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1. INTRODUCTION
Classical logic is often inadequate for dealing with the many challenges posed by
emerging applications, which require handling inconsistent, incomplete or vague in-
formation, reasoning about dynamic structures, etc. Such applications call for various
non-classical logics: fuzzy logics, paraconsistent logics, substructural logics and many
more. These logics are often described using Hilbert systems, which provide few in-
sights into such important issues as decidability, interpolation, etc. and are extremely
cumbersome when it comes to automated deduction.

Figuratively speaking, to make a logic useful for practical purposes, it needs to be
“tamed”,1 i.e. reformulated in terms of an analytic calculus, where proof search pro-
ceeds by a step-wise decomposition of the formulas to be proved, and equipped with
a useful and intuitive semantics. A desirable property of such semantics is effective-

1To tame: to reduce from a state of native wildness especially so as to be tractable and useful to humans.
(Merriam-Webster Dictionary, Encyclopedia Britannica)
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ness in the sense that it naturally induces a decision procedure for the logic. Examples
for effective semantics include finite-valued matrices, non-deterministic finite-valued
matrices (Nmatrices, [Avron and Lev 2005; Avron and Zamansky 2011])), and partial
Nmatrices (PNmatrices, [Baaz et al. 2013]). The latter two are natural generalizations
of the former, which allow non-deterministic interpretations of logical connectives (in
contrast to Nmatrices, PNmatrices also allow empty sets in the truth tables). Consid-
ering the wide variety of existing non-classical logics, and the new logics constantly
introduced, it is also desirable to have an algorithmic approach to “taming”, that can
be automated.

In this paper we provide such an approach for a large class of logics formulated
in terms of Hilbert calculi. We introduce an algorithm for a systematic generation of
sequent calculi for this class of logics, as well as simple and intuitive semantics for
them. The introduced semantics, based on PNmatrices, is effective and also provides a
simple sufficient condition for the analyticity of the corresponding calculi.

This class of logics contains many useful and well-known logics, as well as infinitely
many new ones: it consists of extensions of the positive fragment of classical proposi-
tional logic CL+ with axioms of a certain natural form. More precisely, they are induced
by a family H of Hilbert calculi obtained by (i) extending the language of CL+ with
finitely many unary connectives, and (ii) adding to HCL+ (a Hilbert axiomatization of
CL+) axioms over the extended language of a certain general form.

The simplest and best known member of H is the standard calculus for classical
logic, obtained by adding to HCL+ the usual axioms for negation. Further examples
include many C-systems [Da Costa 1974; Carnielli and Marcos 2002] and the para-
consistent logics investigated in [Kamide 2013]. While analytic sequent calculi and/or
adequate semantics for some of these logics were already available, the novelty of our
approach is that their introduction is fully automated (as opposed, e.g., to [Avron et al.
2012; 2013], where the construction of semantics is done manually). Moreover, it ap-
plies to infinitely many logics (and is not tailored to the C-systems as [Avron et al.
2012; 2013] or to specific logics as [Kamide 2013]), many of which have had so far no
adequate calculi or available semantics.

Given a system H ∈ H, our “taming” procedure works as follows:

Step 1. transform the Hilbert axioms in H into sequent calculus rules
Step 2. extract a PNmatrix out of the obtained sequent calculus

Step 1 is done by adapting the procedure in [Ciabattoni et al. 2008], where certain
Hilbert axioms are transformed into equivalent (sequent and hypersequent) structural
rules added to a suitable base system. In contrast to [Ciabattoni et al. 2008], the rules
extracted from the axioms of H ∈ H are logical rules in Gentzen’s terminology, i.e.,
they introduce logical connectives. In particular, each of these rules may involve more
than one connective, and hence the analyticity of the calculus resulting from addition
of such rules depends on the way they interact with all the existing rules mentioning
the same connectives. This requires a view on the calculus as a whole, which is pro-
vided by the semantics constructed in Step 2 given in the framework of PNmatrices
[Baaz et al. 2013]. This framework is non-deterministic and by employing empty sets
of options in the truth-tables, makes it possible to “forbid” some combinations of truth
values. This type of semantics is still effective, as it guarantees the decidability of the
corresponding sequent calculus. As a corollary it follows that each system H ∈ H is de-
cidable. Furthermore, we show that if the PNmatrix constructed for H is contains no
empty sets, then the corresponding sequent calculus is analytic, as it enjoys a certain
generalized subformula property.

This paper extends the results of [Ciabattoni et al. 2013]. However, in contrast to
[Ciabattoni et al. 2013], we allow here axioms with possible nesting of unary con-
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nectives of any fixed depth. This allows us to capture, e.g., the logics investigated in
[Kamide 2013] that could not be dealt with in our the previous work. While Step 1 of
our procedure is easily extended to the new axioms, Step 2 required major changes
in the construction of our PNmatrices, in the notion of analyticity and in all related
theorems.

Our procedure is implemented in the Prolog system Paralyzer — PARAconsistent
(and other) logics anaLYZER, drawing inspiration from the system MUltlog [Baaz
et al. 1996], which introduces analytic calculi for finite-valued logics. For any set of
axioms of a certain general2 form, the system returns as output (a paper containing)
the corresponding sequent calculus and the associated PNmatrix.

Our “taming” procedure is a concrete step towards a systematization of the vast
variety of existing non-classical logics and the development of tools for designing new
application-oriented logics in the spirit of [Ohlbach 1994].

This paper is organized as follows: Section 2 describes the translation of any Hilbert
calculus H ∈ H into an equivalent sequent calculus G. In Section 3 we obtain a corre-
sponding PNmatrix for each such sequent calculus G and use it to prove the decidabil-
ity of H. Section 4 provides a way for checking the analyticity of G. Section 5 presents
the implementation of Paralyzer, while Section 6 contains a summary of the paper and
discusses some directions for future work.

2. FROM HILBERT SYSTEMS TO SEQUENT CALCULI (STEP 1)
In what follows, L+

cl denotes the language of CL+, the positive fragment of proposi-
tional classical logic, consisting of the binary connectives ∧ (conjunction), ∨ (disjunc-
tion) and ⊃ (implication), and the atomic formulas p1, p2, . . .. We consider propositional
languages that extend L+

cl with finitely many unary connectives. The symbol L is used
to denote such a language. We identify a language with its set of formulas, e.g. when
writing ϕ ∈ L. Several additional notations are used: UL for the set of unary con-
nectives employed in L; ?, . for arbitrary elements of UL; U∗L for the set of all finite
sequences of connectives from UL, with the empty sequence denoted by ε; and ?̄, .̄ for
arbitrary such finite sequences. We also employ standard notations for their concate-
nation (e.g., when writing expressions like ?̄.̄).

2.1. The Family H

Consider the Hilbert axiomatization HCL+ of CL+, which in addition to the MP rule
includes the following axioms:

I1. ϕ ⊃ (ψ ⊃ ϕ)
I2. (ϕ ⊃ ψ ⊃ θ) ⊃ (ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)
I3. ((ψ ⊃ ϕ) ⊃ ψ) ⊃ ψ
C1. ϕ ∧ ψ ⊃ ϕ
C2. ϕ ∧ ψ ⊃ ψ
C3. ϕ ⊃ (ψ ⊃ ϕ ∧ ψ)
D1. ϕ ⊃ ϕ ∨ ψ
D2. ψ ⊃ ϕ ∨ ψ
D3. (ϕ ⊃ θ) ⊃ (ψ ⊃ θ) ⊃ (ϕ ∨ ψ ⊃ θ)

H consists of all Hilbert calculi that are obtained by augmentingHCL+ (or any other
axiomatization of CL+) with axioms in AxL of the following general form:

Definition 2.1. AxL is the set of L-formulas that:

2Paralyzer currently handles the axiom systems of [Ciabattoni et al. 2013].
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(n1) p1 ∨ ¬p1 (n2) p1 ⊃ (¬p1 ⊃ p2)
(b) p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) (r�) ◦(p1 � p2) ⊃ (◦p1 ∨ ◦p2)
(k) ◦p1 ∨ (p1 ∧ ¬p1) (i) ¬◦p1 ⊃ (p1 ∧ ¬p1)
(o1
�) ◦p1 ⊃ ◦(p1 � p2) (o2

�) ◦p2 ⊃ ◦(p1 � p2)
(a�) (◦p1 ∧ ◦p2) ⊃ ◦(p1 � p2) (a¬) ◦p1 ⊃ ◦¬p1

(ck) ¬¬¬k−1p1 ⊃ ¬k−1p1 (ek) ¬k−1p1 ⊃ ¬¬¬k−1p1

(el�k) ¬k(p1 � p2) ⊃ (¬kp1 � ¬kp2) (er�k) (¬kp1 � ¬kp2) ⊃ ¬k(p1 � p2)
(ol
⊃k

) ¬k(p1 ⊃ p2) ⊃ (¬k−1p1 ∧ ¬kp2) (or
⊃k

) (¬k−1p1 ∧ ¬kp2) ⊃ ¬k(p1 ⊃ p2)
(ol
∧k

) ¬k(p1 ∧ p2) ⊃ (¬kp1 ∨ ¬kp2) (or
∧k

) (¬kp1 ∨ ¬kp2) ⊃ ¬k(p1 ∧ p2)
(ol
∨k

) ¬k(p1 ∨ p2) ⊃ (¬kp1 ∧ ¬kp2) (or
∨k

) (¬kp1 ∧ ¬kp2) ⊃ ¬k(p1 ∨ p2)

Fig. 1. Examples of formulas from AxL for UL = {¬, ◦} (� ∈ {∨,∧,⊃}, and any k > 0)

(1) are generated by the following grammar (S is the initial variable):
S = R1 | R2 for � ∈ {∧,∨,⊃}, ?̄ ∈ U∗L \ {ε}
R1 = (R1 � P1) | (P1 �R1) | ?̄p1 P1 = (P1 � P1) | ?̄p1 | p1 | p2

R2 = (R2 � P2) | (P2 �R2) | ?̄(p1 � p2) P2 = (P2 � P2) | ?̄p1 | p1 | ?̄p2 | p2

(2) satisfy the following conditions: for some subformula ϕ = ?̄p1 of an L-formula aris-
ing from the start variableR1 (and for the subformula ϕ = ?̄(p1�p2) of an L-formula
arising from R2, resp.): ϕ must not be contained
(i) in a positively3 occurring (sub)formula of the form ψ1 ∧ ψ2, and
(ii) in a negatively occurring (sub)formula of the form ψ1 ∨ ψ2 or ψ1 ⊃ ψ2.

The formulas in AxL are axiom schemata in which p1, p2 denote metavariables which
are substituted by any L-formula in the instances of the schema. Roughly speaking,
the axiom schemata in AxL contain

(R1) at least one propositional variable p1 prefixed with a non-empty sequence of con-
nectives from UL and possibly the propositional variables p1, p2, or

(R2) exactly one formula (p1 � p2) prefixed with a sequence of connectives from UL and
possibly the propositional variables p1, p2, possibly prefixed with sequences of con-
nectives from UL.

Example 2.2. The axioms (n1), (n2), (b), (a¬) (cf. Figure 1) are generated by (R1)
in the grammar of Definition 2.1, whereas the axioms (i), (o1

∧), (a∨) (cf. Figure 1) are
generated by (R2). Axioms that are not in AxL are ¬(¬p1 ∧ p1) ⊃ ◦p1 (it cannot be
generated by (R1) or (R2)) and p1 ∧ ¬p1 (it does not satisfy the conditions in Defini-
tion 2.1.(2)).

Definition 2.3. H is the family of Hilbert calculi obtained by extending HCL+ with
any finite set of axioms from AxL for some language L.

Remark 2.4. The family of Hilbert calculi handled in [Ciabattoni et al. 2013] is
properly contained in H. The subformulas in the axiom schemata of AxL can indeed
be prefixed by any finite sequence of connectives from UL, and not only by one (or, in
particular cases, by two) as in the axioms considered in [Ciabattoni et al. 2013].

H includes many known Hilbert calculi as shown in the examples below.

Example 2.5. A standard calculus for (propositional) classical logic is obtained by
adding the axioms (n1) and (n2) from Figure 1 to HCL+.

3Recall that a subformula ϕ occurs negatively (positively, resp.) in an L-formula ψ if there is an odd (even,
resp.) number of implications ⊃ in ψ having ϕ as a subformula of its antecedent, see e.g., [Buss 1998].
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Example 2.6. Paraconsistent logics are logics which are not trivialized in the pres-
ence of inconsistency, i.e. for which there are some formulas ψ,ϕ, such that: ψ,¬ψ 6` ϕ.
The family of C-systems [Da Costa 1974; Carnielli and Marcos 2002; Carnielli et al.
2007; Avron 2007; Avron et al. 2012; 2013] is a well-known family of paraconsistent
logics in which the notion of consistency is internalized into the object language by
employing a unary consistency operator ◦, the intuitive meaning of ◦ψ being “ψ is con-
sistent”. C-systems are defined by adding to HCL+ the axioms (b) and (n1), as well
as different subsets of the axioms (r�), (k), (i), (o1

�), (o
2
�), (a¬), (ek), (a�) and (ck) in Fig-

ure 1.

Example 2.7. For each n ≥ 0 the logics L(2n+2) are obtained by adding to HCL+

the following axioms from Figure 1: (cn), (en), and for every 0 < m ≤ n+ 1:

— (el�m), (er�m), if m is even
— (ol

∧m
), (or

∧m
), (ol

∨m
), (or

∨m
), (ol

⊃m
), (or

⊃m
), if m is odd.

[Kamide 2013] introduces analytic sequent calculi and suitable semantics with ad-hoc
proofs of soundness, completeness and analyticity for L(2n+2).

Definition 2.8. For an L-formula ψ, let Θψ denote the set of all prefixes (including
the empty one ε) of the maximal sequences of connectives from UL that occur in ψ.
Formally, Θψ is defined inductively as follows:

— If ψ = ?̄p for some ?̄ ∈ U∗L and atomic formula p, then Θψ consists of all prefixes of ?̄.
— If ψ = ?̄(ψ1 � ψ2) for some ?̄ ∈ U∗L, � ∈ {∨,∧,⊃} and L-formulas ψ1, ψ2, then Θψ

consists of all prefixes of ?̄, together with the sequences in Θψ1
∪Θψ2

.

Example 2.9. For UL = {◦, ∗,¬} and ψ = ∗ ◦ ¬p1 ⊃ p1, we have Θψ = {ε, ∗, ∗◦, ∗ ◦ ¬}.

NOTATION 1. For H ∈ H, ΘH =
⋃
ψ∈H Θψ.

We note that ΘH will be used in the second step of our procedure for introducing
the PNmatrix. In particular, ΘH will determine the number and the form of the truth
values in the PNmatrix for H.

2.2. From axioms to logical sequent rules
By suitably adapting the procedure in [Ciabattoni et al. 2008] we transform each
H ∈ H into an equivalent sequent calculus.

To simplify our presentation, we use a label-based formulation of sequent calculi,
and recall below the relevant definitions and notations.

Definition 2.10. Let L be a propositional language.

(1) A labelled L-formula has the form b : ψ, where b ∈ {f, t} and ψ is an L-formula.
(2) An L-sequent is a finite set of labelled L-formulas. The usual sequent notation

ψ1, . . . , ψn ⇒ ϕ1, . . . , ϕm corresponds to the set {f : ψ1, . . . , f : ψn, t : ϕ1, . . . , t : ϕm}
of labelled formulas.

(3) An L-substitution is a function σ : L → L, that satisfies the following conditions:
(a) σ(?ψ) = ?(σ(ψ)) for every unary connective ? of L and formula ψ.
(b) σ(ψ1 � ψ2) = σ(ψ1) � σ(ψ2) for every � ∈ {∨,∧,⊃} and formulas ψ1, ψ2.
L-substitutions are naturally extended to labelled L-formulas, L-sequents, and sets
of L-sequents.

(4) An L-rule is an expression of the form Q/s, where Q is a finite set of L-sequents
(called premises) and s is an L-sequent (called conclusion). An application of an
L-rule Q/s is any inference step inferring the L-sequent σ(s) ∪ c from the set of
L-sequents {σ(q) ∪ c | q ∈ Q}, where σ is an L-substitution and c is an L-sequent.
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(5) A sequent calculus G for L consists of a finite set of L-rules. We write S `G s
whenever the L-sequent s is derivable from the set S of L-sequents in G.

Note that since we defined sequents as sets, the structural rules of contraction and
exchange are implicitly included in all sequent calculi studied in this paper.

Example 2.11. Examples of rules and their applications (in standard sequent no-
tation) are:

(¬¬ ⇒) {{f : p1}}/{f : ¬¬p1}
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆

(⇒ ¬¬¬) {{t : ¬p1}}/{t : ¬¬¬p1}
Γ⇒ ¬ϕ,∆

Γ⇒ ¬¬¬ϕ,∆

(⇒ ¬¬∧) {{t : ¬¬p1}, {t : ¬¬p2}}/{t : ¬¬(p1 ∧ p2)} Γ⇒ ¬¬ϕ,∆ Γ⇒ ¬¬ψ,∆
Γ⇒ ¬¬(ϕ ∧ ψ),∆

Example 2.12. Formulated according to Definition 2.10, the standard sequent cal-
culus LK+ for CL+ consists of the following set of L+

cl-rules:

(id) ∅/{f : p1, t : p1} (cut) {{f : p1}, {t : p1}}/∅
(W⇒) {∅}/{f : p1} (⇒W ) {∅}/{t : p1}
(∧ ⇒) {{f : p1, f : p2}}/{f : p1 ∧ p2} (⇒ ∧) {{t : p1}, {t : p2}}/{t : p1 ∧ p2}
(∨ ⇒) {{f : p1}, {f : p2}}/{f : p1 ∨ p2} (⇒ ∨) {{t : p1, t : p2}}/{t : p1 ∨ p2}
(⊃⇒) {{t : p1}, {f : p2}}/{f : p1 ⊃ p2} (⇒⊃) {{f : p1, t : p2}}/{t : p1 ⊃ p2}

(� ⇒) and (⇒ �) with � ∈ {∧,∨,⊃} are the logical rules of LK+.

In what follows, given a Hilbert system H ∈ H we show how to construct a sequent
calculus GH equivalent to H in the following sense:

Definition 2.13. A sequent calculus G is equivalent to a Hilbert system H if for
every finite set Γ ∪ {ϕ} of formulas: ϕ is provable in H from Γ (in symbols Γ `H ϕ) iff
Γ⇒ ϕ is provable in G (in symbols `G Γ⇒ ϕ).

FACT 1. LK+ (see Example 2.12) is equivalent to HCL+.

NOTATION 2. We denote by H ∪{ϕ} (H \{ϕ} resp.) the Hilbert system obtained from
H by adding (removing) the axiom ϕ, and by G ∪ R the sequent calculus extending G
with the set R of L-rules.

Definition 2.14. Let R and R′ be two finite sets of L-rules, and G be a sequent
calculus for L. R and R′ are equivalent in G if Q `G∪R′ s for every Q/s ∈ R, and
Q `G∪R s for every Q/s ∈ R′.

Clearly, the above definition of equivalence between rules could be reformulated by
considering rule applications.

PROPOSITION 2.15. Let R and R′ be two finite sets of L-rules, and G be a sequent
calculus for L. R and R′ are equivalent iff the following hold for every L-sequent c and
L-substitution σ: σ(Q) ∪ c `G∪R′ σ(s) ∪ c for every Q/s ∈ R, and σ(Q) ∪ c `G∪R σ(s) ∪ c
for every Q/s ∈ R′.

PROOF. One direction directly follows from the following properties of every sequent
calculus G for L:
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— If S `G s, then σ(S) `G σ(s) for every set S of L-sequents, L-sequent s, and L-
substitution σ.

— If S `G s, then {s′ ∪ c | s′ ∈ S} `G s∪ c for every set S of L-sequents, and L-sequents
s and c.

Both properties are proved by a straightforward induction on the length of derivation
in G. The converse follows by taking σ to be identity and c to be the empty context
sequent.

Definition 2.16. An L+
cl-rule Q/s is invertible in LK+ if s `LK+ q for every q ∈ Q.

FACT 2. The logical rules of LK+ are invertible in LK+.

To transform each H ∈ H into an equivalent sequent calculus the idea is to extract
suitable logical rules out of the axioms of H belonging to AxL and add the obtained
rules to LK+. The procedure – which is contained in the proof of Theorem 2.22 – is
inspired by the method in [Ciabattoni et al. 2008] and is roughly described below.
Given any axiom ϕ ∈ AxL, it works as follows:

(Step i) We start from the rule ∅/{t : ϕ}. By utilizing the invertibility of the logical rules of
LK+ as much as possible, we obtain an equivalent set R of rules each having the
form ∅/{b1 : ϕ1, . . . , bn : ϕn} with bi ∈ {t, f}. Note that due to the shape of ϕ (see
Definition 2.1) it must be the case that each ϕi is either of the form ?̄p1 or ?̄p2 with
?̄ ∈ ΘH , and there is at most one ϕi of the form ?̄(p1 � p2) for ?̄ ∈ ΘH \ {ε}.

(Step ii) Next, we remove each rule r ∈ R whose conclusion contains {t : pi, f : pi} for
i ∈ {1, 2}. Moreover, for each remaining rule if the conclusion does not contain
?̄(p1 � p2) for ?̄ ∈ ΘH \ {ε}, we remove all variables p2 and use Lemma 2.21 below to
ensure that the resulting rule is equivalent to r.

(Step iii) Choose a labelled formula β of the form ?̄p1 or ?̄(p1 � p2) for ?̄ ∈ ΘH \ {ε}, and
move the remaining formulas to the premises of the rule while switching their
corresponding sequent sides (see Lemma 2.20 below). β is the formula introduced
by the rule and has .

We illustrate the steps to obtain sequent rules out of axioms first with an example.

Example 2.17. Let ϕ be the axiom (n2) p1 ⊃ (¬p1 ⊃ p2) from Figure 1. The algo-
rithm works as follows:

∅/{t : p1 ⊃ (¬p1 ⊃ p2)}
(i) −→Invertibility of (⇒⊃) ∅/{f : p1, t : ¬p1 ⊃ p2)}
(i) −→Invertibility of (⇒⊃) ∅/{f : p1, f : ¬p1, t : p2}
(ii) −→Lemma 2.21 ∅/{f : p1, f : ¬p1}
(iii) −→Lemma 2.20 {{t : p1}}/{f : ¬p1}

Due to the special format of ϕ (∈ AxL) the rules generated by the algorithm have
the general form depicted in Figure 2. The Θ-unary rules arise from axioms gener-
ated starting from R1 in the grammar of Definition 2.1, while the Θ-binary rules are
generated starting from R2.

Remark 2.18. Distinguishing between the two types of rules in Figure 2 will be
crucial for the semantic definitions in Section 3. As we shall see, rules of different
types will play different semantic roles: the Θ-unary rules will determine the truth
values for the PNmatrix, while the Θ-binary rules will refine the truth tables for the
binary connectives of the PNmatrix.

Definition 2.19. Let Θ be a non-empty subset of U∗L that is closed under prefixes (in
particular, ε ∈ Θ). An L-rule Q/s is called Θ-simple if it is either Θ-unary or Θ-binary

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Agata Ciabattoni et al.

Rule Application form

Θ-unary P/{t : ?̄p1} Γ, .̄1ϕ⇒ ∆ . . . Γ, .̄nϕ⇒ ∆ Γ⇒ •̄1ϕ,∆ . . . Γ⇒ •̄mϕ,∆
Γ⇒ ?̄ϕ,∆

P/{f : ?̄p1} Γ, .̄1ϕ⇒ ∆ . . . Γ, .̄nϕ⇒ ∆ Γ⇒ •̄1ϕ,∆ . . . Γ⇒ •̄mϕ,∆
Γ, ?̄ϕ⇒ ∆

where P = {{f : .̄1p1}, . . . , {f : .̄np1}, {t : •̄1p1}, . . . , {t : •̄mp1}}

Θ-binary Q/{t : ?̄(p1 � p2)} Γ, .̄1ϕi1 ⇒ ∆ . . . Γ, .̄nϕin ⇒ ∆ Γ⇒ •̄1ϕj1 ,∆ . . . Γ⇒ •̄mϕjm ,∆

Γ⇒ ?̄(ϕ1 � ϕ2),∆

Q/{f : ?̄(p1 � p2)} Γ, .̄1ϕi1 ⇒ ∆ . . . Γ, .̄nϕin ⇒ ∆ Γ⇒ •̄1ϕj1 ,∆ . . . Γ⇒ •̄mϕjm ,∆

Γ, ?̄(ϕ1 � ϕ2)⇒ ∆

where Q = {{f : .̄1pi1}, . . . , {f : .̄npin}, {t : •̄1pj1}, . . . , {t : •̄mpjm}}

Fig. 2. The general form of our rules (?̄ ∈ Θ \ {ε}, .̄i, •̄j ∈ Θ, � ∈ {∧,∨,⊃}, i1, . . . , in, j1, . . . , jm ∈ {1, 2})

(cf. Figure 2). A sequent calculus for L is called Θ-simple if it is obtained by augmenting
LK+ with a finite set of Θ-simple L-rules. We shall omit Θ when it is clear from the
context.

The lemma below, known as Ackermann’s lemma and used, e.g., in [Ciabattoni et al.
2008] for substructural logics and in [Conradie and Palmigiano 2012] for modal logics,
allows us to “move” formulas from the conclusions of sequent rules to their premises
(while making the formulas switch the sequent hand-side).

LEMMA 2.20. Let G be a sequent calculus for L extending LK+,

r = ∅/{b1 : ϕ1, . . . , bn : ϕn} and r′ = {{b2 : ϕ2}, . . . , {bn : ϕn}}/{b1 : ϕ1}

be L-rules where f = t and t = f . Then {r} and {r′} are equivalent in G.

PROOF. In order to show {{b2 : ϕ2}, . . . , {bn : ϕn}} `G∪{r} {b1 : ϕ1} we use an
application of r, n − 1 cuts and weakenings. For the other direction, we use (id) to
obtain {f : ϕi, t : ϕi} for every 2 ≤ i ≤ n and then apply weakenings and r′.

When using the logical rules of LK+ to decompose axioms generated via (R1) in the
grammar of Definition 2.1, p2 might appear only as b : p2 with b ∈ {t, f} (see, e.g.,
Example 2.17). The next lemma ensures that we can safely remove b : p2 in these
cases.

LEMMA 2.21. Let G be a sequent calculus for L extending LK+. Let s be an L-
sequent, and let s′ = s ∪ {b : p}, where b ∈ {f, t} and p is an atomic formula that does
not occur in s. Then, `G∪{∅/s′} Γ⇒ ϕ iff `G∪{∅/s} Γ⇒ ϕ, for every L-sequent Γ⇒ ϕ.

PROOF. Suppose that `G∪{∅/s′} Γ ⇒ ϕ. Since applications of ∅/s′ can be simulated
using weakenings and ∅/s, `G∪{∅/s} Γ ⇒ ϕ clearly holds. For the converse direction,
let P be a derivation of Γ⇒ ϕ in G ∪ {∅/s}; we distinguish two cases:

— b = f . Then every application of ∅/s in P deriving σ(s) can be simulated in G∪{∅/s′}
by using (cut) on σ(s)∪ {f : p1 ⊃ p1} (obtained by ∅/s′ in which p is substituted with
p1 ⊃ p1) and σ(s) ∪ {t : p1 ⊃ p1} (which is derivable in LK+).
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— b = t. Then every application of ∅/s in P is replaced with an application of ∅/s′, in
which p is substituted with ϕ. t : ϕ is then propagated until the end sequent.

THEOREM 2.22. Let H ∈ H be a Hilbert calculus for L. There is an algorithm for
constructing an equivalent ΘH -simple sequent calculus GH for L.

PROOF. Let H ∈ H, ψ ∈ AxL ∩ H and G−H be the sequent calculus equivalent to
H\{ψ} in the sense of Definition 2.13. We construct a sequent calculus GH equivalent
toH by extendingG−H with ΘH -simple rules. The theorem follows by repetitive applica-
tions of this construction, starting from LK+ (that is equivalent to HCL+, see Fact 1).
Thus we transform ψ into a set Rψ of ΘH -simple rules such that H and GH = G−H ∪Rψ
are equivalent.

First, let rψ = ∅/{t : ψ}. We start by showing that H is equivalent to G−H ∪ {rψ}.
The direction Γ `H ϕ implies `G−H∪{rψ} Γ ⇒ ϕ is easy and proceeds by induction on
the length of the derivation in H. For the converse direction, suppose to have a proof P
in G−H ∪ {rψ} of the sequent Γ ⇒ ϕ. Then there are substitutions σ1, . . . , σn, for which
we can transform P into a proof of Γ, σ1(ψ), . . . , σn(ψ) ⇒ ϕ in G−H , by replacing every
application of rψ with the identity axiom {f : σi(ψ), t : σi(ψ)} (and weakening), and
propagating f : σi(ψ) through the derivation until the end sequent. The equivalence
of H\{ψ} and G−H entails that Γ, σ1(ψ), . . . , σn(ψ) `H\{ψ} ϕ, and it immediately follows
that Γ `H ϕ.

The algorithm to transform rψ into a set of ΘH -simple rules works in three steps:
(Step i): We use the logical rules for ∧,∨ and ⊃ of LK+ to obtain a finite set R of

rules such that (i) R is equivalent to {rψ} in G−H ∪{rψ}, and (ii) each r ∈ R has the form
∅/s, where s has one of the following forms (depending on whether ψ is generated by
R1 or R2 in the grammar of Definition 2.1):

(1) s consists of at least one labelled formula of the form b : ?̄p1 for b ∈ {f, t} and
?̄ ∈ ΘH \ {ε} and any number of labelled formulas of the form c : p2 or c : .̄p1 for
c ∈ {f, t} and .̄ ∈ ΘH .

(2) s consists of exactly one labelled formula of the form b : ?̄(p1 � p2) for b ∈ {f, t},
?̄ ∈ ΘH \ {ε} and � ∈ {∧,∨,⊃}, and any number of labelled formulas of the form
c : .̄pi for i ∈ {1, 2}, c ∈ {f, t} and .̄ ∈ ΘH .

The equivalence between {rψ} and R easily follows by the invertibility of the logical
rules in LK+ (and, hence, in G−H ). We prove that, when ψ is generated by R2, s has
the form (2) above (the proof for (1) is similar). Indeed if (∗) each r′ψ ∈ R contains
exactly one labelled formula of the form b : ?̄(p1 � p2) for ?̄ ∈ ΘH \ {ε}, then we are
done. Otherwise, we apply the logical rules of LK+ according to the outermost binary
connective of some b : ψj in r′ψ ∈ R until we reach condition (∗). We distinguish the
following cases:

b : ψj = t : ϕ1 ⊃ ϕ2 (or t : ϕ1 ∨ ϕ2 or f : ϕ1 ∧ ϕ2, resp.). By using (⇒⊃) (or (⇒ ∨) or (∧ ⇒),
resp.), we obtain a new rule r1

ψ = r′ψ where b : ψj is replaced by f : ϕ1, t : ϕ2 (or
t : ϕ1, t : ϕ2 or f : ϕ1, f : ϕ2, resp.) and hence it contains one binary connective less.

b : ψj = t : ϕ1 ∧ ϕ2 (or f : ϕ1 ⊃ ϕ2 or f : ϕ1 ∨ ϕ2, resp.). By using (⇒ ∧) (or (⊃⇒) or (∨ ⇒),
resp.), we obtain two rules {r1

ψ, r
2
ψ}. r1

ψ = r′ψ where b : ψj is replaced by t : ϕ1 (or
t : ϕ1 or f : ϕ1, resp.) and r2

ψ = r′ψ where b : ψj is replaced by t : ϕ2 (or f : ϕ2 or f : ϕ2,
resp.). Note that ?̄(p1 � p2) is not a subformula of ψj by condition (i) ((ii), resp.) in
Definition 2.1.

(Step ii): Obviously, we can discard from R all rules ∅/s for which {f : pi, t : pi} ⊆ s
for i ∈ {1, 2}, keeping the equivalence with {rψ}. For each rule ∅/s remaining in R: if s
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has the form (1) and it contains some b : p2, by Lemma 2.21 we remove these labelled
formulas and obtain an equivalent set of rules.

(Step iii): For each rule ∅/s ∈ R, we take (a) b : ?̄p1, ?̄ ∈ ΘH \ {ε}, b ∈ {t, f} if s is of
form (1), or (b) b : ?̄(p1�p2), ?̄ ∈ ΘH \{ε}, b ∈ {t, f}, if s is of form (2). We use Lemma 2.20
to move all remaining labelled formulas to the premises of the rule, changing their side
of the sequent, to obtain a set Rψ of ΘH -simple rules equivalent to {rψ} (the rules are
ΘH -unary, in case (a) and ΘH -binary in case (b)).

Let GH be G−H ∪Rψ. GH is equivalent to G−H ∪ {rψ} and, hence, equivalent to H.

Example 2.23. The simple rules equivalent to the axioms (c1) ¬¬p1 ⊃ p1 and
(er∧2

) (¬¬p1 ∧ ¬¬p2) ⊃ ¬¬(p1 ∧ p2) (see Figure 1) are constructed as follows:

∅/{t : ¬¬p1 ⊃ p1}
−→Invertibility of (⇒⊃) ∅/{f : ¬¬p1, t : p1}

−→Lemma 2.20 {{f : p1}}/{f : ¬¬p1}

∅/{t : (¬¬p1 ∧ ¬¬p2) ⊃ ¬¬(p1 ∧ p2))}
−→Invertibility of (⇒⊃) ∅/{f : ¬¬p1 ∧ ¬¬p2, t : ¬¬(p1 ∧ p2)}
−→Invertibility of (∧ ⇒) ∅/{f : ¬¬p1, f : ¬¬p2, t : ¬¬(p1 ∧ p2)}

−→Lemma 2.20 {{t : ¬¬p1}, {t : ¬¬p2}}/{t : ¬¬(p1 ∧ p2)}

These are the rules (¬¬ ⇒) and (⇒ ¬¬∧) of Example 2.11.

3. EXTRACTING EFFECTIVE SEMANTICS (STEP 2)
In what follows, we show how to algorithmically obtain effective semantics for any
given Θ-simple sequent calculus. Henceforth, let Θ denote an arbitrary non-empty
subset of U∗L that is closed under prefixes (in particular, ε ∈ Θ). We note that the results
of this section are formulated independently of the previous one. In the context of the
full “taming” procedure, the method presented in this section should be applied to GH ,
the ΘH -simple sequent calculus that is constructed from a given Hilbert calculus H as
described above.

The semantic framework that we use is that of partial non-deterministic matrices
(PNmatrices) [Baaz et al. 2013]. These structures provide a natural generalization
of the notion of ordinary multi-valued logical matrices, in which connectives can have
non-deterministic and partial interpretations. Therefore, truth values assigned to com-
pound formulas can be chosen non-deterministically out of a given set of options. In
PNmatrices one also allows this set of options to be empty, in order to forbid some
combinations of truth values. Below we briefly adapt the basic definitions from [Baaz
et al. 2013] to our context.

Definition 3.1. A partial non-deterministic matrix (PNmatrix) M for a proposi-
tional language L consists of:

(1) A set VM of truth values.
(2) A subset DM ⊆ VM of designated truth values.
(3) A truth table �M : VMn → P (VM) for every n-ary connective � of L.

Example 3.2. The (positive fragment of the) standard classical matrix can be iden-
tified with the PNmatrix MCL+ for L+

cl given by: VMCL+ = {t, f}, DMCL+ = {t}, and
the truth tables ∧, ∨, ⊃ are defined according to the classical ones (singletons are used
instead of values, e.g. ∧MCL+ (t, f) = {f}).

Definition 3.3. LetM be a PNmatrix for L.
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(1) An M-valuation for L is a function v : L → VM that respects the truth ta-
bles ofM, i.e. v(�(ϕ1, . . . , ϕn)) ∈ �M(v(ϕ1), . . . , v(ϕn)) for every compound formula
�(ϕ1, . . . , ϕn) ∈ L.

(2) AnM-valuation v for L satisfies (with respect toM):
— an L-formula ϕ (denoted by v |=M ϕ) if v(ϕ) ∈ DM;
— a finite set Γ of L-formulas (denoted by v |=M Γ) if v |=M ϕ for every ϕ ∈ Γ;
— an L-sequent s (denoted by v |=M s) if either v |=M ϕ for some t : ϕ ∈ s, or
v 6|=M ϕ for some f : ϕ ∈ s.

(3) Given a set Γ of L-formulas and a single L-formula ϕ, Γ `M ϕ if for every M-
valuation v for L: v |=M ϕ whenever v |=M Γ.

(4) Given an L-sequent s, `M s if v |=M s for everyM-valuation v for L.

FACT 3. MCL+ (see Example 3.2) is sound and complete for HCL+ (i.e. Γ `HCL+ ϕ
iff Γ `MCL+ ϕ), as well as for LK+ (i.e. `LK+ s iff `MCL+ s).

The following result on effectiveness of PNmatrices was established in [Baaz et al.
2013]:

FACT 4. Let M be a finite PNmatrix for a propositional language L. Given an L-
sequent s, it is decidable whether `M s or not. Similarly, given a finite set Γ ∪ {ϕ} of
L-formulas, it is decidable whether Γ `M ϕ or not.

Next we describe an algorithmic extraction of a PNmatrixMG from a Θ-simple se-
quent calculus G, such that `G s iff `MG

s. The intuitive idea is to use truth values of
MG as “information carriers” in the following sense. Usually, the truth values t, f de-
termine whether a formula ϕ is “true” or “false”. Here, in addition to this information,
the truth value of ϕ contains also information about the “truth/falsity” of all the formu-
las of the form ?̄ϕ for every ?̄ ∈ Θ. Thus, instead of using just t and f , we use functions
from Θ to {t, f}. Since Θ always contains ε, the standard information whether ϕ is
“true” or “false” is also included.

NOTATION 3. We denote by FΘ the set of functions Θ→ {f, t}. For ?̄ ∈ Θ and u ∈ FΘ,
we write u?̄ to denote u(?̄). For Θ = {?̄1, . . . , ?̄n} we shall represent the function u such
that u?̄i = bi for 1 ≤ i ≤ n by 〈?̄1 : b1, . . . , ?̄n : bn〉.

The following consistency property is essential:

Definition 3.4. A function v : L → FΘ is called consistent if v(.̄ϕ)?̄ = v(ϕ)?̄.̄ for every
formula ϕ and ?̄, ?̄.̄ ∈ Θ.

Intuitively speaking, using FΘ as a set of truth values, information about a formula
may occur in more than one “place” in truth values assigned by a valuation. For exam-
ple, if ¬ ∈ Θ, then the information whether ¬ϕ is “true” occurs both in v(¬ϕ)ε and in
v(ϕ)¬. The consistency property ensures that there are no contradictions between two
“places” that store the same information.

The construction of the PNmatrixMG is based on the following observations:

— The Θ-unary rules of G (Definition 2.19) “dictate” certain relationships between var-
ious formulas of the form ?̄ϕ for ?̄ ∈ Θ. Thus in constructingMG, not all the possible
functions in FΘ are used as truth values, but only those that respect the Θ-unary
rules, cf. Definition 3.5 below.

— The truth tables of the unary connectives are constructed using the information
“contained” in each of the truth values concerning each connective in a way de-
scribed below. These tables will guarantee thatMG-valuations are consistent.

— The truth tables of the binary connectives are constructed using the Θ-binary rules
of G.
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To defineMG, we use the following additional notions:

Definition 3.5. Let ?̄ ∈ Θ and u1, u2 ∈ FΘ.

— u1 satisfies an L-sequent of the form {b : ?̄p1} if u?̄1 = b.
— u1 respects a Θ-unary rule Q/{b : ?̄ p1} if it satisfies {b : ?̄p1} whenever it satisfies

every q ∈ Q.
— The ordered pair 〈u1, u2〉 satisfies an L-sequent of the form {b : ?̄pi} if u?̄i = b for
i ∈ {1, 2}.

Definition 3.6. Given a Θ-simple sequent calculus G, the PNmatrixMG is defined
as follows:

— The set of truth values VMG
contains all functions in FΘ that respect all Θ-unary

rules of G.
— The set of designated truth values DMG

is {u ∈ VMG
| uε = t}.

— For any unary connective ? ∈ UL, the truth table for ? is given by:

?MG
(u1) = {u ∈ VMG

| u?̄ = u?̄?1 whenever ?̄? ∈ Θ}.

— For � ∈ {∧,∨,⊃} and u1, u2 ∈ VMG
, �MG

(u1, u2) is the set of all u ∈ VMG
satisfying:

(1) uε ∈ �MCL+ (uε1, u
ε
2) (where �MCL+ is the classical truth table of �; see Example

3.2).
(2) For every Θ-binary rule of G of the form Q/{b : ?̄(p1 � p2)}, if 〈u1, u2〉 satisfies

every q ∈ Q then u?̄ = b.

Example 3.7. Consider the calculus H0 that extends HCL+ with the two axioms
from Example 2.23. Then, ΘH0

= {ε,¬,¬¬}, and the corresponding ΘH0
-simple sequent

calculus GH0
extends LK+ with one unary rule ru = {{f : p1}}/{f : ¬¬p1} and one

binary rule rb = {{t : ¬¬p1}, {t : ¬¬p2}}/{t : ¬¬(p1 ∧ p2)}. We construct the PNmatrix
M =MGH0

according to Definition 3.6. We start by listing FΘH0
:

FΘH0
= {〈ε : f,¬ : f,¬¬ : f〉, 〈ε : f,¬ : f,¬¬ : t〉, 〈ε : f,¬ : t,¬¬ : f〉, 〈ε : f,¬ : t,¬¬ : t〉,
〈ε : t,¬ : f,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : t〉, 〈ε : t,¬ : t,¬¬ : f〉, 〈ε : t,¬ : t,¬¬ : t〉}.

Next we need to determine the set VM of truth values that respect the unary rules
of GH0

, the only relevant such rule being ru. Since u ∈ VM respects ru iff u¬¬ = f
whenever uε = f , we delete the values {〈ε : f,¬ : f,¬¬ : t〉, 〈ε : f,¬ : t,¬¬ : t〉} and
obtain:

VM = {〈ε : f,¬ : f,¬¬ : f〉, 〈ε : f,¬ : t,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : f〉,
〈ε : t,¬ : f,¬¬ : t〉, 〈ε : t,¬ : t,¬¬ : f〉, 〈ε : t,¬ : t,¬¬ : t〉}.

The set of designated truth values is:

DM = {〈ε : t,¬ : f,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : t〉, 〈ε : t,¬ : t,¬¬ : f〉, 〈ε : t,¬ : t,¬¬ : t〉}.

Next we define the truth table for ¬. For every u1 ∈ VM, we take all u ∈ VM
that satisfy the condition u?̄ = u?̄¬1 (for all ?̄ ∈ ΘH0

such that ?̄¬ ∈ ΘH0
). For in-

stance, let u1 = 〈ε : f,¬ : t,¬¬ : f〉. We consider those elements u from VM in which
uε = u¬1 = t and u¬ = u¬¬1 = f . The only two such elements are 〈ε : t,¬ : f,¬¬ : f〉 and
〈ε : t,¬ : f,¬¬ : t〉. The truth table for ¬ is thus defined as follows (we write below
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〈x, y, z〉 instead of 〈ε : x,¬ : y,¬¬ : z〉):
¬M
〈f, f, f〉 {〈f, f, f〉}
〈f, t, f〉 {〈t, f, f〉, 〈t, f, t〉}
〈t, f, f〉 {〈f, f, f〉}
〈t, f, t〉 {〈f, t, f〉}
〈t, t, f〉 {〈t, f, f〉, 〈t, f, t〉}
〈t, t, t〉 {〈t, t, f〉, 〈t, t, t〉}

Finally, we obtain the truth tables for the binary connectives. We show the case of ∧.
The only binary rule of GH0

that involves ∧ is rb, which imposes the requirement that
for every u ∈ ∧M(u1, u2) we have u¬¬ = t whenever u¬¬1 = t and u¬¬2 = t. In addition,
uε must meet the requirements arising from the classical truth table of ∧. Thus we
obtain the following truth table (let FM = VM \ DM):

∧M 〈f, f, f〉 〈f, t, f〉 〈t, f, f〉 〈t, f, t〉 〈t, t, f〉 〈t, t, t〉
〈f, f, f〉 FM FM FM FM FM FM
〈f, t, f〉 FM FM FM FM FM FM
〈t, f, f〉 FM FM DM DM DM DM
〈t, f, t〉 FM FM DM {〈t, f, t〉, 〈t, t, t〉} DM {〈t, f, t〉, 〈t, t, t〉}
〈t, t, f〉 FM FM DM DM DM DM
〈t, t, t〉 FM FM DM {〈t, f, t〉, 〈t, t, t〉} DM {〈t, f, t〉, 〈t, t, t〉}

Remark 3.8. Obviously, HCL+ ∈ H and ΘHCL+ = {ε}. Now, GHCL+ = LK+, and
the corresponding PNmatrixMLK+ has two truth values u1, u2 ∈ {ε} → {t, f}, where
u1(ε) = t and u2(ε) = f . Identifying u1, u2 with t and f respectively leads to the classical
PNmatrixMCL+ of Example 3.2.

The next lemma asserts thatMG valuations are always consistent.

LEMMA 3.9. Let G be a Θ-simple sequent calculus for a propositional language L,
and v be anMG-valuation for L. Then v(.̄ϕ)?̄ = v(ϕ)?̄.̄ for every formula ϕ and .̄, ?̄ ∈ U∗L
such that ?̄.̄ ∈ Θ.

PROOF. We prove the claim by induction on the length of .̄. The claim is trivial
when .̄ = ε. Suppose it holds when .̄ is of length n, and let ?.̄ ∈ U∗L (for ? ∈ UL).
Since v is anMG-valuation, v(?.̄ϕ) ∈ ?MG

(v(.̄ϕ)). By Definition 3.6, this implies that
v(?.̄ϕ)?̄ = v(.̄ϕ)

?̄? (note that ?̄? ∈ Θ since Θ is closed under prefixes and ?̄ ? .̄ ∈ Θ). By
the induction hypothesis, v(.̄ϕ)

?̄?
= v(ϕ)

?̄?.̄.

We now come to the main result of this section, namely soundness and completeness
for G with respect toMG.

THEOREM 3.10 (SOUNDNESS AND COMPLETENESS). Let G be a Θ-simple sequent
calculus for L and s0 be an L-sequent. Then, `G s0 iff `MG

s0.

PROOF. ⇒: It suffices to show that the applications of the rules of G are “sound”.
Consider an application of a rule r = Q/s of G inferring σ(s)∪ c from {σ(q)∪ c | q ∈ Q},
where σ is an L-substitution and c is an L-sequent. Let v be an MG-valuation for L.
Suppose that v satisfies σ(q) ∪ c for every q ∈ Q. We show that v satisfies σ(s) ∪ c. If
v satisfies c, we are done. Suppose otherwise; then v satisfies σ(q) for all q ∈ Q. We
show that v satisfies σ(s). We only consider the case when r is a Θ-unary rule (the
proofs for Θ-binary and the rules of LK+ rules are similar). Hence, s = {b0 : .̄ p1} for
.̄ ∈ Θ\{ε} and b0 ∈ {t, f}. Let ψ1 = σ(p1). We show that v(ψ1) satisfies every q ∈ Q. Let
q = {b : ?̄ p1} be a premise in Q. Then, ?̄ ∈ Θ. The fact that v satisfies σ(q) = {b : ?̄ψ1}
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implies that v(?̄ψ1)ε = b. By Lemma 3.9, v(ψ1)?̄ = b. Hence v(ψ1) satisfies q. Since
v(ψ1) ∈ VMG

, it respects r, and so v(ψ1).̄ = b0. By Lemma 3.9, v(.̄ψ1)ε = b0. Thus, v
satisfies σ(s).
⇐: Suppose that 6`G s0. We construct anMG-valuation for L that does not satisfy s0.

It is a standard matter to construct a “maximal” (infinite) set Ω of labelled L-formulas,
extending s0, that satisfies the following conditions:

(1) 6`G s for every L-sequent s ⊆ Ω.
(2) For every labelled L-formula b : ψ /∈ Ω, we have `G s ∪ {b : ψ} for some L-sequent

s ⊆ Ω.

Note that the availability of the rules (cut) and (id) implies the following two facts:

(1) For every L-formula ψ, either f : ψ ∈ Ω or t : ψ ∈ Ω. Otherwise `G s1 ∪ {f : ψ}
and `G s2∪{t : ψ} with s1, s2 ⊆ Ω. By applying (cut) (and possibly weakenings), we
obtain `G s1 ∪ s2. Since s1 ∪ s2 ⊆ Ω, this contradicts the properties of Ω.

(2) For every L-formula ψ, either f : ψ /∈ Ω or t : ψ /∈ Ω. Otherwise {f : ψ, t : ψ} ⊆ Ω,
but `G {f : ψ, t : ψ} using (id).

Let v be the function from L to FΘ defined by v(ψ)?̄ = b iff b : ?̄ψ /∈ Ω for every ψ ∈ L
and ?̄ ∈ Θ. By the two facts above, v is well defined. In order to show that v is an
MG-valuation, we use the following properties:

(*). Let σ be an L-substitution. If v(σ(p1)) satisfies an L-sequent q of the form
{b : ?̄p1} where ?̄ ∈ Θ then `G s ∪ σ(q) for some L-sequent s ⊆ Ω.
Proof: Suppose that v(σ(p1)) satisfies q. Thus v(σ(p1))?̄ = b. It follows that
b : ?̄σ(p1) /∈ Ω. Hence there is some L-sequent s ⊆ Ω such that `G s ∪ {b : ?̄σ(p1)}.

(**). Let σ be an L-substitution. If 〈v(σ(p1)), v(σ(p2))〉 satisfies an L-sequent q of
the form {b : ?̄pi} where ?̄ ∈ Θ and i ∈ {1, 2} then `G s ∪ σ(q) for some L-sequent
s ⊆ Ω.
Proof: Suppose that 〈v(σ(p1)), v(σ(p2))〉 satisfies q. Thus v(σ(pi))

?̄ = b. It fol-
lows that b : ?̄σ(pi) /∈ Ω. Hence there is some L-sequent s ⊆ Ω such that
`G s ∪ {b : ?̄σ(pi)}.

We first prove that for every L-formula ψ, v(ψ) respects all the Θ-unary rules of G,
and so v(ψ) ∈ VMG

. Let ψ be an L-formula, and r = Q/{b : ?̄p1} be a Θ-unary rule
of G. Suppose that v(ψ) satisfies every q ∈ Q. Consider an L-substitution σ for which
σ(p1) = ψ. By (*), for every q ∈ Q there is some sequent sq ⊆ Ω such that `G sq ∪ σ(q).
By applying (weakenings and) r we obtain `G

⋃
q∈Q sq ∪ {b : ?̄ψ}. Thus, {b : ?̄ψ} /∈ Ω

and so v(ψ)?̄ = b.
Next, we show that v respects the truth tables ofMG:

(1) Let ? ∈ UL and ψ ∈ L. We show that v(?ψ) ∈ ?MG
(v(ψ)). By the definition ofMG, it

suffices to show that v(?ψ)?̄ = v(ψ)?̄? whenever ?̄? ∈ Θ. This follows directly from
the definition of v.

(2) Let � ∈ {∧,∨,⊃} and ψ1, ψ2 ∈ L. We show that v(ψ1 � ψ2) ∈ �MG
(v(ψ1), v(ψ2)) by

showing (i) v(ψ1 � ψ2)ε ∈ �MCL+ (v(ψ1)ε, v(ψ2)ε) and (ii) v(ψ1 � ψ2)?̄ = b for every
Θ-binary rule r = Q/{b : ?̄(p1 � p2)} of G for which 〈v(ψ1), v(ψ2)〉 satisfies every
q ∈ Q.
(i) We prove (i) for the specific case when � = ∧ and v(ψ1)ε = v(ψ2)ε = t. All other

cases are handled similarly. We show that v(ψ1 ∧ ψ2)ε = t. The definition of v
ensures that both t : ψ1 and t : ψ2 do not occur in Ω. Thus `G s1 ∪ {t : ψ1}
and `G s2 ∪ {t : ψ2} for some s1, s2 ⊆ Ω. By applying (weakenings and) the
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rule (⇒ ∧) of LK+, we obtain that `G s1 ∪ s2 ∪ {t : ψ1 ∧ ψ2}. Hence we have
t : ψ1 ∧ ψ2 /∈ Ω. It follows that v(ψ1 ∧ ψ2)ε = t.

(ii) Let r = Q/{b : ?̄(p1 � p2)} be a Θ-binary rule of G, such that 〈v(ψ1), v(ψ2)〉
satisfies every q ∈ Q. Consider an L-substitution σ for which σ(p1) = ψ1

and σ(p2) = ψ2. By (**), for every q ∈ Q there is some sequent sq ⊆ Ω
such that `G sq ∪ σ(q). By applying (weakenings and) r we obtain that
`G

⋃
q∈Q sq ∪ {b : ?̄(ψ1 � ψ2)}. Thus, {b : ?̄(ψ1 � ψ2)} /∈ Ω and so v(ψ1 � ψ2)?̄ = b.

Finally, note that v does not satisfy s0. Indeed, every b : ψ ∈ s0 is also an element of Ω,
and hence v(ψ)ε 6= b. Thus we have v 6|=MG

ψ for every t : ψ ∈ s, and v |=MG
ψ for every

f : ψ ∈ s.

Combining the previous theorem with Theorem 2.22, we get:

COROLLARY 3.11. Let H ∈ H be a Hilbert calculus for L. For every finite set Γ∪{ϕ}
of L-formulas, Γ `H ϕ iff Γ `MGH

ϕ.

PROOF. Suppose that Γ `H ϕ. By Theorem 2.22, we have `GH Γ⇒ ϕ. Theorem 3.10
implies that `MGH

Γ ⇒ ϕ. By definition, it follows that Γ `MGH
ϕ. The converse is

similar.

Using Fact 4, we also obtain a general decidability result:

COROLLARY 3.12 (DECIDABILITY). Given a Hilbert system H ∈ H and a finite set
Γ ∪ {ϕ} of formulas, it is decidable whether Γ `H ϕ or not.

PROOF. Follows by Corollary 3.11 and Fact 4.

4. ANALYTICITY
In Section 2, each Hilbert axiom H is transformed into a set of sequent rules that in-
troduce logical connectives. However, determining whether the obtained calculus as a
whole is well-behaved (or analytic), depends on the interplay between all the rules and
requires a view of the calculus as a whole. We show below that such view is provided
by the semantic framework introduced in Section 3.

Roughly speaking, a sequent calculus is analytic if, whenever a sequent s is provable
in it, it can also be proven by using only the “syntactic material available within s”.
Usually, this “material” consists of all subformulas occurring in s (in this case ‘analyt-
icity’ is just another name for the global subformula property), denoted henceforth by
sub[s]. However, weaker variants have also been considered in the literature, especially
in paraconsistent and modal logics, e.g., [Avron 2007; Lellmann and Pattinson 2011;
Bezhanishvili and Ghilardi 2013]. In this paper we use the following notion of analyt-
icity, which takes as “syntactic material” not only subformulas but also their sequences
with unary connectives.

NOTATION 4. For Θ ⊆ U∗L and set W of L-formulas, we denote the set
{?̄ψ | ?̄ ∈ Θ, ψ ∈ W} by Θ(W).

Definition 4.1. Let G be a sequent calculus (for a propositional language L).

(1) Given an L-sequent s and a set W of L-formulas, we write `WG s if there exists a
proof of s in G consisting only of (L-sequents that consist of) formulas fromW.

(2) Given a set Θ ⊆ U∗L, G is called Θ-analytic if `G s implies `Θ(sub[s])
G s for every

sequent s.

Note that our notion of analyticity is closely related to the notion of bounded proof
property (defined in [Bezhanishvili and Ghilardi 2013] in the context of modal logic).
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According to this property the complexity of formulas appearing in s determines the
bound on the complexity of the subformulas of s that are allowed to appear in the proof.

Let us take stock of what we have achieved so far. Given a Hilbert calculus H ∈ H
we introduced an equivalent ΘH -simple sequent calculus GH and extracted a suitable
finite-valued semantics out of it (the PNmatrixMGH ). We show below that we can use
MGH to obtain a useful decidable sufficient condition for the ΘH -analyticity of GH . All
we need is a simple check whetherMGH is proper (i.e., it is an Nmatrix):

Definition 4.2 ([Baaz et al. 2013]). A PNmatrixM for L is called proper if its set of
truth values VM is non-empty and �M(x1, . . . , xn) 6= ∅ for every n-ary connective � of L
and x1, . . . , xn ∈ VM.

THEOREM 4.3. Let G be a Θ-simple sequent calculus. If MG is proper then G is
Θ-analytic.

PROOF. Suppose that MG is proper and 6`Θ(sub[s0])
G s0 for some L-sequent s0. We

show that 6`G s0. By Theorem 3.10, it suffices to show that there exists an MG-
valuation for L that does not satisfy s0. LetW = Θ(sub[s0]). It is a standard matter to
extend s0 into a “maximal” L-sequent s∗ that satisfies the following conditions:

(1) s∗ consists of labelled L-formulas of the form b : ψ and ψ ∈ W.
(2) 6`WG s∗.
(3) For every labelled L-formula b : ψ with ψ ∈ W, if b : ψ /∈ s∗ then `WG s∗ ∪ {b : ψ}.

As in the proof of Theorem 3.10, the availability of the rules (cut) and (id) implies that
for every ψ ∈ W there is a unique b ∈ {t, f} such that b : ψ ∈ s∗. Next, we define a
function v : L → FΘ by induction on the structure of formulas. Suppose that v(ϕ) is
defined for every proper subformula ϕ of an L-formula ψ. We define v(ψ) as follows.
First, if ψ ∈ sub[s0] then for every ?̄ ∈ Θ: v(ψ)?̄ = b iff b : ?̄ψ /∈ s∗. Otherwise, if ψ
is an atomic formula, v(ψ) is arbitrarily chosen to be one of the truth values in VMG

.
Otherwise, ψ = �(ψ1, . . . , ψn) is a compound formula, and in this case v(ψ) is arbitrarily
chosen to be one of the truth values in �MG

(v(ψ1), . . . , v(ψn)). Note that the fact that
MG is proper guarantees that these arbitrary choices are always possible. In order to
show that v is anMG-valuation, we use the following properties:

(*). Let σ be an L-substitution such that σ(p1) ∈ sub[s0]. If v(σ(p1)) satisfies an
L-sequent of the form {b : ?̄p1} where ?̄ ∈ Θ then `WG s∗ ∪ {b : ?̄σ(p1)}.
Proof: Suppose that v(σ(p1)) satisfies {b : ?̄p1}. Thus v(σ(p1))?̄ = b. Since
σ(p1) ∈ sub[s0], we have that b : ?̄σ(p1) /∈ s∗. The maximality of s∗ ensures that
`WG s∗ ∪ {b : ?̄σ(p1)}.

(**). Let σ be an L-substitution such that {σ(p1), σ(p2)} ⊆ sub[s0]. If
〈v(σ(p1)), v(σ(p2))〉 satisfies an L-sequent q of the form {b : ?̄pi} where ?̄ ∈ Θ and
i ∈ {1, 2} then `WG s∗ ∪ σ(q).
Proof: Suppose that 〈v(σ(p1)), v(σ(p2))〉 satisfies q. Thus v(σ(pi))

?̄ = b. Since
σ(pi) ∈ sub[s0], we have that b : ?̄σ(pi) /∈ s∗. The maximality of s∗ ensures that
`WG s∗ ∪ σ(q).

We first prove that for every L-formula ψ, we have v(ψ) ∈ VMG
. If ψ /∈ sub[s0], this

holds by definition. Suppose that ψ ∈ sub[s0]. We show that v(ψ) respects all the Θ-
unary rules of G. Let r = Q/{b : ?̄p1} be such a Θ-unary rule of G. Suppose that v(ψ)
satisfies every q ∈ Q. Let σ be any L-substitution assigning ψ to p1. By (*), `WG s∗∪σ(q)
for every q ∈ Q. By applying r we obtain `WG s∗∪{b : ?̄ψ}. Hence v(ψ) satisfies {b : ?̄p1}.
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Thus, {b : ?̄ψ} /∈ s∗ and so v(ψ)?̄ = b. Next, we show that v respects the truth tables of
MG.

(1) Let ? ∈ UL and ψ ∈ L. We show that v(?ψ) ∈ ?MG
(v(ψ)). This holds by definition

when ?ψ /∈ sub[s0]. Suppose now that ?ψ ∈ sub[s0] (and so ψ ∈ sub[s0] as well). By
the definition of MG, it suffices to show that v(?ψ)?̄ = v(ψ)?̄? whenever ?̄? ∈ Θ.
This follows directly from the definition of v.

(2) Let � ∈ {∧,∨,⊃} and ψ1, ψ2 ∈ L. We show that v(ψ1 � ψ2) ∈ �MG
(v(ψ1), v(ψ2)). This

holds by definition when ψ1 � ψ2 /∈ sub[s0]. Suppose now that ψ1 � ψ2 ∈ sub[s0] (and
so ψ1 and ψ2 are in sub[s0] as well). We prove (i) v(ψ1 �ψ2)ε ∈ �MCL+ (v(ψ1)ε, v(ψ2)ε)

and (ii) v(ψ1 � ψ2)?̄ = b for every Θ-binary rule r = Q/{b : ?̄(p1 � p2)} of G
for which 〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q. (i) is straightforward. For (ii), let
r = Q/{b : ?̄(p1 � p2)} be a Θ-binary rule of G such that 〈v(ψ1), v(ψ2)〉 satisfies every
q ∈ Q. Consider an L-substitution σ for which σ(p1) = ψ1 and σ(p2) = ψ2. By (**),
for every q ∈ Qwe have `WG s∗∪σ(q). By applying r we obtain `WG s∗∪{b : ?̄(ψ1�ψ2)}.
Thus, {b : ?̄(ψ1 � ψ2)} /∈ s∗ and so v(ψ1 � ψ2)?̄ = b.

Finally, it is immediate to see that v does not satisfy s0. Indeed, every b : ψ ∈ s0 occurs
also in s∗, and thus v(ψ)ε 6= b.

4.1. Recovering analyticity
Not all H ∈ H lead to ΘH -simple calculi with proper PNmatrices.

Example 4.4. Let H1 be the calculus obtained by extending HCL+ by the axioms
(n1), (b), (k), (or

∧1
), and (o1

∧) (cf. Figure 1). The PNmatrixMGH1
associated with H1 is

not proper (see GH1
andMGH1

in Example 5.1 below).

Theorem 4.3 does not apply to Θ-simple calculi G whose associated matrix MG is
not proper. As shown below, however, analyticity can be recovered by a transformation
of G into a family of analytic calculi, equivalent to G in the sense defined below. This is
done by transformingMG into a finite family of proper PNmatrices, which satisfy the
following property:

Definition 4.5. ([Baaz et al. 2013]) Let M and N be PNmatrices for L. We
say that N is a simple refinement of M if VN ⊆ VM, DN = DM ∩ VN , and
�N (x1, . . . , xn) ⊆ �M(x1, . . . , xn) for every n-ary connective � of L and x1, . . . , xn ∈ VN .

Note that a simple refinement of a non-proper PNmatrix may be proper, since VN
may be strictly contained in VM.

THEOREM 4.6. For every finite PNmatrix M for L, there is an algorithm for con-
structingM1, . . . ,Mn, such that: (i)M1, . . . ,Mn are finite proper simple refinements of
M, and (ii) `M=

⋂
i=1,...,n `Mi

.

PROOF. Let M be a PNmatrix for L. Choose M1, . . . ,Mn to be all simple refine-
ments ofM which are proper PNmatrices. Based on the results in [Baaz et al. 2013],
we show that `M=

⋂
i=1,...,n `Mi

. (⇒) By Proposition 1 in [Baaz et al. 2013], `M⊆`N
for every simple refinement N ofM. Therefore, `M⊆

⋂
i=1,...,n `Mi

.
(⇐) Suppose that 6`M s. Thus v 6|=M s for some M-valuation v for L. Theorem 1 in
[Baaz et al. 2013] ensures that there exists someMi, such that v is anMi-valuation.
The fact that v 6|=M s easily entails that v 6|=Mi

s, and so 6`Mi
s.

Now, once we have a finite family of proper PNmatrices, we can apply the method of
[Avron et al. 2006]. This method produces a cut-free sequent calculus for any proper
PNmatrixM, whose set of designated truth values (DM) is a non-empty proper subset
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Fig. 3. Main screen of Paralyzer (a,b stand for atomic formulas and *1,*2 for unary connectives)

of the set of its truth values (VM), provided that its language satisfies the following
(slightly reformulated) condition:

Definition 4.7. Let M be a proper PNmatrix for L. We say that L is sufficiently
expressive forM if for any x ∈ VM, there exists a set Sx of L-sequents, each of which
has the form {b : ψ} for some b ∈ {f, t} and ψ ∈ L in which p1 is the only atomic
variable, such that the following condition holds:

For anyM-valuation v for L and L-substitution σ, v(σ(p1)) = x iff v satisfies
every L-sequent in σ(Sx) with respect toM.

COROLLARY 4.8. For any H ∈ H, there is an algorithm for constructing a family
of ΘH -analytic sequent calculi FH , such that for every finite set Γ ∪ {ϕ} of formulas:
Γ `H ϕ iff `G Γ⇒ ϕ for every G ∈ FH .

PROOF. We start by constructingMGH . If DMGH
= ∅ or DMGH

= VMGH
, thenMGH

has a trivial corresponding ΘH -analytic calculus. For the rest of the cases, we can apply
Theorem 4.6 to obtain an equivalent family of proper PNmatrices. Next we show that
L is sufficiently expressive for any simple refinement ofMGH . Indeed, for x ∈ VMGH

,
define Sx = {xε : p1} ∪ {x?̄ : ?̄p1 | ?̄ ∈ ΘH}. LetM be a simple refinement ofMGH and
let v be anM-valuation for L. The required condition is met by the fact that for every
?̄ ∈ ΘH and ψ ∈ L, v(?̄ψ)ε = v(ψ)?̄. By the method of [Avron et al. 2006], we obtain
a family of corresponding cut-free calculi. The forms of the Sx-s guarantee that the
rules of the obtained calculi are ΘH -simple, which together with their cut-admissibility
implies ΘH -analyticity.

5. PARALYZER
Our “taming” procedure is implemented in Prolog in the system Paralyzer4 (PARAcon-
sistent (and other) logics anaLYZER), available as part of the TINC-project5 at

www.logic.at/tinc/webparalyzer/

The main page of the tool is illustrated in Figure 3. The user should provide as input:

4Paralyzer currently implements the grammar in [Ciabattoni et al. 2013].
5TINC stands for “Tools for the Investigation of Non-Classical logics”.
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Fig. 4. Computation step (a): set of logical rules; (b): PNmatrix

(i) a set of axioms that falls into the specified grammar satisfying the imposed condition
(in Figure 3 the axioms are (o1

∧) ◦p1 ⊃ ◦(p1 ∧ p2) and (or∧1
) (¬p1 ∨ ¬p2) ⊃ ¬(p1 ∧ p2)

where ¬ is denoted as *1, ◦ as *2, p1 as a, and p2 as b), and
(ii) the base calculus, that is the calculus we want to extend with the generated rules.

The default option for the base calculus is LK+. A second option for (ii) is the sequent
calculus in [Avron et al. 2012; 2013] for the basic Logic of Formal Inconsistency BK,
which is LK+ extended with the rule (⇒ ¬) {{f : p1}}/{t : ¬p1} for ¬ and the two
(invertible) rules for the connective ◦:

(◦ ⇒) {{t : p1}, {t : ¬p1}}/{f : ◦p1} (⇒ ◦) {{f : p1, f : ¬p1}}/{t : ◦p1}

Recall that BK is obtained by extending HCL+ with the axioms (n1) p1 ∨ ¬p1,
(b) p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) and (k) ◦ p1 ∨ (p1 ∧ ¬p1) from Figure 1, where the in-
tuitive meaning of ◦ψ is that “ψ is consistent”.

After the user has provided (i) and (ii), Paralyzer gives as output (a paper written in
LATEX containing)

(a) the set of logical rules equivalent to the input axioms in the base calculus indicated
in (ii),

(b) the PNmatrixMGH for the newly obtained sequent calculus GH , and
(c) an encoding of GH for the generic proof assistant Isabelle [Nipkow, Paulson and

Wenzel 2002; Wenzel, Paulson and Nipkow 2008].

Example 5.1. Let H1 be the system in Example 4.4 obtained by extending HCL+

with the axioms (n1), (b), (k), (o1
∧) ◦p1 ⊃ ◦(p1∧p2) and (or∧1

) (¬p1∨¬p2) ⊃ ¬(p1∧p2). H1

is then BK extended with the axioms (o1
∧) and (or∧1

). The output of Paralyzer computed
in steps (a) and (b) is displayed in Figure 4 (*1 stands for ¬, *2 for ◦, a for p1, and b
for p2). Note that the generated rules are displayed in the standard sequent notation
where G and D abbreviate the sequent contexts Γ and ∆. In the PNmatrix the truth
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Fig. 5. Implementation details Paralyzer

values 0,1 are used instead of f, t, while functions 〈ε : x,¬ : y, ◦ : z〉 are abbreviated as
〈xyz〉.

Remark 5.2. When selectingBK as base calculus in step (ii), Paralyzer also exploits
the invertibility of the rules (◦ ⇒) and (⇒ ◦) for defining the calculus rules. Notice that
for the C-systems with finite-valued semantics, its output produces the same sequent
calculi and associated semantics as those introduced in a semi-automated6 way in
[Avron et al. 2012; 2013].

5.1. Implementation Details
Paralyzer is implemented in Prolog. The general structure of the implementation is
depicted in Figure 5.

The input formula is provided as a parameter to the first component CHECKINPUT
and syntactically checked by the method axioms2tex and the function axiomCheck-
Conditions. If the formula passes all syntactic checks it can be processed by the second
component COMPUTERULES which contains the implementation of our procedure. The
method axioms2rules transforms the axioms given as input into equivalent sequent
rules (Step 1) and the function isMatrix extracts a partial non-deterministic matrix
out of the newly generated calculus (Step 2).

The third component EXPLOIT uses the PNmatrix to check the analyticity of the cal-
culus (isAnalytic). Moreover, the method encodingOut constructs a formalization of the
calculus in the language of the generic proof assistant Isabelle that allows to perform
proof search within the encoded logic by applying tactics and automated procedures.
Figure 6 shows the application forms of the rules (⇒ ¬), (⇒ ◦) and (◦ ⇒) of BK and
their Isabelle-encodings.

The last component PRINTOUTPUT contains the methods for creating a textual rep-
resentation of the calculus and its semantics on the command-line or web interface
(printRules); moreover, the generated LATEX-paper contains the resulting calculus (and
information, whether it is analytic or not), its PNmatrix and the Isabelle-encoding (tex-
Out).

6. CONCLUSIONS
In this paper we have handled a large family H of Hilbert calculi, obtained by (i)
extending the language of CL+ with finitely many unary connectives, and (ii) adding

6The construction of the Nmatrices (proper PNmatrix, in our terminology) out of the Hilbert calculi is done
manually in [Avron et al. 2012; 2013], and it requires some ingenuity.
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Rule applications Encoding

(⇒ ?1)
Γ, ϕ⇒ ∆

Γ⇒ ?1ϕ,∆
$H,P |- $E,$F ==> $H |- $E,∼P,$F

(⇒ ?2)
Γ, ϕ, ?1ϕ⇒ ∆

Γ⇒ ?2ϕ,∆
$H,P,∼P |- $E,$F ==> $H |- $E,+P,$F

(?2 ⇒)
Γ⇒ ϕ,∆ Γ⇒ ?1ϕ,∆

Γ, ?2ϕ⇒ ∆
[| $H,$G |- $E,P; $H,$G |- $E,∼P |]

==> $H,+P,$G |- $E

Fig. 6. Rule applications for ?1 = ¬ and ?2 = ◦ of BK and their encoding in Isabelle. In the encoding we
use ∼ to denote ?1 and + for ?2. Upper-case letters denote single formulas, while upper-case letters preceded
by $ denote (possibly empty) sequences of formulas. Rules premises are encoded left of ==> (within brackets
[|, |] and comma-separated (;) in case of multiple premises) while the conclusions are right of ==>.

to any Hilbert axiomatization of CL+ suitable axioms over the extended language.
We introduced an algorithm, which for any system from H generates an equivalent
sequent calculus (Step 1) and effective semantics based on PNmatrices (Step 2) for it.
The semantics was used to show the decidability of the logics and to provide a simple
sufficient condition for the analyticity of the corresponding calculi.

The family H includes many C-systems [Da Costa 1974; Carnielli and Marcos 2002],
for which a semi-automated procedure to define semantics and analytic calculi was
introduced in [Avron et al. 2012; 2013]. It should be noted that the method in [Avron
et al. 2012; 2013] is quite different from ours: it works by first constructing the cor-
responding Nmatrix and then extracting an analytic sequent calculus from that. Note
also that although this last step is algorithmic, the construction of Nmatrices out of
the Hilbert calculi is done manually, and it requires some ingenuity. In this paper we
fill this gap for all C-systems having a finite-valued Nmatrix, as well as for many other
logics, by fully automatizing the generation of effective semantics and analytic calculi
for them.

This paper generalizes our previous results in [Ciabattoni et al. 2013] by extending
H to include (infinitely many) new axioms containing nesting of unary connectives of
any fixed depth. This allows us to consider new logics (e.g. those in [Kamide 2013])
that could not be dealt with in our previous approach. While Step 1 of our procedure
easily extended to the new axioms, Step 2 required major changes that were reflected
in the construction of our PNmatrices, in the new notion of analyticity, and in the more
involved corresponding proofs of soundness, completeness, and analyticity.

The system Paralyzer implements our algorithm and provides an encoding of the
introduced calculi for the generic proof assistant Isabelle.

Our work is a concrete step towards automated construction of analytic sequent
calculi and effective semantics for paraconsistent (and related) logics. Many practical
and theoretical issues are still to be addressed, e.g., extension of our algorithm to first-
order logics, larger classes of axioms, substructural logics, etc. Regarding this, note
that while Step 1 of our procedure, which essentially follows the ideas in [Ciabattoni
et al. 2008], could be easily adapted to capture a larger class of logics (e.g. the infinite-
valued logic Lω investigated in [Kamide 2009]), the construction of the corresponding
PNmatrices would require a deeper investigation. For the time being there is indeed
no theory of PNmatrices for first-order logics, intuitionistic logics or substructural log-
ics (that in fact lack even a theory of Nmatrices). Characterizing the logics for which
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such theory can be developed is a a natural direction for identifying the borders of our
methodology.

On a more practical level, the encoding of the calculi computed by Paralyzer allows
us to find proofs of theorems in the considered logics in a semi-automated way. The
definition of automated deduction procedures is currently under investigation; a pos-
sible approach is to try extending the reduction of analytic “pure” sequent calculi to
SAT recently proposed in [Lahav and Zohar 2014] to cover all the calculi we generate.
If successful, this approach would lead to a procedure that transforms H systems into
automated SAT-based deduction procedures.
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