
To appear in EPTCS.

Deontic Paradoxes in ASP with Weak Constraints*

Christian Hatschka Agata Ciabattoni Thomas Eiter
Institute of Logic and Computation, TU Wien, Vienna, Austria

firstname.lastname@tuwien.ac.at

The rise of powerful AI technology for a range of applications that are sensitive to legal, social, and
ethical norms demands decision-making support in presence of norms and regulations. Normative
reasoning is the realm of deontic logics, that are challenged by well-known benchmark problems
(deontic paradoxes), and lack efficient computational tools. In this paper, we use Answer Set
Programming (ASP) for addressing these shortcomings and showcase how to encode and resolve
several well-known deontic paradoxes utilizing weak constraints. By abstracting and generalizing
this encoding, we present a methodology for translating normative systems in ASP with weak
constraints. This methodology is applied to "ethical" versions of Pac-man, where we obtain a
comparable performance with related works, but ethically preferable results.

1 Introduction

Norms, which involve concepts such as obligation and permission, are an integral part of human society.
They are enormously important in a variety of fields – from law and ethics to artificial intelligence (AI).
In particular, imposing norms – be they ethical, legal or social – on AI systems is crucial, as these systems
have become ubiquitous in our daily routines.

A main difference between norms and other constraints lies in the fact that norms typically allow for the
possibility of violation. Reasoning with and about norms (normative reasoning) requires deontic logic,
the branch of logic that deal with obligation and related concepts. Normative reasoning comes with a
variety of idiosyncratic challenges, which are often exemplified by benchmark examples (so called deontic
paradoxes). A crucial challenge is reasoning about sub-ideal situations, such as contrary-to-duty (CTD)
obligations, which are obligations only triggered by a violation. Other challenges are associated, e.g.,
with defeasibility issues (norms having different priorities, exceptions, etc.).

The first deontic system introduced – Standard Deontic Logic [27] – was failing most of the benchmark
examples, (un)deriving formulas which are counterintuitive in a common-sense reading. This has moti-
vated the introduction of a plethora of deontic logics, see, e.g. [10]. These logics have been investigated
mainly in connection with philosophy and legal reasoning, and with the exception of Defeasible Deontic
Logic DDL [14, 15], they lack defeasibility and efficient provers. Defeasibility and efficient reasoning
methods are instead offered by Answer Set Programming (ASP), which is one of the most successful
paradigms of knowledge representation and reasoning for declarative problem solving [7]. Indeed, in a
long and systematic effort of the knowledge representation community, efficient solvers for fast evaluation
of ASP programs have been developed, see, e.g., [18]. Defeasibility is also inherent in ASP, due to its
default-negation and also weak constraints. This paper introduces a method for using weak constraints for
encoding norms in ASP. We first translate desired basic properties of deontic operators in a common core
that will be used in all further encodings. These properties are established by analyzing multiple well-
known deontic paradoxes (e.g., Ross Paradox, the Fence Scenario,. . .). By abstracting and generalising

*Work partially supported by the WWTF project TAIGER (ICT22-026).

2 Deontic Paradoxes in ASP

the encodings of the specific paradoxes, we provide a methodology for encoding normative systems in
ASP with weak constraints. The methodology is put to work on a case study from [23, 22] that involves a
reinforcement learning agent playing a variant of the Pac-man video game with additional “ethical” rules.
Our encoding is used as a “shield" to filter out the non compliant actions of Pac-man and the outcome is
compared with [22], that uses DDL. For space reason, we must omit details, for which we refer to [16].

2 Preliminaries

Answer Set Programming. We consider extended logic programs with disjunction [11, 20], which are
finite sets of rules r (henceforth referred to as programs)

H1 ∨ . . .∨Hl :−A1, . . .An, not B1, . . . , not Bm. l,m,n ≥ 0, (1)

where all Hi, A j, and Bk are literals in a first-order language. Here not denotes weak (default) negation
and ¬ (also written −) strong negation. Informally, r can be read as: “If all Ai are true and for no B j there
is evidence that it is true, at least one of H1, . . . ,Hl must be true”.

The answer sets of a ground (variable-free) program Π are given in terms of consistent sets S of
ground literals as follows. Let S |= r denote that S |= B(r) implies S |= H(r), where S |= B(r) denotes
that {A1, . . . ,An} ⊆ S and {B1, . . . ,Bm}∩S = /0, and S |= H(r) denotes that {H1 . . . ,Hl}∩S ̸= /0. S is an
answer set of Π if S satisfies all rules r in Π(S) = {r ∈ Π | S |= B(r)}, and no S′ ⊂ S satisfies Π(S). The
answer sets of a general program Π are those of its grounding grd(Π) that consists of all ground instances
of its rules. For modeling defeasibility of obligations, we use weak constraints of the form

:∼A1, . . . ,An. [w : l]

(as in the system DLV[20]) where A1, . . . ,An are literals (that may be weakly negated) and w, l ≥ 0 are the
weight and the (integer) level of the weak constraint, respectively. Informally, weak constraints single out
optimal answer sets that have minimal total weights of violated weak constraints with higher levels being
more important; see [20] for formal definitions and more background.

SDL. Standard Deontic Logic [27], is the best known system of deontic logic.
SDL formulas are constructed by the following grammar (A is the set of atomic propositions):

ϕ := p ∈ A | ¬ϕ | (ϕ) | ϕ ∨ϕ | ϕ ∧ϕ | ϕ → ϕ | Oϕ | Pϕ | Fϕ

SDL is a monadic deontic logic, as the operators O (obligation), P (permission) and F (prohibition) apply
to single formulas; they are read as “it is obligatory that ϕ”, “it is permissible that ϕ”, and “it is forbidden
that ϕ”, resp., and inter-definable, e.g., Pϕ := ¬O(¬ϕ), and Fϕ := O¬ϕ .

The semantics of SDL – also known as the modal logic KD – is based on possible worlds, where the
accessibility relation is serial. A Hilbert system for SDL is obtained by adding the following axiom-
schemata and rules to any axiomatization of classical propositional logic:

If ϕ is a theorem, Oϕ is a theorem (RND)

O(ϕ → ψ)→ (Oϕ → Oψ) (KD) Oϕ →¬O¬ϕ (DD)

In the following we will also use the derived axiom and rule:

If ϕ → ψ is a theorem, Oϕ → Oψ is a theorem (RMD) ¬O⊥ (OD)

For more details about SDL and other deontic logics, see, e.g., [10]

C.Hatschka, A.Ciabattoni & T.Eiter 3

3 Deontic Paradoxes

As the foundation for our work, we examine several deontic paradoxes. These consist of (un)derivable
formulas which are counter-intuitive when viewed from a common-sense perspective. While referred to
in the literature as paradoxes, many of them are not paradoxes per se, but rather puzzles or dilemmas.
Deontic paradoxes play an important role in deontic logic and normative reasoning; they serve as sanity
checks for existing systems, and as driving force for defining new systems. In particular, they exemplify
that SDL fails to capture the nuances of normative reasoning expected in certain scenarios. There are
many such paradoxes. We categorise them according to the reason for their failure, see e.g. [17, 10], and
analyze one example for each class:

1. Paradoxes centering around RMD: Ross’s Paradox, Good Samaritan Paradox, Åqvist’s Paradox of
Epistemic Obligation

2. Puzzles centering around DD and OD: Sartre’s Dilemma, Plato’s Dilemma

3. Puzzles centering around deontic conditionals: Broome’s Counterexample, Chisholm’s Contrary-
to-Duty Paradox, Forrester’s Paradox, Considerate Assassin Paradox, Asparagus Paradox, Fence
Paradox, Alternative Service Paradox

Deontic conditionals refer to obligations that arise situationally; written as O(A/B) (to be read as “A is
obligatory if B”) they have been introduced to cope with contrary-to-duty obligations, i.e., obligations
which come into force when another obligation is violated.

Paradoxes centering around RMD show, in general, that SDL is too strong as it derives unwanted
consequences. An example is Ross’s Paradox, which consists of the following two sentences:

It is obligatory that the letter is mailed. (R1)

It is obligatory that the letter is mailed or burned. (R2)

Let O(m) and O(m∨ b) formalize (R1) and (R2), respectively. As m → (m∨ b) is a theorem in SDL,
O(m∨ b) follows from O(m) by RMD and modus ponens. But it seems counterintuitive to derive an
obligation that is satisfied by burning the letter, when failing to mail the letter.

Puzzles centering around DD and OD involve conflicting obligations that cannot be obeyed. An example
is Plato’s Dilemma:

It is obligatory that I meet my friend for dinner. (P1)

It is obligatory that I rush my child to the hospital. (P2)

Clearly, it is not possible to satisfy both obligations at the same time. Using common sense reasoning,
P2 should override P1, but in SDL the presence of two contradictory obligations would make everything
obligatory (deontic explosion).

Puzzles centering around deontic conditionals have as a prominent example the Fence Scenario [24],
which combines two different weaknesses of SDL regarding CTD obligations and exceptions:

There must be no fence. (F1)

If there is a fence then it must be a white fence. (F2)

If the cottage is by the sea, there may be a fence. (F3)

4 Deontic Paradoxes in ASP

Figure 1: The common core of our encodings

O(X)∨−O(X) :−act(X). (1) :−F(X),Do(X). (7)

F(X)∨−F(X) :−act(X). (2) Happens(X) :−Do(X). (8)

:−O(X),−Dia(X). (3) :−Do(X),−Dia(X). (9)

−Dia(X) :−−Do(X),act(X). (4) :∼O(X).[1 : 1] (10)

:−O(X),F(X). (5) :∼F(X).[1 : 1] (11)

Do(X)∨−Do(X) :−act(X). (6)

Here (F2) serves as a CTD obligation that is active when (F1) is violated, while (F3) serves as an exception
to (F1). Note that under this interpretation, if the cottage is by the sea the fence need not be white. The
contrary-to-duty obligation (F2) cannot be formalised in SDL: having a white fence implies having a fence,
and by (RND) the obligation to have a fence; this contradicts (F1). Moreover, as SDL lacks expressing
defeasibility, (F3) cannot be properly formalized.

4 Encoding the Paradoxes

We now proceed to encode the paradoxes from above All encodings share the same common core, shown
in Figure 1, that encodes properties of SDL, using the following predicates:

• O(X) resp. F(X) denotes that X is obligatory resp. forbidden;

• act(X) denotes that X is eligible for reasoning about whether X is obligatory or not. While an
action by default, in some cases X may not materialize but viewed as such. An example from above
would be owning a white fence, as we reason about whether it is obligatory.

• Do(X) denotes that the agent has chosen to take the action X , and −Do(X) denotes that the agent
will definitely not take the action X .

• Dia(X) is an auxiliary predicate to denote that an action X is an option resp. possible (in the sense
on modal logic). Thus, −Dia(X) can either mean that the agent cannot take the action or that the
agent has chosen not to take the action.

• Happens(X) is an auxiliary predicate that denotes an event X happening. It is sometimes used in
encodings to denote events happening which are usually outside the agents control.

Intuitively, the common core guesses whether something is obligatory (1), forbidden (2) and whether the
agent takes the action (6). The remaining rules then encode connections between predicates and exclude
answer sets that we deem inconsistent, e.g., something being obligatory and forbidden or something being
obligatory and that action not taken. The weak constraints (10) and (11) are used to eliminate answer sets
that derive obligations/prohibitions with no need.

We note that the common core is not a faithful encoding of full SDL and its axioms: while theoretically
possible, this would be undesired as SDL axioms lead to multiple paradoxes. Instead, the common core
captures some of the SDL axioms, while satisfactory handling the deontic paradoxes. For instance
Proposition 1. The SDL axiom DD holds in the common core.

Proof. DD is formalized in rule (5), that forbids an action from being both forbidden and obligatory, as
Oϕ →¬O¬ϕ which is equivalent to ¬Oϕ ∨¬Fϕ , and to ¬(Oϕ ∧Fϕ).

C.Hatschka, A.Ciabattoni & T.Eiter 5

The idea behind the common core is to generate all maximal sets of non-auxiliary predicates that are
consistent and filter out suboptimal answer sets using weak constraints. We require that in a consistent set
an action is not obligatory and forbidden at the same time and any obligatory action is taken (resp. any
forbidden action is not taken). For instance, disregarding the auxiliary predicates Dia, Happens and act,
the following are all maximal consistent sets of deontic predicates:

{O(action),−F(action),Do(action)},{F(action),−O(action),−Do(action)},
{−F(action),−O(action),−Do(action)},{−F(action),−O(action),Do(action)}

The next proposition can be seen as a soundness and completeness result for the common core.
Proposition 2. The rules (1)–(9) from Figure 1 allow for all and only the maximal consistent sets of
deontic predicates as answer sets.

This can be seen by inspecting the answers sets output by a solver. Intuitively, soundness of the rules (1)
to (9) is achieved, as inconsistent answer sets are excluded. Completeness on the other hand is given, as
all answer sets that are considered consistent for an action are generated.

Note that in Prop. 2 the weak constraints (10) and (11) are excluded: as every answer set for them
would represent an optimal way to handle given norms, they would eliminate every answer set containing
obligations or prohibitions, and completeness would be lost. By including them, preference will be given
to unrestricted behaviour, in interplay with possible further rules.

4.1 Paradox encodings

We describe how to extend the common core to encode selected paradoxes from above.

Ross’s Paradox. In contrast with what happens in SDL, we do not want to derive (R2) in the ASP
encoding. To achieve this, we add the following rule and facts to the core:

:∼−O(mail). [1 : 2] (12) act(mail). (13) act(burn). (14)

Note that a disjunction over obligations is represented by two different answer sets that each contain one
possible way to satisfy the obligation over the disjunction.

The obligation (R1) is created using the weak constraint (12), while the facts (13) and (14) declare mail
and burn as actions to reason about. For mail (resp. burn) the core encoding guesses it as obligatory or
not; (12) may penalise the guess at the highest level if the program does not entail mailing the letter as
obligatory. As constraint violation at the highest level is minimised, each optimal answer set includes the
obligation to mail the letter, should such an answer set exist.

The program has two answer sets; none of them derive the obligation to burn the letter, and they only
differ for the choice of the agent to burn the letter or not. By adding a rule specifying that it is not possible
to perform both acions: burn the letter and mail it, the answer set where the agent chooses to burn the
letter would not be derived.

Plato’s Dilemma. Recall that the desired outcome of this dilemma would be that the agent takes her child
to the hospital, thereby violating the obligation of meeting her friend for dinner. The encoding presents
two interesting aspects: prioritisation of the obligations and the impossibility of taking both actions. This
can be encoded as follows:

:∼−O(hel p),Happens(emergency).[1 : 3] (20) act(hel p). (23)

:∼−O(meet).[1 : 2] (21) :−Do(hel p),Do(meet). (24)

act(meet). (22) Happens(emergency). (25)

6 Deontic Paradoxes in ASP

The weak constraint (20) is at level 3, the highest in this encoding, and penalises answer sets in which
Happens(emergency) is true but the obligation to help is not derived. In other words, it derives the
obligation (P2) to help the child in case of an emergency. The weak constraint (21) encodes the obligation
(P1) to meet the friend for dinner, but at a lower level (viz. 2), which gives priority to (P2). The constraint
(24) encodes the impossibility of taking both actions. With the assertions that an emergency occurs and
meet and hel p are the possible actions, as desired, a single answer set exists containing the obligation to
help the child.

Fence Paradox One might think that CTD obligations could be handled like exceptions to obligations.
While one could accordingly state “There may be a fence if it is white”, it would not have the same
meaning as in the paradox. Handling a CTD obligation as an exception results in a loss the original
obligation to a certain degree; it could in this case be seen as the least thing to do to set things right. While
having a white fence improves the situation, the presence of the fence itself remains undesirable [24].

The important fact to consider is that should the cottage be by the sea, then as (F1) is not active due to
(F3), the fence need not be white. To this end, we add the following to the common core:

:∼−F(have_ f ence), not Location(sea). [1 : 2] (30)

:∼Do(have_ f ence), not Location(sea), act(have_ f ence). (32)
−O(have_white_ f ence). [1 : 2] (31) act(have_white_ f ence). (33)

Here (30) caters for (F1) and (31) for (F2); notably, (F3) also affects the CTD obligation (F2). This is
needed as the fence has to be white only when the cottage is not by the sea. Otherwise the obligation for
the fence to be white would also be derived if the cottage was by the sea.

To check whether the obligation for the fence to be white is deduced when the cottage is by the sea (and
we have a fence), we further add:

Location(sea). Do(have_ f ence).

Then two answer sets exist; both do not derive the obligation for the fence to be white. When testing
other constellations, the answer sets obtained also represent the expected results.

5 Generalisation and Methodology

We can classify the obligations that appeared in the paradoxes into the following classes:

• Regular obligations: These obligations should be followed as long as possible (without violating a
more important obligation).

• Conditional obligations: These are obligations that only need to be followed given certain
preconditions. E.g., the obligation to wear a suit when at a formal event.

• Obligations over disjunctions: obligations that are fulfilled by satisfying any disjunct that consti-
tutes the obligation; e.g., bring dessert or salad.

• Conjunctions of obligations that all need to be satisfied: obligations consisting of multiple parts
where satisfying all parts is necessary.

• Obligations with exceptions: obligations to be followed unless an exception is given.

• Contrary-to-duty obligations: obligations that arise as another obligation is violated.

C.Hatschka, A.Ciabattoni & T.Eiter 7

Type of obligation Encoding
Regular :∼−O(o). [w : l]

Conditional :∼−O(o),condition. [w : l]
Disjunction :∼−O(o1),−O(o2), . . . ,−O(on). [w : l]
Conjunction :∼not Con j. [w : l]

Con j : −O(o1), . . . ,O(on).

Exceptions :∼−O(o), not Exception. [1 : 2]
Contrary-to-duty :∼−Do(o1),−O(o2). [1 : 2]

Table 1: Encodings for different types of obligations

Note that prohibitions are viewed as regular negative obligations, i.e. the obligation not to do something.
The different kinds of obligations are encoded as shown in Table 1. Their encoding uses weak constraints
to model defeasibility. An obligation to take an action a that should always hold is encoded in the
following way:

:∼−O(a). [w : l]

Note that the weight w and the level l of the weak constraint depend on the importance of the obligation and
conflicting obligations. In most cases, w = 1 and merely l is used to encode priorities among obligations.
Conflicts between obligations are detected and the priority among obligations is established through weak
constraints (more important obligations have higher level).

By generalising the encodings of the considered paradoxes (from Section 3), we propose the following
encoding methodology that consists of the following steps:

Step 1. For each of the norms determine what kind of obligation it represents, among the six
different kinds of obligations we have considered.

Step 2. Determine which actions are simultaneously incompatible. Knowing which actions are in
conflict eases determining the importance of the obligations. Incompatibility needs to be determined
through context. E.g., while in general it is possible to watch a movie while browsing the internet,
these actions may be incompatible on an old smartphone.

Step 3. Encode the different kinds of obligations and their importance. Here weights as priorities
play an important role. There are two cases we need to consider:

Case 1. An obligation (of whatever kind) is more important than the other. In this case, setting the
level of one constraint higher than the other is sufficient. E.g., consider the case of two obligations
o1 and o2 where the latter is more important. If o1 and o2 have no special properties, the encoding
is: (with j ≥ 1)

:∼−O(o1). [1 : l] :∼−O(o2). [1 : l + j]

Note that j may differ given additional obligations. We account for this as follows.
Suppose the incompatibilities between actions are given, as well as the importance of obligations
by a preference O′ ≻ O stating that the obligation O′ is strictly more important than O. We generate
a directed graph G = (V,E) whose vertices V = {O1, . . . ,On} are the obligations having the edges
E = {(Oi,O j) ∈V 2 | Oi ≻ O j}; note that G must be acyclic.1 The sinks of G, i.e., vertices with no

1For Non-strict preference ⪰, we can use the supergraph of G, whose nodes cluster all equally preferable obligations.

8 Deontic Paradoxes in ASP

outgoing arcs, are assigned priority p1 = 2. After simultaneously removing all sinks, we iterate the
process with increased priority, i.e., assign the new sinks priorities p2 = 3, p3 = 4 etc.; this results
in a priorization by levels.

Case 2. Multiple obligations o1, . . .on are in conflict with an obligation o. While satisfying o
is better than satisfying a single oi, satisfying multiple oi’s may be equally good or better than
satisfying o. In this case, we can use the weights of the weak constraints for o1, . . . ,on to encode
this: they must then correspond to their importance and o must have a weight that is equal or smaller
than the joint weights.
For example, if o1,o2 and o3 are mutually non-exclusive and equally important to o if all are
satisfied, the following weights could be chosen, for a number k ≥ 1 (the level is the same):

:∼−O(o1). [k : l] :∼−O(o2). [k : l] :∼−O(o3). [k : l] :∼−O(o). [3k : l]

Step 4. Encode the exclusion of combinations of actions found incompatible. If two actions a1 and
a2 are incompatible, this is encoded by adding the following constraint:

:−Do(a1),Do(a2).

Step 5. Encode additional information. This includes denoting constants as actions using the
predicate act, and specifying dependencies between actions; e.g., if the action running entails the
action moving, we add a rule

Do(move) :−Do(run).

Observation 1. The common core simulates the SDL axioms RND and KD.
As there are no theorems in our framework, RND is not directly implemented. However, if we read a
theorem as something than cannot be violated, RND becomes: “If it is impossible to violate ϕ , then ϕ

is obligatory.” In our semantics this obligation would not be derived; however the obligation to take the
action ϕ is given indirectly as the agent must do ϕ (that cannot be violated). For KD, recall that if an
obligation is in an answer set, the agent has to take the corresponding action. We encode O(ϕ → ψ) using
a weak constraint that sanctions answer sets including Do(ϕ) but not O(ψ). As every answer set that
contains O(ϕ) also contains Do(ϕ), each answer set that contains O(ϕ) but not O(ψ) is also sanctioned.
This way we simulate KD, as an answer set that contains O(ϕ) must also contain O(ψ), unless the latter
conflicts with an obligation of higher or equal importance.

6 A Case Study: Ethical Pac-man

We put the methodology described in the previous section to work on a reinforcement learning agent
playing variants of the game Pac-man. Pac-man features a closed environment with simple game mechanics
and parameters which are easy to manipulate, and extend with norms that can simulate normative conflicts.

The starting position of the game is depicted in Fig. 2. Pac-man’s objective is to eat all the pellets in the
maze while avoiding two ghosts (orange and blue) that will kill him upon contact. Pac-man and the ghosts
typically move one step at a time, with the ghosts’ movements being non-deterministic. If Pac-man ate
one of the larger pellets, the ghosts enter a scared state and become vulnerable, allowing Pac-man to eat
them. In this state, the ghosts move at half speed. A scared ghost is instantly eaten by Pac-man when their
distance is less than 1 on both axes. Points are awarded for consuming pellets and ghosts, with a discount
applied based on the duration of the game (the longer the game lasts, the lower the score). Pac-man wins
if he collects all the pellets, and a faster completion time results in a higher score.

C.Hatschka, A.Ciabattoni & T.Eiter 9

Figure 2: Pac-manFollowing [23, 22], we consider variants of the Pac-man
game with additional “ethical norms". Vegan Pac-man, in
which Pac-man is not allowed to eat any ghost has been
introduced in [23] and implemented there using multi-
objective Reinforcement Learning (RL) with policy or-
chestration. Vegan Pac-man and its vegetarian variant
were analyzed in [22], that will serve as the benchmark for
our work. Vegetarian Pac-man can eat the orange ghost (as
it would be cheese) but not the blue ghost. The approach
used in [22] combines RL with formal tools for normative
reasoning. The authors implement a logic-based normative
supervisor module, which informs the trained RL agent of the ethical requirements in force in a given
situation. At each step, Pac-man chooses an action complying with the norms, and a least evil action
if there is no such action. Their approach allows to deal with complex normative systems, conflicting
obligations, and situations where no compliance is possible. Norms and the current state of the agent’s
environment are encoded in defeasible deontic logic [14, 15], which is a deontic logic with defeasible
rules that specify typical correlations, such as “birds usually fly"; its theorem prover SPINdle is used to
check norms compliance. Exceptions are encoded by so-called defeaters, e.g., if the bird is a penguin.

We consider here an alternative realization of the normative supervisor, based on our norms encoding
and using the DLV reasoner. We experimentally compare the obtained results and apply our methodology
to more intricated “ethical norms" for Pac-man.

Vegan Pac-man: To prohibit Pac-man from eating any ghost, we can state:

O(¬eat(g)) respectively F(eat(g)), for g ∈ {blue_ghost,blue_ghost}.

Vegetarian Pac-man: To prohibit Pac-man from eating the blue ghost, we state:

O(¬eat(blue_ghost)) respectively F(eat(blue_ghost)).

We encode the norm bases by forbidding Pac-man to move in a direction if the ghosts are scared and
moving there could lead to eat a ghost. Furthermore, we forbid Pac-man from stopping if a ghost could
move into Pac-man (and then be eaten). Pac-man may still eat a ghost. This can happen if both a ghost
and Pac-man move towards a larger pellet from perpendicular directions. In this case, Pac-man will first
eat the pellet and then the ghost. Furthermore, Pac-man could be cornered between two scared ghosts,
leaving him no choice but eating one of them.

The scenarios that can precede Pac-man eating a ghost are the same for both norm bases. As Pac-man
and the ghosts can move at most one step at a time, we can derive that the Manhattan distance between
Pac-man and a scared ghost must in this case be at least 1 and at most 2 (coordinates are integers). This
leaves three possibilities for their relative locations. We encoded the norms by accounting for the locations
of the ghosts relative to Pac-man and forbidding Pac-man to make moves that could lead to eating a ghost.

Experimental Results. The vegan norm base was implemented in [23] who trained two different models
for Pac-man; in one model he was trained to maximize the game score, and in the other to comply with
the norms using respective data. An external function enabled the agent to decide which model to use
for choosing the next move. When the importance of the norm-compliance model was low, the agent
in general did not comply with the norm, resulting in around 2 ghosts eaten per game. Making the

10 Deontic Paradoxes in ASP

norm base % games won game score avg[max] avg ghosts eaten (blue/orange) avg time (s)
Vegan 90.7 | 91.2 1209.86[1708] | 1217[1538] 0.023/0.02 | 0.013/0.018 10.1 | 6.7
Vegetarian 94.0 | 90.6 1413.80[1742] | 1366[1751] 0.01/0.79 | 0.001/0.788 9.8 | 6.5
Weak Vegan | 89.9 | 1204[1731] | 0.002/0.043 | 6.7

Table 2: Results for Neufeld et al.’s normative supervisor [22] | our encoding

importance sufficiently high, the number of ghosts eaten did decrease to one (similar to our results, see
Table 2). In this approach, however, it is not clear how to enforce more complex norm sets, including, e.g.,
contrary-to-duty obligations.

In order to compare Neufeld et al.’s approach [22] with our ASP encodings, we utilized their Java-based
framework. This framework is built in Java and provides the normative reasoners with a ready-to-use
interface to the Pac-man game.2 The RL agent was trained on 250 games and the normative supervisor
was evaluated on 1000 games with the same initial state.

The results reported in [22] for their normative supervisor (using SPINdle) and for our ASP-based
normative supervisor (using JDLV, the java framework for DLV) are shown in Table 2. The latter
outperformed the original supervisor for both norm bases w.r.t. the ghosts eaten and speed: its average
running time was less than 7 seconds, while for Neufeld et al.’s normative supervisor it was some seconds
(roughly 50%) longer, using a Lenovo Y50-70 with 8GB RAM and Ubuntu 22.04 LTS. For the vegan
norm base, our encoding resulted in a higher winning rate and an improved average score. (A game loss
costs 500 points, resulting possibly in a negative score.) The higher maximum score in Neufeld et al.’s
results is likely attributed to a game where both ghosts were eaten. In the vegetarian norm base, the lower
winning rate and average score is probably due to Pac-man’s preference to lose in our framework a game
rather than eating a ghost.

Weak Vegan Pac-man. Consider the following more intricated variant of the vegan norm base:

O1 It is obligatory not to eat the blue ghost.

O2 It is obligatory not to eat the orange ghost, unless a ghost has already been eaten.

O3 It is obligatory to stop (for one move) after having eaten a ghost.

Thus, the behaviour may change at some point. To encode it, we follow our methodology:
Step 1: We categorise the obligations.

− O1 is a regular obligation. It has no exceptions and should be followed at all times.

− O2 is an obligation with an exception. Once the latter occurs, it holds until the game is over.

− O3 is a derived obligation. Note that it is not necessarily a CTD obligation, as eating a ghost may not
violate an obligation if the ghost is blue.

Step 2: We look at pairs of obligations that cannot be fulfilled simultaneously.

− O1 and O2 could possibly be in conflict, as Pac-man may be stuck between two ghosts moving towards
him. This may force him to eat one of them. In this case we prioritize O1, as we want preventing the blue
ghost from being eaten to have the highest priority.

− O1 and O3 could be in conflict, as stopping after eating an orange ghost may lead to eating a blue ghost.

2For complete DLV code and experimental data, see github.com/Chrisi-boop/DLV-Normative-Reasoning-.

github.com/Chrisi-boop/DLV-Normative-Reasoning-

C.Hatschka, A.Ciabattoni & T.Eiter 11

Figure 3: Encoding for the Pac-man norm base

:∼−F(eat(blue_ghost)). [1 : 3]

:∼not Exception,
−F(eat(orange_ghost)). [1 : 2]

:∼−O(stop),
Do(eat(orange_ghost)). [1 : 2]

:∼−O(stop),
Do(eat(blue_ghost)). [1 : 2]

(a) obligations

:−Do(stop), Do(north).
· · ·

:−F(eat(blue_ghost)),

−F(east),Pacman(A,B),

BlueGhost(C,D,1),

E =C−A, E ≤ 2,

G = B−D, G ≤ 1.
· · ·

(b) conflicting actions

act(d). for d ∈ D

act(eat(blue_ghost)).

act(eat(orange_ghost)).

:−
∧

d∈D F(d).

(c) action specs; D = {stop,
north, east, south, west}

− O2 and O3 cannot be in conflict, as after eating a ghost the exception to O2 is empowered. We give
priority to O1 over O3 since the preservation of the blue ghost from being consumed has highest priority.

Summarizing the statements above, we obtain the following preferences: O1 ≻ O2, O1 ≻ O3.
Step 3: We derive the following weights and levels for the weak constraints corresponding to the
obligations: O1 is assigned [1 : 3], O2 is assigned [1 : 2], and O3 is assigned [1 : 2].

We next look at the predicates used in the encoding:

• Pacman(X,Y) denotes the location of Pac-man. X and Y refer to his coordinates on the map.

• BlueGhost(X,Y,B) and OrangeGhost(X,Y,B) denotes the location of the blue resp. orange ghost,
where X ,Y are its coordinates and B is 1 if the ghost is scared and 0 otherwise.

• Exception means the agent has already eaten a ghost and may eat orange ghosts. Whenever
Exception is in an answer set, the normative reasoner will inject it into any later answer set.

The actions to reason about are stop, north, east, south, west, eat(blue_ghost), eat(orange_ghost):

• Do(stop) means that the agent remains stationary for one action.

• Do(d), d ∈ {north,east,south,west}, means that the agent will move in direction d.

• Do(eat(g), g ∈ {blue_ghost,orange_ghost} means that the agent eats that ghost.

To encode the norms we add the rules and facts in Fig. 3 to the common core. Following our methodology,
we encode the obligations as in Fig. 3a. Note that the obligation to eat the blue and orange ghost are
encoded as separate actions as two different obligations (O3).
Step 4: The conflicting actions from Step 2 are encoded in Fig. 3b. For Pac-man, we encode that he
cannot take two actions at once, e.g., stop and move north. For ghosts, as a scared ghost may move both
towards and away from Pac-man, we cannot encode ensuing conflicts directly. However, we can assert that
permitting an action that could potentially involve consuming a ghost is inconsistent with the prohibition
of consuming that ghost. Fig. 3.b shows one such rule; for space reasons we omit the other rules, as well
as further action constraints for Pac-man.2

Step 5: We state the actions to reason about (Fig. 3c), and encode that it is not possible to prevent Pac-man
from taking any action (i.e., Pac-man must either stop or move).

12 Deontic Paradoxes in ASP

In fact, our actual encoding omits the actions eat(blue_ghost) and eat(orange_ghost); they are substi-
tuted by prohibitions on moving towards scared ghosts. We used them here for readability.

Experiments. The implementation of this norm base yielded results that align with our expectations, as
depicted in Table 2. Pac-man consumed more ghosts compared to the vegan norm base but fewer than
the vegetarian norm base, and mostly orange ghosts. The obligation to halt when Pac-man eats a ghost
resulted in a lower average score, as time passage leads to point deductions. This observation also explains
the marginal increase in the maximum score and the slight decrease in the winning rate. Despite the added
complexity of the norm base, there was no significant difference in the running time.

7 Related Work and Conclusion

Starting with an analysis of well-known deontic paradoxes, we have introduced a methodology to encode
normative systems in ASP, using DLV as the system of choice. Our approach determines optimal ways to
handle scenarios, using agreed upon prioritizations of obligations.

Multiple approaches to implement normative systems do exist. Some of those related to the multi-agent
systems community can be found, e.g., in [2]. We will discuss below the approaches most similar to ours.

One of the earliest works on encoding normative systems is Sergot et al. [25], who did encode the British
Nationality Act in logic programming. However, their work focused on determining the applicability of
the British Nationality Act to specific individuals, without delving into the reasoning about obligations or
seeking optimal courses of action within the framework of given norms.

[26] introduced in IMPACT syntax and semantics for reasoning about obligations and prohibitions
among agents in a rule-based language under different semantics, among them stable model semantics.
Although they refer to deontic logic, the proposed way of dealing with conflicting obligations is to satisfy
a maximal subset of obligations, without considering possible preferences among them.

An abductive logic programming framework has been employed in [19] to encode obligations in various
deontic paradoxes. Rather than trying to derive all optimal ways of fulfilling given obligations, the authors
focused on finding a best model of a definite Horn logic program that satisfies given goals. When it comes
to establishing model preferences, the auxiliary symbols used in the encodings played a significant role.
However, their usage requires care, and no systematic way of defining model preference was considered,
for which our work could provide inspiration.

Using a combination of input-output logic and game theoretic methods, [6] encoded the behaviour of
(multi-)agents subjected to a normative system. In their work, agents possess the ability to reason in a
manner more akin to humans, for example, determining if the consequences of violating an obligation are
worth the penalty. Their work lacks however computational support.

Temporal Logic has been used to simulate normative reasoning. Temporal Logic approaches offer an
advantage in enforcing norms that indirectly restrict certain actions [1, 8]. Moreover there are advanced
tools that effectively combine reinforcement learning, with, e.g., LTL (see [4]), and LDLf (see [9]).
However, as is well known temporal logic cannot handle all the intricacies of normative reasoning, see,
e.g., the discussion in [2, 21].

Different ASP approaches have been proposed in [13, 3, 12]. In these works, logic programs were
extended with the SDL modality, and [12] introduces also temporal operators. Alferes et al. [3] further
provides a way to check equivalence of two deontic logic programs. These approaches however require
an understanding of the embedded logic and some implementation efforts, whereas our method can be
used out of the box and with an ASP solver off the shelf.

C.Hatschka, A.Ciabattoni & T.Eiter 13

In our approach, the selection of paradoxes has proven to be of utmost importance, as failure to include
certain ones resulted in overlooking crucial aspects of normative systems; e.g., the analysis of the Fence
Paradox has enabled us to differentiate between contrary-to-duty obligations and exceptions, which is
a well-known problem in the field of normative reasoning [24]. An important feature of our approach
is the availability of optimized tools (ASP solvers) and the simplicity of the encoding. There is a clear
cut common core that is supplemented with defined ways for encoding different kinds of obligations.
The approach, described for DLV in this work, can be easily transferred to other ASP solvers, e.g. clasp
(potassco.org/clasp). A main limitation of our approach is that encoding intricate normative systems
can result in large programs. Furthermore, obligations that require the agent to maintain certain conditions
might be cumbersome to encode for complex scenarios where taking particular actions might indirectly
lead to a violation. Consider for instance “See to it that the child stays dry.” Here it is not enough to simply
not get the child wet, but one must also take measures to protect the child from getting wet through other
means. This may entail preventing the child from going outside if it is about to rain. For such normative
systems, approaches extending ASP with temporal logics [12], may be preferable.

Outlook. A peculiar feature of our approach is that all encoded obligations are comparable based on
their associated weights and priorities. While in our encoding we did not run into problems, it is possible
that certain normative systems may require optimal answer sets encoding solutions that are inherently
incomparable. Future work may also look into other ASP solvers with more sophisticated means for
filtering out answer sets to model normative reasoning. The clasp extension asprin (potassco.org/
asprin) or the DLV2 system using WASP [5], could serve as examples.

The Pac-man case study highlighted the fact that even simple obligations can require a substantial
number of weak constraints to accurately encode the means of fulfilling those obligations. To address
this weakness, we plan to explore the integration of our framework with auxiliary software capable of
reasoning about the actions neeeded to fulfill specific obligations. In the context of Pac-man, such software
might have to interpret, e.g., how the obligation to not eat a ghost could be fulfilled.

References

[1] Natasha Alechina, Nils Bulling, Mehdi Dastani & Brian Logan (2015): Practical Run-Time Norm Enforcement
with Bounded Lookahead. In Gerhard Weiss, Pinar Yolum, Rafael H. Bordini & Edith Elkind, editors:
Proceedings of AAMAS 2015, ACM, pp. 443–451.

[2] Natasha Alechina, Mehdi Dastani & Brian Logan (2018): Norm Specification and Verification in Multi-Agent
Systems. J. of Applied Logics 5(2), pp. 457–490.

[3] José Júlio Alferes, Ricardo Gonçalves & João Leite (2013): Equivalence of defeasible normative systems. J.
Appl. Non Class. Logics 23(1-2), pp. 25–48, doi:10.1080/11663081.2013.798996.

[4] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum & Ufuk Topcu
(2018): Safe reinforcement learning via shielding. In: Proc. AAAI, pp. 2669–2678.

[5] Mario Alviano, Carmine Dodaro, João Marques-Silva & Francesco Ricca (2020): Optimum stable model
search: algorithms and implementation. J. Log. Comput. 30(4), pp. 863–897, doi:10.1093/logcom/exv061.

[6] Guido Boella & Leendert W. N. van der Torre (2004): Regulative and Constitutive Norms in Normative
Multiagent Systems. In Didier Dubois, Christopher A. Welty & Mary-Anne Williams, editors: Proceedings of
KR2004, AAAI Press, pp. 255–266.

[7] Gerd Brewka, Thomas Eiter & Miroslaw Truszczyński (2011): Answer Set Programming at a Glance.
Communications of the ACM 54(12), pp. 92–103, doi:10.1145/2043174.2043195.

potassco.org/clasp
potassco.org/asprin
potassco.org/asprin
https://doi.org/10.1080/11663081.2013.798996
https://doi.org/10.1093/logcom/exv061
https://doi.org/10.1145/2043174.2043195

14 Deontic Paradoxes in ASP

[8] Nils Bulling, Mehdi Dastani & Max Knobbout (2013): Monitoring norm violations in multi-agent systems.
In Maria L. Gini, Onn Shehory, Takayuki Ito & Catholijn M. Jonker, editors: International conference on
Autonomous Agents and Multi-Agent Systems, AAMAS ’13, IFAAMAS, pp. 491–498.

[9] Giuseppe De Giacomo & Moshe Y. Vardi (2015): Synthesis for LTL and LDL on Finite Traces. In: IJCAI
2015, pp. 1558–1564.

[10] Dov Gabbay, John Horty, Xavier Parent, Ron van der Meyden & Leendert van der Torre, editors (2021):
Handbook of Deontic Logic and Normative Systems. College Publications. Amends Volume 1 (2013).

[11] M. Gelfond & V. Lifschitz (1991): Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Computing 9, pp. 365–385, doi:10.1007/BF03037169.

[12] Laura Giordano, Alberto Martelli & Daniele Theseider Dupré (2013): Temporal deontic action logic for the
verification of compliance to norms in ASP. In Enrico Francesconi & Bart Verheij, editors: International
Conference on Artificial Intelligence and Law, ICAIL ’13, ACM, pp. 53–62, doi:10.1145/2514601.2514608.

[13] Ricardo Gonçalves & José Júlio Alferes (2012): An Embedding of Input-Output Logic in Deontic Logic
Programs. In Thomas Ågotnes, Jan M. Broersen & Dag Elgesem, editors: Deontic Logic in Computer Science
- 11th International Conference, DEON 2012, Proceedings, LNCS 7393, Springer, pp. 61–75, doi:10.1007/978-
3-642-31570-1_5.

[14] Guido Governatori, Francesco Olivieri, Antonino Rotolo & Simone Scannapieco (2013): Computing Strong
and Weak Permissions in Defeasible Logic. J. Phil. Log. 42(6), pp. 799–829, doi:10.1007/s10992-013-9295-1.

[15] Guido Governatori & Antonino Rotolo (2008): BIO logical agents: Norms, beliefs, intentions in defeasible
logic. Auton. Agents Multi Agent Syst. 17(1), pp. 36–69, doi:10.1007/s10458-008-9030-4.

[16] Christian Hatschka (2022): Representing Normative Reasoning in Answer Set Programming Using Weak
Constraints. Master’s thesis, Technische Universität Wien, doi:10.34726/hss.2022.99420.

[17] Andrew Jones & José Carmo (2002): Deontic Logic and Contrary-to-Duties. Handbook of Philosophical
Logic vol.8, pp. p.265–364, doi:10.1007/978-94-010-0387-2_4.

[18] Benjamin Kaufmann, Nicola Leone, Simona Perri & Torsten Schaub (2016): Grounding and Solving in
Answer Set Programming. AI Mag. 37(3), pp. 25–32, doi:10.1609/aimag.v37i3.2672.

[19] Robert A. Kowalski & Ken Satoh (2018): Obligation as Optimal Goal Satisfaction. J. Phil. Log. 47(4), pp.
579–609, doi:10.1007/s10992-017-9440-3.

[20] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri & Francesco
Scarcello (2006): The DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7(3), pp. 499–562, doi:10.1145/116825.116838.

[21] Emery Neufeld, Ezio Bartocci & Agata Ciabattoni (2022): On Normative Reinforcement Learning via Safe
Reinforcement Learning. In: Proceedings of PRIMA 2022.

[22] Emery A. Neufeld, Ezio Bartocci, Agata Ciabattoni & Guido Governatori (2021): A Normative Supervisor for
Reinforcement Learning Agents. In André Platzer & Geoff Sutcliffe, editors: Automated Deduction - CADE
28, LNCS 12699, Springer, pp. 565–576, doi:10.1007/978-3-030-79876-5_32.

[23] Ritesh Noothigattu, Djallel Bouneffouf, Nicholas Mattei, Rachita Chandra, Piyush Madan, Kush R. Varshney,
Murray Campbell, Moninder Singh & Francesca Rossi (2019): Teaching AI Agents Ethical Values Using
Reinforcement Learning and Policy Orchestration. In: Proc of IJCAI 2019, ijcai.org, doi:10.24963/ijcai.2019.

[24] Henry Prakken & Marek J. Sergot (1996): Contrary-to-Duty Obligations. Stud Logica 57(1), pp. 91–115,
doi:10.1007/BF00370671.

[25] Marek J. Sergot, Fariba Sadri, Robert A. Kowalski, F. Kriwaczek, Peter Hammond & H. T. Cory (1986): The
British Nationality Act as a Logic Program. Commun. ACM 29(5), pp. 370–386, doi:10.1145/5689.5920.

[26] V.S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus & Robert Ross (2000): Heteroge-
neous Agent Systems, chapter 6: Agent Programs, pp. 115–170. MIT PR, doi:10.7551/mitpress/3487.001.0001.

[27] Georg Henrik von Wright (1951): Deontic logic. Mind 60(237), pp. 1–15, doi:10.1093/mind/LX.237.1.

https://doi.org/10.1007/BF03037169
https://doi.org/10.1145/2514601.2514608
https://doi.org/10.1007/978-3-642-31570-1_5
https://doi.org/10.1007/978-3-642-31570-1_5
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/s10458-008-9030-4
https://doi.org/10.34726/hss.2022.99420
https://doi.org/10.1007/978-94-010-0387-2_4
https://doi.org/10.1609/aimag.v37i3.2672
https://doi.org/10.1007/s10992-017-9440-3
https://doi.org/10.1145/116825.116838
https://doi.org/10.1007/978-3-030-79876-5_32
https://doi.org/10.24963/ijcai.2019
https://doi.org/10.1007/BF00370671
https://doi.org/10.1145/5689.5920
https://doi.org/10.7551/mitpress/3487.001.0001
https://doi.org/10.1093/mind/LX.237.1

	1 Introduction
	2 Preliminaries
	3 Deontic Paradoxes
	4 Encoding the Paradoxes
	4.1 Paradox encodings

	5 Generalisation and Methodology
	6 A Case Study: Ethical Pac-man
	7 Related Work and Conclusion

