
Deontic Equilibrium Logic with eXplicit negation

Pedro Cabalar1 , Agata Ciabattoni2 , and Leendert van der Torre3

1 University of A Coruña, Spain, cabalar@udc.es
2 TU Wien, Vienna, Austria, agata@logic.at

3 University of Luxembourg, Luxembourg, leon.vandertorre@uni.lu

Abstract. Equilibrium logic is a logical characterization of Answer Set
Programming (ASP). We introduce Deontic Equilibrium Logic with eX-
plicit negation (DELX), its extension for normative reasoning. In contrast
to modal approaches, DELX utilizes a normal form that restricts deontic
operators solely to atoms. We establish that any theories in DELX can be
reduced to ASP, and demonstrate the efficacy of this minimalist approach
in addressing key challenges from the defeasible deontic logic literature.

1 Introduction

Before deploying AI systems in real-world settings, it is imperative that they
satisfy legal and ethical requirements. Regulators, researchers and practitioners
from various disciplines are providing such requirements, which are typically
expressed as norms involving obligations and related concepts. To assess whether
AI systems comply with them, we need formal languages to represent norms, and
automated reasoning tools to derive conclusions from their representation.

Normative reasoning is the realm of deontic logic, which formalizes obligation
and related concepts. While there is consensus on the importance of defeasibility
in dealing with norms or on the fact that obligations cannot be defeated by their
violations, the specific properties of deontic operators vary depending on the
application. This has resulted in the emergence of numerous deontic systems
(refer to the handbooks [16,15]) as advancements over the "standard” deontic
logic KD [45], which proved inadequate in tackling various scenarios commonly
referred to as deontic ’paradoxes’; in particular the necessity operator Oφ in
KD (read as “φ is obligatory”) could not deal with secondary obligations (aka
contrary-to-duty) or defeasible reasoning, as in the following well-known scenario
Example 1 (Cottage Fence [41]). The scenario consists of the norms

(i) There must be no fence (f).
(ii) If there is a fence, it must be a white (w) fence.
(iii) If the cottage is by the sea (s), there must be a fence.

If we build a fence f , we violate the norm O¬f from (i) but then we are subject
to the secondary obligation of a white fence Ow, that implies Of since a white
fence is a fence. Thus, we may have to accept situations in which both O¬f and
Of coexist, something impossible in KD whose main axiom D: ¬(Of ∧O¬f)
states that this is inconsistent. Furthermore a cottage by the sea (iii) is usually

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717

2 Pedro Cabalar , Agata Ciabattoni , and Leendert van der Torre

read as an exception to the prohibition (i) when we understand the latter as a
default, something that cannot be represented using (a monotonic logic like) KD.

To represent and reason about norms, deontic logic is commonly used in
combination with techniques from nonmonotonic reasoning (e.g. [29,34]). Few
tools exist e.g. [24,21,5], but flexible computational techniques and standardization
are still lacking. Standardization and flexibility are among the key features of
Answer Set Programming (ASP)—one of the most prominent paradigms of
knowledge representation and reasoning for problem solving [6]. ASP’s success can
be attributed to its wide range of applications [14], efficient tools like clingo [17]
and DLV [32], and others used in ASP competitions [18], but also to its solid
theoretical foundations. The logical characterization of ASP based on Equilibrium
Logic [39] allows the treatment of the ASP connectives, including both default and
explicit negation [2]. It has been extended to deal with quantifiers [40], functions,
sets and aggregates [9] and has also facilitated the homogeneous extension of
ASP with temporal [1] and epistemic [8] modalities. A hybrid combination with
the logic KD has been introduced in [3], and called Deontic Equilibrium Logic
(DEL). Syntactically, DEL builds upon Equilibrium Logic and replaces the role
of atoms by KD modal formulas that use a distinct set of Boolean connectives.
This orientation is less integrated than other modal extensions of equilibrium
logic, e.g. [1,8], in the sense that modal and non-modal operators cannot be freely
combined. Besides, instead of collapsing to regular ASP, the non-modal fragment
of DEL can capture Reiter’s Default Logic [42]. More importantly, being based on
KD, DEL considers the simultaneous obligation and prohibition of the same fact
as inconsistent, which may need to be relaxed to deal with contrary-to-duties.

In this paper we present a novel deontic extension of Equilibrium Logic that,
instead of dealing with a modal language, focuses on reasoning about literals
built with explicit negation, originally known in ASP as “classical” negation [19].
To this aim, in Section 3, we introduce deontic logic programs that minimally
extend ASP with two new propositions representing obligation and prohibition
of atoms. This framework can be straightforwardly encoded in ASP, maintaining
the same computational complexity. To overcome the syntactic limitations of
logic programs, we propose Deontic Equilibrium Logic with eXplicit negation
(DELX) in Section 4. DELX is a full logical language that extends equilibrium
logic (with explicit negation) by incorporating obligations and prohibitions as new
connectives. We demonstrate that any DELX theory can be reduced to a deontic
logic program, enabling the use of ASP to compute its (deontic) equilibrium
models. To assess the adequacy of the proposed formalism, we use our framework
to tackle the most salient challenges of normative reasoning, which we formalize
and discuss in Section 5 as variations of Example 1. Through various DELX
expressions, we capture nuanced interpretations of norms in a formal manner,
showcasing a high degree of elaboration tolerance [33].

2 ASP in a nutshell

We recall the definition of answer sets for propositional logic programs with
explicit negation; we extend here the original definition in [19] by allowing

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717

Deontic Equilibrium Logic with eXplicit negation 3

default negation in the head, something familiar in modern ASP. We start from
a propositional signature, a set of atoms At , and define an explicit literal as any
p ∈ At or its explicit negation ¬p. A default literal is any explicit literal L or its
default negation not L. A rule is an implication of the form:

H1 ∨ · · · ∨Hn ← B1 ∧ · · · ∧Bm (1)

where n,m ≥ 0 and allHi and Bj are default literals. The disjunctionH1∨· · ·∨Hn

in (1) is called the rule head. When n = 0, the head is the empty disjunction ⊥,
and the rule is said to be a constraint. The conjunction B1 ∧ · · · ∧Bm in (1) is
called the rule body. When m = 0, it corresponds to the empty conjunction ⊤
and, when this happens, we normally omit both the body ⊤ and the ← symbol.
Moreover, if m = 0, n = 1, and the head consists of a unique explicit literal H1

(no default negation), we say that the rule is a fact. A logic program is a set of
rules. For simplicity, in this paper we deal with finite programs and we sometimes
represent them as the conjunction of their rules. Logic programs may contain
variables, but they are understood as an abbreviation of all their possible ground
instances (for simplicity, we do not allow function symbols).

A propositional interpretation T for a signature At is any set of explicit
literals that is consistent, i.e., it contains no pair of literals p and ¬p for a same
atom p ∈ At . Given any rule r like (1) containing no default negation, we say
that an interpretation satisfies r if there is some head explicit literal Hi ∈ T
whenever all body literals Bj ∈ T . The reduct of a logic program Π with respect
to an interpretation T , written ΠT , is the result of: (1) removing all rules with a
default literal not L in the body such that L ∈ T ; (2) removing all rules with a
default literal not L in the head such that L ̸∈ T ; and (3) removing the rest of
default literals. An interpretation T is an answer set of a logic program Π if it is
⊆-minimal among all the interpretations satisfying all rules of ΠT .

3 Deontic Logic Programs

Following a minimalist approach, we extend ASP with two new types of propo-
sitions that talk about atomic obligations Op (read as “p is obligatory”) and
atomic prohibitions Fp (“p is forbidden”), for any atom p ∈ At . In many deontic
logics (e.g. KD [45]) the prohibition Fp can be defined as the obligation O¬p.
However, at this point, we refrain from reading O and F as real operators, and
see them as prefixes for new ASP atoms called “Op” and “Fp” in the signature.
Keeping p, Op and Fp separated as three independent propositions makes sense
since, for instance, there is no established connection between Op and p, as one
may have the obligation of p but yet, p may not hold (i.e., the obligation is not
fulfilled), and similarly for prohibitions. In addition, under certain conditions we
will allow Op and Fp to hold together, as discussed in the introduction.

A deontic atom is either p ∈ At or any of the expressions Op or Fp. The
deontic signature At ′ is defined as At ′ := At ∪ {Op | p ∈ At} ∪ {Fp | p ∈ At}.
We may now form explicit literals for At ′. Intuitively, p (and ¬p) means that p is
true (false, resp.) in a factual sense, so that when none of the two hold, there is

4 Pedro Cabalar , Agata Ciabattoni , and Leendert van der Torre

no evidence that p or ¬p hold or have happened. E.g., if p means “pay taxes",
when p holds we can read it as “the payment can be checked", and when ¬p
holds as “we can prove that the payment was not done". The explicit literals Op
and ¬Op stand for “the obligation of p is true” and “is explicitly false”, or “¬p is
explicitly permitted" (we will see below that permissions can also be expressed
in a weaker way by using default negation). Again, we may also have that none
of the two hold. We permit having at the same time both the literal ¬p in the
real world and an obligation Op, meaning that the latter is violated. Finally, the
prohibition Fp is dual to the obligation. Its explicit negation ¬Fp can be read as
“p is explicitly permitted" whereas a violation happens when both Fp and p hold
simultaneously. By introducing default negation, for any atom p ∈ At we can
form 12 default literals corresponding to (atomic) normative positions (cf. [43]):

p,¬p,Op,¬Op,Fp,¬Fp,not p,not ¬p,not Op,not ¬Op,not Fp,not ¬Fp

For instance, the reading of not Op is “there is no evidence about Op" as opposed
to ¬Op that provides evidence for Op to be explicitly false. In fact, we can also
see not Op as an implicit permission for ¬p, and something similar happens with
not Fp, that becomes an implicit permission for p (see C1 in Sec. 5). A literal
like not ¬Fp reads as “there is no reason to conclude the explicit permission of p”.

An interpretation containing both the obligation Op and the prohibition Fp
is a dilemma and should be inconsistent. This corresponds to the Deontic axiom
D, present in most deontic logics. Let us encode (i)-(iii) from Example 1 as:

Ff Ow ← f ∧ Ff Of ← s (2)

and assume we add the fact s (“the cottage is by the sea”). The only answer
set is {Ff,Of, s} and so, we have a specification demanding both the presence
and absence of a fence simultaneously. This specification should be considered
inconsistent because, somehow, we have contradicting indications on how to
proceed. To achieve the inconsistency of the program (2) ∪ {s} we could define
the deontic answer sets as those in which for no atom p, Op,Fp occurs. However,
to deal with secondary obligations, we may require that both Op and Fp hold, if
one of them has been violated. As a white fence is also a fence, we add:

f ← w Of ← Ow (3)

and if we take the extended program (2) ∪ (3) ∪ {f} we obtain the answer set
{f,Ff,Ow,Of} so, we conclude both Ff and Of . These two deontic atoms
however do not provide indications on how to proceed, as the decision to put a
fence has been already taken, forcing the violation of Ff and the fulfillment of
Of , derived from Ow. The conclusion is that Of and Ff may coexist, provided
that one of the two has been violated. This leads us to the following definition.

Definition 1. A deontic interpretation T is a propositional interpretation for
At ′ satisfying: {Op,Fp} ⊆ T implies {p,¬p} ∩ T ̸= ∅, for any p ∈ At .

T is consistent by definition, that is, T cannot contain literals A and ¬A for a
same deontic atom A. To be a deontic interpretation, we additionally require that

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717

Deontic Equilibrium Logic with eXplicit negation 5

the atoms Op and Fp can only hold together when T contains information about
p, i.e., either p or its explicit negation ¬p are in T . Note that the mere presence
of Op and Fp together will not permit to derive p or ¬p, as the derivation can
only be achieved by application of rules in the logic program. We call deontic
answer sets to the answer sets of a deontic logic program that are also deontic
interpretations. To obtain them, we can use the axiom schema (for any p ∈ At):

⊥ ← Op ∧ Fp ∧ not p ∧ not ¬p (wD)

that is a weaker version of the Deontic axiom D, and states that the conjunction
of Op and Fp is inconsistent only if none of the two has been violated.

Proposition 1. T is a deontic answer set of a deontic logic program Π iff T is
an answer set of Π ∪ (wD).

To see the effect of (wD), consider again the program Π = (2) ∪ {s}. As
mentioned before, the only answer set of this program would be T = {Ff,Of, s}
but this is ruled out by the (wD) constraint. In fact, T is not a deontic answer
set since we have both the obligation and the prohibition of f but we did not
provide any information about f or ¬f . This means we face a dilemma, because
we have two contradictory norms and none of them has been violated. If we take
program Π ′ = Π ∪ {f} (that is, we decide to put a fence) then Ff is violated
and consistency is restored, obtaining the answer set T ′ = {Ff,Of, s, f,Ow}.
Note how we derive the obligation of a white fence Ow, and that the prohibition
of Ff has not been retracted, but has been violated instead. If, instead of f , we
are said that no fence will be built ¬f (i.e. we have evidence that there is no
fence), then the program Π ′′ = Π ∪ {¬f} also becomes consistent, leading this
time to answer set T ′′ = {Ff,Of, s,¬f} where Of is violated.

Proposition 1 allows a direct encoding of any deontic logic program Π into a
regular ASP program Π ′. To do so, a compact representation can be achieved
by reifying all atoms in Π to become arguments of three predicates in Π ′, say
h, ob and fb respectively standing for holds (in a factual sense), obligatory and
forbidden. As an illustration, (2)-(3) can be represented as the ASP program1

below where the constraint in the last line is an encoding of (wD).

fb(f). % The fence is forbidden
ob(w) :- h(f), fb(f). % CTD: if fence, it must be white
ob(f) :- h(s). % Obligatory fence if by the sea
h(f). % We have a fence
h(f) :- h(w). % White fence means fence
ob(f) :- ob(w). % The same for obligation
:- ob(P), fb(P), not h(P), not -h(P). % Axiom (wD)

This encoding can be easily automated in linear time, so the complexity results
of deontic logic programs are as in the regular (disjunctive) ASP case [13]. In
particular we have the following:
1 In the ASP-core-2 input language,←,¬ and ∧ are represented as ‘:-’, ‘-’ and commas.

6 Pedro Cabalar , Agata Ciabattoni , and Leendert van der Torre

Proposition 2. Deciding whether a deontic logic program Π has a deontic
answer set is ΣP

2 -complete. If every head in Π is free from disjunction, deciding
the existence of a deontic answer set is NP-complete.

4 Extension to Equilibrium Logic

Introducing deontic atoms in logic programs provides a simple and practical
approach for formalizing deontic scenarios, but falls short if we need a proper
logical formalism. Note that, so far, O and F are not proper operators but
just a kind of prefix for atoms: in fact, all program operators in ASP are also
treated under a very restricted syntax, and their semantics relies on a syntactic
transformation (the program reduct). If we are interested in arbitrary nesting
of operators, defining new constructs or extensions to incorporate temporal or
epistemic reasoning, we need a logical formalisation that overcomes the syntax
limitations and the program reduct operation. An excellent starting point for our
purposes is the logical characterization of ASP based on Equilibrium Logic [39]
which has also been extended to deal with strong [36] or explicit negation [2].
As happens in ASP, when explicit negation is used, equilibrium models become
three-valued (an atom can be true p, false ¬p or none of the two). To introduce
O and F in this setting, we adopt a practical approach, so that, although they
will be applicable now on other operators, their expressive power is still limited
to a kind of three-valued semantics. The advantage of this approach is to reduce
arbitrary formulas to theories where deontic operators are only used in explicit
literals, something that can be easily translated into ASP logic programs. Yet,
when compared to a modal interpretation of O and F, the price to pay is a
loss in expressiveness when dealing with obligations on compound formulas: for
example, O(φ∨ψ) will simply be Oφ∨Oψ. This coincides with the ASP reading
of disjunction, and in fact to the natural language reading of disjunction in the
free choice permission scenario [30].

Equilibrium models are defined by a selection among models from the inter-
mediate logic called Here-and-There [28] (HT), or 3-valued Gödel logic. We now
incorporate deontic operators in the extension X5 of HT with explicit negation [2],
thus defining the logic of Deontic Here-and-There with Explicit Negation (DHTX
for short). A formula φ of DHTX follows the grammar:

φ ::= p ∈ At | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | ¬φ | Oφ | Fφ

We define the derived operators φ↔ ψ
def
= (φ→ ψ)∧(ψ → φ), not φ def

= (φ→ ⊥)
and the constant ⊤ as not ⊥. We assume that the conditional rule φ ← ψ in
logic programs is nothing but the reversed implication ψ → φ. We also define

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717

Deontic Equilibrium Logic with eXplicit negation 7

the following derived deontic operators:

Ov φ
def
= Oφ ∧ ¬φ Of φ

def
= Oφ ∧ φ

Onf φ
def
= Oφ ∧ not φ Onv φ

def
= Oφ ∧ not ¬φ

Ou φ
def
= Oφ ∧ not (φ ∨ ¬φ) Pφ

def
= ¬Fφ

Od φ
def
= (not P¬φ→ Oφ) Pdφ

def
= (not Fφ→ Pφ)

O(φ | ψ) def= (ψ ∨Onv ψ → Oφ) Fx φ
def
= Ox ¬φ

Pφ stands for the explicit permission for φ whereas Pdφ is its default version.
The superindexed variants of O stand for: d=default, f=fulfilled, v=violated,
nv=non-violated, nf=non-fulfilled and u=undetermined. We define the same
variants Fx in terms of Ox for all x ∈ {d, f ,v,nv,nf ,u} having in mind that
we can now replace Fφ by O¬φ. The conditional obligation O(φ | ψ) (“φ is
obligatory, given ψÂ´Â´) is explained in Section 5 (challenge C6).

A formula is said to be deontic if it contains deontic operators, and non-
deontic otherwise. A theory is a set of formulas. Finite theories (or subtheories)
are understood as the conjunction of their formulas. Notice that deontic logic
programs are theories.

Definition 2. A Deontic HT-interpretation is a pair ⟨H,T ⟩ of sets of explicit
literals s.t. T is a deontic interpretation and H ⊆ T . ⟨H,T ⟩ is total when H = T .

Intuitively, literals in H (“here”) can be considered founded or proved, literals
in T \ H are assumed but unfounded and literals not in T (“there”) are not
assumed and they directly do not hold. For instance, the pair H = {Op,Fp}
and T = {¬p,Op,Fp,¬Fq} is a deontic HT-interpretation where Op and Fp are
founded whereas ¬p and ¬Fq are assumed but unfounded. The interpretation just
considers the rest of literals as not assumed. Note that the potential inconsistency
between Op and Fp is only checked at the component T . The same effect is
obtained if (wD) is added as an axiom instead of requiring T to be a deontic
interpretation in Def. 2. In this case, the two literals can occur together because
¬p ∈ T , so we assume that Op is violated. On the other hand, ¬p is not justified
at H but we still allow Op and Fp in H, since ¬p is assumed at T .

We define the set of “deontic worlds" as {r, o, f} respectively standing for real,
obligation and forbidden. Given a world w ∈ {r, o, f}, its complementary world
w is defined as r def

= r, o def
= f and f def

= o.

8 Pedro Cabalar , Agata Ciabattoni , and Leendert van der Torre

Definition 3. M = ⟨H,T ⟩ satisfies (resp. falsifies) a formula φ at a deontic
world w ∈ {r, o, f}, written M,w |= φ (M,w=| φ), if the conditions below hold:

φ M,w |= φ when M,w=| φ when

⊤ (⊥) always (never) never (always)

α ∧ β M,w |= α and M,w |= β M,w=| α or M,w=| β
α ∨ β M,w |= α or M,w |= β M,w=| α and M,w=| β

α→ β
M ′, w ̸|= α or M ′, w |= β
for M ′∈{M, ⟨T, T ⟩}

⟨T, T ⟩, w |= α and M,w=| β

¬α M,w=| α M,w |= α

p
p ∈ H if w = r

Op ∈ H if w = o
¬Fp ∈ H if w = f

¬p ∈ H if w = r
¬Op ∈ H if w = o
Fp ∈ H if w = f

Oα M, o |= α M, o=| α
Fα M, f =| α M, f |= α

In the definition above, if we just take the syntactic fragment for ∧, ∨, ¬, ⊥, ⊤
and atoms (we can fix w = r), we obtain classical logic with strong negation [44].
If we further extend it with the evaluation of → (still fixing w = r) we get
Equilibrium Logic with explicit negation X5 [2]. So, the new features are the three
deontic worlds and their interplay with the operators O, F and ¬. As we can
see, the interpretation of an atom p ∈ At depends on each specific world. The
real world w = r works as expected whereas, in world w = o, satisfying (resp.
falsifying) an atom p actually corresponds to requiring that the literal Op (resp.
¬Op) holds in the interpretation. In the world w = f the roles of literals are
swapped, so satisfaction of an atom p corresponds to including the literal ¬Fp
whereas falsifying p corresponds to the literal Fp. The reason for this swapping
is that a prohibition Fα is a kind of negation (we will see later that it is actually
equivalent to O¬α). The operators that permit moving to a different deontic
world are ¬, O and F. To satisfy Oα we simply check the satisfaction of α after
“jumping" to world o, regardless of the world we started from, and the same
happens for the falsification of Oα. With Fα a similar effect is obtained for the
world f , but again, it additionally swaps satisfaction to falsification and vice
versa. In the case of explicit negation, satisfaction of ¬α becomes falsification of
α but, additionally, if we are not in the real world w ̸= r, we switch from w to w.
An example on how these three operators work: M, r |= O¬p becomes M, o |= ¬p
that is interpreted as M,f =| p and, finally, it amounts to Fp ∈ H.

An HT-interpretation ⟨H,T ⟩ is a model of a theory Γ , written ⟨H,T ⟩ |= Γ , if
⟨H,T ⟩, r |= φ for all φ ∈ Γ . A formula φ is a DHTX-tautology (or DHTX-valid),
|= φ in symbols, if any DHTX-interpretation is a model of φ. DHTX is the logic
induced by all DHTX-tautologies.

The properties below are fundamental in any extension of HT.

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717

Deontic Equilibrium Logic with eXplicit negation 9

Theorem 1 (Persistence). For any DHTX-interpretation ⟨H,T ⟩, any world
w ∈ {r, o, f} and any formula φ: (i) ⟨H,T ⟩, w |= φ implies ⟨T, T ⟩, w |= φ for
any world w, and (ii) ⟨H,T ⟩, w=| φ implies ⟨T, T ⟩, w=| φ for any world w. □

Proposition 3. For any ⟨H,T ⟩, world w and formula φ: (i) ⟨H,T ⟩, w |= not φ
iff ⟨T, T ⟩, w ̸|= φ; (ii) ⟨H,T ⟩, w =| not φ iff ⟨T, T ⟩, w |= φ. □

DHTX is an extension of X5 in the following sense:

Proposition 4. If φ is X5-valid then φ is DHTX-valid.

For instance, the following X5 tautologies are also DHTX-valid:

¬(φ→ ψ)↔ not not φ ∧ ¬ψ ¬not φ↔ not not φ (4)

As happens in X5 the validity of φ↔ ψ does not guarantee that we can always
substitute φ by ψ. To this aim, we introduce the following stronger relation
(taken from [2]). Two formulas φ and ψ are DHTX-equivalent, written φ ≡ ψ, if
for any DHTX-interpretation M = ⟨H,T ⟩ and any world w ∈ {r, o, f}, we have
both: (1) M,w |= φ iff M,w |= ψ; and (2) M,w=| φ iff M,w=| ψ.

Proposition 5. For any pair of formulas φ and ψ, if φ ≡ ψ then |= φ↔ ψ.

In general, the other direction does not hold. As a counterexample (already used
in [2]) take the DHTX-tautology p ∧ not p↔ ⊥ (which is also an X5-tautology).
It is not difficult to see, however, that p ∧ not p ̸≡ ⊥. In fact, we cannot replace
p ∧ not p inside ¬(p ∧ not p) to get ¬⊥. Indeed, the former amounts to a rule
¬p← not p while the latter to ⊤.

Yet, we can still use |= φ↔ ψ to perform substitutions in some contexts:

Theorem 2. |= φ↔ ψ iff φ and ψ have the same DHTX-models.

Corollary 1. Let Γ [φ] be a theory containing a subformula φ not in the scope of
¬, F or O and let |= φ↔ ψ. Then, Γ [φ] and Γ [ψ] have the same DHTX-models.

Definition 4. A total DHTX-interpretation ⟨T, T ⟩ is an equilibrium model of
a theory Γ if ⟨T, T ⟩ |= Γ and there is no H ⊂ T such that ⟨H,T ⟩ |= Γ .

Deontic Equilibrium logic is the non-monotonic logic induced by equilibrium
models. For deontic logic programs, answer sets and equilibrium models coincide:

Theorem 3. Let Π be a deontic logic program. A deontic interpretation T is a
deontic answer set of Π iff ⟨T, T ⟩ is an equilibrium model of Π. □

We show below that any deontic theory can be reduced to a deontic logic
program, and so, its equilibrium models can be eventually computed via regular
ASP. We start observing a group of DHTX-equivalences that also hold in X5:

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ ¬¬φ ≡ φ ¬⊥ ≡ ⊤ ¬⊤ ≡ ⊥ (5)

We can use (4)-(5) from the outermost occurrences of ¬ to push this operator
inside non-deontic connectives. As a result we get an Explicit-negation Normal

10 Pedro Cabalar , Agata Ciabattoni , and Leendert van der Torre

Form (XNF), where all outermost occurrences of ¬ are applied to atoms, to O or
to F. To unfold expressions inside O or F we can further apply the equivalences:

O(φ ∨ ψ) ≡ Oφ ∨Oψ F(φ ∨ ψ) ≡ Fφ ∧ Fψ (6)
O(φ ∧ ψ) ≡ Oφ ∧Oψ F(φ ∧ ψ) ≡ Fφ ∨ Fψ (7)

O⊥ ≡ ⊥; F⊥ ≡ ⊤ O⊤ ≡ ⊤; F⊤ ≡ ⊥ (8)
O(φ→ ψ) ≡ Oφ→ Oψ (9)

Onot φ ≡ not Oφ Fnot φ ≡ not not ¬Fφ (10)
O¬φ ≡ Fφ F¬φ ≡ Oφ (11)
OOφ ≡ Oφ FOφ ≡ ¬Oφ (12)
OFφ ≡ Fφ FFφ ≡ ¬Fφ (13)

By (11), we may choose either O or F as a primitive connective, and hence the
primitive DELX connectives can be reduced to five ∧,∨,→,¬,O, together with
the constant ⊥. Equivalences (6)-(13) do not cover the case when F is applied to
an implication: if so, we can only proceed from the outermost occurrences of this
operator (as happened with explicit negation) using the valid double implications:

F(φ→ ψ)↔ not not ¬Fφ ∧ Fψ ¬F(φ→ ψ)↔ ¬Fφ→ ¬Fψ (14)

Using these properties we can reach the syntactic form we call Deontic-Atom
Normal Form (DANF), in which all deontic operators are applied to atoms. Once
in DANF, we can then resort to X5 reduction to logic programs.

Theorem 4. Any deontic theory can be reduced to a deontic logic program having
the same DHTX models.

It is not hard to see that the reduction to DANF is polynomial whereas the
step from arbitrary combinations of ∧,∨,not ,→ into a logic program may be
exponential due to distributivity laws. Yet, [11] proposes an alternative polynomial
reduction that avoids the combinatorial blowup by introducing auxiliary atoms.

5 DELX at work on challenging normative problems

We discuss the nuances of defeasible deontic reasoning that we aimed to capture,
using variants of the cottage regulation (Ex. 1). We consider below the starting
program Π = (2) ∪ (3) and analyze the challenges from [7] we refer to as C1-C6.

C1 (Explicit versus Negative permission) We want to distinguish between
the existence of permission vs absence of prohibition. Suppose that a new neighbor
ignores the local regulations and has in mind the practical reasoning rule:

(iv) If it is permitted, I build a fence around my cottage
A cautious behavior is to wait for an explicit permission to build the fence.
A more adventurous behavior is to build it if there is no explicit prohibition
(negative or implicit permission): without more information, she concludes to

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717

Deontic Equilibrium Logic with eXplicit negation 11

build the fence, but retracts that conclusion once she becomes aware of norm (i).
Explicit and implicit permissions can be respectively captured by the rules:

f ← ¬Ff (15) f ← not Ff (16)

The program (16) alone permits to conclude f (the adventurous neighbor
builds the fence), but with Π ∪ (16) this is not possible anymore, as we have Ff .
On the other hand, the cautious neighbor cannot conclude f from Π ∪ (15) or
even from (15) alone, since it requires the permission ¬Ff . We could get it with
a cottage by the sea, but then (i) should be formalized as a default (see C4).

We may be sometimes interested in generalizing this distinction into a Closed
World Assumption for a given set Γ of formulas. For instance, a Closed Explicit
Permission Assumption (CEPA) stands for “anything not explicitly forbidden
is permitted" and can be simply formalized as Pdφ for every φ ∈ Γ . Similarly,
a Closed Negative Permission Assumption (CNPA) rather means “anything not
explicitly permitted is forbidden" and just corresponds to Fd φ, for all φ ∈ Γ .
C2 (Contrary-to-Duty (CTD) and Compliance) A CTD or secondary obli-
gation comes into force only when another (the primary) obligation is violated.
For instance, the two sentences (i) and (ii) from Ex. 1 are primary obligation and
CTD. A different, though related concept is that of compensatory obligation, as:

(v) If you put a fence when forbidden, you should pay a fine.
If we combine the prohibition (i) with the existence of a fence we want to derive
from (v) that fences are forbidden and that a fine must be paid. This is known
as monitoring, compliance, or conformance checking. Likewise, if obligations are
fulfilled, rewards may be given. Encoding compliance in DELX is straightforward:
we may just use the derived operators for violation Fv or fulfillment Ff . E.g.,
(v) is formalized as (Fv f → Opay) that amounts to the logic program rule:

Opay ← Ff ∧ f (17)
C3 (CTD and Dilemmas) A dilemma is a situation where we deal with the
simultaneous obligation and prohibition of a same fact. For instance having (i)
together with Ow leads to a dilemma. There is consensus in the literature that
such dilemmas should be inconsistent. This is, in fact, what happens with the
program Π ∪ {Ow} that has no answer set, since axiom (wD) does not accept
Of ∧Ff without information about f . However, when a dilemma follows from a
CTD, consistency should be restored. E.g., suppose we have the premises (i)-(iii)
plus (v) and, additionally, there exists a fence f . By (ii), we must have a white
fence, but this is in conflict with (i), that says we must have no fence at all.
This scenario is consistent in DELX: the program Π ∪ (17) ∪ {f} has a unique
answer set {f,Ff,Ow,Of,Opay} where Of ∧ Ff is now consistent because
Ff has been violated. Notice that some deontic approaches remove the CTD
dilemma by retracting the primary prohibition (i) to have a fence. This leads to
the so-called drowning problem [38]: we would no longer have a violation of Ff
so we cannot derive the payment of the fine Opay . Note that the combination of
compliance and dilemmas has become problematic for some deontic approaches
(most notably Dyadic Deontic Logic [27,37]), requiring ad hoc representations
like the introduction of so-called violation constants.

12 Pedro Cabalar , Agata Ciabattoni , and Leendert van der Torre

C4 (CTD and Defeasible Obligations) Some obligations should be read as
defaults in the presence of exceptions. Let us rephrase (iii) as the permission:

(vi) If the cottage is by the sea (s), there may be a fence.
This was the original wording for the Cottage scenario in [41], introduced to
illustrate the distinction between CTD reasoning ((i) and (ii)) and exceptions ((i)
and (vi)); the two types of reasoning should be treated differently. Indeed, if we
consider (i) and (ii) as instances of defeasible reasoning, we would let the primary
obligation (i) be defeated by the secondary obligation (ii), which is not desirable.
Premise (vi) leads to a new reading of the normative scenario: on the one hand,
being by the sea provides now an explicit permission to build the fence; on the
other hand, (i) is read now as “There must be no fence, unless a permission is
granted ” becoming a default prohibition. In our DELX formalization we may
simply replace the first and third formulas in (2) respectively by Fd f (default
prohibition) and Pf ← s (explicit permission) leading to:

Ff ← not ¬Ff Ow ← f ∧ Ff ¬Ff ← s (18)

If we have no information about the location, we consider the program (18) ∪ (3)
alone, and the only answer set is {Ff}, we cannot put a fence by default. If
we add the fact s we obtain {s,¬Ff}, that is, we have the permission to put
a fence, and Ff is no longer derived. If we further know there is a fence, the
program (18) ∪ (3) ∪ {s, f} produces the answer set {s, f,¬Ff} so there is no
CTD obligation of a white fence, because there is no violated prohibition.

C5 (Constitutive Norms) We now deal with the derivation of obligations in
presence of an “is a” or a “count as” relation. Though there exist various kinds
of constitutive norms of increasing complexity, in this paper we only consider
simple factual rules. In the example we assume that a white fence is a fence.
Does this also imply that the obligation for white fences implies the obligation
for fences? And does the prohibition for fences imply the prohibition for white
fences? In general yes, but as we see next, it is useful to allow for exceptions.

Our previous formalization was already considering a constitutive norm (3),
namely, since a white fence w is a fence f , we also want to derive Of from Ow.
In fact, contraposition for explicit negation could also be added:

¬w ← ¬f Fw ← Ff (19)

where the former means that not having a fence implies not having a white fence,
and the latter, that a prohibition to put a fence is also a prohibition to put a
white fence. The program Π ∪ (19) ∪ {f}, however, has no answer set. This is
because we derive Ow and Fw, whereas no evidence about the fence color is
given: once w or ¬w is added to the program, consistency is restored. A less rigid
formalization of these implicit derived obligations is to replace (3) by:

f ← w ¬w ← ¬f Of ← Onv w Fw ← Fnv f (20)

where the rules for obligations become now default rules. The condition Onv w
stands for Ow ∧ not ¬w, i.e., we derive the obligation of a fence if we have a

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717

Deontic Equilibrium Logic with eXplicit negation 13

non-violated obligation of a white fence. In the example, this is the case. Similarly,
the condition Fnv f stands for Ff ∧not f meaning that the prohibition of a white
fence is derived when we had a non-violated prohibition of a fence. In our example,
we do have the prohibition of a fence, but it has been violated, so the default
does not apply, and we do not obtain a prohibition to put a white fence. As a
result, the only equilibrium model of (2) ∪ (20) ∪ {f} is again {f,Ff,Ow,Of}.

C6 (Defeasible Deontic Detachment) This requirement is related to the
distinction between factual versus deontic detachment, that is, when a conditional
obligation should sometimes be triggered by facts and sometimes by other
obligations. This is typically illustrated by the notorious scenario in [12] adapted
below to our running example. Assume we add the norms:

(vii) If we put a fence, we must put a street mailbox (m).
(viii) If we do not put a fence, we must not put a street mailbox.

If we have information about the presence or absence of a fence, we will respectively
derive the obligation or prohibition to have a mailbox by factual detachment.
However, when no information is given, by default, we still want to derive
the prohibition of a mailbox from the prohibition to have a fence in (i). This
corresponds to a (defeasible) deontic detachment.

A direct reading of the premises (vii) and (viii) could be formalized as:

Om← f Fm← ¬f (21)

The program Π ∪ (21) ∪ {f ∨ ¬f} as the two answer sets {¬f,Ff,Fm} and
{f,Ff,Ow,Of,Om} so the obligation about the mailbox is derived from the
facts f or ¬f respectively (factual detachment). The problem with (21) arises in
presence of Π ∪ (21) without further evidence about f or ¬f . In that case, no
obligation is derived, whereas given Ff , the mailbox would be also forbidden
(deontic detachment). To strengthen our representation, we replace (21) by the
conditional obligations:

O(m | f) O(¬m | ¬f) (22)

The derived operator O(m | f) is an abbreviation of (Om← f ∨Onv f) and the
disjunction in the antecedent can be unfolded into the two rules (Om← f) and
(Om ← Onv f). Note that Onv f , in turn, stands for Of ∧ not ¬f . A similar
unfolding can be done for O(¬m | ¬f) to find out that (22) amounts to the two
rules (21) we had before plus the following account for deontic detachment:

Om← Of ∧ not ¬f Fm← Ff ∧ not f

As a result, for Π ∪ (22) ∪ {f ∨ ¬f} we get the same answer sets as before, but
when we just consider Π ∪ (22), the only answer set is {Ff,Fm} and we cannot
put a mailbox because we have a (non-violated) prohibition to put a fence.

14 Pedro Cabalar , Agata Ciabattoni , and Leendert van der Torre

6 Related and Future work

Related deontic extensions of ASP are Deontic Logic Programs (DLP) [22,23] and
Deontic Temporal ASP (DTASP) [21]. Both make use of the KD modality [45]
(in DTASP, also temporal operators) and define answer sets in terms of the
(syntactic) reduct operation on logic programs. DLP was later extended to Deontic
Equilibrium Logic (DEL) [3] that avoids the reduct but, as already discussed,
maintains a strict syntactic separation between logic program connectives and
deontic formulas. In contrast, DELX relies on logical semantics, applicable
to arbitrary combinations of operators and free from syntactic restrictions or
transformations. The modal logic KD allows DLP and DTASP to deal with
obligations on compound formulas, while DELX is specifically designed for
obligations on literals. One final important difference is that DELX makes an
homogeneous integration of explicit negation, a feature already existing in ASP
and commonly used in its applications. This permits to deal with factual situations
where no information, e.g., about fence nor ¬fence, is available. Representing
incomplete information about the real world in DLP or DTASP, requires instead
epistemic modalities or the use of ASP explicit negation, whose semantic treatment
is different from negation inside a modality.

A computationally oriented approach for deontic logic extended with features
from nonmonotonic reasoning is Defeasible Deontic Logic (DDL) [24] (extending
Defeasible Logic [35]) whose syntax is similar to logic programming without
the default negation. To express defeasibility, DDL relies on different types of
implications in rules (strict, defeasible and defeaters) additionally subscripted with
deontic modalities. This contrasts with the five primitive DELX connectives. DDL
also has a more complex semantics w.r.t. DELX, that employs neighbourhood
models [25] or argumentation [26], and uses a dedicated theorem prover [31].

As immediate future work, we plan to develop a deontic ASP tool that
accepts both deontic logic programs and DELX expressions as input, enabling the
integration of deontic knowledge into existing ASP domains or encodings. Also,
we will explore the extrapolation to DELX of other ASP features, such as the
temporal extension [1], the generation of explanations [10] or ASP-based policies
such as [20]. As a long term goal, we plan to obtain a translation of (temporal)
DELX into monitors and use them in combination with Reinforcement Learning
(cf. [4]) to design autonomous agents sensitive to legal, social and ethical norms.

Acknowledgments

P.Cabalar is supported by the Spanish Ministry of Science and Innovation
MCIN/AEI/10.13039/501100011033 (grant PID2020-116201GB-I00), by Xunta
de Galicia, Spain and the EU (grant GPC ED431B 2022/33), and by the project
LIANDA - BBVA Foundation Grants for Scientific Research Projects, Spain.
A. Ciabattoni is supported by the WWTF project TAIGER (ICT22-023). L.
van der Torre is supported by the FNR project Deontic Logic for Epistemic
Rights (OPEN O20/14776480) and the (Horizon 2020 funded) CHIST-ERA grant
CHIST-ERA19-XAI (G.A. INTER/CHIST/19/14589586)

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717

Deontic Equilibrium Logic with eXplicit negation 15

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Schaub, T., Schuhmann, A., Vidal,
C.: Linear-time temporal answer set programming. Theory and Practice of Logic
Programming 23(1), 2–56 (2023). https://doi.org/10.1017/S1471068421000557

2. Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Revisiting
explicit negation in answer set programming. Theory and Practice of Logic Program-
ming 19(5-6), 908–924 (2019). https://doi.org/10.1017/S1471068419000267

3. Alferes, J.J., Gonçalves, R., Leite, J.: Equivalence of defeasible normative systems.
J. Appl. Non Class. Logics 23(1-2), 25–48 (2013)

4. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proc. AAAI. pp. 2669–2678 (2018)

5. Benzmüller, C., Parent, X., van der Torre, L.W.N.: A deontic logic reasoning
infrastructure. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) Conference on
Computability in Europe, CiE 2018, LNCS, vol. 10936, pp. 60–69. Springer (2018).
https://doi.org/10.1007/978-3-319-94418-0_6

6. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

7. Broersen, J.M., van der Torre, L.W.N.: Ten problems of deontic logic and normative
reasoning in computer science. In: Bezhanishvili, N., Goranko, V. (eds.) Lectures
on Logic and Computation - ESSLLI 2010. LNCS, vol. 7388, pp. 55–88. Springer
(2011)

8. Cabalar, P., Fandinno, J., Fariñas del Cerro, L.: Autoepistemic answer set pro-
gramming. Artificial Intelligence 289, 103382 (2020). https://doi.org/10.1016/
j.artint.2020.103382

9. Cabalar, P., Fandinno, J., Fariñas del Cerro, L., Pearce, D.: Functional ASP
with intensional sets: Application to Gelfond-Zhang aggregates. Theory and Prac-
tice of Logic Programming 18(3-4), 390–405 (2018). https://doi.org/10.1017/
S1471068418000169

10. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set pro-
gramming. In: Ricca, F., Russo, A., Greco, S., Leone, N., Artikis, A., Friedrich,
G., Fodor, P., Kimmig, A., Lisi, F.A., Maratea, M., Mileo, A., Riguzzi, F. (eds.)
Proceedings of the 36th International Conference on Logic Programming (Technical
Communications). EPTCS, vol. 325, pp. 124–136 (2020). https://doi.org/10.
4204/EPTCS.325.19, https://doi.org/10.4204/EPTCS.325.19

11. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilibrium
logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) Progress in
Artificial Intelligence, 12th Portuguese Conference on Artificial Intelligence, EPIA
2005. LNCS, vol. 3808, pp. 4–17. Springer (2005)

12. Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 24(2),
33–36 (1963)

13. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and
application to nonmonotonic logics. In: Miller, D. (ed.) Logic Programming, Pro-
ceedings of the 1993 International Symposium. pp. 266–278. MIT Press (1993)

14. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Magazine 37(3), 53–68 (2016). https://doi.org/10.1609/aimag.v37i3.2678

15. Gabbay, D., Horty, J., Parent, X., van der Mayden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems, Volume 2. College Publications
(2021)

https://doi.org/10.1017/S1471068421000557
https://doi.org/10.1017/S1471068419000267
https://doi.org/10.1007/978-3-319-94418-0_6
https://doi.org/10.1016/j.artint.2020.103382
https://doi.org/10.1016/j.artint.2020.103382
https://doi.org/10.1017/S1471068418000169
https://doi.org/10.1017/S1471068418000169
https://doi.org/10.4204/EPTCS.325.19
https://doi.org/10.4204/EPTCS.325.19
https://doi.org/10.4204/EPTCS.325.19
https://doi.org/10.1609/aimag.v37i3.2678

16 Pedro Cabalar , Agata Ciabattoni , and Leendert van der Torre

16. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems. College Publications (2013)

17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A., Saeedloei, N.,
Vos, M.D. (eds.) Technical Communications of the 32nd International Conference
on Logic Programming, ICLP 2016 TCs. OASIcs, vol. 52, pp. 2:1–2:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/
OASIcs.ICLP.2016.2, https://doi.org/10.4230/OASIcs.ICLP.2016.2

18. Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming competi-
tion: Design and results. Theory and Practice of Logic Programming 20(2), 176–
204 (2020). https://doi.org/10.1017/S1471068419000061, https://doi.org/10.
1017/S1471068419000061

19. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991). https://doi.org/
10.1007/BF03037169

20. Gelfond, M., Lobo, J.: Authorization and obligation policies in dynamic systems.
In: de la Banda, M.G., Pontelli, E. (eds.) Logic Programming, 24th International
Conference, ICLP 2008. LNCS, vol. 5366, pp. 22–36. Springer (2008)

21. Giordano, L., Martelli, A., Dupré, D.T.: Temporal deontic action logic for the
verification of compliance to norms in ASP. In: Francesconi, E., Verheij, B. (eds.)
International Conference on Artificial Intelligence and Law, ICAIL 2013. pp. 53–62.
ACM (2013)

22. Gonçalves, R., Alferes, J.J.: An embedding of input-output logic in deontic logic pro-
grams. In: Ågotnes, T., Broersen, J.M., Elgesem, D. (eds.) DEON 2012, Proceedings.
LNCS, vol. 7393, pp. 61–75. Springer (2012)

23. Gonçalves, R., Alferes, J.J.: Deontic logic programs. In: Gini, M.L., Shehory, O.,
Ito, T., Jonker, C.M. (eds.) International conference on Autonomous Agents and
Multi-Agent Systems. pp. 1333–1334. IFAAMAS (2013)

24. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. Journal of Phil. Logic 42(6), 799–829 (2013).
https://doi.org/10.1007/s10992-013-9295-1

25. Governatori, G., Rotolo, A., Calardo, E.: Possible world semantics for defeasible
deontic logic. In: Ågotnes, T., Broersen, J.M., Elgesem, D. (eds.) DEON 2012,
Proceedings. LNCS, vol. 7393, pp. 46–60. Springer (2012)

26. Governatori, G., Rotolo, A., Riveret, R.: A deontic argumentation framework
based on deontic defeasible logic. In: Miller, T., Oren, N., Sakurai, Y., Noda, I.,
Savarimuthu, B.T.R., Son, T.C. (eds.) PRIMA 2018, Proceedings. LNCS, vol. 11224,
pp. 484–492. Springer (2018)

27. Hansson, B.: An analysis of some deontic logics. Nôus 3, 373–398 (1969)
28. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der

Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse pp.
42–56 (1930)

29. Horty, J.F.: Deontic logic as founded on nonmonotonic logic. Ann. Math. Artif.
Intell. 9(1-2), 69–91 (1993). https://doi.org/10.1007/BF01531262

30. Kamp, H.: Free choice permission. In: Proceedings of the Aristotelian Society,
vol. 74, pp. 57–74 (1973)

31. Lam, H.P., Governatori, G.: The making of SPINdle. In: Proc. of RuleML
2009: the International Symposium of Rule Interchange and Applications. LNCS,
vol. 5858, pp. 315–322. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04985-9

https://orcid.org/0000-0001-7440-0953
https://orcid.org/0000-0001-6947-8772
https://orcid.org/0000-0003-4330-3717
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.1017/S1471068419000061
https://doi.org/10.1017/S1471068419000061
https://doi.org/10.1017/S1471068419000061
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/BF01531262
https://doi.org/10.1007/978-3-642-04985-9
https://doi.org/10.1007/978-3-642-04985-9

Deontic Equilibrium Logic with eXplicit negation 17

32. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7(3), 499–562 (2006). https://doi.org/10.1145/1149114.
1149117

33. McCarthy, J.: Elaboration tolerance (1998), http://www-formal.stanford.edu/
jmc/elaboration.html

34. Nute, D. (ed.): Defeasible Deontic Logic. Kluwer, Dordrecht (1997)
35. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic

Programming. Oxford University Press (1993)
36. Odintsov, S.P., Pearce, D.: Routley semantics for answer sets. In: Baral, C., Greco,

G., Leone, N., Terracina, G. (eds.) Proc. of the 8th Intl. Conf. on Logic Program-
ming and Nonmonotonic Reasoning, LPNMR 2005, LNCS, vol. 3662, pp. 343–355.
Springer (2005)

37. Parent, X.: Preference-based semantics for hansson-type dyadic deontic logics: A
survey of results. In: Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van
der Torre, L. (eds.) Handbook of Deontic Logic and Normative Systems Volume 2.
pp. 7–70 (2021)

38. Parent, X., van der Torre, L.: I/O logics with a consistency check. In: Broersen, J.M.,
Condoravdi, C., Shyam, N., Pigozzi, G. (eds.) Deontic Logic and Normative Systems
- 14th International Conference, DEON 2018. pp. 285–299. College Publications
(2018)

39. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
NMELP. LNCS, vol. 1216, pp. 57–70. Springer (1997)

40. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer
set programs. In: de la Banda, M.G., Pontelli, E. (eds.) Logic Programming, 24th
International Conference, ICLP 2008, Proceedings. LNCS, vol. 5366, pp. 546–560.
Springer (2008). https://doi.org/10.1007/978-3-540-89982-2_46

41. Prakken, H., Sergot, M.: Dyadic deontic logic and contrary-to-duty obligations. In:
Nute, D. (ed.) Defeasible Deontic Logic. pp. 223–262. Dordrecht (1997). https:
//doi.org/10.1007/978-94-015-8851-5_10

42. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1–2), 81–132
(1980)

43. Sergot, M.: Normative positions. In: Gabbay, D., Horty, J., Parent, X., van der
Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and Normative
Systems Volume 1. pp. 353–406 (2013)

44. Vakarelov, D.: Notes on N-lattices and constructive logic with strong negation.
Studia logica 36(1-2), 109–125 (1977)

45. von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951)

https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/1149114.1149117
http://www-formal.stanford.edu/jmc/elaboration.html
http://www-formal.stanford.edu/jmc/elaboration.html
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1007/978-94-015-8851-5_10
https://doi.org/10.1007/978-94-015-8851-5_10

	Deontic Equilibrium Logic with eXplicit negation

