpreting the quantifier ∀ (resp. ∃) as minimum (resp. maximum) instead

of infimum (resp. supremum). As computers have a limited precision, and reason-

ing w.r.t. general models is typically harder than reasoning w.r.t. witnessed models

[19, 20], Gw is more appealing than Gödel logic for many applications, see, e.g., [12].

The proof theory of Gödel logic has been well-investigated. As a result various

”well-behaved” (or analytic) calculi –in which proofs proceed by stepwise decompo-

sition of the formulas to be proved– have been introduced, and successfully used to

prove important properties of this logic; e.g., the Herbrand theorem for prenex for-

mulas or the admissibility of suitable rules. These calculi are defined in formalisms

that generalize sequent calculus; among them hypersequent and labelled calculus

[2, 21, 22].

In contrast to Gödel logic, the only existing calculus for Gw is a Hilbert system

[20, 3], which is difficult to use even for finding simple proofs manually. The question

that we address is: can we define a “well-behaved” calculus for Gw using the sequent

calculus or a suitable generalization?

To answer this question, we first define what we mean by a “well-behaved” cal-

culus. There are indeed many formalisms for constructing calculi and outside of the
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sequent calculus there is no established notion of what is meant by a “well-behaved”,

or analytic calculus1; for example proofs in the Calculus of Structures [17, 13] or dis-

play logic [10] might contain logical or structural connectives that do not appear in the

formulas to be proved and are not universally considered “well-behaved”, e.g. [23].

In this paper we propose an operational and formalism-independent notion of

“well-behaved” calculus (∃-analytic). This arises as an attempt to answer the fun-

damental question what do we expect from a proof theoretic treatment of a first-order

logic?. Our answer is: a relaxed notion of the subformula property and the extraction

of minimal information from proofs of simple existential statements, i.e., a weak form

of Herbrand theorem. We call ∃-analytic any calculus satisfying these properties. The

calculi for Gödel logic in [2, 21, 22] are ∃-analytic and so are all calculi in the various

formalisms that are presented as “well-behaved” (or called analytic).

Having provided a precise definition of the notion of ∃-analyticity, we show that a

large class of logics, including G
w, cannot have such calculi.

The paper is organized as follows: Section 3 introduces a first sequent-style cal-

culus RGfo
∞ for Gw. Our calculus, defined in the formalism of sequents of relations,

is obtained by extending the calculus for propositional Gödel logic in [4] by natural

quantifier rules. Though finding proofs in RGfo
∞ turns out to be easier than in the

Hilbert system for Gw, RGfo
∞ makes use of the cut rule; as shown in Section 4, this

is the case, e.g., when proving prenex formulas that are valid in G
w but not in Gödel

logic; in the same section it is also shown the undecidability of the problem to de-

termine, given a proof in RGfo
∞ , if there is a cut-free proof of the same formulas.

Section 5 shows that the non redundancy of the cut rule in RGfo
∞ is unavoidable by

introducing a general criterion for a first-order logic expressed Hilbert-style not to ad-

mit any ∃-analytic calculus. Our criterion applies to a large class of logics including

G
w, the fragment2 of Łukasiewicz logic axiomatized in [18], and intuitionistic logic

extended with the quantifiers of classical logic, thus establishing the non-existence of

a “well-behaved” calculus for them.

2 Witnessed Gödel logic

The language of Gödel logic is the same as that of intuitionistic first-order logic and

it is based on the binary connectives ∧,∨, and ⊃, the quantifiers ∃, ∀, and the truth

constants 0 and 1; as usual ¬A abbreviates A ⊃ 0.

Semantically Gödel logic can3 be viewed as an infinite-valued logic with the real

interval [0, 1] as set of truth values, see, e.g., [15]. In this setting an interpretation I
consists of a non-empty domain D and a valuation vI that maps constant symbols

and object variables into elements of D and n-ary function symbols to functions from

Dn into D; vI extends in the usual way to a function mapping all terms of the lan-

guage to an element of the domain. Moreover, every n-ary predicate symbol p is

mapped to a function vI(p) of type Dn 7→ [0, 1]. The truth value of an atomic for-

1Even in the sequent calculus this notion is controversial (cf. the dispute cut-free vs calculi with analytic

cuts [25]).
2This fragment is often called Łukasiewicz logic or general Łukasiewicz logic, see [15].
3An alternative semantics is provided by the class of linearly ordered Kripke models with constant

domains.
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mula p(t1, . . . , tn) is defined as

‖p(t1, . . . , tn)‖I = vI(p(vI(t1), . . . , vI(tn))).

The semantics of propositional connectives and truth constants is given by

‖A ⊃ B‖I =

{

1 if ‖A‖I ≤ ‖B‖I

‖B‖I otherwise.
‖0‖I = 0 and ‖1‖I = 1

‖A ∧B‖I = min(‖A‖I , ‖B‖I), ‖A ∨B‖I = max(‖A‖I , ‖B‖I),

For quantification we define the distribution of a formula A with respect to a free

variable x in an interpretation I as distrI(A(x)) = {‖A(x)‖I[d/x] | d ∈ D},

where I[d/x] denotes the interpretation that is exactly as I, except for insisting on

vI[d/x](x) = d. The universal and existential quantifiers correspond to the infimum

and supremum, respectively, in the following sense:

‖∀xA(x)‖I = inf distrI(A(x)) ‖∃xA(x)‖I = sup distrI(A(x)).

As usual a formula is valid if it is evaluated to 1 under every interpretation.

Remark 1 Taking different subsets V of [0, 1] closed under infima and suprema and

containing both 0 and 1 as truth values give rise to different sets of valid formulas,

that is they lead to different Gödel logics. As shown in [9], these sets are recursively

axiomatizable if and only if V is finite, or it is either order isomorphic to [0, 1] or to

{0} ∪ [ 12 , 1]. For example, taking V = {0, 1
n , . . . ,

n−1
n , 1} as set of truth values leads

to the n + 1-valued Gödel logic Gn, which is recursively axiomatizable. The Gödel

logic whose valid formulas are those valid in all Gn, for n ∈ N , is denoted by G↑ and

has V = {1 − 1/n : n ≥ 1} ∪ {1}. G↑ is not recursively axiomatizable. First-order

Gödel logic with V = [0, 1] is usually referred to as standard Gödel logic (or simply

Gödel logic) and denoted by G∞.

A Hilbert axiomatization of (standard) Gödel logic is obtained by extending that

of first-order intuitionistic logic with the axiom of linearity (P ⊃ Q) ∨ (Q ⊃ P ) and

the “quantifier shift” axiom ∀x(P (x)∨Q(x)) ⊃ (∀xP (x))∨Q(x), where the notation

Q(x) indicates that there is no free occurrence of x in Q.

Witnessed Gödel logic G
w is a natural variant of Gödel logic. It arises by con-

sidering only witnessed interpretations, that is interpretations where the truth value

of each quantified formula coincides with the truth value of some if its instances, see

[20]. In our notation this means an interpretation vI such that:

‖∀xA(x)‖I = min distrI(A(x)) ‖∃xA(x)‖I = max distrI(A(x)).

G
w was axiomatized in [20, 3] by adding to the Hilbert system for Gödel logic

both axioms

∃x(P (x) ⊃ ∀yP (y)) and ∃x(∃yP (y) ⊃ P (x))

expressing that each infimum is a minimum, and each supremum is a maximum, re-

spectively.
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Like in intuitionistic logic, also in Gödel logic quantifiers cannot be shifted ar-

bitrarily. In other words, in general, arbitrary formulas are not equivalent to prenex

formulas (that is in which quantifiers are always in front). In contrast, Gw admits an

equivalent prenex normal form as in classical logic.

Finally, recall that Skolemization holds for the prenex fragment of Gödel logic

[9, 7] and it can be easily proved for witnessed Gödel logic.

3 The calculus RG
fo
∞

We introduce a sequent-style calculus for witnessed Gödel logic. Our calculus uses

sequents of relations, which are disjunctions of semantic predicates over formulas [4].

Various analytic calculi have been defined for Gödel logic at the propositional

level. Among them, Avron’s hypersequent calculus [1, 2] and the sequent calculus of

relations RG∞ [4]. The basic objects in these calculi have the form

S1 | . . . | Sn,

where the symbol ” | ” is interpreted as a (commutative) disjunction at the meta-level

and

• (in the hypersequent calculus) each Si is a standard LJ sequent Γ ⇒ ∆ where

Γ is a multiset of formulas and ∆ either a formula or the empty set, while

• (in the sequent calculus of relations) each Si is a relation Ai ✁ Bi, where ✁

stands for either < or ≤ and Ai, Bi are formulas.

By adding to Avron’s hypersequent calculus the natural hypersequent rules for quanti-

fiers we get the analytic calculus HG∞ for first-order Gödel logic depicted4 in Table 1.

Proposition 2 (e.g. [2, 21]) A formula P is valid in Gödel logic if and only if ⇒ P is

provable in HG∞ without using the cut rule.

Clearly if ⇒ P is provable in HG∞ then P is valid in G
w. The converse how-

ever does not hold. In particular the peculiar axioms ∃x(P (x) ⊃ ∀yP (y)) and

∃x(∃yP (y) ⊃ P (x)) of witnessed Gödel logic cannot be proved in HG∞.

To explain the situation for RG∞ let us first recall its rules from [4] (below H and

H ′ stand for a possibly empty sequent of relations):

Logical rules: For disjunction and conjunction we have (here and below ✁ stands

for either < or ≤, uniformly in each rule):

γ ✁ α | H γ ✁ β | H

γ ✁ (α ∧ β) | H
(∧ : ✁ : r)

α✁ γ | β ✁ γ | H

(α ∧ β)✁ γ | H
(∧ : ✁ : l)

γ ✁ α | γ ✁ β | H

γ ✁ (α ∨ β) | H
(∨ : ✁ : r)

α✁ γ | H β ✁ γ | H

(α ∨ β)✁ γ | H
(∨ : ✁ : l)

4Axioms and rules there are schemata.
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α ⇒ α 0 ⇒ α

G | Γ ⇒ ∆

G | Γ, α ⇒ ∆
(w, l)

G | Γ, α, α ⇒ ∆

G | Γ, α ⇒ ∆
(c, l)

G | Γ,Γ′ ⇒ ∆ G | Γ1,Γ′
1 ⇒ ∆′

G | Γ,Γ′
1 ⇒ ∆ | Γ′,Γ1 ⇒ ∆′

(com)
G

G | Γ ⇒ ∆
(ew)

G | Γ ⇒ ∆ | Γ ⇒ ∆

G | Γ ⇒ ∆
(ec)

G | Γ ⇒ α G | β,Γ ⇒ ∆

G | Γ, α ⊃ β ⇒ ∆
(⊃, l)

G | Γ, α ⇒ β

G | Γ ⇒ α ⊃ β
(⊃, r)

G | Γ ⇒ αi

G | Γ ⇒ α1 ∨ α2
(∨i, r)

G | Γ, α ⇒ ∆ G | Γ, β ⇒ ∆

G | Γ, α ∨ β ⇒ ∆
(∨, l)

G | Γ, αi ⇒ ∆

G | Γ, α1 ∧ α2 ⇒ ∆
(∧i, l)

G | α(t),Γ ⇒ ∆

G | (∀x)α(x),Γ ⇒ ∆
(∀, l)

G | Γ ⇒ α G | Γ ⇒ β

G | Γ ⇒ α ∧ β
(∧, r)

G | Γ ⇒ α(a)

G | Γ ⇒ (∀x)α(x)
(∀, r)

G | α(a),Γ ⇒ ∆

G | (∃x)α(x),Γ ⇒ ∆
(∃, l)

G | Γ ⇒ α G | Σ, α ⇒ ∆

G | Γ,Σ ⇒ ∆
(CUT )

G | Γ ⇒ α(t)

G | Γ ⇒ (∃x)α(x)
(∃, r)

G | Γ′ ⇒ ∆′ | Γ ⇒ ∆ | G′

G | Γ ⇒ ∆ | Γ′ ⇒ ∆′ | G′
(ee)

a does not occur in G,Γ, α i = 1, 2

Table 1: The calculus HG∞ for first-order Gödel logic

The rules for implication are:

α ≤ β | γ < β | H γ < 1 | H

γ < (α ⊃ β) | H
(⊃ : < : r)

β < α | H β < γ | H

(α ⊃ β) < γ | H
(⊃ : < : l)

α ≤ β | γ ≤ β | H

γ ≤ (α ⊃ β) | H
(⊃ : ≤ : r)

1 ≤ γ | β < α | H β ≤ γ | H

(α ⊃ β) ≤ γ | H
(⊃ : ≤ : l)

Structural rules: (external) weakening, exchange, contraction, and (cut):

H
α✁ β | H

(EW)
H | α′

✁ β′ | α✁ β | H ′

H | α✁ β | α′
✁ β′ | H ′

(EE)

α✁ β | α✁ β | H

α✁ β | H
(EC)

H | α ≤ β H | β < α

H
(cut)

A derivation is considered, as usual, as an upward rooted tree of sequents generated

from subtrees by applying the inference rules. A sequent of relations is provable in

RG∞ if the leafs in its derivation are axioms, that is sequents of relations having one

of the following forms:

(a) P1 ✁n Pn | Pn ✁n−1 Pn−1 | . . . | P3 ✁2 P2 | P2 ≤ P1, where ✁i ∈ {<,≤}
and the case n = 1 is defined as P1 ≤ P1,

(b) Pn ≤ Pn−1 | Pn−1 < Pn−2 | . . . | P1 < 1, (the case n = 1 is P1 ≤ 1),

(c) 0 < Pn | . . . | P3 < P2 | P2 ≤ P1, (the case n = 1 is 0 ≤ P1),
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(d) 0 < P1 | P1 < P2 | . . . | Pn < 1, (the case n = 0 is 0 < 1).

Proposition 3 ([4]) A formula P is valid in propositional Gödel logic if and only if

1 ≤ P is provable in RG∞ without using (cut).

Let us denote by RGfo
∞ the calculus RG∞ extended with the natural sequent of

relations rules for quantifiers (✁ stands for either < or ≤):

H | α(t)✁ β

H | ∀xα(x)✁ β
(∀ : ✁ : l)

H | β ✁ α(e)

H | β ✁ ∀xα(x)
(∀ : ✁ : r)

H | α(e)✁ β

H | ∃xα(x)✁ β
(∃ : ✁ : l)

H | β ✁ α(t)

H | β ✁ ∃xα(x)
(∃ : ✁ : r)

where e is an eigenvariable, i.e., it does not appear in H,α and β.

Definition 4 Let S := A1 ✁1 B1 | · · · | An ✁n Bn be a sequent of relations, where

✁ is either < or ≤ . We write |=Gw S if for each interpretation vI of Gw, there is a

i ∈ {1, . . . , n} such that ‖Ai‖I ✁i ‖Bi‖I . We say that a RGfo
∞ rule

S0

S or

S1 S2

S

is sound for Gw if whenever |=Gw Sj (j = 0 or j = 1, 2) then |=Gw S.

The soundness of a sequent of relations rule for Gödel logic is defined analogously.

Proposition 5 (Soundness and Completeness) A formula P is valid in witnessed

Gödel logic if and only if 1 ≤ P is provable in RGfo
∞ .

Proof (⇐=) Follows from Proposition 3 and the soundness of the quantifier rules for

witnessed Gödel logic (easy check).

(=⇒) Follows from the derivability in RGfo
∞ of all the axioms of the Hilbert cal-

culus for G
w. This is easy for the axioms of first-order Gödel logic. A proof of

1 ≤ ∃x(P (x) ⊃ ∀yP (y)) is constructed by cutting the (provable) sequents of rela-

tions 1 ≤ ∀yP (y) ⊃ ∀yP (y) and 1 ≤ ∃x(P (x) ⊃ ∀yP (y)) | ∀yP (y) ⊃ ∀yP (y) <
1. A derivation of the latter sequent of relations is the following (. . . abbreviates a

component left unchanged by a rule application):

P (a) ≤ ∀yP (y) | ∀yP (y) < P (a)
(EW )

1 ≤ ∀yP (y) |P (a) ≤ ∀yP (y) |∀yP (y) < P (a)
(⊃:≤:r)

1 ≤ P (a) ⊃ ∀yP (y) |∀yP (y) < P (a)
(∃:≤:r)

1 ≤ ∃x(P (x) ⊃ ∀yP (y)) | ∀yP (y) < P (a)
(∀:<:r)

. . . |∀yP (y) < ∀yP (y)

1 ≤ ∀yP (y)|∀yP (y) < 1
(EW )

1 ≤ ∀yP (y) |P (a) ≤ ∀yP (y) | . . .
(⊃:≤:r)

1 ≤ P (a) ⊃ ∀yP (y) |∀yP (y) < 1
(∃:≤:r)

. . . |∀yP (y) < 1
(⊃:<:l)

1 ≤ ∃x(P (x) ⊃ ∀yP (y)) | ∀yP (y) ⊃ ∀yP (y) < 1

A derivation in RGfo
∞ of 1 ≤ ∃x(∃yP (y) ⊃ P (x)) is obtained in a similar way by

cutting 1 ≤ ∃x(∃yP (y) ⊃ P (x)) | ∃yP (y) ⊃ ∃yP (y) < 1 and 1 ≤ ∃yP (y) ⊃
∃yP (y). The generalization rule is simulated by (∀ :≤: r), while modus ponens

B ⊢ C B

C

is simulated by (cut) as follows (C < B | B < 1 | 1 ≤ C is an axiom):
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C < B | B < 1 | 1 ≤ C B ≤ C
(cut)

B < 1 | 1 ≤ C 1 ≤ B
(cut)

1 ≤ C

Note that among the quantifier rules of RGfo
∞ , only (∃ :<: l) and (∀ :<: r) are not

sound for Gödel logic. Indeed the value of a formula ∀xP (x) under an interpretation

vI of Gödel logic is the infimum of the values of P (a), for all elements a of the

universe and therefore we might have vI(Q) < vI(P (a)) for all a while vI(Q) ≤
vI(∀xP (x)). (Dually for the rule (∃ :<: l) and supremum).

Proposition 6 A formula P is valid in Gödel logic if and only if 1 ≤ P is provable

in RGfo
∞ without the rules (∃ :<: l) and (∀ :<: r).

Proof Soundness is easy. Completeness is shown by deriving in the calculus all the

axioms of the Hilbert system for Gödel logic (easy check).

It is not difficult to see that in the calculus RGfo
∞ without the rules (∃ :<: l) and

(∀ :<: r) the cut rule cannot be removed. Indeed a cut-free sequent of relations

calculus for Gödel logic is not known, and we conjecture that it cannot be defined as

the cut-elimination theorem for RG∞ strongly relies on the invertibility of all logical

rules (see [5]).

4 The analytic content of RG
fo
∞

We have defined a sequent-style calculus for Gw. Its completeness however relies

on the use of (cut). Is this rule really needed? This section provides a positive

answer to this question. We indeed show that a prenex formula of G
w is cut-free

provable in RGfo
∞ if and only if it is already valid in Gödel logic (Theorem 7). The

non-admissibility of the cut rule in RGfo
∞ easily follows by the existence of prenex

formulas that are valid in G
w and not in Gödel logic.

As a corollary of Theorem 7 and of the undecidability of the prenex fragment of

Gödel logic (Lemma 10) we also show the undecidability of the problem of determin-

ing, given a proof in RGfo
∞ , if there exists a cut-free proof of the same end sequent.

To prove the key theorem below we will use the following results from [7]: Let

F be a prenex formula valid in Gödel logic and let ∃xFS(x) be its Skolem form (x
abbreviates x1, . . . , xk)

(a) Any cut-free proof of ⇒ F in the hypersequent calculus HG∞ can be step-

wise transformed into a cut-free proof containing a quantifier-free hypersequent

(called mid-hypersequent) such that below this hypersequent only quantifier

rules and (ec) are applied.

(b) Any cut-free proof of ⇒ ∃xFS(x) in HG∞ can be stepwise transformed into

a cut-free proof of ⇒ F in HG∞.

Theorem 7 Let F be any prenex formula of Gw. 1 ≤ F is cut-free provable in RGfo
∞

if and only if F is valid in first-order Gödel logic.
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Proof (⇐=) By Proposition 2 if F is valid in Gödel logic then there is a cut-free

proof d′ of ⇒ F in the hypersequent calculus HG∞. The claim follows by translating

this proof into a cut-free proof of 1 ≤ F in RGfo
∞ . A methodology to translate cut-free

HG∞-proofs of propositional formulas into cut-free proofs in RG∞ is contained in

[6]. The key idea of the translation is to replace in hypersequents the symbol ⇒ with

≤ and use an equivalent version of HG∞ in which (i) hypersequents A1, . . . An ⇒
B1 | . . . are fully split, that is they are of the form A1 ≤ B1 | . . . . . . |An ≤ B1 | . . . ,

(ii) the (→, l) rule is replaced by

D ≤ A | H B ≤ C | H

(A ⊃ B) ≤ C | D ≤ C | H
(⊃ : ≤ : l)∗

and (iii) the communication rule (com) (cf. Table 1) has the following form

A1 ≤ U | . . . | An ≤ U | H B1 ≤ V | . . . | Bm ≤ V | H

A1 ≤ V | . . . | An ≤ V | B1 ≤ U | . . . | Bm ≤ U | H
(rcom)

The missing step between the propositional translation sketched above and the proof of

⇒ F is the mid-hypersequent theorem of [7] (i.e. the result (a) above) which allows

us to transform the proof d′ of ⇒ F separating the quantifier and the propositional

part. We can then translate the propositional part of the proof (that is the proof of the

mid-hypersequent) into a proof in RG∞ following the method in [6]. The proof of

1 ≤ F in RGfo
∞ then follows by final applications of the quantifier rules for ≤ and

(EC), if needed.

(=⇒) First recall that a prenex formula F := Q1y1 . . .QnynP , with Qi ∈ {∀, ∃}
is valid in G

w if and only if so is its Skolem form ∃xFS(x). By assumption ∃xFS(x)
is cut-free provable in RGfo

∞ . We show how to construct a proof of ⇒ F in HG∞,

and hence, by Proposition 2 that F is valid in Gödel logic.

We first transform the cut-free proof d of 1 ≤ ∃xFS(x) in RGfo
∞ into a proof

in RGfo
∞ of (the propositional formula) 1 ≤

∨n
i=1 F

S(ti) for some t1, . . . tn. In-

deed, let t1, . . . tn be the terms that appear in d. A derivation of 1 ≤
∨n

i=1 F
S(ti)

is obtained by replacing everywhere in d ∃xFS(x) with
∨n

i=1 F
S(ti) and by replac-

ing all applications of (∃ :≤: r) with suitable applications of (∨ :≤: r). Note that
∨n

i=1 F
S(ti) is a propositional formula and it is therefore valid in first-order Gödel

logic (recall that the propositional fragments of Gw and of Gödel logic do coincide).

By Proposition 2 there is a proof of ⇒
∨n

i=1 F
S(ti) in the hypersequent calculus

HG∞, from which we can construct a proof of ⇒ ∃xFS(x) in HG∞ as follows: by

applying (CUT ) n times between ⇒
∨n

i=1 F
S(ti) and the provable5 hypersequent

∨n
i=1 F

S(ti) ⇒ FS(t1) | . . . |
∨n

i=1 F
S(ti) ⇒ FS(tn) we get a proof of the hyper-

sequent

⇒ FS(t1) | . . . | ⇒ FS(tn),

that derives ⇒ ∃xFS(x) by applying (∃, r) to each component, followed by n − 1
applications of (ec). As HG∞ admits cut-elimination, the introduced applications of

(CUT ) can be removed. A proof of F := Q1y1 . . .QnynP in HG∞ can then be

obtained by re-introducing the Skolemized quantifiers in the proof of ⇒ ∃xFS(x), as

shown in [7] (see the result (b) above).

5A proof in HG∞ consists of multiple applications of the rules (com), (ew), (ec), and (∨, l).
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Corollary 8 The (cut) rule is not redundant in the calculus RGfo
∞ .

Proof The prenex formula S := ∃x∀y(P (x) ⊃ P (y)) is valid in G
w while it is not

in Gödel logic. An interpretation vI of Gödel logic such that vI(S) < 1 is indeed the

following: take D = {ui | i ∈ N \ {0}} as its universe and assign vI(P (ui)) =
1
i .

Corollary 9 Let F be a prenex formula valid in G
w. The problem of determining if

there is a cut-free proof of 1 ≤ F in RGfo
∞ is undecidable.

Proof Let F be Q1x1 . . .QnxnF
′, with Qi ∈ {∃, ∀} and F ′ quantifier-free. Con-

sider the prenex formula (P 6∈ F ′ and x, y 6= xi, for i = 1, . . . , n)

F p = ∃x∀yQ1x1 . . .Qnxn(F
′ ∨ (P (x) ⊃ P (y)))

obtained by combining F with the formula S := ∃x∀y(P (x) ⊃ P (y)) which is valid

in G
w and not in Gödel logic G∞ (cf. the proof of Corollary 8). We show that 1 ≤ F p

is cut-free provable in RGfo
∞ if and only if F is valid in G∞. The claim then follows

by the undecidability of the validity problem for the prenex fragment of G∞ (Lemma

10 below).

(=⇒) By Theorem 7 if 1 ≤ F p is cut-free provable in RGfo
∞ then F p is valid in

G∞. Assuming by contradiction that F is not valid in G∞, i.e. there is an interpreta-

tion vI in G∞ such that vI(F ) < 1. By [9] we can always assume that the domain D
of vI is infinite, say D = {ui | i ∈ N \ {0}}. By assigning vI(P (ui)) =

1
i (note that

the predicate P 6∈ F ′) we get vI(F
p) < 1, that contradics the validity of F p in G∞.

(⇐=) If F is valid in G∞, then F p is valid in G∞ and by Theorem 7 there is a

cut-free proof of 1 ≤ F p in RGfo
∞ .

Lemma 10 The validity of prenex formulas in Gödel logic is undecidable.

Proof Let P be any prenex formula in the language of G∞, which is the same as that

of classical logic. Replace each atomic formula Ai(x) in P with ¬¬Ai(x) and denote

the resulting formula by P¬¬. It is not difficult to see that P is valid in Gödel logic if

and only if P¬¬ is valid in classical logic (the proof is by induction on the complexity

of P and uses the fact that, under any G∞ interpretation, the value of a double negated

atom is either 0 or 1). The claim follows by the undecidability of the prenex fragment

of classical logic (and the fact that ¬¬Ai(x) is classically equivalent to Ai(x)).

5 ∃-analytic calculi: a negative result

In the sequent of relations calculus RGfo
∞ , introduced for Gw, the use of (cut) cannot

be avoided. Here we show that this is not due to a bad design of our rules but there is

a principal obstacle preventing G
w from having a certain cut-free calculus, no matter

which rules or formalism is used. We indeed provide a general sufficient criterion for

a first-order logic not to admit a certain analytic calculus. As a corollary of this result

follows that witnessed Gödel logic does not admit any such calculus.

Henceforth we identify a logic with the set of its provable formulas. We write ⊢LF
if L is a logic and F ∈ L. Moreover by a calculus we mean any system consisting

of rules and axioms such that there is a method to determine whether a statement is

derivable.
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We start by formalizing the notion of analytic calculi we deal with (∃-analytic

calculi). This arises as an attempt to answer the question what do we expect from a

proof theoretic treatment of a first-order logic?

Our notion is general enough to include analyticity in most of the known for-

malisms as particular case, but also allows us to rule out pathological situations. For

instance one could at first think of identifying well-behaved calculi (analytic calculi)

simply with calculi whose proofs are “analytic in Leibniz’s sense”, i.e. they consist

only of concepts already contained in the results; in this case, however, any logic

whose (valid) formulas can be enumerated would admit such an ”analytic” calculus,

as shown by the example below.

Example 11 Let L be any logic whose formulas (theorems) can be recursively enu-

merated. A sequent calculus for L – which would be ”analytic” according to the naive

notion above – can be defined by taking contraction as the only inference rule and as

axioms all sequents ⇒ F, . . . , F (n times) where ⊢LF and n is the position of F in

the enumeration of all formulas of L.

Definition 12 A calculus C is ∃-analytic if each provable existential formula ∃xB(x)
(B quantifier-free) has a derivation d in C satisfying the following conditions:

1. d does not contain any universal quantifier and all predicates in d already appear

in B;

2. there is a derivation of
∨n

i=1 B(ti) in C, where t1, . . . , tn are the ground terms

appearing in d.

Example 13 Cut-free calculi in display logic or calculus of structures are ∃-analytic.

Any calculus that needs (non-analytic) cuts is not ∃-analytic, due to condition 1 (gen-

eralized subformula property). The calculus in Example 11 is also not ∃-analytic, due

to condition 2.

The hypothesis of the next proposition will be part of the sufficient criterion.

Proposition 14 Let L be any first-order logic whose language contains the connec-

tives ⊃, ∨, the quantifiers ∀, ∃, and in which the following properties hold:

(a) ⊢LA ⊃ A, for any formula A in the language of L

(b) ⊢LPi for the following quantifier shifting laws Pi, i ∈ {1, 2}:

(b.1) P1 := (∀xA(x)) ⊃ B(x) ⊃ ∃x(A(x) ⊃ B(x))

(b.2) P2 := (B(x) ⊃ ∀xA(x)) ⊃ ∀x(B(x) ⊃ A(x))

(c) ⊢L∀xA(x) ⊃ A(t), for any term t.

(d) modus ponens and the following rule are in L

⊢LA ⊃ B

⊢L∃xA ⊃ ∃xB

Then ⊢L∃x(A(x) ⊃ A(f(x))) for any atomic formula A.

10



Proof Let A be any atomic formula, by property (a) it follows that ⊢L∀xA(x) ⊃
∀xA(x) which gives, by modus ponens and (b.1),

⊢L∃x(A(x) ⊃ ∀yA(y)) (1)

Applying the rule in property (d) to ⊢L(A(x) ⊃ ∀yA(y)) ⊃ ∀y(A(x) ⊃ A(y))
(coming from (b.2)) we get

⊢L∃x(A(x) ⊃ ∀yA(y)) ⊃ ∃x∀y(A(x) ⊃ A(y)) (2)

Modus ponens together with formulas (1) and (2) yield

⊢L∃x∀y(A(x) ⊃ A(y)) (3)

Applying the rule in property (d) to the formula ⊢L∀y(A(x) ⊃ A(y)) ⊃ (A(x) ⊃
A(f(x)) (coming from (c), here f is a function symbol of the language of L) yields

⊢L∃x∀y(A(x) ⊃ A(y)) ⊃ ∃x(A(x) ⊃ A(f(x))

that derives ⊢L∃x(A(x) ⊃ A(f(x))) together with (3) and modus ponens.

Remark 15 The above properties rely on fixed propositional principles: identity

axiom, modus ponens and minimal features of quantifiers (note that (b.2) is al-

ready valid in intuitionistic logic). The rule in (d) might be replaced by the axiom

⊢LA(t) ⊃ ∃xA(x), for any term t and the rule

⊢LA ⊃ B

⊢L∃xA ⊃ B

Definition 16 A logic L satisfies the infiniteness condition if there is an atomic for-

mula A in L such that for no n > 0 and for no sequence of ground terms t1, . . . , tn+1

in the language of L, the formula

n
∨

i=1

(A(ti) ⊃ A(ti+1)) is provable in L.

Theorem 17 Let L be any logic which satisfies the conditions of Proposition 14 and

in which the infiniteness condition holds. Then L does not admit any ∃-analytic cal-

culus.

Proof By contradiction. Let A be any atomic formula and assume that there is a

∃-analytic calculus which is sound and complete for L. By Proposition 14 there

is a proof in this calculus of the formula ∃x(A(x) ⊃ A(f(x))). Being the calcu-

lus ∃-analytic there is a proof of
∨n

i=1(A(ti) ⊃ A(f(ti))), for some ground terms

t1, . . . , tn, which contradicts the infiniteness condition.

Corollary 18 G
w does not admit any ∃-analytic calculus.

Proof Being G
w an axiomatic extension of intuitionistic logic it clearly satisfies the

conditions (a),(b.2),(c),(d) of Proposition 14. It is not hard to see that 1 ≤ ∀xA(x) ⊃
B(x) ⊃ ∃x(A(x) ⊃ B(x)) | (∀xA(x)) ⊃ ∀xA(x) < 1 is provable in RGfo

∞ . Condi-

tion (b.1) then follows by (cut) and Proposition 5.

Finally, for each n ∈ N there is an interpretation vI in G
w in which

‖
∨n

i=1 A(ti) ⊃ A(ti+1)‖I < 1 (e.g. ‖A(ti)‖I = n−i+1
n ). Hence G

w satisfies the

infiniteness condition.
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5.1 Applications

We show that many known superintuitionistic and many-valued logics fulfil the suffi-

cient conditions of the previous section. As a corollary of Theorem 17, these logics

do not admit any ∃-analytic calculus.

5.1.1 Superintuitionistic logics

Superintuitionistic logics are logics including intuitionistic and included in classical

logic. They can be described as the set of formulas that are provable in intuitionistic

logic extended with suitable axioms or that are valid in certain (classes of) intuition-

istic frames, see e.g. [14]. We will now use the latter notion to provide a semantic

characterization of the infiniteness condition over intuitionistic frames. Recall that an

intuitionistic frame is a pair Fi = 〈Wi,6〉 where Wi is a non-empty set (of worlds),

and 6 is a reflexive and transitive (accessibility) relation on Wi. An intuitionistic

propositional model (Kripke model) Mi = 〈Fi,〉 is a frame Fi together with a re-

lation  (called the forcing) between elements of Wi and atomic formulas, satisfying

suitable properties (cf. e.g. [14]). Intuitively, w  p means that the atom p is true at

world w. Forcing is assumed to be monotonic with respect to the relation 6, namely,

if w 6 w′ and w  p then also w′  p.

As usual a formula P is valid in a Kripke model Mi = 〈Fi,〉 if P is forced in

all worlds of Wi, and it is falsified if there is a w ∈ Wi such that w does not force P .

Given a set of intuitionistic frames F we will refer as the logic of F (and denote it by

LF) to the set of formulas valid in all Kripke models based on all frames Fi in F.

Notice that the infiniteness condition only refers to ground formulas and can there-

fore be characterized at the propositional level (each predicate A(ti) in Definition 16

can be seen as an atomic propositional formula Ai). More precisely, consider a lan-

guage containing infinitely many atoms Ai. LF satisfies the infiniteness condition if

for no n > 0 the formula

n
∨

i=1

(Ai ⊃ Ai+1) is valid in all Kripke models based on all frames in F.

Lemma 19 The infiniteness condition holds for the logic LF if and only there is a

frame 〈Wi,6〉 in F that satisfies one of the following conditions:

(a) Wi contains infinitely many worlds and the worlds are linearly ordered, or

(b) there are w,w1, w2 ∈ Wi such that w1 6≤ w2, w2 6≤ w1, w ≤ w1 and w ≤ w2.

Proof (⇐=) We show that if Fi = 〈Wi,6〉 satisfies (a) or (b), we can construct a

Kripke model Mi = 〈Fi,〉 such that for no atom A1, . . . , An,
∨n

i=1(Ai ⊃ Ai+1) is

valid in Mi; hence the infiniteness condition holds for LF.

Case (a): to falsify
∨n

i=1(Ai ⊃ Ai+1) it is enough to consider a frame in which

Wi contains n + 1 (linearly ordered) worlds and a Kripke model Mi in which each

world i forces {A1, . . . Ai−1}.

Case (b): take any Wi containing two incomparable worlds w1, w2 and a Kripke

model Mi in which w1  Ai, for all i odd and w2  Aj , for all j even. Hence w
falsifies

∨n
i=1(Ai ⊃ Ai+1).
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(=⇒) By contradiction. If an intuitionistic frames does not satisfy neither (a) nor

(b), then it is either a tree consisting of finite number of linearly ordered worlds or a

set of trees having the same property. Assume that none of the frames in F satisfies

(a) or (b). It is easy to find a set of formulas A1, . . . , An such that
∨n

i=1(Ai ⊃ Ai+1)
is valid in all words of all frames in F and hence LF does not satisfy the infiniteness

condition.

Corollary 20 Let L be any propositional superintuitionistic logic satisfying the hy-

pothesis of Lemma 19. The first-order logic obtained by extending L with axioms and

rules for quantifiers satisfying conditions (b)-(d) of Proposition 14 does not admit any

∃-analytic calculus.

In particular, intuitionistic logic extended with the quantifiers of classical logic (i.e.

quantifiers obeying all classical shifting laws) does not admit any ∃-analytic calculus.

5.1.2 Many-valued logics

Beside G
w, Theorem 17 applies to (all interesting fragments6 of) well known many-

valued logics [20, 9, 16, 11], as shown by the following corollary:

Corollary 21 Let L be any fragment of one of the following first-order logics:

1. any witnessed fuzzy logic extending Hajek’s basic logic

2. Łukasiewicz logic

3. the Gödel logic G↑ (see Remark 1),

4. nilpotent minimum logic NM with set of truth values {1/n : n ≥ 1}∪{1−1/n :
n ≥ 1}.

such that (i) L includes the propositional fragment of the corresponding logic, and

(ii) the properties (a)-(d) of Proposition 14 hold for L. Then L does not admit any

∃-analytic calculus.

Proof The proof that the infiniteness condition holds for L proceeds as that for Gw

in Corollary 18 (note that ‖A ⊃ B‖I < 1 whenever ‖A‖I > ‖B‖I , in each interpre-

tation vI of any of these logics). The claim follows by Theorem 17.

In particular, Corollary 21 holds for the fragment of first-order Łukasiewicz logic7

investigated in [18]. Various Gentzen-style analytic calculi have indeed been defined

for propositional Łukasiewicz logic but in all these calculi the addition of quantifier

rules leads either to incomplete calculi for the mentioned fragment or it destroys cut-

admissibility, see [8].

6The full first-order logics, that is all their valid formulas, are not recursively enumerable, see [9, 24, 11]

and Remark 1.
7This fragment, often called (general) Łukasiewicz logic [15], is obtained by extending propositional

Łukasiewicz logic with the quantifiers of classical logic.
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of-Relations Calculus for Gödel Logic. In Proceedings of ISMVL 2001, pp.

181-186. IEEE.

[6] M. Baaz, A. Ciabattoni and C.G. Fermüller. ”Sequent of Relations Calculi: a

Framework for Analytic Deduction in Many-Valued Logics.” In: Beyond two:

Theory and applications of Multiple-Valued Logics. Fitting and Orlowska

eds., Physica-Verlag. pp. 157-180. 2003.

[7] M. Baaz, A. Ciabattoni and C.G. Fermüller. Cut Elimination for First Order
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logics under Gödel semantics. Int. J. Approx. Reasoning, 50(3): 494–514,

2009.

[13] P. Bruscoli and A. Guglielmi. On Analytic Inference Rules in the Calculus of

Structures. Note available at http://cs.bath.ac.uk/ag/p/Onan.pdf.

14



[14] A. Chagrov, and M. Zakharyaschev. Modal Logic. Oxford University Press,

1997.
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