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Abstract

We continue our program of establishing connections between proof-theoretic
and order-algebraic properties in the setting of substructural logics and resid-
uated lattices. Extending our previous work that connects a strong form of
cut-admissibility in sequent calculi with closure under MacNeille completions of
corresponding varieties, we now consider hypersequent calculi and more general
completions; these capture logics/varieties that were not covered by the previ-
ous approach and that are characterized by Hilbert axioms (algebraic equations)
residing in the level P3 of the substructural hierarchy. We provide algebraic
foundations for substructural hypersequent calculi and an algorithm to trans-
form P3 axioms/equations into equivalent structural hypersequent rules. Using
residuated hyperframes we link strong analyticity in the resulting calculi with
a new algebraic completion, which we call hyper-MacNeille.

Keywords: Substructural logic, hypersequent calculus, residuated lattice,
cut-admissibility, structural rule, substructural hierarchy, residuated frame,
algebraic completion. MSC codes: 03B47, 03G10, 03F05.

1. Introduction

The combination of syntactic and semantic methods in logic provides a
double-edged sword for solving problems. Introduced in [14], the term alge-
braic proof theory refers to a research line aiming at connecting proof theory
and universal order-algebra in a novel way that goes beyond merely combining
results of the two fields by rather integrating their techniques. The techniques
investigated in [14] are cut-admissibility (on the proof theoretic side) and order
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theoretic completions (on the algebraic side), by means of which the existence
of strongly analytic sequent calculi (derivations from atomic assumptions con-
tain only subformulas of the formulas to be proved) for substructural logics are
linked to the closure of the corresponding varieties of residuated lattices under
MacNeille completions. Existing work in the spirit of algebraic proof theory
usually refers to sequent calculi; e.g., in the context of modal logics [30] char-
acterizes analyticity via non-deterministic matrix semantics (see also [29] and
references therein), while [8, 9] investigate the bounded proof property using
one-step algebras.

In this paper we expand the realm of algebraic proof theory to hyperse-
quent calculi – a natural generalization of sequent calculi – and explore their
connections to more general order theoretic completions in the setting of sub-
structural logics. The latter are logics weaker than classical logic that lack some
of the axioms corresponding to the structural rules implicit in Gentzen’s sys-
tems: exchange, weakening and contraction. Substructural logics encompass
among many others, intuitionistic logic, as well as linear, many-valued and rel-
evance logics. They are axiomatic extensions of full Lambek calculus FL and
their algebraic semantics form varieties of pointed residuated lattices, also called
FL-algebras.

Many, but not all, substructural logics possess analytic sequent calculi. An-
alyticity usually follows from the redundancy of the special rule cut (which
corresponds to modus ponens in Hilbert systems, and to transitivity in algebra)
and is a key in establishing many important properties of the formalized log-
ics; these include decidability, the Herbrand theorem, interpolation, as well as
various algebraic properties, see, e.g., the monograph [21].

In our previous studies [12, 14] we addressed the question:

• Which Hilbert axioms can be transformed into structural sequent rules
that preserve strong analyticity when added to FL?

and showed that for a large class of axioms (i.e. those in the class N2 of the sub-
structural hierarchy, a syntactic classification of axioms/equations introduced
in [12, 13, 14]) this question can be reformulated as:

• Which algebraic equations over FL-algebras are preserved by MacNeille
completions?

In [14] we introduced an algorithm for extracting structural sequent rules from
axioms/equations belonging to the class N2 and showed that the calculus ob-
tained by adding these rules to FL is strongly analytic if and only if the corre-
sponding variety is preserved by MacNeille completions. These results were ob-
tained by using residuated frames [20], a relational semantics resembling Kripke
frames but applicable also to non-distributive settings. The results in [12, 14]
also reveal that the expressive power of structural sequent rules is limited to N2

axioms/equations and that higher levels of the hierarchy call for calculi based
on formalisms more expressive than sequents.

Various extensions of sequent calculi have been introduced during the last
three decades in order to present analytic calculi for logics that seem to resist an
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analytic sequent calculus formalization. In an ideal classification of the various
proof theoretic frameworks according to their expressive power, hypersequent
calculi can be seen as the “next level” after the sequent calculus. A hyperse-
quent consists of a multiset of Gentzen sequents separated by a new structural
connective “|” intuitively understood in a disjunctive way. Many substructural
logics that cannot be captured via analytic sequent calculi possess instead an-
alytic hypersequent calculi; this is for instance the case of various fuzzy logics
[32] due to the presence of prelinearity (α → β) ∨ (β → α) which is beyond the
class N2 and is naturally captured by a hypersequent structural rule (Avron’s
communication rule [3]).

While the existing setting of algebraic proof theory deals with the class N2 of
the substructural hierarchy, in [12, 13] we investigated the next level (the class
P3) separately in the proof theoretic and in the algebraic setting. Indeed, [12]
contains an algorithm for extracting structural rules in the hypersequent calculus
from axioms/equations corresponding to a subclass of P3, all in a commutative
setting, while [13] investigates closure under MacNeille completions applied to
subdirectly irreducible algebras for varieties defined by axioms in a subclass of
P3 equations.

This paper provides a comprehensive account of the connections between
proof theory and algebra for the hypersequent calculus, the P3 level of the sub-
structural hierarchy, and a new type of completion. The key tools for our investi-
gation are residuated hyperframes, a new relational semantics which generalizes
residuated frames. Residuated hyperframes support both a proof of strong ana-
lyticity in hypersequent calculi and a proof of the preservation of equations un-
der a new type of algebraic completion, which we call hyper-MacNeille. Though
more involved than the subdirect MacNeille completion used in [13], the hyper-
MacNeille completion preserves more existing infinitary joins and meets; it is
not always regular, namely it does not preserve all existing joins and meets, but
it is regular for certain well-behaved algebras.

The paper is organized as follows. Section 2 contains the basic notions and a
summary of the results in [14] (including the substructural hierarchy). Section 3
presents the hypersequent calculus for full Lambek calculus (and extensions), its
algebraic foundations and the notion of equivalence between structural hyper-
sequent rules/clauses and axioms/equations. Note that although hypersequent
calculi have been successfully used to capture specific substructural logics, a
precise definition of the meaning of the symbol “|” and of the equivalence be-
tween structural rules and axioms in the noncommutative case was still lacking.
On the way of providing algebraic foundations of hypersequents, we describe the
semantic interpretation of “|” which is not the lattice join unless the algebraic
models are subdirectly irreducible or contain a version of prelinearity, see e.g.
[32]. For general algebras, “|” actually corresponds to ∇, a form of disjunction
also considered in the setting of abstract algebraic logic [17]; for substructural
logics/residuated lattices ∇ consists of a combination of the usual disjunction
and iterated conjugates [10], which account for the lack of commutativity, as in
group theory.
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Section 4 presents an algorithm for extracting equivalent structural rules/clauses
out of P♭

3 axioms/equations. This class, defined by refining the class P3 of the
substructural hierarchy, includes many interesting axioms/equations such as
prelinearity, weak excluded middle and weak nilpotent minimum. Under the
additional syntactic condition of acyclicity or in presence of integrality (weak-
ening), structural rules/clauses can be further transformed into well-behaved
ones, called analytic structural rules/clauses.

Residuated hyperframes are introduced in Section 5, and used in Section 6
to show the following results.

1. If R is a set of analytic structural rules, then HFL(R), the hypersequent
version of FL extended with R, is strongly analytic.

2. If a set E of equations is equivalent to a set of analytic structural clauses,
then the variety FL(E) of FL-algebras defined by E admits hyper-MacNeille
completions.

Section 7 proves the converse direction of 1. and a partial converse direction
of 2. (restricted to the commutative case), thus establishing a strong connection
between acyclicity (a syntactic condition), strong analyticity (a proof theoretic
property) and closure under hyper-MacNeille completions (an algebraic prop-
erty). The main results are summarized in Theorem 7.3.

Section 8 concludes the paper by discussing the expressive power of structural
hypersequent rules and the structure of the substructural hierarchy.

2. Preliminaries

We first recall some basic definitions in substructural logics (Section 2.1)
and their algebraic semantics (Sections 2.2, 2.3). We then introduce the sub-
structural hierarchy, a central concept in our previous works [12, 13, 14] and
summarize the main results of [14] (Section 2.4).

2.1. Substructural logics and strong analyticity

Below we introduce full Lambek calculus FL, the base logic that we consider,
using a sequent calculus formalism.

The formulas of FL are built from propositional variables p, q, r, . . . and con-
stants 1 (unit) and 0 (dual unit/negation constant) by using the binary connec-
tives ∧ (conjunction/meet), ∨ (disjunction/join), · (fusion/product/multiplication),
\ (left implication/division) and / (right implication/division). We denote by
Fm the set of all formulas. It is convenient to consider the following algebraic
structure

Fm := (Fm,∧,∨, ·, \, /, 1, 0),

called the term algebra of FL. We will use ¬α and α ↔ β as abbreviations for
α\0 and (α\β) ∧ (β\α). We also write αβ for α · β. Since the constant 1 is the
unit of the fusion operation, we naturally adopt the convention that α1 · · ·αn

denotes 1 when n = 0. Finally αn denotes α · · · · · α (n times).
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Σ ⇒ α Γ, α,∆ ⇒ Π

Γ,Σ,∆ ⇒ Π
(cut)

α ⇒ α (id) ⇒ 1
(1r)

Γ, α, β,∆ ⇒ Π

Γ, α · β,∆ ⇒ Π
(·l)

Γ ⇒ α ∆ ⇒ β

Γ,∆ ⇒ α · β
(·r)

Γ,∆ ⇒ Π

Γ, 1,∆ ⇒ Π
(1l)

Σ ⇒ α Γ, β,∆ ⇒ Π

Γ,Σ, α\β,∆ ⇒ Π
(\l)

α,Γ ⇒ β

Γ ⇒ α\β
(\r) Γ ⇒

Γ ⇒ 0
(0l)

Σ ⇒ α Γ, β,∆ ⇒ Π

Γ, β/α,Σ,∆ ⇒ Π
(/l)

Γ, α ⇒ β

Γ ⇒ β/α
(/r)

0 ⇒
(0r)

Γ, α,∆ ⇒ Π Γ, β,∆ ⇒ Π

Γ, α ∨ β,∆ ⇒ Π
(∨l) Γ ⇒ α

Γ ⇒ α ∨ β
(∨r1)

Γ ⇒ β

Γ ⇒ α ∨ β
(∨r2)

Γ, α,∆ ⇒ Π

Γ, α ∧ β,∆ ⇒ Π
(∧l1)

Γ, β,∆ ⇒ Π

Γ, α ∧ β,∆ ⇒ Π
(∧l2)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(∧r)

Figure 1: Inference rules of FL

A sequent of FL is an expression of the form Γ ⇒ Π, where Γ stands for
a (possibly empty) sequence of formulas and Π for a stoup, i.e., it is either a
formula or empty. The inference rules in Figure 1 define the base logic FL (α, β
are metavariables for formulas, Γ,∆,Σ for formula sequences and Π for stoups).
For a set of formulas F ∪{α}, we write F ⊢FL α if the sequent ⇒ α is derivable
from the sequents {⇒ β : β ∈ F} by using the rules in Figure 1. We also write
F1 ⊢FL F2 if F1 ⊢FL α holds for every α ∈ F2.

A substructural logic L is a set of formulas closed under substitution and
deduction with respect to ⊢FL (i.e., L ⊢FL α implies α ∈ L). We write Φ ⊢L α
if Φ ∪ L ⊢FL α holds.

Given a set E of axioms, we write L(E) for the substructural logic axioma-
tized by E , see, e.g., [22, 21]. Typical axioms added to FL are

(e) α · β\β · α, (c) α\α · α, (i) α\1, (o) 0\α.

Axioms (i) and (o) are jointly denoted by (w). We use the standard notation
for substructural logics defined by these axioms: FLe for FL with (e), FLew

for FLe with (w) and Int for FLew with (c) (which is intuitionistic logic).
It is often the case that although not equal nor equivalent, α\β and β/α are

interchangeable in certain contexts. For instance, in every substructural logic
L, we have ⊢L α\β iff ⊢L β/α; also, if L includes (e) (i.e. L is commutative)
the two formulas are interchangeable in any context. In such cases, we often
write α → β rather than α\β or β/α.
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Every substructural logic can be obtained by adding suitable axioms to FL.
However, the presence of additional axioms destroys a fundamental property of
the sequent calculus FL, namely cut-admissibility (or cut-elimination in its al-
gorithmic version). This property, which establishes the redundancy of the rule
(cut), usually ensures that proofs only consist of formulas already contained in
the statement to be proved (subformula property). For this reason it is prefer-
able to add to FL rules that preserve cut-admissibility, rather than axioms.
When the added rules do not mention any connective or constant (i.e., they
are structural rules) the resulting system is modular and cut-admissibility can
be verified by investigating only the new rules. For instance, the axioms (e),
(c), (i) and (o) above can be replaced by the following structural rules, which
preserve cut-admissibility when added to FL (see [14] for a general definition of
structural rule):

Γ, β, α,∆ ⇒ Π

Γ, α, β,∆ ⇒ Π
(e)

Γ,Σ,Σ,∆ ⇒ Π

Γ,Σ,∆ ⇒ Π
(c)

Γ,∆ ⇒ Π

Γ, α,∆ ⇒ Π
(i) Γ ⇒

Γ ⇒ α
(o)

Given a set R of structural rules, we write FL(R) for the sequent calculus
obtained by adding the rules in R to FL. A fundamental question in proof
theory is which axioms can be transformed into structural rules that preserve
cut-admissibility. Actually, in a general setting, a preservation of a condition
stronger than plain cut-admissibility is of interest. This is expressed by the
following definition.

Definition 2.1. A set S of sequents is said to be elementary if each sequent in
S consists of atomic formulas and S is closed under cuts: if S contains Σ ⇒ p
and Γ, p,∆ ⇒ Π, it also contains Γ,Σ,∆ ⇒ Π.

We say that FL(R) is strongly analytic if for any elementary set S of sequents
and sequent Θ, if Θ is derivable from S in FL(R) then Θ has a cut-free derivation
from S which has the subformula property.

Thus strong analyticity combines a stronger form of cut-admissibility in pres-
ence of (atomic) premises with the subformula property. The latter is mentioned
explicitly, because in a very general setting one could define peculiar structural
rules which permit cut-admissibility but do not preserve the subformula prop-
erty. This is for instance the case of the following rule:

Γ, α ⇒ α

Γ ⇒

Remark 2.2. We often include the constants ⊤ (true) and ⊥ (false) in FL; the
resulting logic is denoted by FL⊥. The results in our paper hold for both FL

and FL⊥.

2.2. Algebraic semantics

The logic FL is algebraizable and its algebraic semantics is the variety of
pointed residuated lattices, also known as FL-algebras.
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A residuated lattice is an algebra A = (A,∧,∨, ·, \, /, 1), such that (A,∧,∨)
is a lattice, (A, ·, 1) is a monoid and for all a, b, c ∈ A,

a · b ≤ c ⇐⇒ b ≤ a\c ⇐⇒ a ≤ c/b.

We refer to the last property as residuation. An FL-algebra is a residuated
lattice A with a distinguished element 0 ∈ A.

An equation (identity) is an expression of the form t = u, where t and u are
terms/formulas; note that this includes expressions of the form t ≤ u, which is a
shorthand for t = t∧u. We use symbols and, or, =⇒ to denote the conjunction,
disjunction and implication of first-order logic, respectively. By a clause, we
mean an expression of the form (0 ≤ m < n):

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un, (q)

where all variables are assumed to be universally quantified. The equations
t1 ≤ u1, . . . , tm ≤ um are called the premises and tm+1 ≤ um+1, . . . , tn ≤ un the
conclusions. The clause (q) is disjunctive if there are no premises (i.e., m = 0).
It is a quasiequation if there is only one conclusion (i.e. n = m + 1).

Let A be an FL-algebra and f a valuation into A, namely a homomorphism
f : Fm −→ A. Then we say that f satisfies (q) and write A, f |= (q) if
f(ti) ≤ f(ui) for all 1 ≤ i ≤ m implies f(tj) ≤ f(uj) for some m + 1 ≤ j ≤ n.
We say that A satisfies (q) and write A |= (q) if every valuation into A satisfies
(q). More generally, let K be a class of FL-algebras and C∪{(q)} a set of clauses.
We write C |=K (q) if the following holds: for every algebra A ∈ K and every
valuation f into A, if f satisfies all clauses in C, then f also satisfies (q).

We often identify a formula α with equation 1 ≤ α. We say that an FL-
algebra A satisfies a formula α and write A |= α if A |= 1 ≤ α. More generally,
given a class K of FL-algebras and a set F ∪ {α} of formulas, we write F |=K α
whenever {1 ≤ β : β ∈ F} |=K 1 ≤ α.

We denote by FL the variety of FL-algebras; given a set E of axioms (equa-
tions), we denote by FL(E) the variety of FL-algebras that satisfy all axioms
(equations) in E . Below is a standard algebraization result, see, e.g. [21].

Theorem 2.3. If L is a substructural logic, L := FL(L) and F ∪ {α} is a set
of formulas, then

F ⊢L α ⇐⇒ F |=L α.

Moreover, the map L 7→ L gives a dual order-isomorphism between the lattice of
all substructural logics and that of all varieties of FL-algebras.

We conclude this subsection by introducing algebraic counterparts to struc-
tural rules, see [14].

Definition 2.4. An equation t ≤ u is said to be structural if t is a product of
variables and u is either 0 or a variable. A clause is structural if it is composed
of structural equations.
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It is clear that every structural rule in the sequent calculus naturally corre-
sponds to a structural quasiequation. For instance, the structural rule

Γ ⇒ Π ∆ ⇒ Π
Γ,∆ ⇒ Π

(min)

corresponds to
x ≤ z and y ≤ z =⇒ xy ≤ z. (min)

The correspondence will be later extended to structural rules in the hyper-
sequent calculus and structural clauses.

2.3. Completions

A completion of an FL-algebra A is a pair (B, e) where B is a complete
FL-algebra and e : A −→ B is an embedding. A completion (B, e) is regular if
e preserves all existing joins and meets in A.

A homomorphism h between two completions (B1, e1) and (B2, e2) of A is
a homomorphism h : B1 −→ B2 for which the following diagram commutes:

B1 B2

A

✲h

❅
❅■
e1 �

�✒
e2

Two completions (B1, e1) and (B2, e2) are isomorphic if there is a bijective
homomorphism between them. It is clear that if (B, e) is a completion of A,
there is an isomorphic one (B′, e′) such that B′ is an extension of A (i.e., A is
a subalgebra of B′) and e′ is the inclusion map. Hence we will often think of
completions just as complete extensions.

Given a class K of FL-algebras, we say that K admits completions if every
A ∈ K has a completion (actually a complete extension, if K is closed under
isomorphisms) B in K.

A completion B of A is said to be

• join-dense, if every element x ∈ B is a join of elements from A:

x =
∨

C, for some C ⊆ A.

• meet-dense, if every element x ∈ B is a meet of elements from A:

x =
∧

C, for some C ⊆ A.

Let A be an FL-algebra. It is well known that its lattice reduct (A,∧,∨)
admits a join-dense and meet-dense completion (A,∧,∨) that is unique up to iso-
morphism, called the MacNeille completion [4, 36]. We may extend the concept
to FL-algebras. While there are several choices when extending the non-lattice
operations to A, it is the following one that works (see [37] for a rationale).
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Theorem 2.5. Let A = (A,∧,∨, ·, \, /, 1, 0) be an FL-algebra and (A,∧,∨) be
the MacNeille completion of the lattice reduct (A,∧,∨) with A ⊆ A. We extend
the multiplication and divisions of A to A by:

x · y :=
∨
{a · b : a ≤ x, b ≤ y, a, b ∈ A},

x\y :=
∧
{a\b : a ≤ x, y ≤ b, a, b ∈ A},

y/x :=
∧
{b/a : a ≤ x, y ≤ b, a, b ∈ A}.

Then A := (A,∧,∨, ·, \, /, 1, 0) is an FL-algebra that is a completion of A.

Such A is always regular, and is called the MacNeille completion of A. A
concrete construction will be described in Section 5.1.

2.4. Substructural hierarchy

In [14] we addressed the question of which (sets of) axioms E are equivalent
to structural sequent rules R (i.e., L(E) = {α ∈ Fm : ⊢FL(R) α}) such that
FL(R) is strongly analytic. To provide a systematic answer to this question
we introduced the substructural hierarchy [14] (and [12], in the commutative
case), which suitably classifies axioms in the language of FL⊥ or, equivalently,
equations over FL-algebras possibly extended with ⊤ and ⊥.

The idea behind the substructural hierarchy (Pn,Nn) is to track polarity
alternations of connectives/operations. The classes Pn and Nn stand indeed for
axioms/equations with leading positive and negative connectives, where (1, ⊥,
∨, ·) are positive and (0, ⊤, /, \, ∧) are negative, see [1].

Definition 2.6. For each n ≥ 0, the sets Pn,Nn of formulas (terms) are defined
as follows:

(0) P0 := N0 := the set of variables.

(P1) 1,⊥ and all formulas in Nn belong to Pn+1.

(P2) If α, β ∈ Pn+1, then α ∨ β, α · β ∈ Pn+1.

(N1) 0,⊤ and all formulas in Pn belong to Nn+1.

(N2) If α, β ∈ Nn+1, then α ∧ β ∈ Nn+1.

(N3) If α ∈ Pn+1 and β ∈ Nn+1, then α\β, β/α ∈ Nn+1.

Namely Pn+1 is the set generated from Nn by means of finite (possibly empty)
joins and products, and Nn+1 is generated from Pn ∪ {0} by means of finite
(possibly empty) meets and divisions with denominators from Pn+1.

By residuation, any equation ε can be written as 1 ≤ t. We say that ε
belongs to Pn (Nn, resp.) if t does.

As shown in [14], formulas in each class admit the following normal forms.

Lemma 2.7.
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P0 P1 P2 P3

N0 N1 N2 N3

✲

❅
❅
❅❅❘

✲

❅
❅

❅❅❘

✲

❅
❅
❅❅❘

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲

✲
�
�
��✒

✲
�
�

��✒

✲
�

�
��✒

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲

Figure 2: The Substructural Hierarchy

Class Equation Name
N2 α → 1 left weakening (integrality)

0 → α right weakening
α · β → β · α exchange (commutativity)
α → α · α contraction
α · α → α expansion
αn → αm knotted axioms (n,m ≥ 0)
¬(α ∧ ¬α) no-contradiction

P2 α ∨ ¬α excluded middle
(α → β) ∨ (β → α) prelinearity

P3 ¬α ∨ ¬¬α weak excluded middle
¬(α · β) ∨ (α ∧ β → α · β) weak nilpotent minimum

α · (α\1) ↔ 1 ℓ-group∨k
i=0(αi →

∨
i6=j αj) Kripke models of width ≤ k

α0 ∨ (α0 → α1) ∨ · · · ∨ (α0 ∧ · · · ∧ αk−1 → 0) Kripke models with size ≤ k
N3 α ∧ (β ∨ γ) → (α ∧ β) ∨ (α ∧ γ) distributivity

(α\(α · β))\β cancellativity
(α ∧ β) → α · (α → β) divisibility

((α → β) → β) → ((β → α) → α)  Lukasiewicz axiom

Figure 3: Some known axioms in substructural logics

(P) If α ∈ Pn+1, then α is equivalent to ⊥ or β1 ∨ · · · ∨ βm, where each βi is
a product of formulas in Nn.

(N) If α ∈ Nn+1, then α is equivalent to ⊤ or
∧

1≤i≤m γi\βi/δi, where each βi

is either 0 or a formula in Pn, and each γi and δi are products of formulas
in Nn.

We have Pn ∪ Nn ⊆ Pn+1 ∩ Nn+1 for every n. Hence the substructural
hierarchy can be depicted as in Figure 2 (the arrows stand for inclusions among
the classes).

Remark 2.8. A recent paper [24] shows that any formula is FLe-equivalent
to a set of formulas in N3. Thus the hierarchy collapses to the level N3 in the
commutative case.

Some examples of axioms classified into the hierarchy are in Figure 3.
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In [14] we have investigated in depth the first classes of the hierarchy (up to
N2). The main results can be summarized by 1-3 below:

1. Every axiom (resp. equation) in N2 can be transformed into an equivalent
set of structural rules (resp. quasiequations).

2. Let E be a set of N2 axioms (equations). The following are equivalent.

• FL(E) admits MacNeille completions.

• FL(E) admits completions.

• E is equivalent to a set R of structural rules such that FL(R) is strongly
analytic.

Remark 2.9.

• This indicates that MacNeille completions are the strongest completion
method for N2 equations; whenever such an equation is preserved by some
completions, it is necessarily preserved by MacNeille completions.

• This shows that strong analyticity of a sequent calculus and closure under
completions of a variety of FL-algebras are essentially the same thing,
as far as N2 axioms and equations are concerned. The common step for
both lies in the transformation of axioms (equations) into structural rules
(quasiequations) and the residuated frame construction (see Section 5.1).

• Not all N2 equations satisfy the above conditions. For example the N2

equation x\x ≤ x/x is not preserved by any completions, and accordingly,
the formula (α\α)\(α/α) is not equivalent in FL to any set of structural
rules enjoying strong analyticity.

3. In presence of the left weakening axiom α → 1 (integrality x ≤ 1), all the
statements in 2 hold.

Remark 2.10. This means that MacNeille completions work for all varieties
of integral FL-algebras axiomatized by N2 equations, and we have strong an-
alyticity for all integral substructural logics axiomatized by N2 formulas. The
problem is completely settled for these varieties and logics.

The purpose of this paper is to systematically extend the above results to a
class of equations and axioms wider than N2. We focus on P3 – the next level
of the substructural hierarchy. To do that we employ the hypersequent calculus
and a new completion method inspired by that.

3. Non-commutative hypersequent calculus

Introduced by Avron in [2], the hypersequent calculus arises by extending
Gentzen sequent calculus with a meta-disjunction “ | ” in order to refer to many
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(a multiset of) sequents, instead of just one. As shown in [12] the hypersequent
calculus captures axioms/equations in the class P3, in presence of weakening
and exchange.

Although hypersequent calculi have been defined for many logics including
fuzzy, modal and superintuitionistic logics (see, e.g., [3, 32, 28]), there is no
general account for them in substructural logics, in particular in absence of
exchange (non-commutative calculi). Even though various structural rules have
been proposed as “equivalent” to logical axioms, none of the proposed definitions
of equivalence between axioms and rules (e.g., [32, 12]) works in the general
substructural logic setting.

In this section we present the hypersequent calculus formalism for general
substructural logics and set up its algebraic foundations. Most of the results in
this section are known (e.g. [19, 25, 10]) and serve as background for developing
our correspondence between formulas/equations and structural hypersequent
rules.

We first introduce the hypersequent calculus HFL for full Lambek calculus
(Section 3.1), then address the problem of how to understand and interpret
the meta-disjunction “ | ” properly. As we will see, this requires the notion
of iterated conjugates (Section 3.2). After a short account on how to interpret
hypersequents in FL-algebras (Section 3.3), we turn to the algebraic side, and
make sense of the symbol “ | ” in terms of subdirect representations of algebras
(Section 3.4). A general notion of equivalence between axioms and structural
rules is finally introduced in Section 3.5.

3.1. The system HFL for full Lambek calculus

In addition to the meta-level implication (⇒) and fusion (,), present in the
sequent calculus, the hypersequent calculus contains the meta-level disjunction
( | ). A hypersequent Ξ is indeed a multiset of sequents written as Θ1 | . . . | Θn,
and each Θi is called a component.

Throughout this paper we will consider single-conclusion hypersequents, i.e.,
hypersequents whose components have at most one formula on the right-hand
side of ⇒. We will use the following syntactic metavariables :

α, β, γ, . . . formulas
Γ,∆,Σ, . . . formula sequences
Π,Π1,Π2, . . . stoups
Θ,Θ1,Θ2, . . . sequents
Ξ,Ξ1,Ξ2, . . . hypersequents

The calculus HFL consists of the following inference rules :

• the hypersequent version

Ξ | Θ1 · · · Ξ | Θm

Ξ | Θ
(r)
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of each rule of FL (cf. Figure 1) of the form

Θ1 · · · Θm

Θ
(r), with m ≥ 0.

• the external structural rules of weakening and contraction1:

Ξ
Ξ | Θ

(EW )
Ξ | Θ | Θ

Ξ | Θ
(EC)

As examples of the former rules, we have:

Ξ | α ⇒ α
(id)

Ξ | Σ ⇒ α Ξ | Γ, α,∆ ⇒ Π

Ξ | Γ,Σ,∆ ⇒ Π
(cut)

Ξ | α,Γ ⇒ β

Ξ | Γ ⇒ α\β
(\r)

Notions of rules, rule instances, derivations, strong analyticity and so on, de-
fined for sequents and sequent calculi transfer unscathed to hypersequents and
hypersequent calculi.

Let H ∪ {Ξ} be a set of hypersequents. If Ξ is derivable from the premises
in H, we write H ⊢HFL Ξ. As before, we also write F ⊢HFL α if {⇒ β : β ∈
F} ⊢HFL⇒ α.

Taking hypersequent versions of sequent calculi alone is not enough to obtain
calculi for new logics; indeed we have ⊢HFL α if and only if ⊢FL α. The benefit
of considering hypersequent calculi is that they support the addition of new
structural rules that act on various sequents inside the hypersequents. It is this
type of rules that increases the expressive power of the hypersequent calculus
with respect to the sequent calculus.

Example 3.1. A typical example of a structural rule in the hypersequent cal-
culus is Avron’s communication rule [3] (see Figure 4 for its non-commutative
counterpart):

Ξ | Σ2,Γ ⇒ Π Ξ | Σ1,Γ
′ ⇒ Π′

Ξ | Σ1,Γ ⇒ Π | Σ2,Γ
′ ⇒ Π′

(com)
,

by means of which we can prove the prelinearity axiom (α → β) ∨ (β → α):

β ⇒ β
(id)

α ⇒ α (id)

α ⇒ β | β ⇒ α
(com)

⇒ α → β | ⇒ β → α
(→ r)

⇒ (α → β) ∨ (β → α) | ⇒ (α → β) ∨ (β → α)
(∨r)

⇒ (α → β) ∨ (β → α)
(EC)

By extending HFL with (com), (e), (c), and (w) (see Section 2.1), we obtain a
hypersequent calculus for propositional Gödel logic that enjoys cut-elimination
[3].
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Ξ | Γ,Σ1,Σ2,∆ ⇒ Π

Ξ | Σ1 ⇒ | Γ,Σ2,∆ ⇒ Π
(em)

Ξ | Γ,Σ2,∆ ⇒ Π Ξ | Γ′,Σ1,∆
′ ⇒ Π′

Ξ | Γ,Σ1,∆ ⇒ Π | Γ′,Σ2,∆
′ ⇒ Π′

(com)

Ξ | Σ1,Σ2 ⇒

Ξ | Σ1 ⇒ | Σ2 ⇒
(lq)

{Ξ | Γi,Σj ,∆i ⇒ Πi}0≤i,j≤k,i6=j

Ξ | Γ0,Σ0,∆0 ⇒ Π0 | . . . | Γk,Σk,∆k ⇒ Πk

(Bwk)

{Ξ | Γi,Σj ,∆i ⇒ Πi}0≤i≤k−1; i+1≤j≤k

Ξ | Γ0,∆0 ⇒ Π0 | . . . | Γk−1,Σk−1,∆k−1 ⇒ Πk−1 | Σk ⇒
(Bck)

Figure 4: Some structural rules

More examples of structural rules can be found in Figure 4. The general
format of a structural rule in the hypersequent calculus is:

Ξ | Υ1 ⇒ Ψ1 · · · Ξ | Υm ⇒ Ψm

Ξ | Υm+1 ⇒ Ψm+1 | · · · | Υn ⇒ Ψn

(r)

where for each 1 ≤ i ≤ n,

• Υi is a (possibly empty) sequence that consists of metavariables for for-
mula sequences and for formulas,

• Ψi is empty, a metavariable for stoups or a metavariable for formulas.

Given a set R of structural rules, we write HFL(R) for the calculus obtained
by adding R to HFL. Now our central task in this paper can be formulated as
follows:

• Given a set E of axioms, we would like to find an “equivalent” set R
of structural rules that preserve strong analyticity. How and when is it
possible?

To address this question, we first need to clarify what it means that E is
“equivalent” to R. The rest of this section is devoted to this issue.

3.2. Iterated conjugates

We start by discussing the meaning of the separator |. In hypersequent
calculi containing all three basic sequent structural rules or the (com) rule in
Fig.4, “ | ” is usually interpreted as the logical connective ∨, see, e.g., [32]. This
interpretation does not work however for weaker hypersequent calculi extending
HFL, whose rule soundness requires the ∇ disjunction introduced below.

Recall that we have two distinct notions of entailment: ⊢FL α ⇒ β implies
α ⊢FL β, but the converse does not hold in general, due to the lack of the rules

1External exchange (EE) is implicit by considering hypersequents as multisets of sequents.
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(e), (c), (i). In other words the deduction theorem fails in its usual form, but is
still valid in the weaker form of the following theorem. A way to compensate
for this is to use conjugates [10].

A conjugate of a formula α is either λβ(α) := (β\αβ) ∧ 1 or ρβ(α) :=
(βα/β) ∧ 1 for some formula β, see e.g. [25]. Conjugates allow us to simulate
(e) and (i), as follows:

Γ, α, β,∆ ⇒ Π

Γ, β, λβ(α),∆ ⇒ Π

Γ, β, α,∆ ⇒ Π

Γ, ρβ(α), β,∆ ⇒ Π

Γ,∆ ⇒ Π

Γ, λβ(α),∆ ⇒ Π

We also have derivations from ⇒ α to ⇒ λβ(α) and ⇒ ρβ(α), namely:

α ⊢FL λβ(α), α ⊢FL ρβ(α). (1)

Since a conjugate is needed each time (e) or (i) is simulated, the conjugate
operator has to be iterated to simulate an arbitrary number of (e) and (i).

Definition 3.2. An iterated conjugate of α is a formula of the form µβ1
· · ·µβn

(α),
where n ≥ 0 and each µβi

is either λβi
or ρβi

. The set of all iterated conju-
gates of α is denoted by ♭α. More generally, if α1, . . . , αn are formulas of FL,
♭α1 ∨ · · · ∨ ♭αn (resp. ♭α1 · · · · · ♭αn) denotes the set of all formulas of the form
α′
1 ∨ · · · ∨ α′

n (resp. α′
1 · · · · · α

′
n) where α′

i ∈ ♭αi for 1 ≤ i ≤ n.

To simulate (c), we take a product of iterated conjugates. As a consequence,
we have the so called parameterized local deduction theorem [22]:

Theorem 3.3. Let L be a substructural logic and Φ∪ {α, γ} a set of formulas:

Φ, α ⊢L γ ⇐⇒ Φ ⊢L α′
1 · · ·α

′
n → γ

for some n ≥ 0 and α′
1, . . . , α

′
n ∈ ♭α.

When L is over FLe or FLew, the above theorem can be much simplified.
Indeed, we have

Φ, α ⊢L γ ⇐⇒ Φ ⊢L (α ∧ 1)n → γ for some n ≥ 0

if FLe ⊆ L, and

Φ, α ⊢L γ ⇐⇒ Φ ⊢L αn → γ for some n ≥ 0

if FLew ⊆ L. Hence we naturally adopt the following convention.

• In substructural logics over FLe, ♭α denotes the singleton set {α ∧ 1}.

• In substructural logics over FLew, ♭α just denotes {α}.

As a consequence of Theorem 3.3, we obtain a meta-disjunction defined by
means of the ♭ operation. We define

α∇β := ♭α ∨ ♭β.

As seen below, this (strong) disjunction, which will be used to interpret the
symbol “|”, inherits the properties of hypersequents, one of which is proof-by-
cases.
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Corollary 3.4. Let L be a substructural logic and Φ∪{α, β, γ} a set of formulas:

Φ, α ⊢L γ and Φ, β ⊢L γ ⇐⇒ Φ, α∇β ⊢L γ.

Proof. By (1), we have α ⊢L α∇β and β ⊢L α∇β, which imply the (⇐) direc-
tion.

(⇒) Assume that Φ, α ⊢L γ and Φ, β ⊢L γ. By Theorem 3.3, we obtain
Φ ⊢L α′

1 · · ·α
′
m → γ and Φ ⊢L β′

1 · · ·β
′
n → γ where each α′

i (resp. β′
j) belongs to

♭α (resp. ♭β). Let δ be the product of all α′
i ∨ β′

j (1 ≤ i ≤ m, 1 ≤ j ≤ n) lexico-
graphically ordered with respect to (i, j). By distributivity of multiplication over
join, δ is a join of products, each of which is the form

∏
δij , lexicographically

ordered as above, where δij ∈ {α′
i, β

′
j} ; we will show that each such product

is less or equal to (α′
1 · · ·α

′
m) ∨ (β′

1 · · ·β
′
n), using the fact that δij ≤ 1. Indeed,

if for each i there exists ji with δiji = α′
i, then

∏
δij ≤

∏
δiji = α′

1 · · ·α
′
m.

On the other hand, if there exists i0 such that for all j we have δi0j = β′
j ,

then
∏

δij ≤
∏

δi0j = β′
1 · · ·β

′
n. Therefore, δ implies (α′

1 · · ·α
′
m) ∨ (β′

1 · · ·β
′
n),

so Φ ⊢L δ → γ. Since δ is a product of members of ♭α ∨ ♭β, we conclude
Φ, α∇β ⊢L γ.

See [17] for a general study of (parameterized) disjunctions and the proof-by-
cases property. It is the ∇ disjunction that the symbol “ | ” of the hypersequent
calculus is intended to denote. More precisely, we consider the following trans-
lation of a sequent Θ into a formula Θ♭, and a hypersequent Ξ into a set Ξ♭ of
formulas:

(α1, . . . , αn ⇒ β)♭ := α1 · · ·αn\β,
(α1, . . . , αn ⇒ )♭ := α1 · · ·αn\0,

(Θ1| · · · |Θn)♭ := Θ♭
1∇· · ·∇Θ♭

n = ♭(Θ♭
1) ∨ · · · ∨ ♭(Θ♭

n).

Finally we define H♭ :=
⋃
{Ξ♭ : Ξ ∈ H} for a set H of hypersequents.

Remark 3.5. (Θ1| · · · |Θn)♭ amounts to {(Θ♭
1 ∧ 1) ∨ · · · ∨ (Θ♭

n ∧ 1)} in the
commutative case, and to {Θ♭

1∨· · ·∨Θ♭
n} in the commutative and integral case.

A prominent feature of hypersequent calculi is that one can reason separately
in each component, a principle that we call the local reasoning principle:

Lemma 3.6. Let Ξ0,Ξ1,Ξ2 be hypersequents and R a set of structural rules:

Ξ1 ⊢HFL(R) Ξ2 =⇒ Ξ0 | Ξ1 ⊢HFL(R) Ξ0 | Ξ2.

Proof. We simply add the context Ξ0 to all hypersequents in the derivation
Ξ1 ⊢HFL(E) Ξ2.

Lemma 3.7. Ξ ⊢HFL Ξ♭ holds for every hypersequent Ξ. Moreover if R is a
set of structural rules, H is a set of hypersequents and Θ is a sequent, then

H♭ ⊢L(R) Θ♭ =⇒ H ⊢HFL(R) Θ,

where L(R) := {α ∈ Fm : ⊢HFL(R) α} (cf. Section 3.5).

16



Proof. Suppose that Ξ = Θ1 | · · · | Θn. First note that Θ♭
i ⊢FL ♭(Θ♭

i) holds
by (1), so we have Θi ⊢HFL(R)⇒ ♭(Θ♭

i). Hence by Lemma 3.6 we obtain

Θ1 | · · · | Θn ⊢HFL(R)⇒ ♭(Θ♭
1) | · · · | ⇒ ♭(Θ♭

n), from which Ξ ⊢HFL Ξ♭

follows by using (∨r) and (EC).
The second claim easily follows from the first one, since H ⊢HFL(R) H♭,

H♭ ⊢HFL(R) Θ♭ and Θ♭ ⊢HFL(R) Θ.

Remark 3.8. In the above lemma, the conclusion Θ cannot be replaced by a
hypersequent Ξ. Namely, Ξ♭ ⊢HFL Ξ does not hold in general (e.g. take Ξ to
be ⇒ α | ⇒ β), while it does, for instance, in the case of fuzzy logics (see
[32]) where the hypersequent α ∨ β ⇒ α | α ∨ β ⇒ β is derivable and hence
⇒ α | ⇒ β follows from ⇒ α ∨ β. This intriguing fact is the main source of
complications when developing hypersequent calculi for substructural logics.

3.3. From structural rules to clauses

Recall that we have identified a formula α of FL with the equation 1 ≤ α of
FL-algebras. This extends to an identification of hypersequents with disjunctive
clauses as follows:

α1, · · · , αn ⇒ β with α1 · · ·αn ≤ β,
α1, · · · , αn ⇒ with α1 · · ·αn ≤ 0,
Θ1 | . . . | Θn with Θ1 or · · · or Θn.

This allows us to extend the semantic consequence relation |=K, where K is a
class of FL-algebras, to a relation between hypersequents. Given a set H∪ {Ξ}
of hypersequents, we write H |=K Ξ if every A ∈ K and every valuation f
into A which satisfies all hypersequents in H also satisfies Ξ under the above
identification.

Example 3.9. |=K α, β ⇒ β | α ⇒ means |=K αβ ≤ β or α ≤ 0.

Accordingly, we identify a structural rule with a structural clause as follows.
Let

Ξ | Υ1 ⇒ Ψ1 · · · Ξ | Υm ⇒ Ψm

Ξ | Υ1 ⇒ Ψm+1 | · · · | Υn ⇒ Ψn

(r)

be a structural rule. First, we associate to each metavariable (α,Γ,Π,∆ etc.) a
variable (x, y, z, w, etc.) and we call this mapping •. Then each Υi ⇒ Ψi can
be transformed into an equation Υ•

i ≤ Ψ•
i .

Example 3.10.

Γ, α,Γ ⇒ α 7→ yxy ≤ x,
Γ,∆,Γ ⇒ Π 7→ ywy ≤ z,
Γ ⇒ 7→ y ≤ 0.

Now (r) is identified with the following structural clause:

Υ•
1 ≤ Ψ•

1 and · · · and Υ•
m ≤ Ψ•

m =⇒ Υ•
m+1 ≤ Ψ•

m+1 or · · · or Υ•
n ≤ Ψ•

n. (r•)
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Note that the metavariable Ξ is dropped and the distinction between the dif-
ferent types of metavariables (i.e., those for formulas, formula sequences and
stoups) is ignored. Hence there are various ways to read back a structural rule
from a structural clause; a canonical way will be described in Section 4.4.

Given a set R of structural rules (clauses), we denote by FL(R) the class of
FL-algebras which satisfy all rules (clauses) in R.

Soundness with respect to the algebraic interpretation is obvious.

Lemma 3.11. Let H∪ {Ξ} be a set of hypersequents and R a set of structural
rules:

H ⊢HFL(R) Ξ =⇒ H |=FL(R) Ξ.

3.4. Subdirect representation

The hypersequent calculus allows us to decompose Θ♭
1∇· · ·∇Θ♭

n into a hy-
persequent Θ1 | · · · | Θn and to work separately on each component using the
local reasoning principle (Lemma 3.6). In algebra, the concept of subdirect
representation supports a similar decomposition and local reasoning. In what
follows we recall some elementary facts in universal algebra concerning subdirect
representation. See, e.g., [11] for more information.

Given algebras A and {Ai}i∈I of the same type, Recall that A is called a
subdirect product of {Ai}i∈I if there is an embedding e : A −→

∏
i∈I Ai which is

surjective onto each coordinate, namely if pi :
∏

i∈I Ai −→ Ai is the projection
map onto the ith coordinate, ei := pi ◦e : A −→ Ai is surjective for every i ∈ I.
Throughout this paper, we write A →֒

∏
i∈I Ai to mean that A is a subdirect

product of {Ai}i∈I , and ei : A −→ Ai for the canonical map pi ◦ e above.
Subdirect products correspond to intersections of congruences.

Lemma 3.12. Let A be an algebra and let {θi}i∈I be congruences on A. Then
θ :=

⋂
i∈I θi is also a congruence and we have

A/θ →֒
∏

i∈I

A/θi.

Conversely, if θ is a congruence on A and algebras {Ai}i∈I satisfy

A/θ →֒
∏

i∈I

Ai,

then there are congruences {θi}i∈I on A such that θ =
⋂

i∈I θi and Ai
∼= A/θi.

If we choose θi (i ∈ I) so that
⋂

i∈I θi = △ (the identity congruence), then
we obtain A →֒

∏
i∈I A/θi.

An algebra A is said to be subdirectly irreducible if it cannot be expressed
as a subdirect product in a nontrivial way. More precisely, A is subdirectly
irreducible if A →֒

∏
i∈I Ai implies ei : A ∼= Ai for some i ∈ I.

For instance, let a, b be two distinct elements in A, and consider the class of
congruences θ such that (a, b) 6∈ θ. By Zorn’s lemma, there is a maximal one
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in the class, which we denote by τa,b. Then A/τa,b is a subdirectly irreducible
algebra. To see this, suppose that A/τa,b is a subdirect product of {Ai}i∈I .
By Lemma 3.12, there are congruences {θi}i∈I such that

⋂
i∈I θi = τa,b and

Ai
∼= A/θi. We have τa,b ⊆ θi for every i ∈ I. Because of (a, b) 6∈ τa,b =

⋂
i∈I θi,

there is a θi such that (a, b) 6∈ θi. By maximality τa,b = θi. This proves that
A/τa,b is subdirectly irreducible.

We have thus established a fundamental fact in universal algebra that every
algebra A admits a subdirect representation.

Theorem 3.13. Every algebra A is a subdirect product of subdirectly irreducible
algebras.

Proof. The intersection of all τa,b with (a, b) ∈ A2 and a 6= b is △. Hence
A = A/△ →֒

∏
(a,b)∈A2,a 6=b A/τa,b by Lemma 3.12.

Notice that A →֒
∏

i∈I Ai means that A is (isomorphic to) a subalgebra of
the product of {Ai}i∈I and each Ai is a homomorphic image of A. Since all
these three operations preserve equations, an equation ε is satisfied in A iff it
is satisfied in every Ai (i ∈ I).

Given a class K of algebras, we denote by KSI the class of its subdirectly
irreducible members. By all the above, we conclude:

Corollary 3.14. For every variety V and every set E ∪ {ε} of equations,

E |=V ε ⇐⇒ E |=VSI
ε.

Proof. The (⇒) direction is obvious. For the converse direction, observe that
any A ∈ V admits a subdirect representation A →֒

∏
i∈I Ai with each Ai ∈ VSI .

We have E |=A ε since even infinitary quasiequations, namely infinitary clauses
with exactly one disjunct in the conclusion, are preserved under subalgebras
and products.

The following lemma proved in [19] shows that subdirect representation in-
deed provides us with a way to decompose a disjunction α∇β and to reason
about it locally.

Lemma 3.15. Let A be a subdirectly irreducible FL-algebra and a, b ∈ A. Then
1 ≤ a∇b if and only if 1 ≤ a or 1 ≤ b.

Here ♭a denotes the set of elements obtained by applying an iterated conju-
gate operator to a, and a∇b := ♭a ∨ ♭b = {a′ ∨ b′ : a′ ∈ ♭a, b′ ∈ ♭b} as before.
Expression 1 ≤ a∇b means that 1 ≤ c holds for every c ∈ a∇b.

Proof. (⇐) Follows by noticing that 1 ≤ a implies 1 ≤ λc(a) and 1 ≤ ρc(a) for
every c ∈ A. (⇒) Assume by contradiction that 1 ≤ a∇b holds for 1 6≤ a and
1 6≤ b. We then obtain two congruences θa and θb respectively generated by
(1, 1 ∧ a) and (1, 1 ∧ b) in A2. θa and θb are different from △ since 1 6= 1 ∧ a
and 1 6= 1 ∧ b. It is enough to show that θa ∩ θb = △, since by Lemma 3.12 it
implies:

A = A/△ →֒ A/θa ×A/θb,
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contradicting the subdirect irreducibility of A.
We may think of each element of A as a propositional variable and of formulas

as built from the variables in A. The identity map f(c) := c then gives rise to a
canonical valuation into A. The formula set F(A) := {α ∈ Fm : A, f |= 1 ≤ α}
completely describes the structure of A in the sense that F(A) ⊢FL c ↔ d holds
iff c = d. Now suppose that (c, d) ∈ θa ∩ θb. We then obtain:

F(A), a ⊢FL c ↔ d and F(A), b ⊢FL c ↔ d

where a, b, c, d are considered to be formulas, since adding a to F(A) means
that we consider the logical consequences of 1 ≤ a, namely 1 = 1 ∧ a, in A.

But then F(A), a∇b ⊢FL c ↔ d follows by Corollary 3.4, and we obtain
F(A) ⊢FL c ↔ d because a∇b ⊆ F(A). Hence c = d and we conclude that
θa ∩ θb = △.

3.5. Equivalence between axioms and structural rules

Any set R of structural rules defines a substructural logic by

L(R) := {α ∈ Fm : ⊢HFL(R) α}

However, a little care is needed since it is not always the case that one can
recover the derivability relation ⊢HFL(R) from the logic L(R).

For instance, consider the hypersequent version of the rule discussed in [14],
i.e.

Ξ | ⇒

Ξ | Γ,Γ ⇒
(abn)

.

Observe that L(abn) := L({(abn)}) = FL (because the rule (abn) is unusable
when proving a formula without any assumption), whereas

0 ⊢HFL(abn) pp → 0, 0 6⊢FL pp → 0

for any propositional variable p. Accordingly, it was pointed out in [14] that
(the sequent version of) (abn) is not equivalent to any axiom. Since our central
task is to find a set of structural rules equivalent to a given axiom, we will not
consider such “abnormal” rules.

Definition 3.16. A set R of structural rules is normal if

F ⊢HFL(R) α ⇐⇒ F ⊢L(R) α

for every set F ∪ {α} of formulas.

Recall that F ⊢L(R) α just means F ∪L(R) ⊢FL α. The ⇐ direction always
holds since ⊢HFL(R) α for every α ∈ L(R). On the other hand, we have seen
that 0 ⊢HFL(abn) pp → 0 but not 0 ⊢L(abn) pp → 0.

There is an alternative way to define normality.

Lemma 3.17. A set R of structural rules is normal if and only if FL(R)SI =
FL(L(R))SI .
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Proof. (⇒) We always have FL(R) ⊆ FL(L(R)). Conversely, let A ∈ FL(L(R))SI

and
Ξ | Θ1 · · · Ξ | Θm

Ξ | Θm+1 | · · · | Θn

(r)

be (an instance of) a structural rule in R. Let F := {Θ♭
1, . . . ,Θ

♭
m} and G :=

Θ♭
m+1∇· · ·∇Θ♭

n. We have F ⊢HFL(R) G by Lemma 3.7. Hence by normality
F ⊢L(R) G, so F |=A G by Theorem 2.3. Since A is subdirectly irreducible, we
have {Θ1, . . . ,Θm} |=A Θm+1 | · · · | Θn, that is, A satisfies (r).

(⇐) Assume F ⊢HFL(R) α for a set F ∪ {α} of formulas. We then have
F |=FL(R)SI

α by Lemma 3.11, so F |=FL(L(R))SI
α. By Corollary 3.14 and

Theorem 2.3, we conclude F ⊢L(R) α.

We are now ready to state the fundamental relationship among the main
consequence relations ⊢HFL(R), ⊢L(R), |=FL(R), |=FL(R)SI

and |=FL(L(R)).

Theorem 3.18. Let R be a normal set of structural rules, H a set of hyperse-
quents and Θ a sequent. The following are equivalent:

1. H ⊢HFL(R) Θ.

2. H |=FL(R) Θ.

3. H |=FL(R)SI
Θ.

4. H♭ |=FL(L(R)) Θ♭.

5. H♭ ⊢L(R) Θ♭.

Proof. (1 ⇒ 2) By Lemma 3.11.
(2 ⇒ 3) Trivial.
(3 ⇒ 4) By Lemma 3.17 we have H |=FL(L(R))SI

Θ, so H♭ |=FL(L(R))SI
Θ♭

by Lemma 3.15, that implies H♭ |=FL(L(R)) Θ♭ by Corollary 3.14, noting that

FL(L(R)) is a variety and H♭ ∪ {Θ♭} is a set of formulas.
(4 ⇒ 5) By Theorem 2.3.
(5 ⇒ 1) By Lemma 3.7.

There are various candidates for the definition of equivalence between ax-
ioms and structural rules. The previous theorem implies that some of them do
coincide.

Corollary 3.19. Let R be a set of structural rules and E a set of axioms. The
following are equivalent:

1. F ⊢HFL(R) α ⇐⇒ F ⊢L(E) α for every set F ∪ {α} of formulas.

2. H ⊢HFL(R) Θ ⇐⇒ H♭ ⊢L(E) Θ♭ for every set H of hypersequents and
every sequent Θ.

3. FL(R)SI = FL(E)SI and R is normal.

4. L(R) = L(E) and R is normal.
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Proof. (1 ⇒ 4) Obviously L(R) = L(E). Normality follows since F ⊢HFL(R) α
iff F ⊢L(E) α iff F ⊢L(R) α.
(4 ⇒ 3) By Lemma 3.17, noting that FL(L(E)) = FL(E).
(3 ⇒ 2) By Theorem 3.18, H ⊢HFL(R) Θ iff H |=FL(R)SI

Θ iff H |=FL(E)SI
Θ iff

H♭ |=FL(E) Θ♭ iff H♭ ⊢L(E) Θ♭.
(2 ⇒ 1) Immediate.

On the basis of this corollary, it is reasonable to say that E and R are
equivalent if either of the above conditions holds. This naturally induces an
equivalence between two normal sets R,R′ of structural rules: R and R′ are
equivalent if FL(R)SI = FL(R′)SI .

4. From P♭

3
axioms to structural rules

Having established the right notion of equivalence between axioms and struc-
tural hypersequent rules, we generalize the argument in [14] and show how to
transform a large class of axioms into such rules.

In Section 4.1 we identify the class P♭
3 of equations/axioms in the substruc-

tural hierarchy that can be dealt with by the techniques developed so far, and
then define a procedure that transforms each P♭

3 equation into a set of structural
clauses (Section 4.2). The clauses we obtain are further transformed into what
we call analytic clauses, under the additional assumption of acyclicity (Section
4.3). We finally turn to the proof-theoretic side and define a canonical trans-
lation of structural clauses into structural rules in the hypersequent calculus
(Section 4.4). All together we obtain an algorithm that transforms any given
acyclic P♭

3 axiom into structural hypersequent rules that will be shown in Section
6 to preserve strong analyticity when added to HFL.

4.1. The Class P♭
3

As shown in the previous section, it is not the internal lattice disjunction
t∨u but the external one t∇u (i.e., ♭t∨ ♭u) that can be dealt with by the hyper-
sequent calculus or by the subdirect representation. For this reason we consider
a slight modification of the class P3 of the substructural hierarchy (Definition
2.6). Informally, the new class, denoted by P♭

3, is obtained by replacing the
outermost t∨u with t∇u. Hereafter we treat ♭t as if it were a single term (even
though it actually denotes a set of terms).

Definition 4.1 ([13]). For each n ≥ 0, we denote by P♭
n+1 the set of terms

generated from {♭t : t ∈ Nn} by finite joins and products. More precisely:

• If t ∈ Nn, then ♭t ∈ P♭
n+1.

• 1,⊥ ∈ P♭
n+1.

• If t, u ∈ P♭
n+1, then t ∨ u, t · u ∈ P♭

n+1.
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We say that an equation 1 ≤ t belongs to P♭
n if t does2.

Remark 4.2. P♭
n ⊆ Pn for n ≥ 3 in the commutative case (recall that in this

case we identify ♭t with t ∧ 1 and P♭
n coincides with the class P ′

n of [12]), and
P♭
n = Pn in the commutative and integral case.

4.2. From P♭
3 equations to structural clauses

We show how to transform P♭
3 equations into structural clauses. The proce-

dure is an extension of the one in [14], which applies to N2 equations; see also
[13] for P3 equations in the commutative and integral case3.

For the purpose of this section, it is convenient to express a clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un (q)

as a pair P =⇒ C of sets of equations, where P = {t1 ≤ u1, . . . , tm ≤ um}
and C = {tm+1 ≤ um+1, . . . , tn ≤ un}. Thus P =⇒ C means that, under
each particular valuation, if all of the equations in P hold, then some of the
equations in C hold.

The following easy observation, often referred to as Ackermann’s lemma [18],
is indeed the key of the transformation in [12, 13, 14].

Lemma 4.3. Every clause P =⇒ C ∪ {t ≤ u} is equivalent to each of the
following:

P ∪ {x ≤ t} =⇒ C ∪ {x ≤ u},
P ∪ {u ≤ x} =⇒ C ∪ {t ≤ x},

where x is a fresh variable not occurring in any of the equations in P ∪C ∪{t ≤
u}.

Proof. Follows by the transitivity of ≤ and the instantiation of x with a suitable
term (t or u).

The next two lemmas pertain to the treatment of products in P♭
3 equations.

Lemma 4.4. Let t(x) be a term in the language {∨, ·, 1,⊥} which contains at
most one occurrence of x. Let A be an FL-algebra and f a valuation into A

such that f(w) ≤ 1 for every variable w. Then, for every pair of variables y, z,

A, f |= t(y) · t(z) ≤ t(y · z) ≤ t(y) ∧ t(z).

Proof. The second inequality is due to the monotonicity of t(x). The first in-
equality is proved by induction on the structure of t(x). The crucial case is
when t(x) = t1(x) ∨ t2, where we need to verify

A, f |= (t1(y) ∨ t2) · (t1(z) ∨ t2) ≤ t1(y · z) ∨ t2.

2It follows from the lemmas below that the set of terms generated from {t∧ 1 : t ∈ Nn} by
finite products and ∇’s could have served as an alternative definition of P♭

n+1
, in the sense

that we obtain the same equations 1 ≤ t, up to equivalence of sets of equations.
3The page https://www.logic.at/tinc/webaxiomcalc/ contains an implementation of the

procedure.
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This follows from the induction hypothesis and the fact that t1(y), t1(z) and t2
are all below 1 when interpreted by f .

Lemma 4.5. Let t(x) be a term that is generated from {♭u : u ∈ Nn} ∪ {x} by
finite joins and products and that contains at most one occurrence of x. Let A
be an FL-algebra, then

A |= 1 ≤ t(♭u · ♭v) ⇐⇒ A |= 1 ≤ t(♭u) and 1 ≤ t(♭v).

Proof. Let f be a valuation. Then f(u′) ≤ 1 for every iterated conjugate u′ ∈ ♭u.
Hence the claim follows from the previous lemma.

Our transformation procedure consists of four steps.

STEP 1

Let ε be a P♭
3 equation. By Lemma 2.7 we can assume that it has the form

1 ≤
∨∏

♭sij with sij ∈ N2; here
∨

denotes a finite join and
∏

a finite product.
By repeatedly applying Lemma 4.5, we may remove all products. As a result,

we obtain a set of equations of the form 1 ≤ ♭t1 ∨ · · · ∨ ♭tn with each ti ∈ N2.
We replace each such equation with a disjunctive clause

1 ≤ t1 or · · · or 1 ≤ tn.

It is equivalent to 1 ≤ ♭t1 ∨ · · · ∨ ♭tn over FLSI by Lemma 3.15.

Example 4.6. The noncommutative version of the weak nilpotent minimum
axiom

1 ≤ ¬(xy)∇((x ∧ y)\(xy))

is equivalent to the disjunctive clause

1 ≤ ¬(xy) or 1 ≤ (x ∧ y)\(xy). (wnm1)

STEP 2

By Lemma 2.7, each N2 term t is equivalent to
∧

1≤i≤m li\ui/ri where ui

is either 0 or a P1 term and li, ri are products of N1 terms. Hence given a
disjunctive clause C ∪ {1 ≤ t} (expressed as a set), we may replace it with the
following set of disjunctive clauses:

C ∪ {l1r1 ≤ u1}, · · · , C ∪ {lmrm ≤ um}.

By repeating this argument we end up with a set C of disjunctive clauses such
that each C ∈ C consists of two types of equations:

t1 · · · tn ≤ 0, t1 · · · tn ≤ u,

where t1, . . . , tn are N1 terms and u is a P1 term.

Example 4.7. (wnm1) is equivalent to

xy ≤ 0 or x ∧ y ≤ xy. (wnm2)
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STEP 3

Now let us focus on each disjunctive clause ∅ =⇒ C0 and transform it step-
by-step as follows. Given a clause P =⇒ C ∪ {t1 · · · tn ≤ 0}, we replace it
with

P ∪ {x1 ≤ t1, . . . , xn ≤ tn} =⇒ C ∪ {x1 . . . xn ≤ 0}

where x1, . . . , xn are distinct fresh variables. Likewise, given a clause P =⇒
C ∪ {t1 · · · tn ≤ u}, we replace it with

P ∪ {x1 ≤ t1, . . . , xn ≤ tn, u ≤ y} =⇒ C ∪ {x1 . . . xn ≤ y}

where x1, . . . , xn, y are distinct fresh variables. The resulting clause is equivalent
to the original one by Lemma 4.3.

By repetition, we obtain a clause P =⇒ C where P consists of equations
of the form x ≤ t (with t ∈ N1) or u ≤ y (with u ∈ P1), and C consists of
structural equations (of the form x1 · · ·xn ≤ 0 or x1 · · ·xn ≤ y).

Example 4.8. (wnm2) is equivalent to

z1 ≤ x and z2 ≤ y and z3 ≤ x ∧ y and xy ≤ z4 =⇒ z1z2 ≤ 0 or z3 ≤ z4.
(wnm3)

STEP 4

We further transform the premise set to obtain a fully structural clause.
By Lemma 2.7, each N1 term t is equivalent to

∧
1≤i≤m li\ui/ri where ui is

either 0 or a variable and li, ri are products of variables. Hence we may replace
a clause P ∪ {x ≤ t} =⇒ C with

P ∪ {l1xr1 ≤ u1, · · · , lmxrm ≤ um} =⇒ C.

Likewise, any equation of the form u ≤ y (with u ∈ P1) in the premise set can
be replaced by a set of structural equations.

Example 4.9. (wnm3) is equivalent to

z1 ≤ x and z2 ≤ y and z3 ≤ x and z3 ≤ y and xy ≤ z4 =⇒ z1z2 ≤ 0 or z3 ≤ z4.
(wnm4)

It is clear that the resulting set of structural clauses is normal. To see this,
think of equations as formulas and clauses as rules. If a step transforms R into
R′, then

F ⊢HFL(R) α ⇐⇒ F ⊢HFL(R′) α

holds for every set F ∪ {α} of formulas (not hypersequents). We have thus
established:

Theorem 4.10. Every equation in P♭
3 is equivalent to a finite set of structural

clauses.
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4.3. From structural clauses to analytic clauses

Our transformation procedure is not yet complete. In particular, the premises
of the clauses obtained so far may contain variables that do not appear in the
conclusion, so their translation into structural (hypersequent) rules would lead
to rules that do not enjoy the subformula property. As shown in this section
all structural clauses satisfying the acyclicity condition, defined below, can be
transformed into analytic clauses, that do enjoy the subformula property.

Definition 4.11. Given a structural clause (q)

P =⇒ C

we build its dependency graph D(q) in the following way:

• The vertices of D(q) are the variables occurring in P (we do not distinguish
occurrences).

• There is a directed edge x −→ y in D(q) if and only if there is a premise
of the form lxr ≤ y in P .

A clause (q) is said to be acyclic if the graph D(q) is acyclic (no directed cycles
or loops). A P♭

3 equation ε is said to be acyclic if applying the above procedure
to ε results in a set of acyclic clauses.

Acyclicity is a sufficient condition to transform a given structural clause into
an analytic one.

Definition 4.12. Given a structural clause (q) : P =⇒ C with P = {t1 ≤
u1, . . . , tm ≤ um} and C = {tm+1 ≤ um+1, . . . , tn ≤ un}, we call the variables
occurring in tm+1, . . . , tn left variables, and those in um+1, . . . , un right vari-
ables. The set of left (resp. right) variables is denoted by L(q) (resp. R(q)). (q)
is said to be analytic if it satisfies the following conditions4:

Linearity Each x ∈ L(q) ∪R(q) occurs exactly once in tm+1, um+1, . . . , tn, un.

Inclusion Each of t1, . . . , tm is a product of variables in L(q) (here repetition
is allowed), while each of u1, . . . , um is either 0 or a variable in R(q).

Let us describe the remaining steps of the transformation procedure.

STEP 5

Suppose that an acyclic clause (q) is given. It is easy to transform (q) into
another one which satisfies linearity, while preserving acyclicity. Indeed, we
may apply Step 3 to all conclusions, so that all variables in the conclusions are
replaced with fresh distinct variables. Incidentally, this results in a structural
clause, which we still call (q), satisfying the additional property:

4The linearity condition formulated below subsumes what we called the separation condi-
tion in [14].
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Exclusion None of variables in L(q) appear in u1, . . . , um, and none of variables
in R(q) appear in t1, . . . , tm.

Hence all what we have to do is to eliminate the redundant variables, namely
those occurring in the premises that do not occur in the conclusions.

Example 4.13. (wnm4) already satisfies linearity and exclusion, hence there
is no need to apply Step 5. The redundant variables are x and y.

STEP 6

Let x be a redundant variable of (q) : P =⇒ C. There are three cases.

• x occurs only on the right-hand sides of premises. Then there is a set
I ⊆ {1, . . . ,m} and (q) can be written as

{ti ≤ x : i ∈ I} ∪ P ′ =⇒ C,

so that x does not occur in P ′ ∪ C. We claim that (q) is equivalent to
(q′) : P ′ =⇒ C. Indeed, (q′) implies (q) since P ′ ⊆ P . Conversely, (q)
implies (q′) since by instantiating x with

∨
i∈I ti, the premises {ti ≤ x :

i ∈ I} trivially hold, while it does not affect P ′ and C.

• x occurs only on the left hand sides of premises. Then there is a set
J ⊆ {1, . . . ,m} and (q) can be written as

{ljxrj ≤ uj : j ∈ J} ∪ P ′ =⇒ C,

so that x does not occur in P ′ ∪ C. It may occur in lj and rj , but this
causes no problem. As before, (q) is equivalent to P ′ =⇒ C. This time
the relevant instantiation is σ(x) :=

∧
j∈J(lj\uj/rj) ∧ x. We then have

σ(ljxrj) = σ(lj)σ(x)σ(rj) ≤ lj(lj\uj/rj)rj ≤ uj = σ(uj),

so the instantiation makes the premises {ljxrj ≤ uj : j ∈ J} trivial.

• x occurs both on the left and right hand sides. Then there are I, J ⊆
{1, . . . ,m} such that (q) is

{ti ≤ x : i ∈ I} ∪ {sj(x, . . . , x) ≤ uj : j ∈ J} ∪ P ′ =⇒ C,

so that x does not occur in P ′ ∪C and all occurrences of x are indicated.
By acyclicity I and J are disjoint. Let PIJ be the set

{sj(tk1
, . . . , tkl

) ≤ uj : j ∈ J, k1, . . . , kl ∈ I}.

We claim that (q) is equivalent to PIJ ∪ P ′ =⇒ C. Indeed, the latter
implies (q) since P implies PIJ ∪ P ′ by transitivity. Conversely, by in-
stantiation σ(x) :=

∨
i∈I ti each ti ≤ x (i ∈ I) trivially holds, and each

sj(x, . . . , x) ≤ uj follows from PIJ . Indeed, we have sj(tk1
, . . . , tkl

) ≤ uj

in PIJ for all k1, . . . , kl ∈ I, so sj(σ(x), . . . , σ(x)) ≤ uj .
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Observe that acyclicity and exclusion are preserved by the above transforma-
tions. Hence by repetition, we can remove all redundant variables, and the
resulting clause satisfies inclusion.

Example 4.14. (wnm4) is equivalent to

z1z2 ≤ z4 and z1z3 ≤ z4 and z3z2 ≤ z4 and z3z3 ≤ z4 =⇒ z1z2 ≤ 0 or z3 ≤ z4.
(wnm6)

Theorem 4.15. Every acyclic structural clause is equivalent to an analytic
one. The same holds for an arbitrary structural clause in presence of integrality
x ≤ 1.

Proof. The first claim has just been verified. For the second claim, let (q) :
P =⇒ C be any structural clause. Step 5 works as before, so that we may
suppose that (q) satisfies linearity and exclusion. For Step 6, there may be a
redundant variable that occur both on the left and right hand sides of the same
equation. Namely, P may contain lxr ≤ x. Since such equation trivially holds
by integrality, it may be ignored.

4.4. From structural clauses to structural rules

We now turn to proof theory and show how to transform structural clauses
into structural hypersequent rules. This, in combination with the algorithm
outlined in the previous section, leads to a procedure for transforming each
acyclic P♭

3 axiom into analytic rules. These rules will be shown in Section 6 to
preserve strong analyticity when added to the hypersequent calculus HFL.

Recall that we identify a formula α with the equation 1 ≤ α. This allows
us to define the set of acyclic P♭

3 formulas in an obvious way. Acyclic formulas
can be transformed into analytic clauses as described above; the latter are fur-
ther transformed into structural hypersequent rules. This is done by carefully
associating suitable metavariables to each variable in the clause.

Definition 4.16. Let

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un (q)

be an analytic clause. We define a structural rule (q◦) corresponding to (q)
as follows. Let L(q) = {x1, . . . , xk} and R(q) = {y1, . . . , yl}. By the linearity
condition L(q) and R(q) are disjoint. Let Σ1, . . . ,Σk, Γ1, . . . ,Γl, ∆1, . . . ,∆l be
distinct metavariables for formula sequences, and Π1, . . . ,Πl distinct metavari-
ables for stoups. We associate to each equation tp ≤ up (1 ≤ p ≤ n) a sequent
Θp as follows.

xi1 · · ·xiq ≤ yj 7→ Γj ,Σi1 , . . . ,Σiq ,∆j ⇒ Πj

xi1 · · ·xiq ≤ 0 7→ Σi1 , . . . ,Σiq ⇒

The rule (q◦) is defined to be

Ξ | Θ1 · · · Ξ | Θm

Ξ | Θm+1 | · · · | Θn

(q◦)
.

We call a structural rule obtained in this way analytic.
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Notice that to each right variable yj we associate a triple (Γj ,∆j ,Πj) of
metavariables. This is important for obtaining a structural rule preserving cut-
admissibility (see [16]).

Theorem 4.17. Every acyclic structural rule is equivalent to an analytic struc-
tural rule. The same holds for an arbitrary structural rule in presence of left
weakening α → 1.

Example 4.18. From (wnm6) we obtain the analytic rule

Ξ | Γ,Σ1,Σ2,∆ ⇒ Π Ξ | Γ,Σ3,Σ2,∆ ⇒ Π
Ξ | Γ,Σ1,Σ3,∆ ⇒ Π Ξ | Γ,Σ3,Σ3,∆ ⇒ Π

Ξ | Σ1,Σ2 ⇒ | Γ,Σ3,∆ ⇒ Π
(wnm)

Below are further examples of equivalent axioms and rules (see Figure 4 for
the latter):

α∇¬α ⇔ (em)
¬α∇¬¬α ⇔ (lq)
(α → β)∇(β → α) ⇔ (com)
α0∇(α0 → α1)∇ . . .∇(α0 ∧ · · · ∧ αk−1 → αk) ⇔ (Bck)
(α0 →

∨
0 6=j αj)∇ . . .∇(αk →

∨
k 6=j αj) ⇔ (Bwk)

Remark 4.19. The above correspondence does not apply, in general, between
single formulas and rules. Consider, for example, the formula (α\β) ∨ (β\α).
This formula might be of interest because in the commutative and integral
case (α→ β) ∨ (β → α) axiomatizes precisely the semilinear residuated lattices,
namely the variety generated by linear (commutative and integral) residuated
lattices. However, the variety generated by linear (not-necessarily-commutative)
residuated lattices is not axiomatized by (α\β) ∨ (β\α); it is axiomatized by
(α\β)∇(β\α). Our analysis captures this in a native way by identifying the
hypersequent (α ⇒ β)|(β ⇒ α) as the correct axiom for the hypersequent
calculus and also presents the step-by-step transformation it should undergo
in order to give rise to the communication rule (com), the addition of which
preserves the cut-elimination property.

5. Residuated hyperframes

As shown in [14], proving that a substructural logic defined by N2 axioms
admits a strongly analytic sequent calculus is essentially the same as proving
that the corresponding variety is closed under MacNeille completions. The
common essence between these two notions (one proof theoretic and the other
algebraic) is captured by the residuated frames of [20]. These come with a
construction of a complete FL-algebra and a (quasi)embedding into it, but in
our case they also provide a key insight into the fact that analytic quasiequations
are preserved by this dual (complete) algebra construction.
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In this section we introduce the tools needed to extend the above success
story to the richer framework of hypersequents, P♭

3 axioms, and a new algebraic
completion which we call hyper-MacNeille completion. To do that we begin
by extending residuated frames to residuated hyperframes and developing the
necessary machinery.

In detail, we review the basics of residuated frames in Section 5.1 and define
the residuated hyperframes in Section 5.2. In Section 5.3 we introduce two ways
of defining validity of a structural clause in a residuated hyperframe (pointwise
validity and setwise validity) and show that they coincide for analytic clauses,
thus allowing for proving the persistence of the validity of equations through
the algebraic completion. Finally in Section 5.4 we provide a set of conditions,
called Gentzen rules, ensuring the existence of a (quasi)homomorphism used for
the proof of both strong analyticity and the algebraic completion.

5.1. Preliminaries on residuated frames

Introduced in [20, 14], residuated frames consist of two sets W and W ′, a
binary operation ◦ on W and a binary relation N between W and W ′. We
explain the motivations behind these ingredients by mentioning connections to
proof-theory, relational semantics and algebra.

The sets W and W ′. Under a proof-theoretic interpretation W is the set of all
left-hand sides of sequents and W ′ is the set of right-hand sides. Algebraically
speaking, W corresponds to the set of join-irreducible and W ′ to the set of
meet-irreducible elements of a (finite) non-distributive lattice. In relation to
the latter, note that (finite) distributive lattices are determined simply by the
set of their join-irreducible elements, which corresponds to the set W of possible
worlds in the setting, say, of Kripke frames for intuitionistic logic. However, for
non-distributive logics, including FL, the description of the algebraic models
requires also a second set W ′ of meet-irreducible elements, hence the need for
extensions of Kripke-type frames to a setting with two sets of worlds W and
W ′. The two sets collapse5 for Kripke frames for distributive logics such as
intuitionistic and relevance logics.

The (functional) ternary relation ◦. According to the proof-theoretic inter-
pretation, W consists of all possible left-hand sides of sequents, and thus carries
a monoid structure under the comma separator and the empty sequence. We
thus stipulate in the definition of a residuated frame that W comes equipped
with a monoidal binary operation and unit constant, which we denote by ◦ and
ε, respectively. This also models the multiplication operation on an FL-algebra.
Even in Kripke frames of distributive logics, where W and W ′ are identified,
such as the ones for relevance logic, in order to capture the multiplication on the
dual algebra a ternary accessibility relation is needed on W . However, in the
simplified case of Kripke frames for intuitionistic logic the ternary accessibility
relation is hidden as part of the (binary) order accessibility relation. One then

5This corresponds to the algebraic fact that the posets of join and of meet-irreducibles are
isomorphic.
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uses the (unary) modality provided by the latter to modalize classical implica-
tion, which is coincidentally available in the ambient setting, and thus obtain
the desired intuitionistic (binary) implication (essentially along the Gödel trans-
lation of intuitionistic logic into S4). General residuated frames as defined in
[20] allow ◦ to be a ternary relation, but for our proof-theoretic applications
we can restrict to the case where this relation is functional, namely a binary
operation on W .

The relation N . Actually, the (binary) accessibility relation in Kripke frames
serves a second role in combination with the identification of W and W ′ (given
by the relation 6≥), namely that of providing a binary relation between W and
W ′, which we call N in the setting of residuated frames. Proof-theoretically
the relation N holds when the sequent formed by the two sides is provable, and
algebraically N is simply the ordering relation of the FL-algebra.

In all the three different (though connected) motivations and interpretations
of a residuated frame the binary relation N and the functional accessibility
relation (aka, monoid operation) ◦ turn out to be connected by the nuclearity
condition.

The above ingredients, stripped of their proof-theoretic, algebraic and duality-
theoretic intuitions, are abstracted and presented in the following definition.

Definition 5.1. A residuated frame is a structure W = (W,W ′, N, ◦, ε, ǫ),
where

• W and W ′ are sets and N is a binary relation between W and W ′,

• (W, ◦, ε) is a monoid, ǫ ∈ W ′, and

• for all x, y ∈ W and z ∈ W ′, there are elements xz and z�y in W ′ such
that

x ◦ y N z ⇐⇒ y N xz ⇐⇒ x N z�y.

We refer to the last property by saying that the relation N is nuclear.

Note that we have been typically using the symbol ε for a generic equation,
but hereafter we will use it for the monoid unit.

Residuated frames support a construction of a complete FL-algebra. Ac-
tually, it is well known that the (W,W ′, N) part of a residuated frame yields
a complete lattice along the following lines. We first define for X ⊆ W and
Z ⊆ W ′,

X⊲ := {z ∈ W ′ : ∀x ∈ X. x N z},

Z⊳ := {x ∈ W : ∀z ∈ Z. x N z},

and write x⊲ for {x}⊲ and z⊳ for {z}⊳. The pair (⊲,⊳) forms a Galois con-
nection

X ⊆ Z⊳ ⇐⇒ X⊲ ⊇ Z,

which induces a closure operator γ(X) = X⊲⊳ on the powerset P(W ). We say
that X ⊆ W is Galois-closed if X = γ(X), or equivalently if there is Z ⊆ W ′
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such that X = Z⊳. The set of Galois-closed sets is denoted by γ[P(W )]. Then
(γ[P(W )],∩,∪γ) is a complete lattice, where X ∪γ Y := γ(X ∪ Y ).

In the setting of a residuated frame W = (W,W ′, N, ◦, ε, ǫ), we extend this
construction by first defining for X,Y ⊆ W ,

X ◦ Y := {x ◦ y : x ∈ X, y ∈ Y }

and observing that the closure operator γ satisfies γ(X)◦γ(Y ) ⊆ γ(X ◦Y ). This
map is called a nucleus on P(W ), see [20]. We further define the dual algebra
of W by

W+ := (γ[P(W )],∩,∪γ , ◦γ , \, /, ε
⊲⊳, ǫ⊳),

where

X ◦γ Y := γ(X ◦ Y ),

X ∪γ Y := γ(X ∪ Y ),

X\Y := {y : ∀x ∈ X. xy ∈ Y },

Y/X := {y : ∀x ∈ X. yx ∈ Y }.

Lemma 5.2. If W is a residuated frame, then W+ is a complete FL-algebra.

Thus residuated frames provide a handy way of producing a complete alge-
bra. Below is a characteristic feature of W+.

Lemma 5.3. Let W be a residuated frame, X ⊆ W and Z ⊆ W ′:

γ(X) =
⋃

γ{x
⊲⊳ : x ∈ X}, Z⊳ =

⋂
{z⊳ : z ∈ Z}.

Example 5.4. Given an FL-algebra A = (A,∧,∨, ·, \, /, 1, 0), we define the
residuated frame WA := (A,A,≤, ·, 1, 0). Note that the nuclearity condition is
exactly the residuation condition of the algebra. Its dual algebra W+

A
together

with the embedding e(a) := a⊳ = a⊲⊳ is nothing but the MacNeille completion
of A (see Theorem 2.5). Indeed, the join-density and meet-density are direct
consequences of Lemma 5.3, and the definition of (·, \, /) in W+ conforms to
Theorem 2.5.

Example 5.5. The second motivating example comes from proof theory and
the sequent calculus for FL. Define WFL := (W,W ′, N, ·, ε, ǫ) as follows:

• W is the set of formula sequences.

• W ′ is the set of contexts of the form (Γ, ,∆ ⇒ Π). If C = (Γ, ,∆ ⇒
Π) ∈ W ′, then C[Σ] denotes the sequent Γ,Σ,∆ ⇒ Π.

• Σ N C ⇐⇒ ⊢FL C[Σ].

• Γ ◦ ∆ := Γ,∆ (concatenation of sequences).

• ε := the empty sequence.
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• ǫ := ( ⇒ ).

Note that the naive definition of W ′ as the collection of all right-hand sides Π
would not allow for N to be nuclear. By contrast, under the above augmented
definition of W ′, N becomes nuclear for purely syntactical reasons:

Σ1 ◦ Σ2 N (Γ, ,∆ ⇒ Π) ⇐⇒ ⊢FL Γ,Σ1,Σ2,∆ ⇒ Π
⇐⇒ Σ2 N (Γ,Σ1, ,∆ ⇒ Π)
⇐⇒ Σ1 N (Γ, ,Σ2,∆ ⇒ Π).

The dual algebra W+
FL

together with the valuation e(α) := α⊲⊳ = α⊳ leads to
the completeness theorem:

|=FL α =⇒ W+
FL

, e |= 1 ≤ α =⇒ ε ∈ α⊳ =⇒ ⊢FL α.

Finally, by replacing ⊢FL above with ⊢cf
FL

(the cut-free derivability relation)

we obtain a residuated frame W
cf
FL

. Although α⊲⊳ = α⊳ is not ensured a

priori, the dual algebra (Wcf
FL

)+ is nevertheless useful for an algebraic proof of
cut-admissibility (cf. [20]):

⊢FL α =⇒ |=FL α =⇒ ε ∈ α⊳ =⇒ ⊢cf
FL

α.

Remark 5.6. We may write x⇀z for (x, z) ∈ W ×W ′. Then N can be viewed
as the collection of “valid sequents.” The perspective that N selects some valid
objects, rather than linking two elements, will be useful in the definition of a
residuated hyperframe that follows.

5.2. Residuated hyperframes

As illustrated by Example 5.5, residuated frames are intimately connected
with sequents; to capture hypersequents we define below residuated hyper-
frames. Residuated hyperframes also have a double motivation. In the setting
of proof-theory they reflect the structure of hypersequents, just as residuated
frames reflect the structure of sequents. In the algebraic setting they reflect the
behavior of ∇.

Given a set X, we write X∗ for the free commutative monoid (X∗, | , ∅)
generated by X; notice that here we use symbol | for the multiplication.

Definition 5.7. A residuated hyperframe is a structure of the form H =
(W,W ′,, ◦, ε, ǫ), where

• W and W ′ are sets and  ⊆ H, where H := (W ×W ′)∗. We write x⇀y
for (x, y) ∈ W ×W ′ and  h when h ∈  holds.

• (W, ◦, ε) is a monoid and ǫ ∈ W ′.

• For all x, y ∈ W and z ∈ W ′ there exist elements xz, z�y ∈ W ′ such
that for any h ∈ H,

 h | x ◦ y⇀z ⇐⇒  h | y⇀xz ⇐⇒  h | x⇀z�y.

33



•  h implies  h | g for any h, g ∈ H.

•  h | g | g implies  h | g for any h, g ∈ H.

Each element h of H is of the form x1⇀y1 | · · · | xn⇀yn. This is obviously
an analogue of a hypersequent, where each component xi ⇀ yi ∈ W × W ′

corresponds to a sequent. Also, the last two rules are frame analogues of the
external structural rules (EW ), (EC).

Example 5.8. Given an FL-algebra A = (A,∧,∨, ·, \, /, 1, 0), we construct a
residuated hyperframe HA := (A,A,, ·, 1, 0), where  is defined by:

 x1⇀y1| . . . |xn⇀yn ⇐⇒ 1 ≤ (x1\y1)∇· · ·∇(xn\yn).

This is a natural construction, since in the case when A is subdirectly irre-
ducible, we have:

 x1⇀y1| . . . |xn⇀yn ⇐⇒ x1 ≤ y1 or · · · or xn ≤ yn. (2)

More generally, let A →֒
∏

i∈I Ai be a subdirect representation with canonical
projections ei : A −→ Ai (i ∈ I). Then,

 x1⇀y1| . . . |xn⇀yn ⇐⇒ ∀i ∈ I. ei(x1) ≤ ei(y1) or · · · or ei(xn) ≤ ei(yn).

Example 5.9. For another example, we may build HFL := (W,W ′,, ◦, ε, ǫ),
which is the same as WFL except that  is defined by:

 Σ1⇀C1 | . . . | Σn⇀Cn ⇐⇒ ⊢HFL C1[Σ1] | · · · | Cn[Σn].

By replacing ⊢HFL with ⊢cf
HFL

(the cut-free derivability relation) as before,

we obtain a residuated hyperframe H
cf
FL

.

The above examples reveal that the notion of residuated hyperframe is ap-
plicable to both algebra and proof theory, as was the notion of residuated frame.
However, the success of residuated frames in Algebraic Proof Theory comes from
the ability to construct an algebraic model, the dual algebra, and we wish to do
the same starting from a residuated hyperframe.

We first observe that residuated hyperframes can be considered as a special
class of residuated frames. Given a residuated hyperframe H = (W,W ′,
, ◦, ε, ǫ), we obtain a residuated frame r(H) := (HW,HW ′, N, ◦, (∅; ε), (∅; ǫ)),
where H := (W ×W ′)∗, HW := H ×W , HW ′ := H ×W ′ and

(hx; x) ◦ (hy; y) = (hx|hy; x ◦ y),
(hx; x)(hz; z) = (hx|hz; xz),
(hz; z)�(hx; x) = (hz|hx; z�x),

(hx; x) N (hz; z) ⇐⇒  hx | hz | x⇀z.

The nuclearity of N can be easily verified. Hence each residuated hyperframe
H = (W,W ′,, ◦, ε, ǫ) leads to a complete FL-algebra H+ := r(H)+, called the
dual algebra of H, by Lemma 5.2.
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For the later purpose, let us give a more concrete description to the dual
algebra. Given X,Y ⊆ HW and Z ⊆ HW ′, we have

X⊲ = {(hz; z) ∈ HW ′ : ∀(hx; x) ∈ X.  hx | hz | x⇀z},
Z⊳ = {(hx; x) ∈ HW : ∀(hz; z) ∈ Z.  hx | hz | x⇀z}.

As before, the pair (⊲,⊳) forms a Galois connection, and induces a nucleus
γ(X) := X⊲⊳ on P(HW ). The dual algebra H+ has the following structure:

H+ = (γ[P(HW )],∩,∪γ , ◦γ , \, /, (∅; ε)⊲⊳, (∅; ǫ)⊳),

where

X ◦ Y = {(hx|hy; x ◦ y) : (hx; x) ∈ X, (hy; y) ∈ Y },
X\Y = {(hy; y) : ∀(hx; x) ∈ X. (hx|hy; x ◦ y) ∈ Y },
Y/X = {(hy; y) : ∀(hx; x) ∈ X. (hy|hx; y ◦ x) ∈ Y }.

The need for such complicated definition will be justified below in the proof of
preservation of structural clauses by the construction of the dual algebra, which
in turn can be derived by a link between a pointwise and a setwise interpretation
of a structural clause in a residuated hyperframe (Theorem 5.15).

The starting point for the latter is an interesting fact on residuated hyper-
frames that the hypersequent structure  x1 ⇀y1 | · · · | xn ⇀yn defined on
points of W,W ′ propagates to a higher level structure defined on Galois-closed
sets. Given X,Y ⊆ HW and G1, G2 ⊆ H, we define:

X⇀Y = {hx|hy|x⇀y : (hx; x) ∈ X, (hy; y) ∈ Y ⊲} ⊆ H,
X⇀∅ = {h|x⇀ǫ : (h; x) ∈ X} ⊆ H,

G1 | G2 = {h1|h2 : h1 ∈ G1, h2 ∈ G2} ⊆ H,
 G1 ⇐⇒  h for every h ∈ G1.

The following lemma plays a fundamental role, connecting the higher level
hypersequent structure with the FL-algebra structure H+.

Lemma 5.10. For every Galois-closed sets X,Y ⊆ HW and G ⊆ H,

 G | X⇀Y ⇐⇒ G× {ε} ⊆ X\Y ⇐⇒ G× {ε} ⊆ Y/X
 G | X⇀∅ ⇐⇒ G× {ε} ⊆ X\(∅; ǫ)⊳ ⇐⇒ G× {ε} ⊆ (∅; ǫ)⊳/X.

Hence  X⇀Y ⇐⇒  {∅} | X⇀Y ⇐⇒ (∅; ε) ∈ X\Y ⇐⇒ X ⊆ Y . Also,
 X⇀∅ ⇐⇒ X ⊆ (∅; ǫ)⊳.

Proof. Suppose  G | X⇀Y . Then for every g ∈ G, (hx; x) ∈ X and (hy; y) ∈
Y ⊲ we have  g | hx | hy | x⇀ y. Since it holds for every (hy; y) ∈ Y ⊲, we
have (g|hx; x) ∈ Y ⊲⊳ = Y . Since it holds for every (hx; x) ∈ X, we obtain
(g; ε) ∈ X\Y, Y/X. The converse direction is similar.

This leads to a soundness theorem for the higher level hypersequent struc-
ture, which is completely different from Lemma 3.11. Recall that a valuation f
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into H+ assigns to each propositional variable p a Galois-closed set f(p) ⊆ HW .
This is homomorphically extended to all formulas, to all sequents and further
to all hypersequents:

f(α1, . . . , αn ⇒ β) := f(α1) ◦ · · · ◦ f(αn)⇀f(β),
f(α1, . . . , αn ⇒ ) := f(α1) ◦ · · · ◦ f(αn)⇀∅,
f(Θ1 | · · · | Θn) := f(Θ1) | · · · | f(Θn).

Notice that f(Ξ) ⊆ H for every hypersequent Ξ. We refer to the above as the
setwise interpretation of a hypersequent. A hypersequent Ξ is setwise satisfied
in a residuated hyperframe H under a valuation f if  f(Ξ). Below we will
show soundness with respect to this notion of satisfaction. Note that for a
sequent Θ = (Γ ⇒ β), Θ is setwise satisfied by (H, f) iff  f(Γ) ⇀ f(β) iff
(∅, ε) ∈ f(Γ)\f(β) iff f(Γ) ⊆ f(β) iff H+, f |= Θ. This establishes the second
statement of the following lemma.

Theorem 5.11 (Soundness). Let H be a residuated hyperframe, f a valuation
into H+ and H ∪ {Ξ0} a set of hypersequents. If H ⊢HFL Ξ0, then  f(Ξ) for
all Ξ ∈ H implies  f(Ξ0). In particular when Ξ0 is a sequent Θ0, we have
H+, f |= Θ0.

Proof. By induction on the length of the derivation of H ⊢HFL Ξ0. For instance,
consider the (∧r) rule

Ξ | Γ ⇒ α Ξ | Γ ⇒ β

Ξ | Γ ⇒ α ∧ β
(∧r)

and suppose that  f(Ξ | Γ ⇒ α) and  f(Ξ | Γ ⇒ β). By Lemma 5.10, we
have f(Ξ) × {ε} ⊆ f(Γ)\f(α) and f(Ξ) × {ε} ⊆ f(Γ)\f(β). Hence

f(Ξ) × {ε} ⊆ f(Γ)\(f(α) ∩ f(β)) = f(Γ)\f(α ∧ β).

Therefore  f(Ξ | Γ ⇒ α ∧ β) by Lemma 5.10 again.
The other right rules are treated similarly. For the left rules, an essential

observation is that the element Z := f(Ξ) × {ε} is central, in the sense that
X ◦ Z = Z ◦X holds for every X ⊆ HW .

Now, for the rule

Ξ | Γ, α,∆ ⇒ Π Ξ | Γ, β,∆ ⇒ Π

Ξ | Γ, α ∨ β,∆ ⇒ Π
(∨l)

we assume  f(Ξ | Γ, α,∆ ⇒ Π) and  f(Ξ | Γ, β,∆ ⇒ Π), which yield f(Ξ) ×
{ε} ⊆ (f(Γ) ◦ f(α) ◦ f(∆))\f(Π) and f(Ξ) × {ε} ⊆ (f(Γ) ◦ f(β) ◦ f(∆))\f(Π),
by Lemma 5.10. By letting X := f(Γ)\f(Π)/f(∆), Z := f(Ξ)×{ε} and taking
the centrality of Z into account, we obtain f(α) ⊆ Z\X and f(β) ⊆ Z\X,
so f(α ∨ β) ⊆ Z\X, hence Z ⊆ (f(Γ) ◦ f(α ∨ β) ◦ f(∆))\f(Π). Therefore
 f(Ξ | Γ, α ∨ β,∆ ⇒ Π).

36



For
Ξ | Σ ⇒ α Ξ | Γ, β,∆ ⇒ Π

Ξ | Γ,Σ, α\β,∆ ⇒ Π
(\l)

we assume  f(Ξ | Σ ⇒ α) and  f(Ξ | Γ, β,∆ ⇒ Π), namely Z ⊆ f(Σ)\f(α)
and Z ⊆ f(β)\X, where Z := f(Ξ) × {ε} and X := f(Γ)\f(Π)/f(∆). As
a consequence, we obtain Z ◦ Z ◦ f(Σ) ◦ f(α\β) ⊆ X, so Z ◦ Z ⊆ (f(Γ) ◦
f(Σ) ◦ f(α\β) ◦ f(∆))\f(Π). By noting that Z ◦ Z = f(Ξ | Ξ) × {ε}, we have
 f(Ξ | Ξ | Γ,Σ, α\β,∆ ⇒ Π), that implies  f(Ξ | Γ,Σ, α\β,∆ ⇒ Π).

5.3. Preservation of analytic clauses

Note that given a residuated hyperframe H there are two possible ways to
interpret hypersequents, namely as elements of H and as subsets of H, each with
an associated form coming from the operations we allow at each level. Thus,
corresponding to a typical atomic hypersequent of HFL of the form Γ1 ⇒
Π1 | · · · |Γn ⇒ Πn, where each Γi is a list of variables, and each Π is a variable
or empty, the general form of a point-hypersequent (or first-order hypersequent)
of H is x1 ⇀y1 | · · · | xn ⇀yn, where each xi ∈ W and each yi ∈ W ′, while
the general form of a set-hypersequent (or second-order hypersequent) of H is
X1⇀Y1 | · · · | Xn⇀Yn, where Xi, Yi are Galois-closed subsets of HW .

Accordingly, there are two ways, namely pointwise and setwise, to interpret
a structural clause in H. After defining the two interpretations, we show that
they coincide for analytic clauses. This will be later used for establishing strong
analyticity and extend soundness to hypersequent calculi extending HFL with
additional structural rules.

We begin with an example, illustrating the two interpretations.

Example 5.12. Let H = (W,W ′,, ◦, ε, ǫ) be a residuated hyperframe, and
consider the analytic clause

x · y ≤ z =⇒ x ≤ 0 or y ≤ z, (em)

which corresponds to the excluded middle axiom. Its pointwise interpretation
in H is:

 g | x ◦ y⇀z

 g | x⇀ǫ | y⇀z
(em0)

for all x, y ∈ W , z ∈ W ′ and g ∈ H. The interpretation is obtained by replacing
· with ◦, 0 with ǫ, ≤ with ⇀, and by adding a new variable g. The setwise
interpretation is:

 G | X ◦ Y ⇀Z

 G | X⇀∅ | Y ⇀Z
(em+)

for all Galois-closed sets X,Y, Z ⊆ HW and G ⊆ H.

The general definition is as follows.
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Definition 5.13. Let (q) be an analytic clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un. (q)

By replacing (·, 1, 0) in each ti ≤ ui with (◦, ε, ǫ), we obtain t0i ⇀u0
i . We may

then obtain a pointwise interpretation of (q):

 g | t01⇀u0
1 · · ·  g | t0m⇀u0

m

 g | t0m+1⇀u0
m+1 | . . . | t0n⇀u0

n

(q0)

We say that (q) is pointwise valid in H if (q0) holds for every interpretation of
left variables in W , right variables in W ′ and g ∈ H.

We may also obtain a setwise interpretation:

 G | t1⇀u1 · · ·  G | tm⇀um

 G | tm+1⇀um+1 | . . . | tn⇀un
(q+)

by interpreting each ti, ui in the algebra H+ so that each of ti, ui denotes a
Galois-closed set. We say that (q) is setwise valid in H if (q+) holds for every
valuation f of variables into H+ and for every G ⊆ H.

Example 5.14. Continuing Example 5.12, we prove that the two interpreta-
tions coincide.

(Pointwise ⇒ setwise) Assume  G | X ◦ Y ⇀ Z (the premise of (em+)).
Our goal is to show that  G | X ⇀ ∅ | Y ⇀ Z. So let g ∈ G, (hx; x) ∈ X,
(hy; y) ∈ Y and (hz; z) ∈ Z⊲. Then we have h|x ◦ y⇀z ∈ X ◦ Y ⇀Z, where
h := hx|hy|hz, so  g | h | x ◦ y ⇀ z by the assumption. By (em0) we have
 g | h | x⇀ǫ | y⇀z. Therefore  G | X⇀∅ | Y ⇀Z.

(Setwise ⇒ pointwise) Assume  g | x ◦ y⇀z (the premise of (em0)). This
means

(g; ε) ∈ {(∅; x)} ◦ {(∅; y)}\{(∅; z)}⊳,

hence G× {ε} ⊆ X ◦ Y \Z, where

X := (∅; x)⊲⊳, Y := (∅; y)⊲⊳, Z := (∅; z)⊳, G := {g},

so  G | X ◦ Y ⇀Z by Lemma 5.10. By (em+), we have  G | X⇀∅ | Y ⇀Z,
from which we easily derive  g | x⇀ǫ | y⇀z (the conclusion of (em0)).

By generalizing the above example, we can prove:

Theorem 5.15. Let (q) be an analytic clause and H a residuated hyperframe.
Then (q) is pointwise valid in H if and only if it is setwise valid.

This theorem allows us to extend the soundness theorem (Theorem 5.11) to
hypersequent calculi with additional analytic structural rules.

Theorem 5.16. Let R be a set of analytic structural rules, H a residuated
hyperframe and f a valuation into H+. Suppose that all rules in R are pointwise
valid in H. If H ⊢HFL(R) Ξ0, then  f(Ξ) for all Ξ ∈ H implies  f(Ξ0).

In particular when Ξ0 is a sequent Θ0, we have H+, f |= Θ0.
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 h | x⇀ι′(a)  h | ι(a)⇀z

 h | x⇀z
(Cut)

 ι(a)⇀ι′(a)
(Id)

 h | x⇀ι′(a)  h | ι(b)⇀z

 h | ι(a\b)⇀xz
(\L)

 h | x⇀ι(a)ι′(b)

 h | x⇀ι′(a\b)
(\R)

 h | x⇀ι′(a)  h | ι(b)⇀z

 h | ι(b/a)⇀z�x
(/L)

 h | x⇀ι′(b)�ι(a)

 h | x⇀ι′(b/a)
(/R)

 h | ι(a) ◦ ι(b)⇀z

 h | ι(a · b)⇀z
(·L)

 h | x⇀ι′(a)  h | y⇀ι′(b)

 h | x ◦ y⇀ι′(a · b)
(·R)

 h | ι(ai)⇀z

 h | ι(a1 ∧ a2)⇀z
(∧L)

 h | x⇀ι′(a)  h | x⇀ι′(b)

 h | x⇀ι′(a ∧ b)
(∧R)

 h | ι(a)⇀z  h | ι(b)⇀z

 h | ι(a ∨ b)⇀z
(∨L)

 h | x⇀ι′(ai)

 h | x⇀ι′(a1 ∨ a2)
(∨R)

 h | ε⇀z

 h | ι(1)⇀z
(1L)

 ε⇀ι′(1)
(1R)

 ι(0)⇀ǫ
(0L)

 h | x⇀ǫ

 h | x⇀ι′(0)
(0R)

Figure 5: Gentzen rules

5.4. Gentzen hyperframes

We have seen how residuated hyperframes yield a complete algebra. We
will now obtain an embedding e : A −→ H+

A
and a valuation f into (Hcf

FL
)+

such that 1 ≤ f(α) implies ⊢cf
HFL

α. To ensure the existence of a suitable
(quasi)homomorphism (Definition 5.19 below) we need to impose further con-
ditions on residuated hyperframes.

Definition 5.17. A Gentzen hyperframe is a tuple (H,A, ι, ι′) where

• H = (W,W ′,, ◦, ε, ǫ) is a residuated hyperframe,

• A is an algebra in the language of FL,

• ι : A −→ W and ι′ : A −→ W ′ are functions,

•  satisfies the Gentzen rules in (Figure 5) for all a, b, a1, a2 ∈ A, x, y ∈ W ,
z ∈ W ′ and h ∈ H = (W ×W ′)∗.

A cut-free Gentzen hyperframe is defined in the same way, but it is not
assumed to satisfy the (Cut) rule.
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Example 5.18. Consider the frame HFL = (W,W ′,, ◦, ε, ǫ) in Example 5.9.
Define ι : Fm −→ W and ι′ : Fm −→ W ′ by

ι(α) := α, ι′(α) := ( ⇒ α).

Then (HFL,Fm, ι, ι′) is a Gentzen hyperframe, and (Hcf
FL

,Fm, ι, ι′) is a cut-
free Gentzen hyperframe. To see this, just notice that (\ L) and (\ R) can be
alternatively presented as

 h | x⇀ι′(a)  h | ι(b)⇀z

 h | x ◦ ι(a\b)⇀z
(\L)

 h | ι(a) ◦ x⇀ι′(b)

 h | x⇀ι′(a\b)
(\R)

which is nothing but the hypersequent rules for \, when x is instantiated with a
formula sequence Γ, z with a context C, and a, b with formulas α, β. This illus-
trates that Gentzen rules are just inference rules of the hypersequent calculus
under disguise.

Gentzen rules ensure the existence of a (quasi)homomorphism.

Definition 5.19. Given two algebras A and B in the language of FL, a quasi-
homomorphism from A to B is a function F : A −→ P(B) such that

cB ∈ F (cA) for c ∈ {0, 1},
F (a) ⋆B F (b) ⊆ F (a ⋆A b) for ⋆ ∈ {·, \, /,∧,∨},

where X ⋆B Y = {x ⋆B y | x ∈ X, y ∈ Y } for any X,Y ⊆ B.

It is equivalent to the standard notion of homomorphism when F (a) is a
singleton for every a ∈ A.

We have finally reached the main property of Gentzen hyperframes.

Theorem 5.20.

1. If (H,A, ι, ι′) is a Gentzen hyperframe, then

f(a) := (∅; ι(a))⊲⊳ = (∅; ι′(a))⊳

defines a homomorphism from A to H+. Moreover, if ι, ι′ are “injective”
in the sense that  ι(a)⇀ι′(b) implies a ≤ b for every a, b ∈ A, then f is
an embedding.

2. If (H,A, ι, ι′) is a cut-free Gentzen hyperframe, then

F (a) = {X ∈ γ[P(HW )] : (∅; ι(a)) ∈ X ⊆ (∅; ι′(a))⊳}

is a quasihomomorphism from A to H+.

Proof. This is actually a corollary of the main theorem of Gentzen frames
proved in [20]. Indeed, if (H,A, ι, ι′) is a (cut-free) Gentzen hyperframe, then
(r(H),A, rι, rι′), where rι(a) := (∅; ι(a)) and rι′(a) := (∅; ι′(a)), is a (cut-free)
Gentzen frame in the sense of [13].
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We nevertheless outline part of the proof to convey the reader some flavor
of the argument (originally due to [33] and later developed by [5]). Let us focus
on 2 and prove that F is a quasihomomorphism with respect to the connectives
\ and ∧.

(Case \) Our goal is to show that F (a)\F (b) ⊆ F (a\b) for every a, b ∈ A. So
let us take X ∈ F (a) and Y ∈ F (b). We have

(∅; ι(a)) ∈ X ⊆ (∅; ι′(a))⊳, (∅; ι(b)) ∈ Y ⊆ (∅; ι′(b))⊳. (3)

To prove X\Y ∈ F (a\b), we need to show two things: (i) (∅; ι(a\b)) ∈ X\Y
and (ii) X\Y ⊆ (∅; ι′(a\b))⊳.

For (i), suppose that (hx; x) ∈ X and (hy; y) ∈ Y ⊲. By (3) we have
(hx; x) ∈ (∅; ι′(a))⊳ and (∅; ι(b)) ∈ Y , which imply  hx | x ⇀ ι′(a) and 

hy | ι(b)⇀y. Hence we have  hx | hy | x◦ι(a\b)⇀y by external weakening and
(\ L). Since it holds for every (hy; y) ∈ Y ⊲, we have (hx; x◦ι(a\b)) ∈ Y ⊲⊳ = Y .
Since it holds for every (hx; x) ∈ X, we conclude that (∅; ι(a\b)) ∈ X\Y .

For (ii), suppose that (h; y) ∈ X\Y . By (3), we have (∅; ι(a)) ∈ X and
Y ⊆ (∅; ι′(b))⊳, hence (h; ι(a) ◦ y) ∈ (∅; ι′(b))⊳, namely  h | ι(a) ◦ y⇀ ι′(b).
By (\ R), we have  h | y⇀ι′(a\b). This proves that (h; y) ∈ (∅; ι′(a\b))⊳.

(Case ∧) Our goal is to show that F (a) ∧ F (b) ⊆ F (a ∧ b) for every a, b ∈ A.
So let us take X ∈ F (a) and Y ∈ F (b). We then have (3) again. To prove
X ∩Y ∈ F (a∧ b), we need to show two things: (i) (∅; ι(a∧ b)) ∈ X ∩Y and (ii)
X ∩ Y ⊆ (∅; ι′(a ∧ b))⊳.

For (i), suppose that (h; x) ∈ X⊲. We have  h | ι(a)⇀x by (3). Hence
 h | ι(a ∧ b)⇀x by rule (∧ L). Since it holds for every (h; x) ∈ X⊲, we have
(∅; ι(a ∧ b)) ∈ X⊲⊳ = X. Likewise (∅; ι(a ∧ b)) ∈ Y . We therefore conclude
that (∅; ι(a ∧ b)) ∈ X ∩ Y .

For (ii), suppose that (h; z) ∈ X ∩ Y . Then by (3) (h; z) ∈ (∅; ι′(a))⊳ ∩
(∅; ι′(b))⊳, namely  h | z⇀ι′(a) and  h | z⇀ι′(b). Hence  h | z⇀ι′(a ∧ b)
by rule (∧ R), from which we conclude (h; z) ∈ (∅; ι′(a ∧ b))⊳.

A final remark on 1: If the (Cut) rule is further satisfied, then it results
in (∅; ι(a))⊲⊳ = (∅; ι′(a))⊳ so that F (a) of (2) becomes a singleton for every
a ∈ A. Indeed, the forward inclusion holds by rule (Id). For the backward
inclusion, suppose that (hx; x) ∈ (∅; ι′(a))⊳ and (hy; y) ∈ (∅; ι(a))⊲. It means
that  hx | x⇀ι′(a) and  hy | ι(a)⇀y. Hence  hx | hy | x⇀y by external
weakening and (Cut). Since it holds for every (hy; y) ∈ (∅; ι(a))⊲, we conclude
that (hx; x) ∈ (∅; ι(a))⊲⊳.

6. Strong analyticity and hyper-MacNeille completions

The general theory of residuated hyperframes introduced in the previous
section is applied here to prove two important results. The first is an alge-
braic, uniform proof of the strong analyticity of hypersequent calculi defined by
analytic rules (Section 6.1). The second is the introduction of a new type of
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completions, called hyper-MacNeille completions (Section 6.2). We will show
that every variety defined by acyclic P♭

3 equations admits hyper-MacNeille com-
pletions; although the argument here is considerably more complicated than the
argument in [13], the benefit of the current approach is that the new comple-
tion method behaves well with respect to regularity, i.e., preservation of existing
joins and meets.

6.1. Strong analyticity

Let R be any set of analytic structural rules, we show that the hypersequent
calculus HFL(R) is strongly analytic (cf. Definition 2.1 referring to hyperse-
quents). Our proof encompasses many ad-hoc proofs of cut-admissibility that
work for specific (families of) hypersequent calculi, e.g. [3, 12, 32, 31].

First of all, recall that an analytic rule (q◦) is obtained from an analytic
clause (q) as described in Definition 4.16. Henceforth we identify the clause (q)
with the rule (q◦), so given a set R of analytic clauses, we write HFL(R) to
denote the system obtained by adding to HFL the analytic rules {(q◦) : (q) ∈
R}.

To prove strong analyticity, we build a suitable residuated hyperframe.
Given an elementary set S of sequents (cf. Definition 2.1), we define the resid-
uated hyperframe HR,S = (W,W ′,, ◦, ε, ǫ) as follows:

• (W,W ′, ◦, ε, ǫ) is the same as in HFL (Example 5.9).

•  (Σ1, C1) | . . . | (Σn, Cn) ⇐⇒ S ⊢cf
HFL(R) C1[Σ1] | · · · | Cn[Σn].

Lemma 6.1. (HR,S ,Fm, ι, ι′), where ι(α) := α ∈ W and ι′(α) := ( ⇒ α) ∈
W ′, is a cut-free Gentzen hyperframe in which all rules in R are pointwise valid.

Proof. (HR,S ,Fm, ι, ι′) is obviously a cut-free Gentzen hyperframe. The fol-
lowing example illustrates that R is pointwise valid in HR,S .

Suppose that R contains the analytic clause

x · y ≤ z =⇒ x ≤ 0 or y ≤ z. (em)

We need to verify that

 g | x ◦ y⇀z

 g | x⇀ǫ | y⇀z
(em0)

holds for every x, y ∈ W , z ∈ W ′ and g ∈ H = (W ×W ′)∗. Notice that each
x ∈ W is a formula sequence Σ, each z is a context of the form (Γ, ,∆ ⇒ Π),
and each g is a hypersequent Ξ. Hence (em0) just amounts to the analytic rule
corresponding to (em) (Figure 4):

Ξ | Γ,Σ1,Σ2,∆ ⇒ Π

Ξ | Σ1 ⇒ | Γ,Σ2,∆ ⇒ Π
(em◦)

Hence it is trivial that (em) is pointwise valid in HR,S .
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We now define a valuation f . For every propositional variable p, let

S(p) := {(∅; Γ) ∈ HW : (Γ ⇒ p) ∈ S} ∪ {(∅; p)}

and define f : Fm −→ H+
R,S by f(p) := S(p)⊲⊳ and homomorphically extend-

ing it to all formulas.

Lemma 6.2. For any formula α, (∅; α) ∈ f(α) ⊆ (∅; ⇒ α)⊳. Moreover,
 f(Θ) holds for every sequent Θ ∈ S.

Proof. The first claim is proved by induction on the structure of α. For the
base case, observe that (∅; p) ∈ f(p) ⊆ (∅; ⇒ p)⊳ holds by definition. For the
induction step, notice that the claim to be proved just amounts to f(α) ∈ F (α)
where F is the quasihomomorphism mentioned in Theorem 5.20.2. Now the
induction hypothesis implies

f(α ⋆ β) = f(α) ⋆ f(β) ∈ F (α) ⋆ F (β) ⊆ F (α ⋆ β)

for every ⋆ ∈ {∧,∨, ·, \, /}. The last inclusion is due to Theorem 5.20.2.
For the second claim, suppose that Θ is of the form p1, . . . , pn ⇒ q (the

case when it is of the form p1, . . . , pn ⇒ is similar). Since S is closed under
cuts, we obviously have S(p1) ◦ · · · ◦S(pn) ⊆ S(q), so f(p1) ◦ · · · ◦ f(pn) ⊆ f(q).
Therefore  f(Θ) by Lemma 5.10.

We are now ready to prove:

Theorem 6.3. If R is a set of analytic clauses, then HFL(R) is strongly
analytic.

Proof. Let S be an elementary set and suppose that S ⊢HFL(R) Ξ holds for some
hypersequent Ξ. We build a cut-free Gentzen hyperframe (HR,S ,Fm, ι, ι′) as
above. Since R is pointwise valid in HR,S by Lemma 6.1, and also since the
valuation f satisfies all sequents in S by Lemma 6.2, Theorem 5.16 implies that
 f(Ξ).

If Ξ consists of a single sequent ⇒ α, then  f(Ξ) means H+
R,S , f |= α, so

(∅; ε) ∈ f(α) ⊆ (∅; ⇒ α)⊳ by Lemma 6.2. Hence S ⊢cf
HFL(R) Ξ.

The general case can be best understood by means of an example. Suppose
that Ξ is of the form α, β ⇒ γ | γ ⇒ . Then  f(Ξ) means that

 f(α) ◦ f(β)⇀f(γ) | f(γ)⇀∅.

We have (∅; α) ∈ f(α), (∅; β) ∈ f(β), (∅; γ) ∈ f(γ) and (∅; ⇒ γ) ∈ f(γ)⊲.

Altogether, they imply  α, β⇀γ | γ⇀ǫ, namely S ⊢cf
HFL(R) α, β ⇒ γ | γ ⇒ .

6.2. Hyper-MacNeille completions

As another application of residuated hyperframes, we address here the issue
of completions. A simple argument that the variety of FL-algebras defined by
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acyclic P♭
3 equations is closed under completions is already contained in [13].

However, the completions there are not regular (namely they do not necessarily
preserve existing joins and meets), as they are obtained by combining subdirect
representations and MacNeille completions:

A →֒
∏

i∈I

Ai −→
∏

i∈I

W+
Ai

,

and the former is not regular.
Regular completions are important, for instance, to prove algebraic com-

pleteness of a predicate logic (i.e., completeness with respect to complete alge-
bras) [34, 35]. However, it is not always easy to prove that a whole variety is
closed under regular completions, especially when the variety is not closed un-
der MacNeille completions. For instance, it takes a 22-page paper [23] to prove
that the variety of Heyting algebras generated by the 3-element algebra admits
regular completions.

Our purpose here is to apply the methodology developed so far to the issue
of regular completions for the variety of FL-algebras defined by acyclic P♭

3 equa-
tions. However, we will not be as ambitious as [23] and will not try to prove
that all members of a variety admit regular completions. Instead, we show that
externally distributive members of a given variety admit regular completions.

We begin with a basic observation on the residuated hyperframes HA defined
in Section 5.2.

Lemma 6.4. Let A be an FL-algebra and id : A −→ A the identity map. Then,
(HA,A, id, id) is a Gentzen hyperframe and  a⇀b implies a ≤ b.

Proof. Let e : A →֒
∏

i∈I Ai be a subdirect representation. We have:

 a1⇀b1 | · · · | an⇀bn ⇐⇒ 1 ≤ ♭(a1\b1) ∨ · · · ∨ ♭(an\bn)
⇐⇒ ∀i ∈ I. ei(a1) ≤ ei(b1) or · · · or ei(an) ≤ ei(bn),

where ei : A −→ Ai is the canonical projection map. This allows us to verify
the Gentzen rules component-wise, in a straightforward way.

As a consequence of Theorem 5.20, we obtain an embedding f : A −→ H+
A

and we call (H+
A
, f) the hyper-MacNeille completion of A.

We first observe that the hyper-MacNeille completion of A coincides with
the MacNeille completion when A is subdirectly irreducible.

Lemma 6.5. Let A be a subdirectly irreducible FL-algebra and X ⊆ HW a
Galois-closed set in HA. Then (h; a) ∈ X if and only if (∅; a) ∈ X or  h.

Proof. (⇐) Let (g; c) ∈ X⊲. If (∅; a) ∈ X, then we obtain  g | a ⇀ c, so
 g | h | a⇀ c by external weakening. On the other hand,  h immediately
implies  g | h | a⇀c. Hence (h; a) ∈ X.

(⇒) Suppose that (h; a) ∈ X and 6 h. For every (g; c) ∈ X⊲, we have
 h | g | a⇀c, namely  h or  g or a ≤ c by (2) of Example 5.8. Since the
first case never holds by assumption, we have  g or a ≤ c, namely  g | a⇀c
for every (g; c) ∈ X⊲. This shows that (∅; a) ∈ X.
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Proposition 6.6. Let A be a subdirectly irreducible FL-algebra. Then the
hyper-MacNeille completion (H+

A
, f) is isomorphic to the MacNeille completion

of A.

Proof. Given a Galois-closed set X, let X0 := {(∅; a) : (∅; a) ∈ X} and X1 :=
{(∅; c) : (∅; c) ∈ X⊲}. We claim that

X = X⊲⊳

0 = X⊳

1 .

It is straightforward to verify X ⊇ X⊲⊳

0 and X ⊆ X⊳

1 .
To show X ⊆ X⊲⊳

0 , let (h; a) ∈ X. Then either (∅; a) ∈ X or  h by
Lemma 6.5. In both cases, (h; a) belongs to X⊲⊳

0 by Lemma 6.5 again.
To show X⊳

1 ⊆ X, let (h; a) ∈ X⊳

1 and (g; c) ∈ X⊲. Similarly to Lemma
6.5, we can show that either  g or (∅; c) ∈ X⊲ holds. In the former case,
we have  g | h | a ⇀ c by external weakening. In the latter case, we have
 h | a⇀c, hence  g | h | a⇀c. This proves that (h; a) ∈ X⊲⊳ = X.

By Lemma 5.3 and by recalling that the embedding f : A −→ H+
A

is defined
by f(a) := (∅; a)⊲⊳ = (∅; a)⊳, we obtain

X = γ[X0] =
⋃

γ{f(a) : (∅; a) ∈ X0},
= X⊳

1 =
⋂
{f(c) : (∅; c) ∈ X1}.

Hence the completion (H+
A
, f) is join-dense and meet-dense. The definition of

(·, \, /) in H+
A

also conforms to Theorem 2.5.

This establishes the equivalence of hyper-MacNeille and MacNeille comple-
tions for subdirectly irreducible FL-algebras. On the other hand, the forthcom-
ing theorem shows that they are in general quite different.

Lemma 6.7. Let A be an FL-algebra and e : A →֒
∏

i∈I Ai a subdirect repre-
sentation. Also, let (q) be an analytic clause. If Ai |= (q) for every i ∈ I, then
(q) is pointwise valid in HA.

Proof. We again work on an example. Assume that (q) is

x · y ≤ z =⇒ x ≤ 0 or y ≤ z. (em)

We need to verify that

 g | x ◦ y⇀z

 g | x⇀ǫ | y⇀z
(em0)

holds for every x, y ∈ W , z ∈ W ′ and g ∈ H = (W ×W ′)∗. We assume that g
is of the form x1⇀y1 | · · · | xn⇀yn and write ei(g) for the disjunctive clause
ei(x1) ≤ ei(y1) or · · · or ei(xn) ≤ ei(yn). Then  g | x ◦ y ⇀ z means that
ei(g) or ei(xy) ≤ ei(z) holds in every Ai (i ∈ I). Since Ai satisfies (em) we
obtain ei(g) or ei(x) ≤ 0 or ei(y) ≤ ei(z). This shows  g | x⇀ǫ | y⇀z (recall
that ǫ = 0 in HA).
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Theorem 6.8. Let E be a set of equations equivalent to a set R of analytic
structural clauses. Then the variety FL(E) admits hyper-MacNeille completions.

Proof. Let A ∈ FL(E) and A →֒
∏

i∈I Ai be a subdirect representation. We
have Ai ∈ FL(E)SI for every i ∈ I. Hence by the definition of equivalence (see
Corollary 3.19), every Ai satisfies R. Hence R is pointwise valid in HA by
Lemma 6.7.

On the other hand, by thinking of E as a set of formulas, we have E ⊆
L(E) = L(R) by Corollary 3.19. Therefore by Theorem 5.16, we have H+

A
|= α

for every α ∈ E . We have thus obtained the hyper-MacNeille completion H+
A

of
A, which belongs to FL(E).

Remark 6.9. This should be contrasted with a deep result of [7], which shows
that there are exactly three varieties of Heyting algebras which admit MacNeille
completions: the whole variety HA, the variety BA of Boolean algebras and
the trivial variety. On the other hand, there are infinitely many different P♭

3

equations (= P3 equations in presence of commutativity and integrality) that
define an intermediate variety between BA and HA. Our result states that all
such varieties admit hyper-MacNeille completions.

The above argument is more complicated than that in [13] for the subdi-
rect MacNeille completion. The advantage of hyper-MacNeille completions is a
better behavior with respect to regularity.

Definition 6.10. An FL-algebra A is said to be externally distributive if for
every a, b ∈ A and every set C ⊆ A such that

∧
C and

∨
C exist in A,

1 ≤ (a\c)∇b for every c ∈ C =⇒ 1 ≤ (a\ (
∧
C))∇b,

1 ≤ (c\a)∇b for every c ∈ C =⇒ 1 ≤ ((
∨
C) \a)∇b.

External distributivity turns out to be a sufficient condition for regularity.

Theorem 6.11. If A is an externally distributive FL-algebra, then H+
A

is a
regular completion.

Proof. If external distributivity holds for C ⊆ A, then the Gentzen hyperframe
HA satisfies:

 h | ι(c)⇀z, for some c ∈ C

 h | ι (
∧
C)⇀z

(
∧

L)
 h | x⇀ι′(c) for every c ∈ C

 h | x⇀ι′ (
∧
C)

(
∧

R)

 h | ι(c)⇀z for every c ∈ C

 h | ι (
∨
C)⇀z

(
∨

L)
 h | x⇀ι′(c) for some c ∈ C

 h | x⇀ι′ (
∨
C)

(
∨

R)

These are just infinitary variants of the Gentzen rules for ∧ and ∨. By inspecting
the proof of Theorem 5.20, we can confirm that the argument goes through even
if we replace binary ∧ with infinitary

∧
and binary ∨ with infinitary

∨
. Hence

we obtain an embedding f which preserves
∧

and
∨

.

For instance, every FL-chain A is externally distributive, so that the hyper-
MacNeille completion H+

A
is regular.
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7. Summing up

In the previous section we proved that, when added to HFL, analytic rules
yield strongly analytic hypersequent calculi. We now prove the converse direc-
tion.

Theorem 7.1. Let R be a set of structural rules. If HFL(R) is strongly ana-
lytic, then R is equivalent to a set R′ of analytic structural rules.

Proof. Let
Ξ | Θ1 · · · Ξ | Θm

Ξ | Θm+1 | · · · | Θn

(r)

be a structural rule in R and consider its atomic instance, in which Ξ = ∅ and
each distinct metavariable is instantiated by a new propositional variable. We
still denote it by (r). We may assume that (r) satisfies (the syntactic analogues
of) linearity and exclusion (Section 4.3). To transform (r) into an analytic
rule, we need to remove the redundant variables from the premises (i.e., those
which do not occur in the conclusion). Let us write Ξ0 for the conclusion
Θm+1 | · · · | Θn, and P for the premise set {Θ1, . . . ,Θm}. Let P+ be the least
elementary set of sequents that includes P (cf. Definition 2.1). We then have
P+ ⊢HFL(R) Ξ0. Hence the strong analyticity of HFL(R) implies that Ξ0 has a
derivation from a finite subset {Θ′

1, . . . ,Θ
′
k} of P+, and furthermore none of Θ′

l

contains a variable that does not occur in Ξ0 (recall that the definition of strong
analyticity includes the subformula property). Thus all the redundant variables,
if any, have been removed from the premises. Now by substituting back the
metavariables Γ,Π, etc. for the propositional variables (and associating triples
(Γj ,∆j ,Πj) for each variable on the right hand side), we obtain a structural
rule

Ξ | Θ′
1 · · · Ξ | Θ′

k

Ξ | Θm+1 | · · · | Θn

(r′)

which is analytic (see Definition 4.16) and derivable in HFL(R). Moreover, it is
easy to see that the obtained rule (r′) implies the original one (r). If we do this
transformation for all (r) ∈ R, we obtain a set R′ of analytic rules equivalent
to R.

In the previous section, we also proved that if a set E of equations is equiv-
alent to a set of analytic clauses, then FL(E) admits (hyper-MacNeille) comple-
tions. We now prove the converse direction under the assumption that E implies
commutativity (i.e. xy ≤ yx).

Theorem 7.2. Let E be a set of equations which implies commutativity. If E is
equivalent to a set R of structural clauses and FL(E) admits completions, then
E is equivalent to a set R of analytic structural clauses.

In short, admitting completions implies analyticity in the commutative case.
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Proof. Let (q) : P =⇒ C be a structural clause in R, where P is a set of premises
and C is a disjunctive clause t1 ≤ u1 or · · · or tn ≤ un. We have

P |=FL(E) C
♭, (4)

where C♭ := (t1\u1)∇· · ·∇(tn\un). Indeed, FL(E)SI = FL(R)SI implies P |=FL(E)SI

C, so P |=FL(E)SI
C♭ by Lemma 3.15, and P |=FL(E) C

♭ by Corollary 3.14.
We transform (q) into an analytic clause (q) such that (q) implies (q) over

FL and |=FL(E)SI
(q). This will be sufficient to establish that E and R := {(q) :

(q) ∈ R} are equivalent.
We basically follow the procedure described in Section 4.3. Step 5 can be

fulfilled without any problem. So we may assume that (q) satisfies linearity and
exclusion. We just have to remove all redundant variables (those which do not
occur in the conclusions) from the premises.

Suppose that (q) contains a redundant variable x. Let P+ be the least set
of equations such that P ⊆ P+ and

t ≤ x, lxr ≤ u ∈ P+ =⇒ ltr ≤ u ∈ P+.

Let P± be the subset of P+ that consists of equations which do not contain x.
We claim:

P± |=FL(E) C
♭. (5)

Once this claim has been established, the rest will be easy. Indeed, we may
regard C♭ as a single formula (t1\u1 ∧ 1) ∨ · · · ∨ (tn\un ∧ 1) due to commuta-
tivity. Hence there is a finite subset P±

0 of P± such that P±
0 |=FL(E) C

♭ by the
compactness theorem.

We thus obtain a new clause P±
0 =⇒ C which holds in FL(E)SI and implies

(q) since all premises in P±
0 are derivable from P . Moreover, P±

0 does not contain
the redundant variable x. Hence by repetition we end up with an analytic clause
(q) with the desired property.

Now let us prove the claim (5). Let A ∈ FL(E) and f a valuation into A

which satisfies all equations in P±:

A, f |= P±. (6)

By assumption, there is a completion A′ of A which belongs to FL(E). We
now extend f to a valuation f ′ into A′ so that f ′(y) = f(y) for any variable y
different from x. To define f ′(x), let Tx be the set of terms defined by

Tx := {t : (t ≤ x) ∈ P+, t does not contain x},

and let f ′(x) :=
∨
{f(t) : t ∈ Tx}. It is well defined since A′ is complete. We

claim:
A′, f ′ |= P. (7)

Once this has been proved, we obtain A′, f ′ |= C♭ by (4). Since x does not
occur in C, it implies A, f |= C♭, thus the claim (5) holds.

So it remains to prove (7).
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• Let s(x, . . . , x) ≤ u be an equation in P , where all occurrences of x are
indicated. We have:

f ′(s(x, . . . , x)) =
∨

t1∈Tx

· · ·
∨

tk∈Tx

f(s(t1, . . . , tk)) ≤ f(u) = f ′(u).

The inequality holds because s(t1, . . . , tk) ≤ u belongs to P± for every
t1, . . . , tk ∈ Tx, hence is satisfied by f (recall our assumption (6)).

• Let s(x, . . . , x) ≤ x be an equation in P . We have:

f ′(s(x, . . . , x)) =
∨

t1∈Tx

· · ·
∨

tk∈Tx

f(s(t1, . . . , tk)) ≤
∨

t∈Tx

f(t) = f ′(x).

The inequality holds because s(t1, . . . , tk) ≤ x belongs to P+ for every
t1, . . . , tk ∈ Tx, so s(t1, . . . , tk) ∈ Tx.

The above argument works even if Tx is empty. Hence we have established the
remaining claim (7).

Our main achievements can be summarized as follows:

Theorem 7.3.

1. Every P♭
3 equation/axiom can be transformed into an equivalent set of struc-

tural clauses/rules.

2. Let E be a set of P♭
3 equations/axioms. The following are equivalent:

(a) E is equivalent to a set of acyclic clauses.

(b) E is equivalent to a set of analytic clauses.

(c) E is equivalent to a set R of structural rules such that HFL(R) is strongly
analytic.

3. (a) – (c) implies:

(d) FL(E) admits hyper-MacNeille completions.

(e) FL(E) admits completions.

4. Whenever E implies commutativity (exchange), (a) – (e) are all equivalent.

5. Whenever E implies integrality (left weakening), (a) – (e) all hold.

Proof. 1. Theorem 4.10.
2. (a) ⇒ (b): Theorem 4.15.
(b) ⇒ (c): Theorem 6.3.
(c) ⇒ (a): Theorem 7.1. Note that analytic rules are also acyclic.
3. (b) ⇒ (d): Theorem 6.8.
(d) ⇒ (e): Trivial.
4. (e) ⇒ (b): Theorem 7.2.
5. Theorem 4.15.
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The N2 equation x\x ≤ x/x (that also belongs to P♭
3) provides a counterex-

ample to (a) – (e) in absence of commutativity. Indeed, we have shown in [14]
that the variety defined by x\x ≤ x/x does not admit any completion.

It is left open whether 4 holds without the assumption of commutativity.

8. Final observations

We conclude with some observations on the expressive power of structural
hypersequent rules and on the structure of the substructural hierarchy.

8.1. Limitations of structural hypersequent rules

As seen before each P♭
3 axiom can be transformed into equivalent structural

(hypersequent) rules. This shows what structural rules can express. Here we
address the converse problem, namely identifying which properties (equations
over FL-algebras, or equivalently, Hilbert axioms in the language of FL⊥) can-
not be expressed by structural rules. Notice that finding negative results is often
more difficult than obtaining positive ones. A negative result in the formalism
of display logic [6] is contained in [27] and characterizes the class of axioms that
can be captured by analytic structural display rules to be added to the calculus
for the tense logic KT; the characterization in [27] (and its generalization in
[15] to all display calculi satisfying suitable conditions) is based only on the
syntactic shape of the considered axioms. A semantic characterization of the
expressive power of structural sequent rules is contained in our previous work
[14], where we show that (single conclusion) structural sequent rules can only
formalize properties which hold in intuitionistic logic, and, among them, only
those corresponding to algebraic equations preserved by MacNeille completions
in presence of integrality. Similar results can be established for structural hyper-
sequent rules. Let HSM be the hypersequent calculus for three-valued Gödel
logic SM – the strongest proper intermediate logic, semantically characterized
by linearly ordered Kripke models containing two worlds. HSM consists of
HFLewc + (com) + (Bc2) (see Figure 4).

Proposition 8.1 ([12]). Any structural hypersequent rule is either derivable in
HSM or it derives α ∨ ¬αn in HFLew, for some natural number n.

We denote by En the extension of FLew by α∨¬αn and by E =
⋂

n≥1 En the
intersection of all these logics. Clearly E1 is classical logic CL and En ⊆ Em for
n ≥ m. The above proposition states that the logics that could be captured by
extending HFLew by structural hypersequent rules are limited to the subregions
in Figure 6 between Fm (the inconsistent logic) and E and between SM and
FLew.

The expressive power limitations of structural hypersequent rules are how-
ever stronger. Indeed, as shown below, only some of the logics in these regions
can be captured by structural hypersequent rules.

Proposition 8.2. Any equation ε equivalent to a structural hypersequent rule
is preserved by hyper-MacNeille completions in presence of integrality.
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Figure 6: Limitations for structural rules extending HFLew

Proof. Let (q) be the equivalent structural clause. Theorem 4.15 ensures that,
in presence of integrality x ≤ 1, (q) is equivalent to an analytic clause (q′). By
Theorem 6.8, ε is preserved by hyper-MacNeille completions.

As a corollary we have, for instance, that there is no structural hypersequent
rule equivalent to  Lukasiewicz axiom ((α → β) → β) → ((β → α) → α) since
the corresponding equation is not preserved under any completion [26].

8.2. On the structure of the substructural hierarchy

Let X,Y be sets of equations. We write X � Y if every equation in X is
equivalent to a set of equations in Y . We write X ≺ Y if X � Y but not Y � X.

Obviously X ⊆ Y implies X � Y . Hence Nn ∪Pn � Nn+1 ∩Pn+1 holds for
every n ≥ 0.

On the other hand, we know that prelinearity belongs to P2 ⊆ P3 ∩N3 but
not to N2 (see [14]). Hence

N2 ≺ P3, N2 ≺ N3.

We also know that the variety of MV algebras does not admit any com-
pletions [26]. Since it consists of FLew-algebras defined by an N3 ⊆ N4 ∩ P4

equation ( Lukasiewicz axiom), we obtain

P3 ≺ N3

Let us also mention the trivial fact that the variety of lattice-ordered groups
does not admit any completions, simply because the nontrivial ones do not have
least and greatest elements. The same holds for the variety of commutative
lattice-ordered groups. Since the latter is axiomatized by FLe-algebras extended
with 1 ≤ x(x\1) and the equation is in P3, but not in P♭

3, it follows that P♭
3 ≺ P3.
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As recently shown in [24] the substructural hierarchy collapses down to the
level N3 in presence of commutativity. Hence a remaining open problem is
whether or not the hierarchy collapses to a certain level in the general case.
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