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Abstract

Input/Output (I/O) logic is a general framework for reasoning
about conditional norms and/or causal relations. We stream-
line Bochman’s causal I/O logics via proof-search-oriented
sequent calculi. Our calculi establish a natural syntactic link
between the derivability in these logics and in the original
I/O logics. As a consequence of our results, we obtain new,
simple semantics for all these logics, complexity bounds, em-
beddings into normal modal logics, and efficient deduction
methods. Our work encompasses many scattered results and
provides uniform solutions to various unresolved problems.

1 Introduction
Input/Output (I/O) logic is a general framework proposed
by (Makinson and van der Torre 2000) to reason about con-
ditional norms. I/O logic is not a single logic but rather
a family of logics, each viewed as a “transformation en-
gine”, which converts an input (condition under which the
obligation holds) into an output (what is obligatory under
these conditions). Many different I/O logics have been de-
fined, e.g., (Makinson and van der Torre 2001; van der
Torre and Parent 2013; Parent and van der Torre 2014;
Stolpe 2015), and also used as building blocks for causal rea-
soning (Bochman 2003; Bochman 2004; Bochman and Lifs-
chitz 2015; Bochman 2021), laying down the logical founda-
tions for the causal calculus (McCain and Turner 1997), and
for legal reasoning (Ciabattoni, Parent, and Sartor 2021).
I/O logics manipulate Input-Output pairs1 (A,B), which
consists of boolean formulae representing either conditional
obligations (in the case of the original I/O logics) or causal
relations (A causes B, in the case of their causal counter-
parts). Different I/O logics are defined by varying the mech-
anisms of obtaining new pairs from a set of pairs (entailment
problem). Each I/O logic is characterized by its own se-
mantics. The original I/O logics use a procedural approach,
while their causal counterparts adopt bimodels, which in
general consist of pairs of arbitrary deductively-closed sets
of formulae. Additionally, each I/O logic is equipped with a
proof calculus, consisting of axioms and rules but not suit-
able for proof search.

This paper deals with the four original I/O logics OUT1-
OUT4 in (Makinson and van der Torre 2000) and their causal

1Production rules A ⇒ B, in Bochman’s terminology.

counterpart OUT⊥
1 -OUT⊥

4 in (Bochman 2004). We intro-
duce proof-search-oriented sequent calculi and use them to
bring together scattered results and to provide uniform so-
lutions to various unresolved problems. Indeed (van Berkel
and Straßer 2022) characterized many I/O logics through an
argumentative approach using sequent-style calculi. Their
calculi are not proof search-oriented. First sequent calculi
of this kind for some I/O logics, including OUT1 and OUT3,
have been proposed in (Lellmann 2021). Their implementa-
tion provides an alternative decidability proof, although not
optimal (entailment is shown to be in ΠP

3 ). Moreover, the
problem of finding proof-search-oriented calculi for OUT2

and OUT4 was left open there. A prover for these two log-
ics was introduced in (Benzmüller et al. 2019). The prover
encodes in classical Higher Order Logic their embeddings
from (Makinson and van der Torre 2000) into the normal
modal logics K and KT. Finding an embedding of OUT1

and OUT3 into normal modal logics was left as an open
problem, that (van der Torre and Parent 2013) indicates as
difficult, if possible at all. An encoding of various I/O log-
ics into more complicated logics (adaptive modal logics) is
in (Straßer, Beirlaen, and Putte 2016). Using their procedu-
ral semantics, (Steen 2021) defined goal-directed decision
procedures for the original I/O logics, without mentioning
the complexity of the task. (Sun and Robaldo 2017) showed
that the entailment problem for OUT1, OUT2, and OUT4 is
co-NP-complete, while for OUT3 the complexity was deter-
mined to lie within the first and second levels of the polyno-
mial hierarchy, without exact resolution.

In this paper we follow a new path that streamlines the
considered logics. Inspired by the modal embedding of
OUT⊥

2 and OUT⊥
4 in (Bochman 2003), we design well-

behaving sequent calculi for Bochman’s causal I/O logics.
The normal form of derivations in these calculi allows a
simple syntactic link between derivability in the original I/O
logics and in their causal versions to be established, making
it possible to utilize our calculi for the original I/O logics as
well. As a by-product:
• We introduce a simple possible worlds semantics.
• We prove co-NP-completeness and provide efficient au-

tomated procedures for the entailment problem; the latter
are obtained via reduction to unsatisfiability of a classical
logic formula of polynomial size.

• We provide embeddings into the shallow fragment of the



Logic (TOP) (BOT) (WO) (SI) (AND) (OR) (CT)
OUT1 ✓ ✓ ✓ ✓
OUT2 ✓ ✓ ✓ ✓ ✓
OUT3 ✓ ✓ ✓ ✓ ✓
OUT4 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

1 ✓ ✓ ✓ ✓ ✓
OUT⊥

2 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

3 ✓ ✓ ✓ ✓ ✓ ✓
OUT⊥

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Defining rules for the considered I/O logics

modal logics K, KD (i.e., standard deontic logic (von
Wright 1951)), and their extension with axiom F.

These results are uniformly obtained for all four original I/O
logics and their causal versions.

2 Preliminaries
In the I/O logic framework, conditional norms (or causal
relations) are expressed as pairs (B, Y ) of propositional
boolean formulae. The semantics is operational, rather than
truth-functional. The meaning of the deontic/causal con-
cepts in these logics is given in terms of a set of procedures
yielding outputs for inputs. The basic mechanism underpin-
ning these procedures is detachment (modus ponens).

On the syntactic side, different I/O logics are obtained by
varying the mechanisms of obtaining new input-output pairs
from a given set of these pairs. The mechanisms introduced
in the original paper (Makinson and van der Torre 2000) are
based on the following (axioms and) rules (|= denotes se-
mantic entailment in classical propositional logic):

(TOP) (⊤,⊤) is derivable from no premises

(BOT) (⊥,⊥) is derivable from no premises

(WO) (A,X) derives (A, Y ) whenever X |= Y

(SI) (A,X) derives (B,X) whenever B |= A

(AND) (A,X1) and (A,X2) derive (A,X1 ∧X2)

(OR) (A1, X) and (A2, X) derive (A1 ∨A2, X)

(CT) (A,X) and (A ∧X,Y ) derive (A, Y )

Different I/O logics are given by different subsets R of
these rules, see Fig. 1. The basic system, called simple-
minded output OUT1, consists of the rules {(TOP), (WO),
(SI), (AND)}. Its extension with (OR) (for reasoning by
cases) leads to basic output logic OUT2, with (CT) (for
reusability of outputs as inputs in derivations) to simple-
minded reusable output logic OUT3, and with both (OR)
and (CT) to basic reusable output logic OUT4. Their causal
counterpart (Bochman 2004), that we denote by OUT⊥

i for
i = 1, . . . , 4, extends the corresponding logics with (BOT).

Definition 1. Given a set of pairs G and a set R of rules, a
derivation in an I/O logic of a pair (B, Y ) from G is a tree
with (B, Y ) at the root, each non-leaf node derivable from
its immediate parents by one of the rules in R, and each leaf
node is an element of G or an axiom from R.

We indicate by G ⊢OUT∗ (B, Y ) that the pair (B, Y ) is
derivable in the I/O logic OUT∗ from the set of pairs in G

B ⇒ (IN)
G ⊢ (B, Y )

⇒ Y (OUT)
G ⊢ (B, Y )

Figure 1: Concluding rules (same for all causal I/O logic)

(entailment problem). We will refer to (B, Y ) as the goal
pair, to the formulae B and Y as the goal input and goal
output respectively, and to the pairs in G as deriving pairs.
Remark 1. A derivation in I/O logic is a sort of natu-
ral deduction proof, acting on pairs, rather than formulae.
This proof theory is however not helpful to decide whether
G ⊢OUT∗ (B, Y ) holds, or to prove metalogical results
(e.g., complexity bounds). The main reason is that deriva-
tions have no well-behaved normal forms, and in general are
difficult to find. (Lellmann 2021) introduced the first proof-
search oriented calculi, which operate effectively only in the
absence of (OR) (hence not for OUT⊥

2 and OUT⊥
4 ). The cal-

culi use sequents that manipulate pairs expressed using the
conditional logic connective >.

3 Sequent Calculi for Causal I/O Logics
We present sequent-style calculi for the causal I/O logic
OUT⊥

1 -OUT⊥
4 . Their basic objects are

I/O sequents (A1, X1), . . . , (An, Xn) ⊢ (B, Y )

dealing with pairs, as well as

Genzen’s LK sequents A1, . . . An ⇒ B1, . . . , Bm

dealing with boolean formulae (meaning that {A1, . . . , An}
|= (B1 ∨ · · · ∨ Bm)). Our calculi are defined by extending
the sequent calculus LK2 for classical logic with three rules
manipulating I/O sequents: one elimination rule —different
for each logic— that removes one of the deriving pair while
modifying the goal pair, and two concluding rules that trans-
form the derivation of the goal pair into an LK derivation
of either the goal input or the goal output. The latter rules,
which are the same for all the considered logics, are in Fig. 1.
Definition 2. A derivation in our calculi is a finite la-
beled tree whose internal nodes are I/O or LK sequents
s.t. the label of each node follows from the labels of its
children using the calculus rules. We say that an I/O se-
quent (A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable if all
the leaves of its derivation are LK axioms.

A derivation of an I/O sequent consists of two phases.
Looking at it bottom up, we first encounter rules dealing
with pairs (pair elimination and concluding rules) followed
by LK rules. The calculi, in a sense, uphold the ideological
principles guiding I/O logics: pairs (i.e. conditional norms)
are treated separately from the boolean statements.

It is easy to see that using (IN) and (OUT) we can derive
(TOP) and (BOT); their soundness in the weakest causal I/O
logic OUT⊥

1 is proven below.
Lemma 1. (IN) and (OUT) are derivable in OUT⊥

1 .

Proof. If B ⇒ we have the following derivation in OUT⊥
1 :

from (⊥,⊥) and B |= ⊥ (i.e., B ⇒) we get (B,⊥) by (SI);
the required pair (B, Y ) follows by (WO).

2We assume the readers to be familiar with LK.



Assume ⇒ Y . From (⊤,⊤) and ⇒ Y (i.e., ⊤ |= Y ) by
(WO) we get (⊤, Y ), from which (B, Y ) follows by (SI).

Henceforth, when presenting derivations in our calculi,
we will omit the LK sub-derivations.

3.1 Basic Production Inference OUT⊥
2

The calculus SC⊥
2 for the causal3 basic output logic OUT⊥

2
is obtained by adding to the core calculus (consisting of LK
with the rules (IN) and (OUT )) the pair elimination rule
(E2) in Fig. 2.
Remark 2. The rule (E2) is inspired by the embed-
ding in (Bochman 2003) of OUT⊥

2 into the modal
logic K: (A1, X1), . . . , (An, Xn) ⊢OUT⊥

2
(B, Y ) iff

(∗) (A1 → □X1), . . . , (An → □Xn), B ⊢ □Y is
derivable in K. To provide the rule’s intuition we make
use of the sequent calculus GK for K in (Ono 1998). GK
extends LK with the following rule for introducing boxes (or
eliminating them, looking at the rule bottom up):

A1, . . . , An ⊢ B
(□ R)

□A1, . . . ,□An ⊢ □B

To prove the sequent (∗) in GK we can apply the LK rule
for → to one of the implications (Ai → □Xi) on the left.
This creates two premises: (a) G′, B ⊢K □Y, Ai and (b)
G′, B, □Xi ⊢K □Y (where G′ is the set of all impli-
cations on the left-hand side but (Ai → □Xi)). Now (a)
G′, B ⊢K □Y, Ai is equivalent in K to (derivable in GK
if and only if so is) the sequent G′, (B ∧ ¬Ai) ⊢K □Y ,
that using the embedding again leads to the first premise of
(E2); (b) G′, B, □Xi ⊢K □Y is equivalent (for suitable
G′) to G′, B ⊢K □(Y ∨ ¬Xi), which leads to the second
premise of (E2).

We prove below the soundness and completeness of the
calculus SC⊥

2 for OUT⊥
2 . We start by describing a useful

characterization of derivability in SC⊥
2 of an I/O sequent

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) via derivability of certain
sequents in LK.
Notation 1. P(X) will denote the set of all partitions of the
set X , i.e. P(X) = {(I, J) | I ∪ J = X, I ∩ J = ∅}

Notice that if a concluding rule (IN) or (OUT) can be ap-
plied to the conclusion of (E2), it can also be applied to its
premises. This observation implies that if (A1, X1), . . . ,

(An, Xn) ⊢ (B, Y ) is derivable in SC⊥
2 there is a deriva-

tion in which the concluding rules are applied only when all
deriving pairs are eliminated. We use this I/O normal form
of derivations in the proof of the following lemma.

Lemma 2 (Characterization lemma for SC⊥
2 ).

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
2

iff for all partitions (I, J) ∈ P({1, . . . , n}), either
B ⇒ {Ai}i∈I or {Xj}j∈J ⇒ Y is derivable in LK.

Proof. By induction on n. Base case: n = 0. The only
partition is (∅, ∅). From derivability of B ⇒ or ⇒ Y follows
⊢ (B, Y ) by either (IN) or (OUT); the converse also holds.

3Called basic production inference in (Bochman 2004).

Inductive case: from n to n+1. Let G = {(A1, X1), . . . ,

(An+1, Xn+1)} and consider only derivations in SC⊥
2 in

I/O normal form (so the last applied rule can only be (E2)).
We characterize the condition when there exists a deriva-
tion of G ⊢ (B, Y ) whose last rule applied is (E2) eliminat-
ing a pair (Ak, Xk), for some k ∈ {1, . . . , n+ 1}. This
application leads to two premises: G′ ⊢ (B ∧ ¬Ak, Y ) and
G′ ⊢ (B, Y ∨ ¬Xk), where G′ = G \ {(Ak, Xk)}. By the
inductive hypothesis, the derivability of these premises is
equivalent to the derivability of the following sequents: for
each (I ′, J ′) ∈ P({1, . . . , n+ 1} \ {k}):

• (a1) B ∧ ¬Ak ⇒ {Ai}i∈I′ or (a2) {Xj}j∈J′ ⇒ Y , and
• (b1) B ⇒ {Ai}i∈I′ or (b2) {Xj}j∈J′ ⇒ Y ∨ ¬Xk.

(a1) is equivalent in LK to (a1)’ B ⇒ {Ai}i∈I′∪{k}, and
(b2) to (b2)’ {Xj}j∈J′∪{k} ⇒ Y . Hence (a1)’, (a2) give
the required condition for the partition (I ′ ∪ {k}, J ′), while
(b1), (b2)’ for the partition (I ′, J ′ ∪ {k}).

The soundness and completeness proof of SC⊥
2 makes

use of the admissibility in the calculus of the structural rules
for I/O sequents (weakening, contraction, and cut) in Fig. 3.
Recall that a rule is admissible if its addition does not change
the set of sequents that can be derived.

Lemma 3. The rules (IO-Wk), (IO-Ctr) and (IO-Cut) in
Fig. 3 are admissible in SC⊥

2 .

Proof. By Lem. 2 we can reduce the admissibility of these
structural rules to the admissibility of weakening, con-
traction, and cut in LK. Consider the case (IO-Cut).
Let G = {(D1,W1) . . . (Dm,Wm)}, G′ = {(A1, X1),
. . . (An, Xn)} and (An+1, Xn+1) = (C,Z). Now
G,G′ ⊢ (B, Y ) is derivable in SC⊥

2 iff for any (I1, J1) ∈
P({1, . . . , n}) and (I2, J2) ∈ P({1, . . . ,m}) either
B ⇒ {Ai}i∈I1 , {Di}i∈I2 or {Xj}j∈J1

, {Wj}j∈J2
⇒ Y is

derivable in LK. It is tedious but easy to see that this holds
by applying Lem. 2 to the hypotheses (C,Z), G ⊢ (B, Y )
and G′ ⊢ (C,Z), and using the structural rules of LK.

Theorem 1 (Soundness and completeness of SC⊥
2 ).

G ⊢ (B, Y ) is derivable in SC⊥
2 iff (B, Y ) is derivable from

the pairs in G in OUT⊥
2 .

Proof. (Completeness) Assume that (B, Y ) is derivable in
OUT⊥

2 . We prove by induction on the derivation tree that for
each pair (A,X) occurring in it, the I/O sequent G ⊢ (A,X)

is derivable in SC⊥
2 . The case (A,X) ∈ G is:

A ∧ ¬A ⇒ (IN)
G′ ⊢ (A ∧ ¬A,X)

⇒ X ∨ ¬X (OUT)
G′ ⊢ (A,X ∨ ¬X)

(E2)
(A,X), G′ ⊢ (A,X)

We show the case of (SI) (B |= A iff B ∧ ¬A ⇒):

by I.H.
...

G ⊢ (A, Y )

B ∧ ¬A ⇒ (IN)
⊢ (B ∧ ¬A, Y )

⇒ Y ∨ ¬Y (OUT)
⊢ (B, Y ∨ ¬Y )

(E2)
(A, Y ) ⊢ (B, Y )

(IO-Cut)
G ⊢ (B, Y )



G ⊢ (B ∧ ¬A, Y ) G ⊢ (B, Y ∨ ¬X)
(E2)

(A,X), G ⊢ (B, Y )

B ⇒ A G ⊢ (B, Y ∨ ¬X)
(E1)

(A,X), G ⊢ (B, Y )

G ⊢ (B ∧ ¬A, Y ) G ⊢ (B ∧X,Y ∨ ¬X)
(E4)

(A,X), G ⊢ (B, Y )

B ⇒ A G ⊢ (B ∧X,Y ∨ ¬X)
(E3)

(A,X), G ⊢ (B, Y )

Figure 2: Sequent rules for pair elimination (one for each considered causal I/O logic)

G ⊢ (B, Y )
(IO-Wk)

(A,X), G ⊢ (B, Y )

(A,X), (A,X), G ⊢ (B, Y )
(IO-Ctr)

(A,X), G ⊢ (B, Y )

G ⊢ (C,Z) (C,Z), G′ ⊢ (B, Y )
(IO-Cut)

G,G′ ⊢ (B, Y )

Figure 3: Structural I/O rules (admissible in all our calculi)

(A,X)
(WO)

(A, Y ∨X)
(SI)

(B ∧A, Y ∨X)

(B, Y ∨ ¬X)
(SI)

(B ∧A, Y ∨ ¬X)
(AND)

(B ∧A, (Y ∨X) ∧ (Y ∨ ¬X))
(WO)

(B ∧A, Y ∨ (X ∧ ¬X))
(WO)

(B ∧A, Y ) (B ∧ ¬A, Y )
(OR)

((B ∧A) ∨ (B ∧ ¬A), Y )
(SI)

(B ∧ (A ∨ ¬A), Y )
(SI)

(B, Y )

Figure 4: Derivation of the rule (E2) in OUT⊥
2

For (AND): we derive (B,X1), (B,X2) ⊢ (B,X1 ∧X2),
and apply (IO-Cut) twice followed by many applications of
contraction to the resulting derivation as follows

by I.H.
...

G ⊢ (B,X1)

by I.H.
...

G ⊢ (B,X2) (B,X1), (B,X2) ⊢ (B,X1 ∧X2)

G, (B,X1) ⊢ (B,X1 ∧X2)

G,G ⊢ (B,X1 ∧X2)
(IO-Ctr) ×n

G ⊢ (B,X1 ∧X2)

The claim follows by Lem 3.
Soundness See Lem. 1 and Fig. 4 for the rule (E2).

3.2 Causal Production Inference OUT⊥
4

The calculus SC⊥
4 for the causal version of reusable output

logic OUT⊥
4 extends the core calculus (consisting of LK

with the the rules (IN) and (OUT )) with the pair elimina-
tion rule (E4) in Fig. 2.

Inspired by the normal modal logic embedding of OUT⊥
4

in (Bochman 2003), the shape of the rule (E4) requires to
amend the statement of the characterization lemma. The
proof of this lemma is similar to the one for SC⊥

2

Lemma 4 (Characterization lemma for SC⊥
4 ).

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in
SC⊥

4 iff for all (I, J) ∈ P({1, . . . , n}), either
B, {Xj}j∈J ⇒ {Ai}i∈I or {Xj}j∈J ⇒ Y is deriv-
able in LK.
Theorem 2 (Soundness and completeness of SC⊥

4 ).
G ⊢ (B, Y ) is derivable in SC⊥

4 iff the pair (B, Y ) is deriv-
able from the pairs in G in OUT⊥

4 .

Proof. (Completeness) To derive (CT) in SC⊥
4 we first de-

rive (A,X), (A ∧X,Y ) ⊢ (A, Y ), and then apply (IO-Cut)
and (IO-Ctr) (Fig. 3). The claim follows by the admissibil-
ity of these structural rules in SC⊥

4 , which can be reduced
to the admissibility of the structural rules in LK as for SC⊥

2 .
(Soundness) Replace in Fig. 4 the subtree that derives

(B ∧ A, Y ∨ ¬X) from the pair (B, Y ∨ ¬X) by the fol-
lowing derivation, which uses the rule (CT)

(A,X)
(SI)

(B ∧A,X)

(B ∧X,Y ∨ ¬X)
(SI)

(B ∧A ∧X,Y ∨ ¬X)
(CT)

(B ∧A, Y ∨ ¬X)

3.3 Production Inference OUT⊥
1 and Regular

Production Inference OUT⊥
3

The calculi SC⊥
1 and SC⊥

3 for the causal simple-minded
output OUT⊥

1 and simple-minded reusable output OUT⊥
3

consist of LK with (IN) and (OUT ) extended with the pair
elimination rules (E1) and (E3) in Fig. 2, respectively.
Remark 3. Unlike OUT⊥

2 and OUT⊥
4 , there is no modal em-

bedding in the literature to provide guidance for the devel-
opment of the pair elimination rules for OUT⊥

1 and OUT⊥
3 .

These rules are instead designed by appropriately modifying
(E2) and (E4). Indeed OUT⊥

1 and OUT⊥
3 impose restrictions

on OUT⊥
2 and OUT⊥

4 , respectively, by prohibiting the com-
bination of inputs. The rules (E1) and (E3) are defined by
reflecting this limitation.

Due to the LK premise in their peculiar rules, derivations
in SC⊥

1 and SC⊥
3 have a simpler form w.r.t. derivations in

SC⊥
2 and SC⊥

4 ; this form could be exploited for the sound-
ness and completeness proof. We proceed instead as for the
latter calculi by proving the characterization lemma. This
lemma will be key to solve the open problems about com-
putational bounds and modal embeddings for OUT⊥

1 and
OUT⊥

3 . The proof of the lemma for SC⊥
1 and SC⊥

3 is less
straightforward than for the other logics. The intuition here
is that the characterization considers all possible ways to
apply the rule (E3) (or (E1)), by partitioning the premises
(A1, X1), . . . , (An, Xn) into two disjoint sets (I of remain-
ing deriving pairs and J of eliminated pairs). We will focus
on the lemma for SC⊥

3 , the one for SC⊥
1 being a simpli-

fied case (with a very similar proof). Its proof relies on the
following result:



Lemma 5. If (A,X), G ⊢ (B, Y ) is derivable in SC⊥
3 , then

so is G ⊢ (B ∧X,Y ∨ ¬X).

Proof. Easy induction on the length of the derivation. We
proceed by case distinction on the last applied rule.

Lemma 6 (Characterization lemma for SC⊥
3 ).

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
3 iff

for all (I, J) ∈ P({1, . . . , n}), one of the following holds:

• B, {Xj}j∈J ⇒ Ai is derivable in LK for some i ∈ I ,
• B, {Xj}j∈J ⇒ is derivable in LK,
• {Xj}j∈J ⇒ Y is derivable in LK.

Proof. (⇒): Let (I, J) ∈ P({1, . . . , n}) be any par-
tition. By (several application of) Lem. 5 to each
(Aj , Xj) with j ∈ J , we get that the I/O sequent
(∗) {(Ai, Xi) | i ∈ I} ⊢ (B ∧

∧
j∈J Xj , Y ∨

∨
j∈J ¬Xj)

is derivable in SC⊥
3 . We consider the last rule (r) applied in

the derivation of (∗). Three cases can arise:

• (r) = (E3) eliminating the deriving pair (Ak, Xk) with
k ∈ I; hence B ∧

∧
j∈J Xj ⇒ Ak (and therefore

B, {Xj}j∈J ⇒ Ak) is derivable in LK,
• (r) = (IN) then B, {Xj}j∈J ⇒ is derivable in LK.
• (r) = (OUT) then {Xj}j∈J ⇒ Y is derivable in LK.

(⇐): We stepwise construct a derivation in SC⊥
3 of

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ). We start with (I, J) =
({1, . . . , n}, ∅), and we distinguish the three cases from the
assumption of the lemma: (1) B, {Xj}j∈J ⇒ Ai for some
i ∈ I , (2) B, {Xj}j∈J ⇒, and (3) {Xj}j∈J ⇒ Y . If either
(2) or (3) holds the derivation follows by applying a con-
cluding rule (J = ∅). If (1) holds, we apply (E3) bottom
up getting {(At, Xt)}t∈{1,...,n}\{i} ⊢ (B ∧Xi, Y ∨ ¬Xi)
as the second premise. We now apply the same reason-
ing to this latter sequent (considering the partition (I, J) =
({1, . . . , n} \ {i}, {i})), and keep applying it for the second
premise of (E3), until a concluding rule is applied. This will
eventually happen since I loses the index of the eliminated
pair at each step.

The characterization lemma for SC⊥
1 has the following

formulation (the proof is similar to the proof for SC⊥
3 ).

Lemma 7 (Characterization lemma for SC⊥
1 ).

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is derivable in SC⊥
1 iff

for all partitions (I, J) ∈ P({1, . . . , n}), at least one of the
following holds:

• B ⇒ Ai is derivable in LK for some i ∈ I ,
• B ⇒ is derivable in LK,
• {Xj}j∈J ⇒ Y is derivable in LK.

Theorem 3 (Soundness and completeness of SC⊥
1 and

SC⊥
3 ). G ⊢ (B, Y ) is derivable in SC⊥

1 (SC⊥
3 ) iff (B, Y )

is derivable from the pairs in G in OUT⊥
1 (OUT3).

Proof. (Completeness) uses the admissibility proof of the
structural rules in Fig. 3 The case (A,X) ⊢ (A,X) is now
handled as follows:

A ⇒ A

⇒ X ∨ ¬X (OUT)
⊢ (A,X ∨ ¬X)

(E1)
(A,X) ⊢ (A,X)

The derivation of the rule (SI) directly uses the premise B ⇒
A, instead of the rule (IN).

(Soundness): For SC⊥
1 , the derivation of (E1) is obtained

by juxtaposing to the subderivation of (B ∧ A, Y ) from
(A,X) and (B, Y ∨ ¬X) in Fig. 4 the following

...
(B ∧A, Y )

(SI)
(B, Y )

noticing that the side condition B ⇒ A of the rule (E1)
implies that B and B ∧ A are classically equivalent. The
soundness of the rule (E3) is very similar since the transla-
tion of the rule (E4) from the proof of Theorem 2 also con-
tains a sub-derivation of the pair (B ∧ A, Y ) from (A,X)
and (B ∧ X,Y ∨ ¬X) which uses only the rules of OUT3

((WO), (SI), (AND) and (CT)).

4 Causal I/O Logics vs. Original I/O Logics
We establish a syntactic correspondence between derivabil-
ity in the original I/O logics and in their causal version. This
correspondence obtained utilizing the sequent calculi SC⊥

1 -
SC⊥

4 , will enable to use them for OUT1-OUT4, and to trans-
fer all results arising from the calculi for the causal I/O log-
ics to the original I/O logics.

Note that SC⊥
1 -SC⊥

4 rely on the axiom (BOT), which is
absent in the original I/O logics. An inspection of the sound-
ness proofs for our calculi shows that (BOT) is solely em-
ployed in the translation of the rule (IN) (Lemma 1). Can we
simply remove this rule and hence get rid of axiom (BOT)?
Yes, but only for SC⊥

1 and SC⊥
3 , where, as evidenced by

the completeness proof, (IN) is used to derive (BOT) and not
utilized elsewhere. Hence, by removing the rule (IN) from
SC⊥

1 and SC⊥
3 we get sequent calculi for OUT1 and OUT3.

These calculi are close to the sequent calculi inspired by
conditional logics introduced in (Lellmann 2021). The same
does not hold for SC⊥

2 and SC⊥
4 , where (IN) is needed, e.g.,

to derive (SI). Instead of developing ad hoc calculi to han-
dle the original I/O logics, we leverage SC⊥

1 -SC⊥
4 using the

following result:
Theorem 4. (A1, X1), . . . , (An, Xn) ⊢OUTk

(B, Y )
iff (A1, X1), . . . , (An, Xn) ⊢OUT⊥

k
(B, Y ) and

X1, . . . , Xn |= Y in classical logic, for each k = 1, . . . , 4.

Proof. (⇒) Derivability in OUTk implies derivability in
the stronger logic OUT⊥

k . The additional condition
X1, . . . , Xn |= Y can be proved by an easy induction on
the length of the derivation in the original I/O logics: it
is enough to check that for every rule if the outputs of all
(pairs-)premises follow from X1 ∧ · · · ∧Xn, then so is the
output of the (pair-)conclusion.



(⇐) Consider our sequent calculi SC⊥
1 - SC⊥

4 .
The translation constructed in their soundness the-
orem shows how to map a derivation of the I/O
sequent (A1, X1), . . . , (An, Xn) ⊢ (B, Y ) in SC⊥

k
into a I/O derivation of (B, Y ) from the pairs
{(A1, X1), . . . , (An, Xn)} using the rules of the logic
OUT⊥

k . As observed before, (BOT) appears in this trans-
formed derivation only inside sub-derivations of the pairs
(B′, Y ′) derived in SC⊥

k by the rule (IN). We can replace
every such sub-derivation with a derivation that does not
contain the axiom (BOT) and uses only the rules of the
weakest logic OUT1. This latter derivation relies on the
premise B′ ⇒ of the rule (IN) (which implies B′ |= ⊥), on
the condition X1 ∧ · · · ∧Xn |= Y from the statement of
the lemma and the fact that Y |= Y ′ since in all our calculi
the goal output in the premises of the elimination rules is
the same or weaker than the goal output in the conclusion.
The required derivation is the following:

(A1, X1)
(SI)

(⊥, X1) . . .

(An, Xn)
(SI)

(⊥, Xn)
(AND) ×(n− 1)

(⊥, X1 ∧ · · · ∧Xn)
(WO)

(⊥, Y ′)
(SI)

(B′, Y ′)

After the replacement of all indicated sub-derivation of
(B′, Y ′) with the ones obove, we will get a derivation of
(B, Y ) that does not use the axiom (BOT) and thus (B, Y )
is derivable in the original I/O calculus in (Makinson and
van der Torre 2000) for OUTk.

Remark 4. The constructive proof above heavily relies on
the restricted form of the I/O derivations resulting from
translating our sequent derivations. If at all possible, find-
ing ways to eliminate the use of the (BOT) axiom in arbitrary
I/O derivations within OUT⊥

k would be a challenging task.
The power of structural proof theory lies in its capacity to
solely examine well-behaved derivations.

5 Applications
Our proof-theoretic investigation is used here to establish
the following results for the original and the causal I/O log-
ics: uniform possible worlds semantics (Sec. 5.1), co-NP-
completeness and automated deduction methods (Sec. 5.2),
and new embeddings into normal modal logics (Sec. 5.3).

5.1 Possible Worlds Semantics
We provide possible worlds semantics for both the original
and the causal I/O logics. Our semantics is a generalization
of the bimodels semantics in (Bochman 2004) for OUT⊥

2 ;
it turns out to be simpler than them for the remaining causal
logics, and than the procedural semantics for the original I/O
logics. As we will see, this semantics facilitates clean and
uniform solutions to various unresolved inquiries regarding
I/O logics that were only partially addressable.

First, notice that a contrapositive reading of the charac-
terization lemmas leads to countermodels for non-derivable

statements in all considered causal I/O logics. These coun-
termodels consist of (a partition and) several boolean inter-
pretations (two for OUT⊥

2 , OUT⊥
4 and their causal versions,

and (n+2) for OUT⊥
1 , OUT⊥

3 and their causal versions) that
falsify the LK sequents from the respective lemma state-
ment. We show below that a suitable generalization of these
countermodels provides alternative semantic characteriza-
tions for both the original and the causal I/O logics.

A possible worlds semantics for the causal I/O logics was
introduced by (Bochman 2004) using bimodels. For the
simplest case of OUT⊥

2 , bimodel is a pair of worlds (here
‘world’ can be seen as a synonym for boolean interpretation)
corresponding to input and output states.
Definition 3. (Bochman 2004) A pair (A,X) is said to be
valid in a bimodel (in, out) if in ⊨ A implies out ⊨ X .

The adequacy of this semantics implies, in particular, that
G ⊢OUT⊥

2
(B, Y ) if and only if the validity of all pairs from

G implies validity of (B, Y ) for all bimodels. The notion
of bimodels for OUT⊥

1 , OUT⊥
3 and OUT⊥

4 is more complex,
with input and output states consisting of arbitrary deduc-
tively closed sets of formulae, instead of worlds.

To construct our semantics, we look at the countermod-
els provided by the characterization lemma from the point
of view of the simplest bimodels of OUT⊥

2 . Lemma 2
says indeed that if (A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is not
derivable in SC⊥

2 there is a partition (I, J), and two
boolean interpretations in and out such that: in falsifies
the LK-sequent B ⇒ {Ai}i∈I (meaning that in ⊨ B and
in ⊭ Ai for all i ∈ I) and out falsifies the LK-sequent
{Xj}j∈J ⇒ Y (meaning that out ⊨ Xj for all j ∈ J and
out ⊭ Y ). These two interpretations lead to a bimodel that
falsifies (A1, X1), . . . , (An, Xn) ⊢ (B, Y ); indeed all pairs
(Ai, Xi) for i ∈ I are valid in (in, out) as in ⊭ Ai, all pairs
(Aj , Xj) for j ∈ J are valid in (in, out) as out ⊨ Xj , but
(B, Y ) is not valid in (in, out) because in ⊨ B and out ⊭ Y .

Reasoning in a similar way about the countermodels for
OUT⊥

1 given by Lem. 7, we observe there are now multi-
ple input worlds, each falsifying in B ⇒ Ai the input Ai

(plus one additional input world that arises from the sequent
B ⇒). This leads to the following generalization of bimod-
els with multiple input worlds.
Definition 4. An I/O model is a pair (In, out) where out is
the output world, and In is a set of input worlds.

The definition of validity in an I/O model will be modified
to require that the input formula is true in all input worlds,
rather than just in the unique input world. This update en-
sures that the existence of a single input world falsifying A
is enough to establish the validity of the pair (A,X). More-
over, the additional ability to reuse outputs as inputs in the
logics OUT⊥

3 and OUT⊥
4 can be expressed in these models

by the requirement that a triggered output X should hold in
the input worlds too. This leads to the following two defi-
nitions of validity in I/O models – one for the logics OUT⊥

1
and OUT⊥

2 , the other for OUT⊥
3 and OUT⊥

4 .
Definition 5.
• An I/O pair (A,X) is 1-2-valid in an I/O model (In, out)

if (∀in ∈ In. in ⊨ A) implies out ⊨ X .



Logic Frame condition Notion of validity
OUT⊥

1 |In| ≥ 1 1-2-validity
OUT⊥

2 |In| = 1 1-2-validity
OUT⊥

3 |In| ≥ 1 3-4-validity
OUT⊥

4 |In| = 1 3-4-validity
OUT1 no conditions 1-2-validity
OUT2 |In| ≤ 1 1-2-validity
OUT3 no conditions 3-4-validity
OUT4 |In| ≤ 1 3-4-validity

Table 2: Conditions on I/O models (size of the set In of input
worlds) and corresponding notions of validity for I/O models.

• An I/O pair (A,X) is 3-4-valid in an I/O model (In, out)
if (∀in ∈ In. in ⊨ A) implies (∀w ∈ {out} ∪ In. w ⊨ X).

When clear from the context, henceforth we will use the
term validity to mean either 1-2-validity (hence referring to
the logics OUT1, OUT2, OUT⊥

1 , and OUT⊥
2 ) or 3-4-validity

(hence referring to OUT3, OUT4, OUT⊥
3 , and OUT⊥

4 ).
Proposition 1 (Semantics for OUT⊥

k ). G ⊢OUT⊥
k
(B, Y ) iff

for all I/O models (satisfying the conditions in Tab. 2) valid-
ity of all pairs from G implies validity of (B, Y ).

Proof. The proofs rely on the characterization lemmas for
each of the four logics. We detail the proof for OUT⊥

3 , the
others being similar. The equivalence is proved by negating
both statements.

(⇐) Suppose (A1, X1), . . . , (An, Xn) ⊢ (B, Y ) is not
derivable in SC⊥

3 (and hence in OUT⊥
3 ). We show the

existence of a countermodel. By Lem. 6 there exists
a partition (I, J) such that the sequents {Xj}j∈J ⇒ Y ,
B, {Xj}j∈J ⇒ and B, {Xj}j∈J ⇒ Ai for all i ∈ I are not
derivable in LK. By the soundness and completeness of LK
w.r.t. the classical truth tables semantics there exist:

• an interpretation out, s.t. out ⊨ Xj ∀j ∈ J and out ⊭ Y ,
• an interpretation in0, s.t. in0 ⊨ B and in0 ⊨ Xj ∀j ∈ J ,
• for every i ∈ I an interpretation ini, s.t. ini ⊨ B, ini ⊨ Xj

for all j ∈ J and ini ⊭ Ai.

Then the I/O model M = ({in0} ∪ {ini | i ∈ I}, out)
(which has at least one input world) is a coun-
termodel for the derivability of the I/O sequent
(A1, X1), . . . , (An, Xn) ⊢ (B, Y ). Indeed, every pair
(Ai, Xi) for i ∈ I is 3-4-valid in M since Ai is not true
in the input world ini; every pair (Aj , Xj) for j ∈ J is
3-4-valid in M since Xj is true in all worlds of M ; but
the pair (B, Y ) is not 3-4-valid since B is true in all input
worlds, while Y is not true in the output world out.
(⇒) Let M = (In, out) (with In ̸= ∅) be a countermodel.

I.e. M 3-4-validates all pairs {(A1, X1), . . . , (An, Xn)},
but does not 3-4-validate the pair (B, Y ). We prove that
the sequent (A1, X1) . . . , (An, Xn) ⊢ (B, Y ) is not deriv-
able in OUT⊥

3 . We show the existence of a partition
(I, J), such that none of the LK sequents {Xj}j∈J ⇒ Y ,
{Xj}j∈J ⇒ Y , and B, {Xj}j∈J ⇒ is derivable. The claim
follows then by Lem. 6. For such partition, we chose J as
{j : ∀in ∈ In. in ⊨ Aj}, and I as the rest of the indices.
Notice that Xj is true in all worlds of M for every j ∈ J

by definition of 3-4-validity of (Aj , Xj). Also, the fact that
(B, Y ) is not 3-4-valid in M means that B holds in all in-
put worlds, but there exists a world w∗ ∈ {out} ∪ In, s.t.
w∗ ⊭ Y . Then:
• {Xj}j∈J ⇒ Y is not derivable in LK, because this se-

quent does not hold in the world w∗.
• B, {Xj}j∈J ⇒ is not derivable in LK, because this se-

quent does not hold in any input world of M (and there is
at least one by the condition In ̸= ∅).

• For any i ∈ I there exists an input world ini, s.t. ini ⊭ Ai

(by the choice of I). Hence B, {Xj}j∈J ⇒ Ai is not
derivable in LK, as this sequent does not hold in ini.

Dropping the condition of having at least one input world
leads to models for the original I/O logics.

Proposition 2 (Semantics for OUTk). G ⊢OUTk
(B, Y ) iff

for all I/O models (satisfying the conditions in Tab. 2) valid-
ity of all pairs from G implies validity of (B, Y ).

Proof. By Th. 4, (B, Y ) is derivable from (A1, X1), . . . ,
(An, Xn) in OUTk iff it is derivable in OUT⊥

k together with
the additional condition X1, . . . , Xn |= Y . We prove that
this additional condition is equivalent to the fact that every
model with zero input worlds that validates all pairs from G
also validates (B, Y ). Notice that this will prove the propo-
sition, as the only difference between the proposed seman-
tics for a causal I/O logic and the corresponding original one
is that the latter additionally considers models with zero in-
put worlds (see Tab. 2).

For both notions of validity, the validity of a pair (A,X)
in (∅, out) is equivalent to out ⊨ X . Now, X1, . . . , Xn |= Y
means that every interpretation that satisfies every Xi also
satisfies Y , which is equivalent to the fact that every model
(∅, out) (with arbitrary interpretation out) that validates ev-
ery (Ai, Xi) also validates (B, Y ).

Remark 5. A natural interpretation for the I/O models in
the deontic context regards input world(s) as (different pos-
sible instances of) the real world, and the output world as
the ideal world, where all triggered obligations are fulfilled.

5.2 Complexity and Automated Deduction
We investigate the computational properties of the four orig-
inal I/O logics and their causal versions. One corollary of
our previous results is co-NP-completeness for all of them.
Moreover, we can explicitly reduce the entailment problem
in all these logics to the (un-)satisfiability of one classical
propositional formula of polynomial size, a thoroughly stud-
ied problem with a huge variety of efficient tools available.

Corollary 1. The entailment problem is a co-NP-complete
problem for all eight considered I/O logics.

Proof. The characterization lemmas for the logics OUT⊥
1 -

OUT⊥
4 imply that the non-derivability of a pair from n pairs

can be non-deterministically verified in polynomial time by
guessing the non-fulfilling partition (consisting of n bits)
and then non-deterministically checking the non-derivability
of all sequents (at most (n+ 2)) for this partition; the latter
task can be done in linear time. For the original I/O logics,



by Th. 4 we also need to verify that the additional condition
does not hold (guessing a falsifying boolean assignment).
Thus, the entailment problem belongs to co-NP for all con-
sidered I/O logics. The co-NP-completeness follows by the
fact that any arbitrary propositional formula Y is classically
valid iff (⊤, Y ) can be derived from no pairs in any calculus
for the considered logics (notice that the additional condition
of Th. 4 also boils down to the classical validity of Y ).

We provide an explicit reduction the derivability in I/O
logics to the classical validity. For OUT2 and OUT4 this
is already contained in (Makinson and van der Torre 2000).
Using the semantics introduced in Sec. 5.1, we obtain this
result for Bochmann’s causal I/O logics and their original
version in a uniform way.

Prop. 1 shows that the underivability of G ⊢ (B, Y ) in
the causal I/O logics is equivalent to the existence of an
I/O model that validates all pairs in G, but does not vali-
date (B, Y ). For OUT⊥

2 and OUT⊥
4 a countermodel should

have exactly one input world, while for OUT⊥
1 and OUT⊥

3
there is always one with at most (|G|+ 1) input worlds.

We will encode existence of a countermodel to
G ⊢ (B, Y ) with exactly Nk input worlds (with Nk = 1 for
k = 2, 4, and Nk = |G|+ 1 for k = 1, 3) in classical logic.
For the encoding, we assign to the input worlds the numbers
from 1 to Nk, and 0 to the output world. Let V be the finite
set of all propositional variables that occur in the formulae
of G or (B, Y ). For every variable x ∈ V , our encoding will
use (Nk +1) copies of this variable {x0, . . . , xNk} with the
intuitive interpretation that xl is true iff x is true in the world
number l. For an arbitrary formula A with variables from V ,
let us denote by Al the copy of A in which every variable
x ∈ V is replaced by its labeled version xl. We read the
formula Al as “A is true in the world number l”. The exact
connection with G ⊢ (B, Y ) is stated below.

Lemma 8. (A1, X1), . . . , (An, Xn) ⊢OUT⊥
k
(B, Y )

iff the classical propositional formula
¬Pk

n((B, Y )) ∧
∧

(A,X)∈G

Pk
n((A,X)) is unsatisfiable,

where

• Pk
n((A,X)) = (

Nk∧
l=1

Al) → X0 for k = 1, 2

• Pk
n((A,X)) = (

Nk∧
l=1

Al) → (
Nk∧
l=0

X l) for k = 3, 4

Proof. We prove the contrapositive version.
(⇒) Let VL the set of all labeled copies of variables in

V (VL = {xl | x ∈ V, l ∈ {0, . . . ,Nk}}). Suppose there
is a valuation v : VL → {0, 1}, that satisfies the formula in
the statement (i.e. v ⊨ Pk

n((A,X)) for all (A,X) ∈ G and
v ⊭ Pk

n((B, Y ))). v can be decomposed into (Nk + 1) val-
uations vl : V → {0, 1}, one for each label (vl(x) = v(xl)).
It is easy to see that (∗): For every formula A with variables
in V , v ⊨ Al iff vl ⊨ A (it can be proven by trivial induc-
tion). The valuations {vl} can then be turned into an I/O
model M = ({v1, . . . , vNk

}, v0). Then using the reading of
v ⊨ Al given by (∗) we can see that v ⊨ Pk

n((A,X)) (for
k = 1, 2) iff (A,X) is 1-2-valid in M , and v ⊨ Pk

n((A,X))

out

in1 inN
. . .

Figure 5: Kripke countermodel construction for I/O model
({in1, . . . , inN}, out). Arrows represent the accessibility relation.

(for k = 3, 4) iff (A,X) is 3-4-valid in M . Therefore, since
v satisfies the formula in the statement, M validates all pairs
from G and does not validate (B, Y ), which implies that
G ⊢ (B, Y ) is not derivable in OUT⊥

k .
(⇐) Here instead of decomposing a valuation of labeled

variables into (Nk + 1) worlds, we use a countermodel
({in1, . . . , inNk

}, out) to define a valuation v : VL → {0, 1}
of labeled variables (with v(x0) = out(x) and v(xl) =
inl(x)). The proof proceeds as in the other direction.

The result is extended to the original I/O logics via Th. 4.

Lemma 9. (A1, X1), . . . , (An, Xn) ⊢OUTk
(B, Y ) iff the

classical propositional formula Fk
n ∨ (¬Y ∧

n∧
i=1

Xi) is un-

satisfiable, where Fk
n is the formula encoding derivability of

(A1, X1), . . . , (An, Xn) ⊢ (B, Y ) in OUT⊥
k from Lem. 8.

Proof. The disjunct (¬Y ∧(X1∧· · ·∧Xn)) arises from Th. 4
(derivability in OUTk is equivalent to derivability in OUT⊥

k
and the classical entailment of Y from {Xi}ni=1). The claim
follows by Lem. 8.

5.3 Embeddings into Normal Modal Logics
We provide uniform embeddings into normal modal logics.
The embeddings are a corollary of soundness and complete-
ness of I/O logics w.r.t. I/O models.

More precisely we show that G ⊢ (B, Y ) in I/O logics iff
a certain sequent consisting of shallow formulae only (mean-
ing that the formulae do not contain nested modalities) is
valid in suitable normal modal logics. To do that we estab-
lish a correspondence between pairs and shallow formulae.

The I/O models already use the terminology of Kripke
semantics that define normal modal logic. To establish a
precise link between the two semantics we need only to de-
fine the accessibility relation on worlds. We will treat the
set of input worlds In as the set of worlds accessible from
the output world out (see Fig. 5). Under this view on input
worlds, 1-2-validity (resp. 3-4-validity ) of the pair (A,X) is
equivalent to the truth of the modal formula □A → X (resp.
□A → X ∧□X) in the world out.

Also, the conditions on the number of input worlds that
are used in Prop. 1 and Prop 2 to distinguish different I/O
logics can be expressed in normal modal logics by standard
Hilbert axioms. Specifically, axiom D : □A → 3A forces
Kripke models to have at least one accessible world, while
F : 3A → □A forces them to have at most one accessible
world. As proved below, the embedding works for the basic
modal logic K extended with D (which results in the well-
known standard deontic logic (von Wright 1951) KD), with
F, or both axioms.



Henceforth we abbreviate, e.g., validity in the logics K
(respectively K+ F) with |=K/K+F.

Theorem 5. (B, Y ) is derivable from pairs G in

• OUT1 and OUT2 iff G□
1/2 |=K/K+F □B → Y

• OUT3 and OUT4 iff G□
3/4 |=K/K+F □B → Y ∧□Y

• OUT⊥
1 and OUT⊥

2 iff G□
1/2 |=KD/KD+F □B → Y

• OUT⊥
3 and OUT⊥

4 iff G□
3/4 |=KD/KD+F □B → Y ∧□Y

where G□
1/2 = {□Ai → Xi | (Ai, Xi) ∈ G},

and G□
3/4 = {□Ai → Xi ∧□Xi | (Ai, Xi) ∈ G}.

Proof. We show these equivalences by transforming the I/O
countermodels given by Prop. 1 and Prop. 2 into Kripke
countermodels for the corresponding modal logic and vice
versa. The transformations will be the same for all the con-
sidered logics. We detail the case of OUT⊥

3 .
(⇐) Assume G□

3 |=KD □B → Y ∧□Y does not hold.
Then there should exist a Kripke model M in which ev-
ery world has at least one world accessible from it, and a
world w in M , such that w ⊨ □A → X ∧□X for every
(A,X) ∈ G and w ⊭ □B → Y ∧□Y . Let N(w) be the set
of all worlds accessible from w in M . Then the I/O model
(N(w), w) will be a countermodel for G ⊢ (B, Y ); notice
indeed that w ⊨ □A → X ∧□X means exactly 3-4-validity
of (A,X) in (N(w), w), so all pairs in G are 3-4-valid in
(N(w), w), but (B, Y ) is not 3-4-valid, and |N(w)| ≥ 1.
Hence G ⊢ (B, Y ) is not derivable in OUT⊥

3 .
(⇒) Assume G ⊢ (B, Y ) is not derivable in OUT⊥

3 . Then
there is some I/O model (In, out) with |In| ≥ 1, s.t. all
pairs from G are 3-4-valid in (In, out) and (B, Y ) is not
3-4-valid in (In, out). Consider the Kripke model M that
consists of worlds In ∪ {out} with accessibility relation de-
fined as shown in Fig. 5 (all input worlds are accessible
from the output world and every input world is accessi-
ble from itself). M satisfies the frame condition for KD
as there is at least one accessible world from out because
of |In| ≥ 1, and exactly one accessible world for ev-
ery input world (itself). out satisfies the modal formula
A → X ∧□X (with A and X being propositional formu-
lae) in the Kripke model M iff the I/O pair (A,X) is
3-4-valid in (in, out). So in M , out ⊨ A → X ∧□X for ev-
ery pair (A,X) ∈ G and out ⊭ B → Y ∧□Y . Therefore
G□

3 |=KD □B → Y ∧□Y does not hold.

Remark 6. Modal embeddings were already known for
the causal logics OUT⊥

2 and OUT⊥
4 . The embedding for

OUT⊥
2 was translating the pair (A,X) into the K formula

A → □X . In (Makinson and van der Torre 2000) this
embedding was stated for OUT2 and OUT4 together with
the additional condition X1, . . . , Xn |= Y (appearing in
our Th. 4). Note that moving the modality to inputs allows
for a more refined embedding. The validity of the state-
ment (A → □X), . . . , (A → □X) |= (B → □Y ) is indeed
the same in all four target logics we use (K, KD, K + F and
KD + F), while the validity of (□A → X), . . . , (□A →
X) |= (□B → Y ) is different.

6 Conclusions
We have introduced sequent calculi for I/O logics. Our cal-
culi provide a natural syntactic connection between deriv-
ability in the four original I/O logic (Makinson and van der
Torre 2000) and in their causal version (Bochman 2004).
Moreover, the calculi yield natural possible worlds seman-
tics, complexity bounds, embeddings into normal modal
logics, as well as efficient deduction methods. It is worth
noticing that our methods for the entailment problem offer
derivability certificates (i.e. derivations) or counter-models
as solutions. The efficient discovery of the latter can be ac-
complished using SAT solvers, along the line of (Lahav and
Zohar 2014). The newly introduced possible worlds seman-
tics might be used to import in I/O logics tools and results
from standard modal theory.

Our work encompasses many scattered results and
presents uniform solutions to various unresolved problems;
among them, it contains first proof-search oriented calculi
for OUT⊥

2 and OUT⊥
4 ; it provides a missing4 direct for-

mal connection between the semantics of the original and
the causal I/O logics; it introduces a uniform embedding
into normal modal logics, that also applies to OUT1 and
OUT3, despite the absence in these logics of the (OR) rule5;
moreover, it settles the complexity of the logics OUT3 and
OUT⊥

3 . The latter logic has been used in (Bochman 2018)
as the base for actual causality and in (Bochman 2004), to-
gether with OUT⊥

4 , to characterize strong equivalence of
causal theories w.r.t. two different semantics: general and
causal non-monotonic semantics. Strong equivalence is an
important notion as theories satisfying it are ‘equivalent for-
ever’, that is, they are interchangeable in any larger causal
theory without changing the general/causal non-monotonic
semantics. Furthermore OUT4 has been used as a base for
formalizing legal concepts (Ciabattoni, Parent, and Sartor
2021). The automated deduction tools we have provided
might be used also in these contexts.

In this paper, we have focused on monotonic I/O log-
ics. However, due to their limitations in addressing differ-
ent aspects of causal reasoning (Bochman 2021) and of nor-
mative reasoning, several non-monotonic extensions have
been introduced. For example (Makinson and van der Torre
2001; Parent and van der Torre 2014) have proposed non-
monotonic extensions that have also been applied to rep-
resent and reason about legal knowledge bases, as demon-
strated in the work by Robaldo et al. (Robaldo et al. 2020).
Our new perspective on the monotonic I/O logics contributes
to increase their understanding and can provide a solid foun-
dation for exploring non-monotonic extensions.

4From (van der Torre and Parent 2013): ”As a matter of
facts, there is no direct (formal) connection between the seman-
tics Bochman proposes and the operational semantics for I/O logic.
The linkage between the two is established through the axiomatic
characterization: both the possible-worlds semantics and the op-
erational semantics give rise to almost the same axiom system”

5From (Makinson and van der Torre 2000): “As far as the au-
thors are aware, it is not possible to characterise the system of
simple-minded output (with or without reusability) by relabeling
or modal logic in a straightforward way. The (OR) rule appears to
be needed, so that we can work with complete sets.”
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