
Tools for the Investigation of Substructural

and Paraconsistent Logics�

Agata Ciabattoni and Lara Spendier

Vienna University of Technology, Austria

Abstract. We present an overview of the methods in [10,7,13] and their
implementation in the system TINC. This system introduces analytic
calculi for large classes of substructural and paraconsistent logics, which
it then uses to prove various results about the formalized logics.

1 Introduction

Logic is concerned with the study of reasoning and is the basis of applications
in various fields. Classical logic is not adequate for all of them; for instance, it is
ill-equipped to reason in presence of inconsistencies, inherently vague informa-
tion, or about resources. Driven in part by the rising demand of practitioners,
the last decades have witnessed an explosion of research on logics different from
classical logic, and the definition of many new logics. These are often described
in a declarative way within the framework due to Hilbert and Frege, which is
however extremely cumbersome when it comes to finding or analyzing proofs.
Moreover, a Hilbert-Frege system does not help answering useful questions about
the formalized logic and its corresponding algebraic structure, such as ‘Is the
logic decidable?’ or ‘Is the logic standard1 complete?’. Therefore providing an
algorithmic presentation of logics, in particular in the form of analytic calculi, is
essential both for understanding their mathematical properties and for develop-
ing potential applications. Analyticity is crucial as it means that proofs in these
calculi proceed by a step-wise decomposition of the formulas to be proved.

Since the introduction of Gentzen’s calculi LK and LJ for classical and in-
tuitionistic logic, the sequent calculus has been one of the most popular frame-
works for defining analytic calculi. Sequent calculi have been successfully used
for studying important properties of their formalized logics such as decidability,
complexity and interpolation; they have also proved useful for giving syntactic
proofs of algebraic properties for which, in particular cases, semantic methods
were not known, see e.g. [18]. These results all follow from the fundamental theo-
rem of cut-elimination, which implies the redundancy of the cut rule and makes
the calculi analytic. Despite the successful formalization of important logics,
many natural and useful logics do not fit comfortably into the sequent frame-
work. A huge range of extensions of the sequent calculus have been introduced

� Work supported by the FWF project START Y544-N23.
1 That is complete with respect to algebras based on truth values in [0, 1].

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 18–32, 2014.
c© Springer International Publishing Switzerland 2014

Tools for the Investigation of Substructural and Paraconsistent Logics 19

in the last few decades to define analytic calculi for logics apparently lacking a
(cut-free) sequent formalization.

In this paper we describe our tools (theory and implementation) for introduc-
ing analytic calculi for large classes of substructural and of paraconsistent logics
and using them to prove various results about these logics.

The idea to use computer supported tools for the investigation of logics has
already been around for more than two decades, see, e.g., [24]. In recent years,
several tools following this spirit of “logic engineering” have been introduced.
These aim at making theoretical results in logic more accessible to researchers
and practitioners who might not have deep knowledge about the logical theory,
e.g. [5,25,23]. An example of a “logic engineering” tool addressing the issue of
finding analytic calculi is the system MUltlog [5] which introduces such calculi
for the class of finite-valued logics.

Our system TINC (Tools for the Investigation of Non-Classical logics) is
created along the lines of MUltlog to cover a wider range of logics. It introduces
sequent-style calculi for large classes of propositional substructural, intermediate
and paraconsistent logics, which it then uses: (i) to check whether a substructural
logic is standard complete (and hence it is a fuzzy logic in the sense of [20,17])
and (ii) to extract non-deterministic finite-valued semantics for paraconsistent
and related logics and provide a uniform decidability proof for them. TINC
implements the theoretical results in [10,7,15,13], for which this paper provides
an overview and a non-technical description.

2 The System TINC

The system TINC, available at http://www.logic.at/tinc, takes as input a
logic specified via suitable Kripke models or Hilbert systems, returns (a paper
written in LATEX containing) an analytic calculus and states certain properties
of the logic. Currently TINC includes the following tools which handle large
classes of substructural, paraconsistent and intermediate logics:

AxiomCalc transforms any suitable axiomatic extension of Full Lambek cal-
culus with exchange and weakening FLew (i.e., intuitionistic linear logic with
weakening) into a cut-free sequent or hypersequent calculus. Moreover, the tool
exploits the generated calculus by checking a sufficient condition for the standard
completeness of the input logic.

Paralyzer (PARAconsistent logics anaLYZER) transforms large classes of
Hilbert axioms defining paraconsistent (and related) logics into sequent calculus
rules. Moreover, it extracts non-deterministic, finite-valued semantics from the
obtained calculi which show the decidability of the logics and reveal whether
the calculi are analytic. Paralyzer also provides an encoding of the introduced
calculi for the proof-assistant Isabelle [27] that can be used for semi-automated
proof search within the considered logics.

Framinator (FRAMe condItioNs Automatically TO Rules) transforms frame
conditions expressed as classical first-order formulas within the class Π2 of the
arithmetical hierarchy (i.e. formulas of the form ∀x∃yP , for P quantifier free)
into cut-free labelled sequent calculi.

http://www.logic.at/tinc

20 A. Ciabattoni and L. Spendier

AxiomCalc implements in Prolog2 the results in [10,7], Paralyzer in [13] and
Framinator in [15]. The whole system consists of 34 files and around 5400 lines
of code (including documentation). The general structure of the implementation
is depicted in Figure 1 and is instantiated with specific methods for every tool.

Fig. 1. Design of TINC

checkInput checks whether the syntactic form of the input formulas is cor-
rect. The core component computeRules implements the algorithm(s) to ex-
tract Gentzen-style rules out of the input formulas. The component exploit,
which is not present in Framinator, implements methods that utilize the intro-
duced calculus to reason about the logic and establish properties of it. print-
Output contains everything that is related to presenting the results to the user.

The general idea behind the algorithm(s) implemented in computeRules
is to start with a suitable analytic Gentzen-style calculus for a base logic and
transform the Hilbert axioms or semantic conditions characterizing the logic at
hand (i.e. the input formulas) into suitable rules.

Notation: henceforth we will use ϕ, ψ, α, β for (metavariables for) formulas.
Γ,Δ,Σ,Λ will denote (metavariables for) multisets of formulas whereas Π will
always stand for either a formula or the empty set.

Following [10] (and its generalization to display calculi in [16], and to labelled
deductive systems in [15]) the key ingredients of the algorithm(s) are:

(1) the invertibility of the logical rules of the base calculus, and
(2) the following lemma, which allows formulas to change the side of the sequent

by moving from the rule conclusion to the rule premise. For instance, its
formulation for commutative (multiple-conclusion) sequent calculi is:

Lemma 1. The sequent Γ, ϕ⇒ ψ,Δ is interderivable with the rules (Γ ′ and
Δ′ are new metavariables):

Γ ′ ⇒ ϕ,Δ′

Γ, Γ ′ ⇒ ψ,Δ′, Δ and

Γ ′, ψ ⇒ Δ′

Γ, Γ ′, ϕ⇒ Δ′, Δ

by using cut and the identity axiom α⇒ α.

The transformation algorithm for substructural and for paraconsistent logics will
be explained in the next sections which also contain examples of the correspond-
ing tools AxiomCalc and Paralyzer.

2 We used swi-prolog by Jan Wielemaker http://www.swi-prolog.org.

http://www.swi-prolog.org

Tools for the Investigation of Substructural and Paraconsistent Logics 21

3 Substructural Logics

Substructural logics are obtained by dropping some of the structural rules from
Gentzen’s sequent calculus LJ. They encompass among many others classical,
intuitionistic, intermediate, fuzzy, linear and relevant logics. Substructural logics
are usually defined as axiomatic extensions of full Lambek calculus FL, that is
non-commutative intuitionistic linear logic.

In this section we give an overview of the theoretical results in [10,12] and their
use in the tool AxiomCalc focusing on substructural logics extending FLew, that
is FL with the rules for exchange and weakening. Connectives in these logics are
∧ (additive conjunction), · (multiplicative conjunction/fusion), ∨ (disjunction),
→ (implication) and the constants 1 and 0.

As usual, ¬ϕ is used as an abbreviation for ϕ→ 0.
In the following we refer to [22,11,18] for all concepts of universal algebra and

to [26] for sequent calculi.

3.1 From Axioms to Structural Rules

The algorithm in [10], which is the core of the implementation of AxiomCalc,
transforms large classes of axioms into structural sequent and hypersequent rules.

Which axioms can we handle? The axioms that belong to the classes N2 and
P3 of the substructural hierarchy – a syntactic classification of axioms overFLew
(or, equivalently, of algebraic equations over integral and commutative residuated
lattices) introduced in [10] for FLe (and in [12] for the non-commutative version).
The hierarchy is based on the polarity of the connectives of the base sequent
calculus for FLew; recall that a connective has positive (resp. negative) polarity
if its left (resp. right) logical rule is invertible, i.e., the conclusion implies the
premises, see [1]. The classes Pn and Nn contain axioms/equations with leading
positive (1, ∨, ·) and negative connectives (0, →, ∧).
Definition 1 (Substructural Hierarchy [10]). For n ≥ 0, the sets Pn,Nn

of formulas are defined as follows (P0, N0 contain all atomic formulas):

Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧ Nn+1 | 0

Intuition: the different classes are defined by alternating connectives of different
polarity. This accounts for the difficulty to deal with the corresponding axioms
proof theoretically (and, as shown in [12], with the preservation under suitable
order theoretic completions of the corresponding equations).

Example 1. Examples of Hilbert axioms within the classes N2 and P3 are

22 A. Ciabattoni and L. Spendier

Class Axiom Name
N2 ϕ→ ϕ · ϕ contraction

¬(ϕ ∧ ¬ϕ) weak contraction
ϕ · ϕ→ ϕ · ϕ · ϕ 3-contraction

P2 ϕ ∨ ¬ϕ excluded middle
(ϕ→ ψ) ∨ (ψ → ϕ) prelinearity

P3 ¬ϕ ∨ ¬¬ϕ weak excluded middle
¬(ϕ · ψ) ∨ (ϕ ∧ ψ → ϕ · ψ) weak nilpotent minimum

The procedure in [10] transforms each axiom within the class N2 into struc-
tural sequent calculus rules that preserve cut-elimination when added to the
calculus FLew for FLew (see below). These rules are however not powerful
enough to capture axioms beyond the class N2. Indeed, as shown in [10,12] they
can only formalize properties that are already valid in intuitionistic logic ([10])
and among them only those whose corresponding algebraic equations are closed
under the order theoretic completion known as Dedekind MacNeille3, in the con-
text of integral residuated lattices ([12]). These results ensure, for instance, that
no structural sequent rule can capture the prelinearity axiom (see Example 1),
which is present in all formalizations of Fuzzy Logic [20]. A structural rule for
this axiom was introduced in [2] using the hypersequent calculus – a simple and
natural generalization of Gentzen sequent calculus.

As proved in [10], and recalled below, the hypersequent calculus can indeed
deal with all the axioms within the class P3.

Definition 2. A hypersequent is a multiset of sequents written as Γ1 ⇒ Δ1 |
· · · | Γn ⇒ Δn where each Γi ⇒ Δi, i = 1, . . . , n, is a sequent, called compo-
nent of the hypersequent. If all components of a hypersequent contain at most
one formula in the succedent, the hypersequent is called single-conclusion, and
multiple-conclusion otherwise.

The intuitive interpretation of the symbol “|” is disjunctive. This is reflected
by the rules (EC) and (EW) (see Table 1), which are present in all hyperse-
quent calculi. The base hypersequent calculus we use is HFLew (see Table 1). Its
sequent version FLew is simply obtained by dropping the rules (EC) and (EW)
and removing the side hypersequent G everywhere.

Definition 3. Let r and r′ be two (hyper)sequent calculus rules. We say that
r and r′ are equivalent in a (hyper)sequent calculus S if the set of sequents
provable from the same (hyper)sequent assumptions in S ∪ {r} and in S ∪ {r′}
coincide. The definition naturally extends to sets of rules.

The algorithm in [10]: Following the idea sketched in Section 2, to transform
axioms in the class P3 into equivalent structural (hyper)sequent rules we use

(1) the invertible logical rules of the base calculus HFLew, that are (1, l), (∨, l),
(·, l), (0, r), (→, r) and (∧, r), and

(2) the following version of Lemma 1:

3 It is a generalization of Dedekind completion to ordered algebras, see e.g. [18].

Tools for the Investigation of Substructural and Paraconsistent Logics 23

G | ϕ ⇒ ϕ
(init)

G | Γ ⇒ Π

G | 1, Γ ⇒ Π
(1, l)

G | ϕ,ψ, Γ ⇒ Π

G | ϕ · ψ, Γ ⇒ Π
(·, l) G | Γ ⇒ ϕ G | Δ ⇒ ψ

G | Γ,Δ ⇒ ϕ · ψ (·, r)

G |⇒ 1
(1, r)

G | Γ ⇒ Π

G | Γ, ϕ ⇒ Π
(w, l)

G | ϕ, Γ ⇒ ψ

G | Γ ⇒ ϕ → ψ
(→, r)

G | Γ ⇒ ϕ G | ψ,Δ ⇒ Π

G | Γ, ϕ → ψ,Δ ⇒ Π
(→, l)

G | Γ ⇒
G | Γ ⇒ 0

(0, r)
G

G | Γ ⇒ Π
(EW)

G | Γ ⇒ ϕi

G | Γ ⇒ ϕ1 ∨ ϕ2

(∨, r) G | Γ ⇒ ϕ G | ϕ,Δ ⇒ Π

G | Γ,Δ ⇒ Π
(cut)

G | Γ ⇒
G | Γ ⇒ ϕ

(w, r)
G | Γ ⇒ Π | Γ ⇒ Π

G | Γ ⇒ Π
(EC)

G | ϕ, Γ ⇒ Π G | ψ, Γ ⇒ Π

G | ϕ ∨ ψ, Γ ⇒ Π
(∨, l)

Table 1. Hypersequent calculus HFLew

Lemma 2. The hypersequent G | G′ | ϕ1, . . . , ϕn ⇒ ψ is equivalent to
(Γ1, . . . , Γn, Δ, Π are new metavariables)

G | Γ1 ⇒ ϕ1 · · · G | Γn ⇒ ϕn

G | G′ | Γ1, . . . , Γn ⇒ ψ and

G | ψ,Δ⇒ Π

G | G′ | ϕ1, . . . , ϕn, Δ⇒ Π

These two key ingredients are then integrated in the transformation procedure
as follows. Given any axiom ϕ ∈ N2 or ϕ ∈ P3:

(i) We start with the sequent ⇒ ϕ if ϕ ∈ N2 or with hypersequents G |⇒ ϕ1 |
· · · |⇒ ϕn if ϕ ∈ P3 (and hence its normal form is a conjunction of formulas of
the form ϕ1∨· · ·∨ϕn with ϕ1, . . . , ϕn ∈ N2). By utilizing the invertibility of the
logical rules, we decompose ϕ as much as possible and obtain an equivalent set
of (hyper)sequent rules R without premises. As an example, consider the axiom
¬(ϕ · ψ) ∨ (ϕ ∧ ψ → ϕ · ψ) ∈ P3, contained in the fuzzy logic WNM [17]:

G |⇒ ¬(ϕ · ψ) |⇒ ϕ ∧ ψ → ϕ · ψ −→(i) G | ϕ, ψ ⇒| ϕ ∧ ψ ⇒ ϕ · ψ
(ii) We apply Lemma 2 to each r ∈ R to change side of the sequents of those

formulas that cannot be decomposed by logical rules in their current position;
continuing our example we move ϕ ∧ ψ and ϕ · ψ and get (Σ,Λ,Π are new
metavariables)

−→(ii)

G | Λ⇒ ϕ ∧ ψ G | Σ,ϕ · ψ ⇒ Π

G | ϕ, ψ ⇒| Λ,Σ ⇒ Π

(iii) We utilize again the invertibility of the logical rules to decompose the
compound formulas in the premises of each rule, resulting in a set of structural
(hyper)sequent rules Rs. In our case Rs contains:

−→(iii)

G | Λ⇒ ϕ G | Λ⇒ ψ G | Σ,ϕ, ψ ⇒ Π

G | ϕ, ψ ⇒| Λ,Σ ⇒ Π

24 A. Ciabattoni and L. Spendier

(iv) The final step is a completion procedure that transforms each r′ ∈ Rs
into an equivalent (hyper)sequent rule that preserves cut-elimination and the
subformula property once it is added to the base calculus:

(iv.a) Using Lemma 2 we replace all the metavariables in the rule conclusions
standing for formulas by new metavariables for multisets of formulas. Back
to our example we get (Γ and Δ are new):

−→(iv.a)

G | Λ⇒ ϕ G | Λ⇒ ψ G | Σ,ϕ, ψ ⇒ Π G | Γ ⇒ ϕ G | Δ ⇒ ψ

G | Γ,Δ⇒| Λ,Σ ⇒ Π

(iv.b) We remove all the metavariables that appear in the premises and not
in the conclusion. When those variables appear on the left and on the
right hand side of different premises we close the obtained rules under all
possible applications of (cut). For the rule above we therefore get:

G | Γ,Λ,Σ ⇒ Π G | Σ,Λ, Λ⇒ Π G | Σ,Γ,Δ ⇒ Π G | Σ,Λ,Δ⇒ Π

G | Γ,Δ ⇒| Λ,Σ ⇒ Π
(wnm)

Theorem 1 ([10]). Given any axiom ϕ ∈ N2 (ϕ ∈ P3), the rules generated by
the above algorithm are equivalent to ϕ in FLew and they preserve cut elimina-
tion when added to the sequent calculus FLew (hypersequent calculus HFLew).

The above algorithm is implemented in the tool AxiomCalc that, given an
input axiom, first determines the class in the hierarchy to which the axiom
belongs and, if it is within P3, it automates the Steps (i)-(iv) above.

Example 2. Figure 2 below shows how to use AxiomCalc to define an analytic
calculus for FLew extended with the axiom ϕ · ϕ→ ϕ · ϕ · ϕ ∈ N2.

3.2 An Application: Standard Completeness

The introduced calculi can be further utilized to check whether the corresponding
logics are standard complete, i.e. complete for algebras with a real unit interval
lattice reduct and hence whether they are fuzzy logics in the sense of [20,17]. The
check is done using a sufficient condition for a hypersequent calculus to admit
the elimination of the so-called density rule (below left is its Hilbert version and
below right its hypersequent version in single-conclusion calculi):

(A→ p) ∨ (p→ B) ∨ C
(A→ B) ∨ C (density)

G | Γ ⇒ p | Σ, p⇒ Π

G | Γ,Σ ⇒ Π
(hdensity)

where p is a propositional variable not occurring in any instance of A, B, or C
(Γ,Σ and Π). Ignoring C, density can intuitively be read contrapositively as
saying (very roughly) “if A > B, then A > p and p > B for some p”; hence
the name “density”. The connection between the elimination of the density rule
and standard completeness is as follows: as shown in [22], adding density to
any axiomatic extension L of FLew with prelinearity (see Example 1) makes

Tools for the Investigation of Substructural and Paraconsistent Logics 25

Fig. 2. Above: Main screen of AxiomCalc with the input axiom; below: Output

the corresponding logic rational complete, i.e., complete with respect to a cor-
responding class of (a) linearly and (b) densely ordered algebras; (a) is due to
the prelinearity axiom, while (b) to the density rule. Hence by showing that the
addition of density does not enlarge the set of provable formulas (i.e. density is
an admissible or an eliminable rule) we get rational completeness for L. Stan-
dard completeness with respect to algebras with lattice reduct [0, 1] can then be
obtained in many cases by means of a Dedekind MacNeille-style completion.

A syntactic condition which guarantees the elimination of the density rule
from a suitable hypersequent calculus was introduced in [7]. Using this result a
uniform proof of standard completeness that applies to large classes of logics is
as follows: let L be the logic obtained by extending FLew with prelinearity and
with any (set of) axiom(s) within the class P3:

– We first introduce a hypersequent calculus HL for L;
– If HL satisfies the sufficient condition in [7] then L is rational complete,

and by [11] it is also standard complete being all algebraic equations cor-
responding to axioms within the class P3 closed under Dedekind-MacNeille
completion when applied to subdirectly irreducible algebras.

This general approach contrasts with the logic-specific techniques usually em-
ployed to prove standard completeness, e.g. [19,17]. Moreover, it allows the dis-
covery of new fuzzy logics in a completely automated way. The whole procedure
is implemented in AxiomCalc and is started by ticking the checkbox “Check for
Standard Completeness”, see Figure 2 above.

26 A. Ciabattoni and L. Spendier

4 Paraconsistent and Related Logics

Paraconsistent logics are logics suitable for reasoning in the presence of incon-
sistent information. The most important family of paraconsistent logics is that
of C-systems [8], where the notion of consistency is internalized in the object
language by a unary consistency operator ◦; ◦ϕ has the intuitive meaning of “ϕ
is consistent”. For many of these logics, finding an analytic calculus has been an
open problem.

In this section we give an overview of the theoretical results in [13] and their
use in Paralyzer. The logics we consider are paraconsistent (and other) logics
all obtained by extending the positive fragment of propositional classical logic
Cl+ (containing conjunction ∧, disjunction ∨ and implication ⊃) with finitely
many unary connectives from a set U ; these logics include the most well known
C-systems.

4.1 From Axioms to Logical Rules

The algorithm in [13], which is the core of the implementation of the tool Para-
lyzer, transforms axioms into logical sequent rules.

Which axioms can we handle? All axioms belonging to the set of formulas
Ax [13] that are (i) generated by the following grammar (where G is the initial
variable and U = {�1, . . . , �n}):

G = R1 | R2 | R3 R3 = (R3
 P1) | (P1
R3) | � � p1
R1 = (R1
 P1) | (P1
R1) | �p1 P1 = (P1
 P1) | �p1 | p1 | p2
R2 = (R2
 P2) | (P2
R2) | �(p1
 p2) P2 = (P2
 P2) | �p1 | p1 | �p2 | p2

 = ∧ | ∨ |⊃ �, � = �1 | · · · | �n
and (ii) satisfy the following technical condition: some subformula �p1 of a

formula generated by R1 (the subformulas � � p1 or �(p1
 p2) of a formula
generated by R3 or R2, resp.) must not be contained in
(a) a positively4 occurring (sub)formula of the form ψ1 ∧ ψ2, and
(b) a negatively occurring (sub)formula of the form ψ1 ∨ ψ2 or ψ1 ⊃ ψ2.

Example 3. Examples of formulas in Ax are (
 ∈ {∨,∧,⊃} and ¬, ◦ ∈ U):

(n1) p1 ∨ ¬p1 (n2) p1 ⊃ (¬p1 ⊃ p2)
(c) ¬¬p1 ⊃ p1 (e) p1 ⊃ ¬¬p1
(nl∧) ¬(p1 ∧ p2) ⊃ (¬p1 ∨ ¬p2) (nr∧) (¬p1 ∨ ¬p2) ⊃ ¬(p1 ∧ p2)
(nl

∨) ¬(p1 ∨ p2) ⊃ (¬p1 ∧ ¬p2) (nr
∨) (¬p1 ∧ ¬p2) ⊃ ¬(p1 ∨ p2)

(nl
⊃) ¬(p1 ⊃ p2) ⊃ (p1 ∧ ¬p2) (nr

⊃) (p1 ∧ ¬p2) ⊃ ¬(p1 ⊃ p2)
(b) p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) (r) ◦(p1
 p2) ⊃ (◦p1 ∨ ◦p2)
(k) ◦p1 ∨ (p1 ∧ ¬p1) (i) ¬◦p1 ⊃ (p1 ∧ ¬p1)
(o1

) ◦p1 ⊃ ◦(p1
 p2) (o2
) ◦p2 ⊃ ◦(p1
 p2)

(a) (◦p1 ∧ ◦p2) ⊃ ◦(p1
 p2) (a¬) ◦p1 ⊃ ◦¬p1
4 A subformula ϕ occurs negatively (positively, resp.) in ψ if there is an odd (even,
resp.) number of implications ⊃ in ψ having ϕ as a subformula of its antecedent.

Tools for the Investigation of Substructural and Paraconsistent Logics 27

Most C-systems (see, e.g., [8]) are obtained by employing suitable combinations
of the above axioms which express various properties of negation and of the
consistency operator ◦.

The algorithm in [13]: Following the idea sketched in Section 2, to transform
the axioms within Ax into equivalent logical sequent rules we use:

(1) The invertible logical rules of the base sequent calculus LK+ for Cl+ , which
is LK without negation (note that in LK+ all rules for connectives are
invertible), and

(2) Lemma 1.

The procedure to transform any ϕ ∈ Ax into equivalent rules (cf. Definition 3)
then works as follows:

(i) Starting from ⇒ ϕ, by utilizing the invertibility of the logical rules of
LK+as much as possible, ϕ is decomposed into its subformulas, thus obtaining
an equivalent set of rules R without premises.

As an example, let ϕ := p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2))) ∈ Ax:

⇒ p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) −→(i) p1 ⇒ ¬p1 ⊃ (◦p1 ⊃ p2)

−→(i) p1,¬p1 ⇒ ◦p1 ⊃ p2 −→(i) p1,¬p1, ◦p1 ⇒ p2

(ii) We remove all rules r ∈ R containing pi ⇒ pi for i ∈ {1, 2} in their
conclusion. Moreover, if a rule does not contain �(p1
 p2) with � ∈ U and

 ∈ {∨,∧,⊃}, we can safely remove all variables p2. In our example it gives:

−→(ii) p1,¬p1, ◦p1 ⇒

(iii) By using Lemma 1 all remaining formulas but one are moved to the
premises of each rule, changing the side of the sequent. The formula that remains
in the conclusion will be the one introduced by the rule and will be either of the
form �p1 (when ϕ was generated by R1), � � p1 or �(p1
 p2), resp. (when ϕ was
generated by R3 or R2, resp.) for any �, � ∈ U and
 ∈ {∧,∨,⊃}.

Continuing our example (using weakening and contraction of LK+), we obtain

−→(iii)

Γ ⇒ Δ, p1 Γ ⇒ Δ,¬p1
◦p1, Γ ⇒ Δ or −→(iii)

Γ ⇒ Δ, p1 Γ ⇒ Δ, ◦p1
¬p1, Γ ⇒ Δ

Theorem 2 ([13]). Any axiom ϕ ∈ Ax can be transformed into sequent rules
equivalent in LK+ having the following form (�, �, ∗ ∈ U and
 ∈ {∧,∨,⊃}):

unary-one rules binary rules unary-two rules

S1

Γ, �ϕ⇒ Δ

S2

Γ, �(ϕ1
 ϕ2) ⇒ Δ

S1

Γ, � � ϕ⇒ Δ

S1

Γ ⇒ Δ, �ϕ

S2

Γ ⇒ Δ, �(ϕ1
 ϕ2)

S1

Γ ⇒ Δ, � � ϕ

28 A. Ciabattoni and L. Spendier

where S1 may contain premises of the form Γ, ϕ ⇒ Δ; Γ, ∗ϕ ⇒ Δ; Γ ⇒ Δ,ϕ;
and Γ ⇒ Δ, ∗ϕ, while S2 of the form Γ, ϕi ⇒ Δ; Γ, ∗ϕi ⇒ Δ; Γ ⇒ Δ,ϕi, and
Γ ⇒ Δ, ∗ϕi where i ∈ {1, 2}.

4.2 An Application: Non-deterministic Semantics

The introduced calculi, obtained by extending LK+ with the special rules de-
scribed in Theorem 2, are used to extract new semantics for the corresponding
logics using partial non-deterministic matrices (PNmatrices). These are a natural
generalization of the standard multi-valued matrices, which allow the truth-value
assigned to a complex formula to be chosen non-deterministically out of a given
(possibly5 empty) set of options.

Our semantics guarantee the decidability of the considered logics (Corollary 1)
and are used to check whether the defined calculi satisfy a generalized notion
of the subformula property (Theorem 4). Regarding the latter, note that the
addition of the new logical sequent rules to LK+ does not necessarily result in a
cut-free system (or in a system satisfying some form of subformula property). In
fact, checking whether this is the case requires a “global view” of the resulting
calculus, which takes into account the way in which all the rules of the calculus
mentioning the same connectives interact. This view is provided by our semantics
and, as shown in [6], it amounts to checking only whether the resulting PNmatrix
contains an empty set in the truth tables of the connectives.

Definition 4 ([6]). A partial non-deterministic matrix (PNmatrix) M for a
propositional language L consists of:
(1) A set VM of truth values.
(2) A subset DM ⊆ VM of designated truth values.
(3) A truth table
M : VnM → P (VM) for every n-ary connective
 of L.

From sequent calculi to PNmatrices: Let G be sequent calculus obtained by
adding to LK+ any set R of unary-one, binary and unary-two rules with set U of
unary connectives. The truth values VM of the PNmatrix for G are tuples over
{0, 1} of size “# of unary connectives in U”+1; the tuples store the information
about the value of a formula ϕ and also of �ϕ for each � ∈ U . The matrix is then
constructed using the rules in R, which play different roles according to their
type. More precisely,

– unary-one rules reduce the set VM of truth values,

– unary-two rules determine the truth tables of the unary connectives, and

– binary rules determine the truth tables of the binary connectives.

We show below how to construct a PNmatrix out of a concrete sequent calculus
(see [6] for the general procedure and all technical details).

5 The possibility of having empty spots in the matrices make PNmatrices a general-
ization of non-deterministic matrices Nmatrices [4].

Tools for the Investigation of Substructural and Paraconsistent Logics 29

Let U = {�}, and consider the sequent calculus LK+ extended with the two
rules (equivalent to the axioms p1 ⊃ (�p1 ⊃ p2) and � � p1 ⊃ p1, respectively):

Γ ⇒ Δ,ϕ

Γ, �ϕ⇒ Δ
(ruo) and

Γ, ϕ⇒ Δ

Γ, � � ϕ⇒ Δ
(rut)

We first construct the set of truth values VM, starting with the set of all
possible truth values of size 2 (i.e. |{�}|+ 1):

{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}
Note that a tuple 〈x, y〉 stands for 〈ϕ : x, �ϕ : y〉, i.e., it says that x (resp. y)

is the value of ϕ (resp. of �ϕ).
As usual, we interpret formulas occurring on the right (left) hand side of a

sequent as taking the value 1 (0). Hence the rule (ruo) says that all tuples in
which ϕ takes the value 1 (in the rule premise ϕ occurs on the right hand side)
must also have that �ϕ takes the value 0. As 〈1, 1〉 does not satisfy this condition,
the set of truth values is reduced to

VM = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}

The set of designated truth values DM contains all elements of VM where the
first element is 1; in our case DM = {〈1, 0〉}.

The truth table of the unary connective � is determined in two steps:
First, we set up the basic truth table for � where we assign to every tuple

u ∈ VM all tuples where ϕ coincides with �ϕ of u (see left table below), e.g.
u = 〈0, 0〉 has 〈0, 0〉, 〈0, 1〉 as possible values.

Then, we have to consider the rule (rut) which says that for every tuple u
in which ϕ takes the value 0 (in the rule premise, ϕ occurs on the left side) we
delete the assigned tuples not having 0 for � � ϕ. E.g., for u = 〈0, 0〉 we delete
the tuple 〈0, 1〉 as �ϕ takes 1 (we are in the truth table for the unary connective
�, and hence �ϕ corresponds to � � ϕ).

�

〈0, 0〉 {〈0, 0〉, 〈0, 1〉}
〈0, 1〉 {〈1, 0〉}
〈1, 0〉 {〈0, 0〉, 〈0, 1〉}

−→(rut)

�

〈0, 0〉 {〈0, 0〉}
〈0, 1〉 {〈1, 0〉}
〈1, 0〉 {〈0, 0〉, 〈0, 1〉}

Note that the PNmatrix for a calculus G can be automatically computed by
the tool Paralyzer (see Example 4).

Theorem 3 ([13]). Let G be the sequent calculus for the logic defined by ex-
tending Cl+ with any ϕ ∈ Ax, and M its associated PNmatrix, both obtained
by the procedures sketched above. A sequent is provable in G iff it is valid6 in
M.

6 That is it takes a designated truth value under all interpretations in M.

30 A. Ciabattoni and L. Spendier

As each logic characterized by a finite PNmatrix is decidable [6] we immedi-
ately have:

Corollary 1. All logics extending Cl+ with axioms in Ax are decidable.

The PNmatrix M is also used to check the analyticity of the corresponding
calculus G:

Theorem 4 ([13]). M does not contain empty sets in its truth tables iff when-
ever a sequent s is provable in G, s can be proved by using only its subformulas
and their extensions with unary connectives from U .
Example 4. Consider the axioms p1 ∨ ¬p1 and ◦p1 ⊃ ◦¬p1, which are given as
input (in a slightly adapted syntax) for Paralyzer, see Figure 3.

Fig. 3. Main screen of Paralyzer with the input axioms. Note that the user can choose
the base calculus between LK+(default option) and BK [3].

The computed rules and the associated PNmatrix are in Figure 4.

5 Future Research

The tools described in this paper provide automated support for the introduction
of analytic calculi and the investigation of interesting properties (standard com-
pleteness, non-deterministic semantics and decidability) for many substructural
and for many paraconsistent and related logics.

Many practical and theoretical issues are still to be addressed; among them
extending our results to new logics including first-order logics. In the substruc-
tural case the main challenge is to find the right formalism (and method) to
capture axioms beyond the level P3 of the substructural hierarchy.

Tools for the Investigation of Substructural and Paraconsistent Logics 31

Fig. 4. Left: output containing the equivalent sequent rules and VM of the PNmatrix.
Right: truth tables for the unary connectives.

For paraconsistent and related logics the introduction of analytic calculi could
be easily adapted to capture e.g. paraconsistent logics extending intuitionistic
logic, substructural paraconsistent logics or first-order logics; however the con-
struction of the corresponding PNmatrices would require a deeper investigation.
For the time being there is indeed no theory of PNmatrices for first-order logics,
intuitionistic logics or substructural logics (that in fact lack even a theory of
Nmatrices [4]). A step forward in this direction has been done in the recent work
[14] that generalizes the results described in Section 4 to axioms in Ax with a
possible nesting of unary connectives of any fixed depth. On a more practical
level, the encoding into the proof-assistant Isabelle [27] of the calculi computed
by Paralyzer allows us to find proofs of theorems in the considered logics in a
semi-automated way. The definition of automated deduction procedures is cur-
rently under investigation; following [21], a possible approach is to search for
suitable encodings of our calculi into SAT.

Finally, we plan to extend the system TINC with new tools that cover further
classes of interesting logics, e.g. modal logics defined by Hilbert axioms.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation 2(3), 297–347 (1992)

2. Avron, A.: Hypersequents, logical consequence and intermediate logics for concur-
rency. Annals of Mathematics and Artificial Intelligence 4, 225–248 (1991)

3. Avron, A., Konikowska, B., Zamansky, A.: Cut-free sequent calculi for C-systems
with generalized finite-valued semantics. Journal of Logic and Computation 21(3),
517–540 (2013)

4. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. Journal of Logic
and Computation 15(3), 241–261 (2005)

5. Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: MUltlog 1.0: Towards an expert
system for many-valued logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE
1996. LNCS, vol. 1104, pp. 226–230. Springer, Heidelberg (1996)

6. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled
calculi. Journal of Automated Reasoning 51(4), 401–430 (2013)

32 A. Ciabattoni and L. Spendier

7. Baldi, P., Ciabattoni, A., Spendier, L.: Standard completeness for extensions of
MTL: An automated approach. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012.
LNCS, vol. 7456, pp. 154–167. Springer, Heidelberg (2012)

8. Carnielli, W.A., Marcos, J.: A taxonomy of C-systems. In: Carnielli, W.A.,
Coniglio, M.E., Ottaviano, I.D. (eds.) Paraconsistency: The Logical Way to the
Inconsistent, pp. 1–94 (2002)

9. Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)
10. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical

logics. In: Proceedings of LICS 2008, pp. 229–240 (2008)
11. Ciabattoni, A., Galatos, N., Terui, K.: MacNeille Completions of FL-algebras. Al-

gebra Universalis 66(4), 405–420 (2011)
12. Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural

logics: cut-elimination and completions. Annals of Pure and Applied Logic 163(3),
266–290 (2012)

13. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Automated support for the
investigation of paraconsistent and other logics. In: Artemov, S., Nerode, A. (eds.)
LFCS 2013. LNCS, vol. 7734, pp. 119–133. Springer, Heidelberg (2013)

14. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Taming paraconsistent (and
other) logics: An algorithmic approach (submitted 2014)

15. Ciabattoni, A., Maffezioli, P., Spendier, L.: Hypersequent and labelled calculi for
intermediate logics. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX
2013. LNCS, vol. 8123, pp. 81–96. Springer, Heidelberg (2013)

16. Ciabattoni, A., Ramanayake, R.: Structural extensions of display calculi: A general
recipe. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS,
vol. 8071, pp. 81–95. Springer, Heidelberg (2013)

17. Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic,
vol. 1. Studies in Logic, Mathematical Logic and Foundations, vol. 37. College
Publications (2011)

18. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An algebraic
glimpse at substructural logics. Studies in Logics and the Foundations of Mathe-
matics. Elsevier (2007)

19. Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s
MTL logic. Studia Logica 70(2), 183–192 (2002)

20. Hájek, P.: Metamathematics of Fuzzy Logic. Springer (1998)
21. Lahav, O., Zohar, Y.: SAT-based decision procedure for analytic pure sequent cal-

culi. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI),
vol. 8562, pp. 76–90. Springer, Heidelberg (2014)

22. Metcalfe, G., Montagna, F.: Substructural fuzzy logics. Journal of Symbolic
Logic 7(3), 834–864 (2007)

23. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and rea-
soning about proof systems. Journal of Logic and Computation (accepted)

24. Ohlbach, H.J.: Computer support for the development and investigation of logics.
Logic Journal of the IGPL 4(1), 109–127 (1996)

25. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator
MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS,
vol. 7519, pp. 492–495. Springer, Heidelberg (2012)

26. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press (2000)

27. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008)

	Tools for the Investigation of Substructural and Paraconsistent Logics
	Introduction
	The System TINC
	Substructural Logics
	From Axioms to Structural Rules
	An Application: Standard Completeness

	Paraconsistent and Related Logics
	From Axioms to Logical Rules
	An Application: Non-deterministic Semantics

	Future Research

