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Abstract. We show that a large number of equations are preserved by Dedekind-

MacNeille completions when applied to subdirectly irreducible FL-algebras/residuated
lattices. These equations are identified in a systematic way, based on proof-theoretic

ideas and techniques in substructural logics. It follows that a large class of varieties

of Heyting algebras and FL-algebras admits completions.

1. Introduction

Completions of ordered algebras have been studied quite extensively, see
e.g., [10] for a survey. Two typical examples are Dedekind’s completion of
the ordered ring of rational numbers to that of extended real numbers (i.e.,
real numbers with ±∞) and canonical extensions of Boolean algebras. Among
the various completions, of particular importance are the generalizations of
Dedekind’s completion, known in the literature as MacNeille completions or
Dedekind-MacNeille completions, since they are regular, i.e., they preserve all
existing joins and meets.

In [3], Bezhanishvili and Harding proved the striking fact that there are only
three subvarieties of the variety HA of Heyting algebras closed under MacNeille
completions: the trivial variety, the variety BA of Boolean algebras, and the
whole variety HA. This means that no equation defining an intermediate va-
riety between BA and HA is preserved by MacNeille completions; prelinearity
(x → y) ∨ (y → x) = 1 is such an example. However, it is known that pre-
linearity is preserved by MacNeille completions, when applied to subdirectly
irreducible Heyting algebras; this is because prelinear such algebras are chains,
and the MacNeille completion of a chain is clearly a chain. As Heyting chains
generate the variety GA of Gödel algebras, we may deduce that GA, an inter-
mediate variety between BA and HA, admits completions, though not exactly
MacNeille.

The purpose of this note is to show that this phenomenon applies to a wide
class of such equations, lying in a specific level of a syntactic hierarchy of
equations. We present our results in the more general setting of the variety FL
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of FL-algebras (also known as pointed residuated lattices [7]), which contains
HA, as well as other interesting algebras including MV-algebras and lattice-
ordered groups.

Our work is part of algebraic proof theory, a research project that aims to
explore the connections between order algebra and proof theory. In that re-
spect the motivation and the intuition behind these completions stems from
proof-theoretic considerations. In [4, 5] we introduced the substructural hi-
erarchy (Nn,Pn)n∈N which naturally classifies FL-equations, in analogy to
the arithmetical hierarchy; see Figure 1. In [5] we proved that the equa-
tions in the lowest classes of the hierarchy (i.e., up to N2) are preserved by
MacNeille completions when applied to FLw-algebras (integral and bounded
FL-algebras). Moreover when these equations satisfy an additional syntac-
tic condition (acyclicity), they are preserved by MacNeille completions when
applied to arbitrary FL-algebras.

In this paper we investigate MacNeille completions for equations in P3–the
next level of the substructural hierarchy. Equations in P3 include prelinearity,
weak excluded middle, n-excluded middle, weak nilpotent minimum, (sm)
(defining the least non-trivial, non-Booloean subvariety of HA), and many
others. We show that all P3 equations are preserved by MacNeille completions
when applied to subdirectly irreducible FLew-algebras (i.e., commutative FLw-
algebras). This implies that subvarieties of FLew (and hence subvarieties of
HA) defined by these equations admit completions. Furthermore we prove a
similar result for FL-algebras in general, by using the syntactic condition of
acyclicity and suitably modifying the definition of the class P3.

2. Preliminaries

2.1. FL-algebras. A residuated lattice is an algebra A = (A,∧,∨, ·, \, /, 1),
such that (A,∧,∨) is a lattice, (A, ·, 1) is a monoid and for all a, b, c ∈ A,

a · b ≤ c iff b ≤ a\c iff a ≤ c/b.

We refer to the last property as residuation. As usual, we write xy for x · y.
We also write x\y/z for x\(y/z) and (x\y)/z, since the latter two are equal in
every residuated lattice.

An FL-algebra is a residuated lattice A with a distinguished element 0 ∈ A.
The element 0 is used to define negations: ∼x = x\0, −x = 0/x. As usual,
we will write a ≤ b instead of a = a ∧ b and ab instead of a · b. FL-algebras
are noncommutative in general, so the two implications \, / are in general
different. When a\b = b/a (or the distinction between them is irrelevant),
we write a → b; likewise we write ¬x if ∼x = −x. If we assume that the
lattice reduct is bounded, we may also include the constants > and ⊥ in the
language. However, we do not assume boundedness in general, since it excludes
interesting algebras, such as lattice-ordered groups.
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We denote by FL the variety of FL-algebras. Given a set E of equations,
we denote by FLE the subvariety of FL that consists of algebras satisfying E.
Typical equations are:

(e) xy ≤ yx (w) 0 ≤ x ≤ 1 (c) xx ≤ x

In FLe, we always have x\y = y/x = x → y. In FLw, we have 1 = > and
0 = ⊥. In FLewc we have x · y = x ∧ y. Hence FLewc is term equivalent to the
variety HA of Heyting algebras.

For a class K of algebras, we denote by KSI the class of subdirectly irre-
ducible algebras in K.

We denote by and, or and =⇒ the Boolean conjunction, disjunction and
implication of the underlying first-order language, respectively. A clause is a
universal first-order formula of the form (n ≥ m ≥ 0)

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un. (q)

t1 ≤ u1, . . . , tm ≤ um are called premises and tm+1 ≤ um+1, . . . , tn ≤ un

conclusions.

Definition 2.1. A clause (q) is said to be structural if ti is a product of
variables (including the empty product 1) and ui is either 0 or a variable x for
every 1 ≤ i ≤ n. A clause with only one conclusion is called a quasiequation.

An FL-algebra A satisfies (q) if for every valuation f into A, f(ti) ≤ f(ui)
for all 1 ≤ i ≤ m implies f(tj) ≤ f(uj) for some m+ 1 ≤ j ≤ n.

Given a class K of algebras, we say that two clauses (q1) and (q2) are
equivalent in K if they are satisfied by the same algebras in K.

A completion of an FL-algebra A is a pair (B, i) where B is a complete
FL-algebra and i : A −→ B is an embedding. We will often identify A with
i(A) ⊆ B. The variety of FL-algebras admits MacNeille completions, and
moreover the latter have an abstract characterization [2, 13]:

Theorem 2.2. Every FL-algebra A has a completion A ∈ FL, unique up to
isomorphism, such that A is both meet dense and join dense in A. Namely,
every element a of A can be written as

a =
∨
X =

∧
Y for some X,Y ⊆ A.

A is called the MacNeille completion of A. It is a regular completion,
namely, the embedding of A in A preserves all existing joins and meets.

2.2. Substructural Hierarchy. Proof-theoretic considerations (see [1, 4])
suggest the classification of the operations of FL (including >,⊥) into two
groups (polarities):

• positive operations: 1,⊥, ·,∨
• negative operations: >, 0,∧, \, /
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This classification makes algebraic sense as natural identities hold among op-
erations of the same polarity. For positive operations, we have:

x · 1 = x

x ∨ ⊥ = x

x · ⊥ = ⊥
x · (y ∨ z) = (x · y) ∨ (x · z)

For negative operations, we have:

x ∧ > = x

1→ x = x

x→ > = >
x→ (y ∧ z) = (x→ y) ∧ (x→ y)

(x ∨ y)→ z = (x→ z) ∧ (y → z)

Here→ stands for both \ and / (uniformly in the same equation). Notice that
the second and fifth equations above involve the positive operations 1 and ∨;
this is because we assume that polarity is reversed on the left hand side of →,
a fact that is related to the order-reversing nature of the operation in its first
argument.

The substructural hierarchy (Pn,Nn), introduced in [4, 5] to classify FL

terms, is based on alternations of positive and negative layers.

Definition 2.3. For each n ≥ 0, the sets Pn,Nn of FL terms are defined as
follows:

(0) P0 = N0 is the set of variables.
(P1) 1,⊥ and all terms in Nn belong to Pn+1.
(P2) If t, u ∈ Pn+1, then t ∨ u, t · u ∈ Pn+1.
(N1) 0,> and all terms in Pn belong to Nn+1.
(N2) If t, u ∈ Nn+1, then t ∧ u ∈ Nn+1.
(N3) If t ∈ Pn+1 and u ∈ Nn+1, then t\u, u/t ∈ Nn+1.

Namely Pn+1 is the set generated from Nn by means of finite joins (including
the empty join ⊥) and products (including the empty product 1), and Nn+1

is generated by Pn ∪ {0} by means of finite meets (including the empty meet
>) and divisions with denominators from Pn+1.

We say that 1 ≤ t belongs to Pn (Nn, resp.) if t does. Also, if s 6= 1,
we say that s ≤ t belongs to Pn (Nn, resp.) if s\t does. We also extend the
classification to equations s = t, by choosing the join in the classification poset
of the classes of s ≤ t and t ≤ s.

For every n, we have Pn ∪ Nn ⊆ Pn+1 and Pn ∪ Nn ⊆ Nn+1. Hence the
hierarchy can be depicted as in Figure 1.

We recall from [5] that terms in each class admit the following normal forms:

Lemma 2.4.
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Figure 1. The Substructural Hierarchy

(P) Every term in Pn+1 is equivalent in FL to ⊥ or to u1 ∨ · · · ∨ um, where
each ui is a product of terms in Nn.

(N) Every term in Nn+1 is equivalent in FL to a finite meet of terms of the
form l\u/r, where u is either 0 or a term in Pn, and l, r are products of
terms in Nn.

Proof. We will prove the lemma by simultaneous induction of the two state-
ments.

Let t ∈ Pn+1. Statement (P) is clear for t = ⊥. The case t = 1 is a special
case for m = 1 and u1 the empty product. If (P) holds for t, u ∈ Pn+1, then it
clearly holds for t∨ u. For t · u, we use the fact that multiplication distributes
over joins.

Let t ∈ Nn+1. Statement (N) is clear for t = >. For t = 0 we take
l = r = 1 and u = 0. If (N) holds for t, u ∈ Nn+1, then it clearly holds
for t ∧ u. If t ∈ Pn+1 and u ∈ Nn+1, we know that t = t1 ∨ · · · ∨ tm, for
ti a product of terms in Nn, where m = 0 yields the empty join t = ⊥.
We have t\u = (t1 ∨ · · · ∨ tm)\u = (t1\u) ∧ · · · ∧ (tm\u). Moreover, by the
induction hypothesis, for all j ∈ {1, . . . ,m}, tj\u = tj\(

∧
1≤i≤k li\ui/ri) =∧

1≤i≤k tj\(li\ui/ri) =
∧

1≤i≤k(litj)\ui/ri; the empty meet > is obtained for
k = 0. �

Corollary 2.5 (Normal form of N2 equations). Every equation in N2 is equiv-
alent in FL to a finite conjunction of equations of the form t1 · · · tm ≤ u where
u = 0 or u = u1 ∨ · · · ∨ uk with each ui a product of variables. Furthermore,
each ti is of the form

∧
1≤j≤n lj\vj/rj (or

∧
1≤j≤n lj → vj, for FLe), where

vj = 0 or a variable, and lj and rj are products of variables.
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Class Equation Name
N2 xy ≤ yx commutativity

x ≤ 1, 0 ≤ x integrality
x ≤ xx contraction
xx ≤ x expansion
xn ≤ xm knotted axioms

1 ≤ ¬(x ∧ ¬x) no-contradiction
P2 1 ≤ x ∨ ¬x excluded middle

1 ≤ (x→ y) ∨ (y → x) prelinearity
P3 1 ≤ ¬x ∨ ¬¬x weak excluded middle

1 ≤ x ∨ ¬xn−1 n-excluded middle
1 ≤ ¬(xy) ∨ (x ∧ y → xy) weak nilpotent minimum

1 ≤ x(x\1) `-group
1 ≤

∨k
i=0(p0 ∧ · · · ∧ pi−1 → pi) (Bdk), k ≥ 1

1 ≤ p0 ∨ · · · ∨ (p0 ∧ · · · ∧ pk−1 → pk) (Bck), k ≥ 1
1 ≤ x ∨ (x→ 1) semiconicity

N3 x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z) distributivity
x→ xy ≤ y cancellativity

(x ∧ y) ≤ x(x→ y) divisibility

Figure 2. The zoo of equations

Some examples of equations classified into the hierarchy are found in Fig-
ure 2 (where → can be any of \ and / and xn stands for x · . . . · x, n times).

Remark 2.6. In [14, 15], Zakharyaschev proved that all superintuitionistic
logics are definable by his canonical formulas. Since each canonical formula
can be expressed by an equation in N3 (if one carefully chooses between ·
and ∧ for conjunction), it follows that all subvarieties of HA are definable by
equations in N3. Namely, the substructural hierarchy collapses beyond level
N3 over HA.

We say that a class of algebras admits MacNeille completions, if for every
algebra in the class, its MacNeille completion is also in the class. We say
that a class admits completions, if every algebra in the class embeds in some
complete algebra also in the class.

Theorem 2.7 ([5]). Let E be a set of N2 equations. The following are equiv-
alent:

• FLE admits completions.
• FLE admits MacNeille completions.
• E is equivalent to a set of acyclic quasiequations (cf. Definition 5.5) in

FL.

Moreover, if integrality (x ≤ 1) belongs to E, FLE is always closed under
MacNeille completions.
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The last statement means that all N2 equations are preserved by MacNeille
completions when applied to algebras in FLw.

3. From P3 equations to analytic clauses

In general, proving that a certain equation is preserved by MacNeille com-
pletions is not an easy task, especially if the equation has a complicated form.
In this section we show how to transform P3 equations, in the commutative
and integral case, into clauses of a simple syntactic form. These clauses—called
analytic—lend themselves to a uniform proof of preservation under MacNeille
completions. Our transformation, inspired by the proof theoretic results in
[4], is done in two steps: (1) we first “unfold” P3 equations into structural
clauses and (2) structural clauses are transformed (completed, in the sense of
Knuth-Bendix) into analytic clauses.

We begin with two easy lemmas. The first recalls some standard properties
of FLew.

Lemma 3.1. Let A ∈ FLew and let t, u be FL-terms.

(1) A |= 1 ≤ t · u if and only if A |= 1 ≤ t and A |= 1 ≤ u.
(2) A |= 1 ≤ t or 1 ≤ u implies A |= 1 ≤ t ∨ u.
(3) If A is subdirectly irreducible, A |= 1 ≤ t∨ u implies A |= 1 ≤ t or 1 ≤ u.

Proof. First note that all inequalities can be replaced by equalities in the
presence of integrality. (1) follows from order preservation of multiplication
and (2) is a trivial observation about join. (3) follows from results in [12], or
in [6]. �

The next lemma, which is the key for our transformation procedure, is based
on a simple observation: every equation t ≤ u is equivalent to a quasiequation
u ≤ x =⇒ t ≤ x, and also to x ≤ t =⇒ x ≤ u, where x is a fresh variable
not occurring in t, u. This is a very particular case of Yoneda’s lemma in
category theory. Below, ~ε1 (resp., ~ε2) stands for a Boolean conjunction (resp.,
disjunction) of equations.

Lemma 3.2. The following clauses are equivalent in FL, where x is a fresh
variable.

(1) ~ε1 =⇒ ~ε2 or ltr ≤ u.
(2) ~ε1 and u ≤ x =⇒ ~ε2 or ltr ≤ x.
(3) ~ε1 and x ≤ t =⇒ ~ε2 or lxr ≤ u.

Proof. We prove the equivalence between (1) and (2). The other case is similar.
(1) follows from (2) by instantiating x with u in (2). For the converse, assume
that the premises of (2) hold. By (1) and ~ε1 we get ~ε2 or ltr ≤ u. The
conclusion of (2) follows from this and u ≤ x. �
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Theorem 3.3. Every equation ε in P3 is equivalent in (FLew)SI to a finite
set R of structural clauses. More precisely, ε implies R in (FLew)SI , while R
implies ε in FLew.

Proof. By Lemma 2.4, every equation in P3 is equivalent in FL to an equation
of the form 1 ≤

∨ ∏
sij with sij ∈ N2; here

∨
denotes a finite join and∏

a finite product. In view of Lemma 3.1, this is equivalent in (FLew)SI to
a conjunction of disjunctions of equations 1 ≤ sij , namely to a finite set of
clauses of the form

1 ≤ s1 or 1 ≤ s2 or . . . or 1 ≤ sm,

where each 1 ≤ si is in N2. By Corollary 2.5, each 1 ≤ si is equivalent to an
equation of the form ti1 · · · tini

≤ ui with ui = 0 or ui = ui1 ∨ · · · ∨ uiki
and

each uij is a product of variables. Furthermore each tij (j = 1, . . . , ni) is of
the form

∧
1≤p≤qij

lp → vp, where vp = 0 or a variable, and lp are products of
variables. In other words the clause becomes

t11 · · · t1n1 ≤ u1 or . . . or tm1 · · · tmnm ≤ um,

By repeatedly applying Lemma 3.2, it further becomes

u1 ≤ z1 and . . . and um ≤ zm =⇒ t11· · ·t1n1 ≤ z1 or . . . or tm1 · · · tmnm ≤ zm.

which we write in more compact form

AND
1≤i≤m

ui ≤ zi =⇒ OR
1≤i≤m

ti1 · · · tini ≤ zi,

By further applications of Lemma 3.2, we get

AND
1≤i≤m

ui ≤ zi and AND
1 ≤ i ≤ m
1 ≤ j ≤ ni

xij ≤ tij =⇒ OR
1≤i≤m

xi1 · · ·xini
≤ zi,

Given the form of ui and tij , the equations ui ≤ zi and xij ≤ tij become∨
1≤j≤ki

uij ≤ zi and xij ≤
∧

1≤p≤qij

lp → vp,

respectively (we adopt here the convention that for ki = 0, ui1 ∨ · · · ∨ uiki

denotes ⊥). The clause then becomes

AND
1 ≤ i ≤ m
1 ≤ j ≤ ki

uij ≤ zi and AND
1 ≤ i ≤ m
1 ≤ j ≤ ni
1 ≤ p ≤ qij

lpxij ≤ vp =⇒ OR
1≤i≤m

xi1 · · ·xini ≤ zi,

which is structural.
The last claim of the theorem (R implies ε in FLew) can be verified by

tracing back the transformation steps above. Notice that we do not need to
use Lemma 3.1 (3) for this direction. �

We introduce below a procedure to simplify structural clauses in the pres-
ence of integrality, that is to transform them into equivalent analytic clauses.
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Definition 3.4. Given a structural clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un, (q)

we call the variables occurring in tm+1, . . . , tn left variables, and those in
um+1, . . . , un right variables. The set of left (resp., right) variables is denoted
by L(q) (resp., R(q)). (q) is said to be analytic if it satisfies the following
conditions:

Separation: L(q) and R(q) are disjoint.
Linearity: Any variable x ∈ L(q) ∪ R(q) occurs exactly once in tm+1,
um+1, . . . , tn, un.

Inclusion: t1, . . . , tm are made of variables in L(q) (here repetition is
allowed), while u1, . . . , um are made of variables in R(q) (and 0).

Remark 3.5. Analytic clauses correspond to the proof theoretic notion of
analytic structural rules, see [4]. These are structural rules in a generalization
of Gentzen sequent calculus, which behave well with respect to cut-elimination.

Theorem 3.6. Every structural clause is equivalent in FLw to an analytic one.

Proof. Given a structural clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un (q)

the transformation into an analytic clause equivalent to (q) in FLw proceeds
in two steps:
1. Restructuring. For each i ∈ {m + 1, . . . n}, assume that ti is y1 · · · yp. Let
x0, x1, . . . , xp be distinct fresh variables. Depending on whether ui is 0 or a
variable, we transform (q) into either

S and x1 ≤ y1 and . . . and xp ≤ yp =⇒ S′ or x1 . . . xp ≤ 0 or (q1)

S and x1 ≤ y1 and . . . and xp ≤ yp and ui ≤ x0 =⇒ S′ or x1 . . . xp ≤ x0

(q2)
where S denotes the set of premises of (q) and S′ denotes the conclusion
of (q) without ti ≤ ui (i.e. tm+1 ≤ um+1 or . . . or ti−1 ≤ ui−1 or ti+1 ≤
ui+1 or . . . or tn ≤ un).

The equivalence of (q1) (or (q2)) to (q) in FL follows by Lemma 3.2. We
apply this procedure for all i ∈ {m+ 1, . . . n}.
2. Cutting. Let (q′) be the clause obtained after step 1 (restructuring). (q′)
satisfies the properties of separation and linearity of Definition 3.4. An ana-
lytic clause equivalent to (q′) in FLw is obtained by suitably removing all the
redundant variables from its premises, i.e., variables other than L(q′) ∪R(q′).
This is done as follows: Let z be any redundant variable. If z appears only
on right-hand sides (RHS) of premises we simply remove all such premises,
say s1 ≤ z, . . . , sk ≤ z from (q′). It is easy to see that the resulting clause is
equivalent to (q′) in FL. Indeed observe that all premises si ≤ z in (q′) hold
by instantiating z with

∨
si, and that the instantiation does not affect the
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other premises and conclusion. Hence (q′) implies the new clause. The other
direction is trivial.

If z appears only on left-hand sides (LHS) of premises of (q′), we again
remove all such premises, say l1 · z · r1 ≤ v1, . . . , lk · z · rk ≤ vk from (q′). We
argue similarly as in the previous case, instantiating z with

∧
1≤i≤k li\vi/ri.

Otherwise, z appears both on RHS and LHS of premises of (q′). Let Sr

and Sl be the sets of premises of (q′) which involve z on RHS and LHS,
respectively. Namely, Sr consists of the premises of the form s ≤ z, and Sl of
the form t(z, . . . , z) ≤ v, where the occurrences of z in t are all indicated.

Because of integrality, we can assume that Sr and Sl are disjoint. Indeed,
if an equation belongs to both Sr and Sl, then it is of the form t(z, . . . , z) ≤ z,
which can be safely removed as it follows from integrality. We replace Sr ∪ Sl

with a new set Scut of premises, which consists of all equations of the form

t(s1, . . . , sk) ≤ v, where t(z, . . . , z) ≤ v ∈ Sl and s1 ≤ z, . . . , sk ≤ z ∈ Sr.

The resulting clause implies (q′), in view of transitivity. To show the converse,
assume the premises of the new one. By instantiating z =

∨
s =

∨
{s : s ≤ z ∈

Sr}, all premises in Sr hold and all premises t(
∨
s, . . . ,

∨
s) ≤ v in Sl follow

from Scut. Hence (q′) yields the conclusion.
The claim follows by applying the cutting step for each redundant variable.

�

Example 3.7. Prelinearity 1 ≤ (x→ y)∨(y → x) is equivalent in (FLew)SI to
the structural clause x ≤ y or y ≤ x. By applying the completion procedure
in the proof of Theorem 3.6 we can transform the latter into the (equivalent)
analytic clause

z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y. (com)

Example 3.8. The smallest non-trivial, non-Boolean subvariety of Heyting
algebras is generated by the 3-element Heyting algebra; it is axiomatized,
relative to Heyting algebras, by the equation (Bc2) 1 ≤ x∨(x→ y)∨[(x∧y)→
z] (also known as (sm)) together with prelinearity. J. Harding proved [9]
that this variety admits regular completions; i.e., every algebra in the variety
embeds in a complete algebra in the variety via a map that preserves existing
(arbitrary) meets and joins. (Bc2) ∈ P3 (cf. Figure 2) and it is equivalent in
(FLew)SI to the structural clause 1 ≤ x or x ≤ y or x ∧ y ≤ z. By applying
the completion procedure in the proof of Theorem 3.6, we can transform the
latter into the (equivalent) analytic clause

u ≤ x and w ≤ x and w ≤ y =⇒ 1 ≤ x or u ≤ y or w ≤ z. (Clause-Bc2)

4. Preservation by MacNeille completions

We provide a uniform proof of the preservation of analytic clauses by Mac-
Neille completions. Together with the results in the previous section this
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implies that each subvariety of FLew axiomatized by P3 equations admits com-
pletions.

Theorem 4.1. If an analytic clause is satisfied by an FL-algebra A, then it
is also satisfied by its MacNeille completion A.

Before proving Theorem 4.1, let us explain the idea by means of an example.

Example 4.2. Consider the analytic clause (com) z ≤ x and w ≤ y =⇒ w ≤
x or z ≤ y, which is equivalent in (FLew)SI to prelinearity (see Example 3.7).
Assume that A ∈ FL satisfies (com); we prove that A satisfies it too. By
Theorem 2.2, any element of A can be written as both a join and a meet of
elements of A. Hence it is enough to show

∨
Z ≤

∧
X and

∨
W ≤

∧
Y =⇒

∨
W ≤

∧
X or

∨
Z ≤

∧
Y

for X,Y, Z,W ⊆ A. Assume by way of contradiction that
∨
Z ≤

∧
X,

∨
W ≤∧

Y ,
∨
W 6≤

∧
X and

∨
Z 6≤

∧
Y . From the latter two, we can choose x ∈ X,

y ∈ Y , z ∈ Z, w ∈ W such that w 6≤ x and z 6≤ y. On the other hand, the
former two imply z ≤ x and w ≤ y. But then (com) yields either w ≤ x or
z ≤ y — a contradiction.

Following the example above, the idea in the proof is to represent the vari-
ables that appear on the left-hand side of inequalities as joins and those on the
right-hand side as meets of elements of A. The separation property guarantees
that this can be done for each analytic clause.

Proof. Assume that A ∈ FL satisfies an analytic clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un. (q)

Let L(q) ∪ R(q) = {x1, . . . , xp}. To prove that A satisfies (q), let f be a
valuation into A defined on L(q) ∪ R(q). By Theorem 2.2 and the separation
condition, we may assume that there are X1, . . . , Xp ⊆ A such that f(xk) =∨
Xk if xk ∈ L(q) and f(xk) =

∧
Xk if xk ∈ R(q).

Assume by way of contradiction that f(ti) ≤ f(ui) for every 1 ≤ i ≤ m

and f(tj) 6≤ f(uj) for every m + 1 ≤ j ≤ n. From the latter, we can choose
one ak from each Xk that make all the conclusions false. More precisely, there
exist ak ∈ Xk such that if we define a valuation g into A by g(xk) = ak, then
g(tj) 6≤ g(uj) for all m + 1 ≤ j ≤ n. Notice that it is the linearity condition
that allows us to pick up exactly one aj from each Xj making all conclusions
false, so that the valuation g is well defined.

The valuation g satisfies all the premises. Indeed, assume that ti = xi1 . . . xil

and ui = xi0 for 1 ≤ i ≤ m. By the inclusion condition, xi1 , . . . , xil
∈ L(q)
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and xi0 ∈ R(q). Hence we have

g(ti) = ai1 . . . ail

≤ (
∨
Xi1) . . . (

∨
Xil

) = f(ti)

≤ f(ui) =
∧
Xi0

≤ ai0 = g(ui).

(The case ui = 0 is similar; we then have f(ui) = g(ui) = 0.)
Since A satisfies (q), we must have g(tj) ≤ g(uj) for some m + 1 ≤ j ≤ n.

That is a contradiction. �

By combining Theorems 3.3, 3.6 and 4.1, we obtain:

Theorem 4.3. If a P3 equation is satisfied by a subdirectly irreducible algebra
A in FLew, then it is also satisfied by its MacNeille completion A.

Corollary 4.4. If a subvariety of FLew is axiomatized by P3 equations, it
admits completions.

Proof. Any algebra A in such a variety V embeds into a product
∏

i∈I Ai of
subdirectly irreducible algebras Ai in V. By the above theorem, their Mac-
Neille completions Ai also belong to V. Hence we have a completion

A ↪→
∏
i∈I

Ai ↪→
∏
i∈I

Ai ∈ V.

�

Remark 4.5. The completion in Corollary 4.4 is not necessarily regular be-
cause the subdirect representation does not preserve existing joins.

5. The noncommutative and nonintegral cases

In extending Theorem 4.3 to FLSI we meet two obstacles: (a) In the absence
of commutativity and integrality Lemma 3.1, which is crucial for transforming
any equation into equivalent structural clauses, does not hold. (b) The cutting
step to complete structural clauses into analytic ones (Theorem 3.6) does not
go through without integrality. In this section we show that these two obstacles
can be overcome by suitably modifying the class of equations we deal with
and by imposing a further syntactic condition on the structural clauses to be
completed. As discussed in Section 6 the proposed restrictions are unavoidable.

To simulate the effects of commutativity and integrality without actually as-
suming them, we consider the notion of iterated conjugate.

A conjugate of a term t is either λu(t) = (u\tu) ∧ 1 or ρu(t) = (ut/u) ∧
1 for some term u. Conjugates indeed allow us to simulate integrality and
commutativity, as

λu(t) ≤ 1, ρu(t) ≤ 1, uλu(t) ≤ tu, ρu(t)u ≤ ut.
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Since one application of commutativity/integrality corresponds to the insertion
of a conjugate, repeated applications of these properties require iterated uses
of conjugates. An iterated conjugate of t is a term of the form γu1 · · · γun

(t),
where each γui is either λui or ρui .

Notation: We add an auxiliary unary operation [ to the language of FL.
The intended meaning is that [t corresponds to the set of all iterated conjugates
of t.

Definition 5.1. For each n ≥ 0, we denote by P ′n+1 the set of terms generated
from {[t : t ∈ Nn} by finite joins and products. More precisely:

• If t ∈ Nn, then [t ∈ P ′n+1.
• 1,⊥ ∈ P ′n+1.
• If t, u ∈ P ′n+1, then t ∨ u, t · u ∈ P ′n+1.

We say that an equation 1 ≤ t belongs to P ′n if t does.

To each t ∈ P ′n+1, we assign the set FL(t) of FL terms as follows:

FL([t) = {t′ : t′ is an iterated conjugate of t}
FL(t · u) = {t′ · u′ : t′ ∈ FL(t), u′ ∈ FL(u)}
FL(t ∨ u) = {t′ ∨ u′ : t′ ∈ FL(t), u′ ∈ FL(u)}
FL(⊥) = {⊥}
FL(1) = {1}

Given an FL-algebra A and an equation 1 ≤ t with t ∈ P ′n+1, we write
A |= 1 ≤ t if A |= 1 ≤ t′ for every t′ ∈ FL(t).

Below are some examples of P ′3 equations:

1 ≤ [(x→ y)∨[(y → x), 1 ≤ [¬(x·y)∨[(x∧y → x·y), 1 ≤ [x∨[y∨[(xy\yx).

The use of iterated conjugates allows us to prove an analogue of Lemma 3.1,
thus overcoming obstacle (a), mentioned at the very beginning of the section.

Lemma 5.2. Let A be an FL-algebra and let t, u be FL-terms.

(1) A |= 1 ≤ [t · [u if and only if A |= 1 ≤ t and A |= 1 ≤ u.
(2) A |= 1 ≤ t or 1 ≤ u implies A |= 1 ≤ [t ∨ [u.
(3) If A is subdirectly irreducible, A |= 1 ≤ [t∨[u implies A |= 1 ≤ t or 1 ≤ u.

Proof. First note that: (*) 1 ≤ t iff 1 ≤ γ(t), for every iterated conjugate γ.
Indeed, for the forward direction take γ(t) = λ1(t) = 1\(t ·1)∧1 = t∧1, to get
1 ≤ t ∧ 1, i.e., 1 ≤ t. For the converse, if 1 ≤ t, then for all a, 1 ≤ t ≤ a\(ta),
hence 1 ≤ a\(ta)∧1 = λa(t), and likewise 1 ≤ ρa(t). By repeated applications
of this principle, we get 1 ≤ γ(t), for every iterated conjugate γ.

As in the proof of Lemma 3.1, (1) and (2) follow easily, by also using (*).
In detail for (1), A satisfies 1 ≤ [t · [u iff for all iterated conjugates γ and γ′,
A satisfies 1 ≤ γ(t) · γ′(u). As each conjugate is a negative element (i.e., less
or equal to 1), this is equivalent to: 1 ≤ γ(t) and 1 ≤ γ′(u), for all conjugates.
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Now (1) follows from (*). Finally, (3) follows in this generality directly from
results in [6]. �

Having obtained this, it is now straightforward to modify the proof of The-
orem 3.3.

Theorem 5.3. Every equation in P ′3 is equivalent in FLSI to a finite set of
structural clauses.

Remark 5.4. In presence of commutativity, we can identify [t with t ∧ 1. In
this case P ′3 can be seen as a subclass of P3 (a proper subclass, as shown in
Section 6).

We now consider the second obstacle (b) in extending Theorem 4.3 to FLSI :
in the absence of integrality, the cutting step in the proof of Theorem 3.6 does
not go through. In analogy to [5], we use the following side condition on
equations and structural clauses.

Definition 5.5. Given a structural clause (q), we build its dependency graph
D(q) in the following way:

• The vertices of D(q) are the variables occurring in the premises (we do
not distinguish occurrences).
• There is a directed edge x −→ y in D(q) if and only if there is a premise

of the form lxr ≤ y.

(q) is acyclic if the graph D(q) is acyclic (i.e., it has no directed cycles or
loops).

A P ′3-equation ε is said to be acyclic if so are all the structural clauses
obtained by applying to ε the procedure described in the proof of Theorem 3.3.

Example 5.6. Consider the N2 equation x\x ≤ x/x. By applying the proce-
dure in the proof of Theorem 3.3 we obtain the equivalent (in FL) quasiequation

xy ≤ x =⇒ yx ≤ x. (we)

(we) is not acyclic, since we have a loop at the vertex x in D(we).

Theorem 5.7. Every acyclic clause is equivalent to an analytic one in FL.

Proof. We proceed as in the proof of Theorem 3.6. Integrality was used there
in the cutting step to assume that the sets Sr and Sl of premises which involve
a redundant variable z on the RHS and LHS were disjoint. The acyclicity
condition trivially guarantees that this is the case. �

We have done all the modifications needed to obtain a suitable generaliza-
tion of Theorem 4.3.

Theorem 5.8. If a P ′3 equation (resp. acyclic P ′3 equation) is satisfied by a
subdirectly irreducible algebra A in FLw (resp. FL), then it is also satisfied by
its MacNeille completion A.
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Corollary 5.9. If a subvariety of FLw (resp. FL) is axiomatized by P ′3 equa-
tions (resp. acyclic P ′3 equations), then it admits completions.

We note again that P ′3 can be seen as a subclass of P3 over FLe, since we
can identify [t with t ∧ 1.

6. Perspectives

We have shown that a wide class of equations is preserved by MacNeille
completions when applied to subdirectly irreducible FL-algebras, therefore a
wide class of varieties of FL-algebras admits completions. On the other hand,
there exist varieties that do not admit completions. These varieties provide
some negative answers to the natural questions below:

Does Theorem 5.8 hold for all P3 equations?: The variety LG of lattice-
ordered groups does not admit completions, simply because it does
not contain any nontrivial bounded algebra. LG is axiomatized by
1 ≤ x(x\1) over FL. The equation is in P3, but not in P ′3.

Can the acyclicity condition be dropped?: In [5] we proved that the sub-
variety of FL defined by x\x ≤ x/x does not admit any completion
(and therefore, by Theorem 2.7 it is not equivalent to any analytic
clause). The above equation belongs to N2 ⊆ P3 but it is not acyclic
(see Example 5.6).

Beyond P3?: The subvariety of FLew defined by the cancellativity axiom
x → xy ≤ y ∈ N3 does not admit completions for the same reason
as LG. Also notably, the varieties of MV, BL, GMV and GBL alge-
bras, all axiomatized by certain N3 equations over FLw, do not admit
completions either (see [11]). For instance, the variety of BL algebras
is axiomatized by prelinearity and the N3 equation of divisibility over
FLew (see Figure 2).

These facts indicate that our results are more or less optimal.

As noted in Remark 4.5, our completions of varieties are not necessarily
regular, since they use the subdirect representation, which does not preserve
existing joins. On the other hand, cut-elimination for the proof-theoretic
counterpart of P3 equations [4] suggests the definition of a new kind of com-
pletion. In our subsequent work we will introduce such completions, called
hyper-MacNeille completions, which do preserve all P3 equations not only for
subdirectly irreducible FLew-algebras, but also for arbitrary FLew-algebras.
Circumventing subdirect representation, these completions turn out to be reg-
ular, hence any subvariety of FLew axiomatized by P3 equations admit regular
completions.
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