
LSFA 2016

From cut-free calculi to automated deduction: the
case of bounded contraction 1

Agata Ciabattoni, Björn Lellmann2

Vienna University of Technology. Austria.

Carlos Olarte, Elaine Pimentel3

Universidade Federal do Rio Grande do Norte. Brazil

Abstract

The addition of the bounded contraction rules to Full Lambek Calculus with exchange and weakening (FLew) gives rise to
serious complications for proof search. For example, adding to FLew a naive version of these rules brakes cut-admissibility.
Although this can be avoided by refining these rules, in this work we show that even “good” proof systems for FLew plus
bounded contraction do not necessarily lead to good implementations. In order to solve this problem, we propose an extension
of the lazy splitting methodology to bounded contractions, showing how to transform our focused, cut-free sequent calculus
into a terminating theorem prover. Our system is used to show that the decision problem for FLew with bounded contraction
is in EXPTIME.

Keywords: Proof theory, substructural logics, proof search, bounded contraction.

1 Introduction

Cut-free sequent calculi are undoubtedly among the finest tools for proving important theo-
retical properties such as consistency, decidability or interpolation for a given logic. Unfor-
tunately, when it comes to practical applications, and in particular to automated reasoning
tasks, they are not always well-behaved. Seemingly innocuous rules, like contraction, give
rise to a dramatic increase of the search space in backward proof search procedures. Indeed,
a major part of the proof-theoretic effort for proposing good logical proof systems suitable
for implementation involves taming exactly this rule. For example, good refinements of
sequent systems for classical logic absorb contraction into the logical rules; in intuitionis-
tic logic, contraction can be avoided after a careful control on the use of the implication
left rule [Dyc92]; and all focused systems, e.g. for linear logic, rely on controlling the
duplication of classical resources.

1 This work has been supported by the Marie Curie project GetFun (PIRSES-GA-2012-318986 funded by EU-FP7), the
FWF START project Y544-N23, EU H2020-MSCA grant 660047, CAPES and CNPq.
2 Email: {agata,lellmann}@logic.at
3 Email: {carlos.olarte, elaine.pimentel}@gmail.com

c©2016 Published by Elsevier Science B. V.

mailto:agata@logic.at
carlos.olarte@gmail.com

Ciabattoni, Lellmann, Olarte and Pimentel

Here we consider weaker variants of the contraction rule, the so-called bounded con-
traction rules, which for a fixed k, contract k + 1 copies of a formula into k copies. These
rules are special cases of knotted rules [HOS94] and play an important role, e.g., in finite-
valued Łukasiewic logics [Pri96] or varieties of residuated lattices [GJKO07].

Simply adding bounded contraction rules to the sequent calculus for affine intuition-
istic additive, multiplicative linear logic aIMALL [Gir87] (or, equivalently, Full Lam-
bek Calculus with exchange and weakening FLew) brakes cut-admissibility (although not
consistency). Equivalent versions of the bounded contraction rules, which preserve cut-
elimination when added to FLew, have been defined, e.g., in [CGT08]. However, although
the resulting cut-free systems might suffice for theoretical purposes, the additional rules
involve splitting the context into a number of parts. Since there are many ways to do so,
this results in an exponential branching in the naive proof search procedure, rendering it
unfeasible for practical purposes.

In this paper we strive to solve this problem and show how to turn the cut-free se-
quent calculus for FLew with bounded contraction into a terminating theorem prover. For
this purpose, we propose a general form of lazy splitting which avoids the splitting of
contexts, hence solving the problem of the exponential choice inherent in the rules of
bounded contraction. This choice is substituted by a much simpler one: from which
context, on the leaves, an atomic formula should be taken. This not only turns bounded
contractions into harmless structural rules, but also provides the basis for efficient the-
orem provers for a number of logics. An implementation of the system, available at
http://subsell.logic.at/flew, is also presented. We further show an EXPTIME up-
per bound on the complexity of FLew with bounded contractions. While a PSPACE lower
bound for these logics follows from [HT11], their exact complexity is left open.

The paper is structured as follows: The base logical system FLew with bounded contrac-
tion is presented in Section 2, while its focused, cut-free version is described in Section 3.
In Section 4 we show that the proposed systems yield the seemingly first purely proof-
theoretic proof of decidability and complexity for FLk

ew. Section 5 proposes the general
lazy splitting procedure. Finally, we conclude and present some future work in Section 6.

2 FLew with bounded contraction

Providing feasible automated deduction procedures for substructural logics, i.e., logics
whose sequent calculi lack (or restrict the use of) some of the standard structural rules,
is a difficult task. A successful example of such a procedure is the one available un-
der http://www1.chapman.edu/˜jipsen/reslat/, which implements the algorithm
in [OT99] to decide validity of equations in residuated lattices (and hence, of formulas in
Full Lambek Calculus).

In this work we provide automated deduction procedures for substructural logics
obtained by adding to Full Lambek calculus with exchange and weakening (FLew, or
aIMALL) the axioms αk ⊃ αk+1 (where αn stands for α ⊗ · · · ⊗ α, n times, α0 = >) 4 ,
for k ≥ 1, or, equivalently, the rules [HOS94,Pri96]

4 Abusing the notation, we will represent by Ak both A
⊗k

i=1 A and A, . . . , A, k times. Observe that the rule ⊗L is invertible,
hence it is always possible to substitute tensors by commas (and vice-versa).

2

http://subsell.logic.at/flew
http://www1.chapman.edu/~jipsen/reslat/

Ciabattoni, Lellmann, Olarte and Pimentel

∆, Ak+1 ` C
∆, Ak ` C

(k + 1) − k
∆, A ` A init

∆ ` >
>

∆,⊥ ` C ⊥
∆ ` A Γ ` C

∆,Γ ` C cut

∆, A, B ` C
∆, A ⊗ B ` C

⊗L
∆1 ` A ∆2 ` B
∆1,∆2 ` A ⊗ B

⊗R
∆1 ` A ∆2, B ` C
∆1,∆2, A ⊃ B ` C

⊃L
∆, A ` B

∆ ` A ⊃ B
⊃R

∆, Ai ` C
∆, A1 ∧ A2 ` C

∧Li
∆ ` A ∆ ` B

∆ ` A ∧ B
∧R

∆, A ` C ∆, B ` C
∆, A ∨ B ` C

∨L
∆ ` Ai

∆ ` A1 ∨ A2
∨Ri

Fig. 1. Naive system for FLew with bounded contraction (note that the weakening rule is admissible).

∆, Ak+1 ` C
∆, Ak ` C

(k + 1) − k

More precisely, we consider formulas built from the grammar

F ::= > |⊥| A | F1 ⊗ F2 | F1 ∨ F2 | F1 ⊃ F2 | F1 ∧ F2

and the rules in Fig. 1 for FLew plus bounded contraction.
As shown in [HOS94] such systems enjoy cut elimination if and only if k = 1. Consider

for instance the sequent

C, A ⊃ C ⊃ B, (A ⊃ B)k−1, (A ⊃ B)k+1 ⊃ D ` D k > 1 (1)

A proof of such sequent with cut in the naive system of Fig.1 is

A ` A init C ` C init B ` B init

C,C ⊃ B ` B
⊃L

C, A ⊃ C ⊃ B, A ` B
⊃L

C, A ⊃ C ⊃ B ` A ⊃ B
⊃R

D ` D init

(A ⊃ B)k+1, (A ⊃ B)k+1 ⊃ D ` D
⊃ ⊗

(A ⊃ B)k, (A ⊃ B)k+1 ⊃ D ` D
(k + 1) − k

C, A ⊃ C ⊃ B, (A ⊃ B)k−1, (A ⊃ B)k+1 ⊃ D ` D
cut

It is straightforward to check that this cut cannot be eliminated. Indeed, any cut-free
proof of the end sequent would start with an instance of the implication left rule. Using
polarities and focusing techniques, we can show that neither the formula A ⊃ C ⊃ B nor
the formula A ⊃ B can be principal. Moreover, applying implication left repeatedly on (A ⊃
B)k+1 ⊃ D will consume the rest of the context and the remaining sequent (A ⊃ B) ⊃ D ` D
is not provable. Observe also that the (k + 1) − k rule cannot be used in any moment.

This counter-example is based on the fact that some information is hidden inside the
implication. However, there are some other less trivial counter-examples, for instance,

A ⊃ ⊥, (A ⊃ B)k−1 ` (A ⊃ B)k+1 (2)

Observe that A ⊃ ⊥ implies A ⊃ B and then, A ⊃ B is represented in the context k times.
However, the rule (k + 1) − k cannot be applied to multisets of formulas and the only way
of proving the sequent (2) is by applying the cut rule which, again, cannot be eliminated.

There is a number of ways of proposing less naive sequent systems for handling
bounded contractions. For instance, the algorithm in [CGT08], transforms (suitable) ax-
ioms into structural rules and leads to the following rule for bounded contraction

∆,∆k+1
1 ` C . . . ∆,∆i1

1 , . . . ,∆
ik
k ` C . . . ∆,∆k+1

k ` C
∆,∆1, . . . ,∆k ` C k′

3

Ciabattoni, Lellmann, Olarte and Pimentel

where ∆1, . . . ,∆k are non-empty multisets of formulas, i1 + · · ·+ ik = k+1 and ∆k = ∆, ...,∆,
k times. Adding these rules to FLew preserves cut-elimination. However, they are not good
for proof search due to the non-trivial splitting of the context and the large number of
premises.

The following rule reduces the number of branching while preserving cut-elimination

∆,∆k+1
1 ` C . . . ∆,∆k+1

k ` C
∆,∆1, . . . ,∆k ` C k

Lemma 2.1 The rules k and k′ are equivalent in FLew in the presence of the cut rule.

Proof. Clearly k′ derives k. For the converse direction it is enough to show that each
∆,∆i1

1 , . . .∆
ik
k ` C (with i1 + · · · + ik = k + 1) can be derived from the premises of k. This

follows by cutting the sequent ∆,
∨k

i=1(
⊗

∆k+1
i) ` C, with ∆

i1
1 , . . .∆

ik
k `

∨k
i=1(
⊗

∆k+1
i)

which is derivable in FLew extended with k. �

Using the rule k, the sequents (1) and (2) are cut-free provable. In (1), take ∆1 = {C, A ⊃
C ⊃ B}, ∆2 = . . . = ∆k = {A ⊃ B} and ∆ = (A ⊃ B)k+1 ⊃ D; in (2), take ∆1 = {A ⊃ ⊥},
∆2 = . . . = ∆k = {A ⊃ B} and ∆ = ∅.

Observe that, when using the k rule, there is an exponential number of choices since one
has to cleverly split the context into k + 1 parts. Hence the difficulty of finding an arbitrary
cut-formula is replaced by a hard context splitting.

It is instructive to consider the relationship between the naive system in Fig. 1 and the
system obtained by replacing the (k + 1) − k rule with the k rule. Assume that we use k
instances of cut to produce k copies of the formula A, which will be used for applying the
(k + 1) − k rule:

∆1 ` A

∆k ` A
Ak+1,∆ ` C
Ak,∆ ` C

(k + 1) − k

Ak−1,∆,∆k ` C
cut

...
A,∆,∆2, . . . ,∆k ` C

∆,∆1, . . . ,∆k ` C cut

Observe that choosing the cut formula (i.e., A) is the same as choosing the multisets
∆1, . . . ,∆k that imply A. It turns out that we can choose, instead of a random A, the for-
mula

∨k
i=1(
⊗

∆i) as the cut formula. Indeed, in the presence of (k + 1) − k, we have the
equivalence

∨k
i=1(
⊗

∆i)k ≡ (
∨k

i=1(
⊗

∆i))k. Hence the proof above can be re-written as

∆1 `
∨k

i=1(
⊗

∆i)
∨R, init

∆k `
∨k

i=1(
⊗

∆i)
∨R, init

(∆1)k+1,∆ ` C . . . (∆k)k+1,∆ ` C∨k
i=1(∆i)k+1,∆ ` C

∨L

(
∨k

i=1(∆i))k+1,∆ ` C
≡

(
∨k

i=1(∆i))k,∆ ` C
(k + 1) − k

(
∨k

i=1(∆i))k−1,∆,∆k ` C
cut

...∨k
i=1(∆i),∆,∆2, . . . ,∆k ` C

∆,∆1, . . . ,∆k ` C cut

showing that the rule k is derivable in the naive system. Conversely, observe that (k + 1) − k
is an instance of k with ∆1 = . . . = ∆k = A. Hence, in this case, finding a cut-formula or

4

Ciabattoni, Lellmann, Olarte and Pimentel

Negative Rules

Γ; ∆ ` >
>R

Γ; ∆,⊥ ` C
⊥L

Γ; ∆, F,G ` C
Γ; ∆, F ⊗G ` C

⊗L

Γ; ∆, F ` G
Γ; ∆ ` F ⊃ G

⊃R
Γ; ∆ ` F Γ; ∆ ` G

Γ; ∆ ` F ∧G
∧R

Γ; ∆, F ` C Γ; ∆,G ` C
Γ; ∆, F ∨G ` C

∨L

Γ, F,G; ∆ ` C
Γ, F & G; ∆ ` C

&L & ∈ {∧,⊗}
Γ, F; ∆ ` C Γ,G; ∆ ` C

Γ, F ∨G; ∆ ` C
∨LC

Γ,G; ∆ ` C
Γ, F ⊃ G, F; ∆ ` C

⊃LCC
Γ,G; ∆ ` C

Γ, F ⊃ G,G; ∆ ` C
⊃LCG

Positive Rules
Γ; ∆1 ` F Γ; ∆2 ` G

Γ; ∆1,∆2 ` F ⊗G
⊗R

Γ; ∆1 ` F Γ; ∆2,G ` C
Γ; ∆1,∆2, F ⊃ G ` C

⊃L

Γ, F ⊃ G; ∆1 ` F Γ, F ⊃ G; ∆2,G ` C
Γ, F ⊃ G; ∆1,∆2 ` C

⊃LC
Γ; ∆, Fi ` C

Γ; ∆, F1 ∧ F2 ` C
∧Li

Γ; ∆ ` Fi
Γ; ∆ ` F1 ∨ F2

∨Ri

Structural Rules

Γ; ∆ ` p
init p ∈ {∆,Γ}

Γ,Γ1; ∆ ` C . . . Γ,Γk; ∆ ` C
Γ; ∆,Γ1, . . . ,Γk ` C k

Fig. 2. System FLk
ew. In the init axiom, p is atomic. We note that rules ⊃LCC and ⊃LCG , as well as &L are admissible.

However, these rules are fundamental for showing that the proof search procedure terminates (see Section 4).

splitting the context have the same level of difficulty.

Remark 2.2 This debunks the myth that cut-free systems are necessarily well behaved.
Sometimes, choosing a cut formula can be as hard as applying a rule.

3 A focused, cut-free system for bounded contractions

We start by observing that, once a formula is contracted using the k rule, it can be contracted
an infinite number of times. Hence, we shall consider two different kind of contexts: the
unbounded context, where formulas can be weakened and contracted, and the bounded one,
where formulas can be only weakened.

The rules of the proposed cut-free system FLk
ew are presented in Figure 2. The connec-

tives ⊗,∨ are called positive, while ⊃,∧ are called negative. The sequents in FLk
ew have the

shape
Γ; ∆ ` C

where Γ is the unbounded context and ∆ is the bounded (or linear) one.
We now move in the direction of proposing a notion of focusing [And92] for systems

with bounded contractions. We start by analyzing the possible orderings of applications of
rules. The goal is to organize proofs in order to reduce the non determinism, as in [MS07].

Definition 3.1 Let S be a sequent with two formulas A and B such that the rule α (resp. β)
can be applied on A (resp. B). We say that a rule β permutes down α, notation β ↓ α, if
for any proof π of S starting with α followed immediately by β (reading proofs bottom up),
there exists a proof π′ of S where the two rules have been exchanged (considering also the
empty case). We write β l α when β ↓ α and α ↓ β.

5

Ciabattoni, Lellmann, Olarte and Pimentel

Given two sets of inference rules A and B, we say that A has weak permutability if,
for any two rules α, α′ ofA, α l α′. We say thatA has full permutability over B whenA
has weak permutability and, for any pair of rules (α, β) ∈ A × B, α ↓ β holds.

The following proposition identifies the classes of rules that have weak or full per-
mutability in FLk

ew.

Proposition 3.2 LetN be the set of inference rules {>R,⊥L,⊗L,⊃R,∧R,∨L,&L,∨LC ,⊃LCC

,⊃LCG} and P be the set of inference rules {⊗R,⊃L,⊃LC ,∧Li,∨Ri}. Then, (1) N has full
permutability over P and k, (2) k has full permutability over P and (3) P has weak per-
mutability.

Proof. The proof is straightforward by doing small step permutations or using well known
equivalences in intuitionistic logic. We will present some cases of counter-examples for
non-permutability. The list with all the cases can be found in the appendix of [CLOP16].

• ∧L 6↓ k:

A ⊃ D; Ak+1 ` Dk+1 ∨Ck+1

A ⊃ D; Ak+1 ∧ Bk+1 ` Dk+1 ∨Ck+1
∧L

B ⊃ C; Bk+1 ` Dk+1 ∨Ck+1

B ⊃ C; Ak+1 ∧ Bk+1 ` Dk+1 ∨Ck+1
∧L

Ak+1 ∧ Bk+1, A ⊃ D, B ⊃ C ` Dk+1 ∨Ck+1 k

• k 6↓ ∧R:

A; · ` Ak+1 A ∧ B; · ` Ak+1

A, A ∧ B ` Ak+1 k A ∧ B ` B ∧2L, init A ` A init

A, A ∧ B ` B ⊗ A
⊗R

A, A ∧ B ` Ak+1 ∧ (B ⊗ A)
∧R

�

We can hence separate the proof steps into two phases. In the negative phase all nega-
tive rules are applied eagerly until the left context has only atomic or negative formulas and
the succedent formula is positive or atomic. When this process terminates, we may possibly
apply k a number of times and the positive phase starts by choosing a negative formula on
the left or a positive one on the right. The focusing persists until a positive formula appears
on the left context or a negative one appears in the succedent, and we come back to the
negative phase.

This determines a focused system for FLk
ew, called FFLk

ew (see Figure 3). We separate
the left context of sequents in FFLk

ew in three: the set Γ will always denote the unbounded
context; ∆ is a linear context containing only negative or atomic formulas; and Θ is a gen-
eral linear context. We will differentiate focused and unfocused sequents by using different
arrow symbols: “⇒” for unfocused and “→” for focused. In this way, FFLk

ew contains three
types of sequents: Γ; ∆; Θ ⇒ G is an unfocused sequent; Γ; ∆ → [F] is a sequent focused
on the right; and Γ; ∆, [F]→ G is a sequent focused on the left.

The following result is a direct consequence of Proposition 3.2.

Theorem 3.3 The system FFLk
ew is sound and complete w.r.t. FLk

ew.

6

Ciabattoni, Lellmann, Olarte and Pimentel

Negative Phase

Γ; ∆; Θ,⊥ ⇒ C
⊥L

Γ; ∆; Θ⇒ >
>R

Γ; ∆; Θ, F,G ⇒ C
Γ; ∆; Θ, F ⊗G ⇒ C

⊗L
Γ; ∆; Θ, F ⇒ G

Γ; ∆; Θ⇒ F ⊃ G
⊃R

Γ; ∆; Θ⇒ F Γ; ∆; Θ⇒ G
Γ; ∆; Θ⇒ F ∧G

∧R
Γ; ∆; Θ, F ⇒ C Γ; ∆; Θ,G ⇒ C

Γ; ∆; Θ, F ∨G ⇒ C
∨L

Γ, F,G; ∆; Θ⇒ C
Γ, F & G; ∆; Θ⇒ C

&L & ∈ {∧,⊗}
Γ, F; ∆; Θ⇒ C Γ,G; ∆; Θ⇒ C

Γ, F ∨G; ∆; Θ⇒ C
∨LC

Γ,G; ∆; Θ⇒ C
Γ, F ⊃ G, F; ∆; Θ⇒ C

⊃LCC
Γ,G; ∆; Θ⇒ C

Γ, F ⊃ G,G; ∆; Θ⇒ C
⊃LCG

Positive Phase
Γ; ∆1 → [F] Γ; ∆2 → [G]

Γ; ∆1,∆2 → [F ⊗G]
⊗R

Γ; ∆1 → [F] Γ; ∆2, [G]→ C
Γ; ∆1,∆2, [F ⊃ G]→ C

⊃L
Γ; ∆, [Fi]→ C

Γ; ∆, [F1 ∧ F2]→ C
∧Li

Γ; ∆→ [Fi]
Γ; ∆→ [F1 ∨ F2]

∨Ri

Structural Rules
Γ,∆1; ∆; · ⇒ Pa . . . Γ,∆k; ∆; · ⇒ Pa

Γ; ∆,∆1, . . . ,∆k; · ⇒ Pa
k

Γ; ∆, [N]→ Pa
Γ; N,∆; · ⇒ Pa

Dl
Na,Γ; ∆, [Na]→ Pa

Na,Γ; ∆; · ⇒ Pa
Dlca

Γ; ∆→ [P]
Γ; ∆; · ⇒ P

Dr

Γ; ∆; P⇒ Pa
Γ; ∆, [P]→ Pa

Rl
Γ; ∆; · ⇒ N
Γ; ∆→ [N]

Rr
Γ; ∆,Na; Θ⇒ R
Γ; ∆; Θ,Na ⇒ R store

Γ; [An]→ An
Il

Γ; ∆→ [Ap]
Ir given Ap ∈ Γ ∪ ∆ and ∆ ⊆ {Ap}

Fig. 3. Focused system FFLk
ew allowing bounded contractions. Here Pa is positive or atomic, P is positive, N is negative, Na

is an implication or a negative atom, An a negative atom and Ap a positive atom.

4 Decidability and Complexity

The unfocused and focused systems above give rise to the seemingly first purely proof-
theoretic proof of decidability and complexity for FLk

ew (a proof of the finite model property
is in [GJ13]). Decidability in both systems follows from standard backwards proof search
with a history mechanism to avoid loops.

Theorem 4.1 Derivability of sequents in the systems FLk
ew and FFLk

ew is decidable.

Proof. By performing a standard backward proof search, storing every sequent encoun-
tered in the current branch of the attempted derivation in a history, i.e., a sequence of se-
quents, and only applying rules if none of their premises is in the history. Since all the rules
have the subformula property, the number of sequents possibly appearing in a derivation is
finite, and hence the proof search terminates. �

7

Ciabattoni, Lellmann, Olarte and Pimentel

The complexity bounds provided by the previous theorem are however far from optimal.
This is because, in the worst case, the procedure needs to visit every possible sequent on
a single branch, giving an exponential space bound on naive proof search. This can be
improved by considering forward instead of backwards proof search as follows.

Theorem 4.2 The problem of deciding whether a formula is a theorem of FLk
ew is in

EXPTIME.

Proof. All the rules of FLk
ew have the subformula property, hence only sequents containing

subformulae of the input formula can occur in a derivation of that formula. For an input
formula of size n the first component of such a sequent is a set of subformulae of the
input, the second component is a multiset containing w.l.o.g. at most k − 1 copies of each
subformula of the input (in case there are k copies of a formula we may apply the k-rule to
transfer all of them into the classical context), and the right hand side is a single subformula
of the input. So there are at most 2n·kn·n relevant sequents, each containing at most n+k·n+1
formulae, so of size at most n · (n+k ·n+1). To check derivability, we implement a forward
search procedure: given an input formula A construct the set SA of relevant sequents as
above. Then starting from the initial sequents in SA apply all possible rules to the already
constructed sequents and add the resulting sequents. After at most card(SA)-many steps
this reaches a fixpoint. Now check whether the sequent .; . ` A is among the constructed
ones. There is a fixed number of rules in FLk

ew, every such rule has at most k premises, and
computing the conclusion of such a rule can be done easily, thus each of the steps of the
construction can be done in time exponential in n. Since there are only exponentially many
such steps, the whole procedure runs in exponential time. �

While this gives an upper bound for the complexity of FLk
ew, a PSPACE lower bound

follows from the results in [HT11]. The exact complexity of FLk
ew still seems to be open.

5 Lazy Splitting

In what we have presented so far, proof theory machinery was used in order to present
a “good proof system” for bounded contraction, in the sense that it is cut free and it has
a notion of normal forms (via focusing). However, the proof systems proposed in the
previous sections are still far from being suitable for implementation.

In fact, once a negative phase finishes, one has to decide either to apply the k rule or a
positive rule. But this entails a huge problem for proof search: the logical context can be
split in an exponential number of ways due to the rules k, ⊗R,⊃L and ⊃LC . Observe that
the focusing strategy shows that if a sequent is provable and if the proof uses the k rule,
then you may apply it before the positive rules. But if this is not the case, then there will
be useless attempts of splitting the context, and this is extremely inefficient. Thus, a naive
implementation of FFLk

ew does not work even for simple sequents, as shown in Section 5.1.
In linear logic, lazy splitting systems have been proposed in order to minimize the non-

determinism during proof search (see e.g., [HM94,LP99,CHP00]). The idea is to separate
the linear context into two: the formulas that will/will not be used in a branch of a deriva-
tion. In this way, one avoids the splitting of contexts: a branch of a derivation goes up
with all the resources, consumes what is needed and then allows the “re-use” of the spare
resources in the other branch. Hence the name lazy, as one postpones the decision of split-
ting, thus improving proof search.

8

Ciabattoni, Lellmann, Olarte and Pimentel

Formally, in the system proposed in [LP99], the rule ⊗R becomes:

Γ; ·; ∆ :: E ` F / ∆′ :: E′ Γ; ∆′; E′ ` G / E′′

Γ; ∆; E ` F ⊗G / E′′
⊗R

where Γ represents the classical context and ∆ the linear one. Moreover, E is a multiset of
formulas representing an excess of resources (the input) that the sequent may return as an
output. The notation Ψ ` F / ∆ :: E means that, in order to prove F from the context Ψ,
the formulas in the list of multisets ∆ :: E were not used (excess). The distinction between
∆ (non-returnable) and E (returnable) is used to define the scope of the formulas. This can
be better understood with the analysis of the right rule for linear implication

Γ; ∆, F; E ` G /E′

Γ; ∆; E ` F −◦G /E′
−◦R

Observe that the scope of the formula F is the premise sequent. Hence, F cannot be re-
turned in the conclusion (via E′) and it must be placed into the non-returnable context ∆.

The same techniques can be applied in FLk
ew for the linear logic connectives, but the

rule k still needs to decide how to split the context. Hence, even for “simple” provable
sequents with few extra hypotheses (that may be weakened), a prover using focusing and
lazy splitting on linear connectives is still not practical as shown in Section 5.1.

In the following we will present a new and non-trivial extension of lazy splitting to
bounded contractions. More interestingly, we shall show that the lazy version of k can be
eagerly applied without loosing provability. Hence, the results in Proposition 3.2 (k has full
permutability over P) lead, in fact, to a perfect implementation strategy.

Informally, the idea is to separate the classical context into 3 contexts (that should be
thought as classical “wannabe” contexts), indicating the number of times that a formula was
used in a derivation: none, once or many. If a formula was not used at all in an application
of k, it is a returnable excess or output. If it was used exactly once, it is a non-returnable
excess, that is, it is linear: this formula will be copied to the other branches of k but it will
not be returned as an output. And if it was used 2 or more times, it is classical and it cannot
be used in the other branches of k. The laziness for bounded contractions thus comes in k
steps, where formulas are allowed to move from one context to a “more classical” one.

The rules for LFLk
ew, the lazy system for FLk

ew, are depicted in Figure 4 and explained
in the following.

Sequents in LFLk
ew have the shape

L ; ∆; E ` G / L′ ; E′

where G is a formula, E, E′ are lists of multisets of formulas, ∆ is a multiset of formulas
and L, L′ are (possibly empty) lists of triples of the form Γ ; Ω∆ :: ΩE ; N∆ :: NE , where
the subscripts ∆ and E refer to the returnable /non returnable part of the contexts. When
∆, E are not important, we simply write Ω,N instead of Ω∆ :: ΩE and N∆ :: NE . Moreover,
when Γ,Ω and N are not important we write [A] . 5

The context Γ ; Ω ; N is classical but each part obeys different rules. After the appli-
cation of the lazy version of k:

5 A useful mnemonic. We use capital letters to denote (Γ)lassical, used (Ω)nce, (N)ot used, (E)xcess formulas and (A)ll.

9

Ciabattoni, Lellmann, Olarte and Pimentel

• Γ contains all the formulas that have been used two or more times.
• The context Ω contains the formulas that were used only once.
• N contains all the formulas that have not been used, that is, the output.

The contexts ∆ and E follow the design principles for the lazy system for linear logic
in [LP99]. The next example clarifies better the use of the new contexts.

Example 5.1 Here we will consider the system LFL2
ew (that is, with k = 2). For proving

the sequent a2, b ` a3 ⊗ b, we start by applying the lazy version of the k rule:

π1

· ; · ; · :: · ; · ; a2, b :: · ; ·; · ` a3 ⊗ b / · ; · ; · :: Γ1 ; Ω1 ; N1 ; · Υ2

· ; · ; · ; a2, b; · ` a3 ⊗ b / · ; · ; · ; ·
k

As usual, the “/[A]; E” part (the output) is computed by rules in a top-down fashion.
Hence, Γ1,Ω1,N1 will be determined once π1 is finished. Since E and L are empty in the
conclusion, all the returned output will also be empty. Observe that, in the left premise,
we assume that the whole linear context {a2, b} is going to be used as part of the bounded
contraction (N context). The proof π1 continues as follows (omitting the “ · ; · ; · ::” part):

· ; · ; a2, b :: · ; ·; · ` a / · ; a :: · ; a, b :: · ; ·
init

π′1

· ; a :: · ; a, b :: · ; ·; · ` a2 ⊗ b / Γ1 ; Ω1 ; N1 ; ·

· ; · ; a2, b :: · ; ·; · ` a3 ⊗ b / Γ1 ; Ω1 ; N1 ; ·
⊗R

Note that, in the left derivation, one a is used in the initial axiom and hence it is
moved to the Ω context in the output. The other formulas a, b are set in the N context and
both Ω,N are passed to the right premise in the ⊗R rule – they are the excess.

Derivation π′1 proceeds as follows:

· ; a :: · ; a, b :: · ; ·; · ` a / a ; · ; a, b :: · ; ·
I

Ψ1 Ψ2

a ; · ; a, b :: · ; ·; · ` a ⊗ b / Γ1 ; Ω1 ; N1 ; ·
⊗R

· ; a :: · ; a, b :: · ; ·; · ` a2 ⊗ b / Γ1 ; Ω1 ; N1 ; ·
⊗R

where

Ψ1 = a :: · ; · ; a, b :: · ; ·; · ` a / a :: · ; · ; a, b :: · ; ·
I

Ψ2 = a :: · ; · ; a, b :: · ; ·; · ` b / a :: · ; b :: · ; a :: · ; ·
I

Now we know that Γ1 = {a},Ω1 = {b :: ·} and N1 = {a :: ·}.
Let’s come back to the right premise Υ2. Since the output of the Υ1 premise was

a :: · ; b :: · ; a :: · , the classical input for Υ2 will be · ; · ; a :: · and the linear input will

be {b :: ·}. Hence, Υ2 = · ; · ; a :: · ; b; · ` a3 ⊗ b / Γ2 ; Ω2 ; N2 ; ·. With a similar
derivation as the one just presented, it is easy to see that Γ2 = {a}, Ω2 = N2 = ∅. Therefore,
everything is consumed and the output of the rule k will be empty.

This mimics the following derivation in the system FL2
ew

a; b ` a3 ⊗ b a; b ` a3 ⊗ b
·; a2, b ` a3 ⊗ b

k

10

Ciabattoni, Lellmann, Olarte and Pimentel

where the a’s are split by the bounded contraction and b remains in the linear context.

As we could see, the system “counts” the number of times a formula was used during
a proof: none, once or several times. If the formula was not used at all (i.e., it remains in
the N context), then it will be placed in the classical context (N) of the next premise of
the k rule. If it was used once (Ω context), then it must be part of the linear context in
all premises. Finally, if it was used twice (or more), it will not be passed to the remaining
premises.

Now let us explain the other rules in the LFLk
ew system. The positive rules are similar

to those in [LP99]. For instance, the rule ⊗R uses both ∆ and E (∆ :: E) in order to prove
F. The formulas not used in the proof of F, i.e, ∆′ :: E′, are used in the proof of G. The
final output of the proof of F ⊗G is E′′ (since ∆′′ cannot be returned).

Consider now the classical context in ⊗R. The proof of F may move some formulas
in L producing L′ and, from L′ , the proof of G may also move some other formulas
producing L′′ . This “moving of formulas” is determined by the take procedure (Def. 5.2).

The negative rules ∧R and ∨L need some adjustments w.r.t. the system in [LP99] due to
the presence of weakening. Consider the following rule form [LP99]:

Γ; ∆; E ` F / E′ Γ; ∆; E ` G / E′

Γ; ∆; E ` F ∧G / E′

In the case of linear logic, the proof of F and G must output exactly the same excess of
formulas E′. Note that this is not the case in FLew since the rules internalize weakening. For
instance, the sequent a, b ` a ∧ b is provable and, while the proof of a outputs b, the proof
of b outputs a. Hence, what we need as output is the multiset intersection (`) of the outputs
of the two derivations. A similar situation happens with the classical context. For example,
in a proof of a ∧ a2 from the context · ; · ; a :: · , the proof of a outputs · ; a :: · ; · and the
proof of a2 outputs a ; · ; · . Then, the proof of a ∧ a2 outputs · ; a :: · ; · ˜̀ a :: · ; · ; · =

a :: · ; · ; · where ˜̀ chooses the left most position of a. Formally,

Definition 5.2 Let F be a formula, L be a classical context and E and ∆ be multi-
sets of formulas. Assume that F occurs either in L , E or ∆. If F occurs in ∆, then
take(F,∆, L ; E) = L ; E. If F does not occur in ∆, then take chooses one of the occur-
rences of F and produces L′ ; E′ as follows:

• If F is taken from E, then L′ = L and E′ = E \ {F}

• Let L = Lh :: Γ ; Ω ; N :: Lt where Lh and Lt are (possibly empty) lists of triples. If F
is taken from Γ ; Ω ; N , then E = E′ and we have three choices. If F is taken from Γ,
then L′ = L . If F is taken from Ω then L′ = Lh :: Γ ∪ {F} ; Ω \ {F} ; N :: Lt . Finally,

if F is taken from N, then L′ = Lh :: Γ ; Ω] {F} ; N \ {F} :: Lt . 6

Let [A1] = Γ1 ; Ω1 ; N1 and [A2] = Γ2 ; Ω2 ; N2 be classical contexts containing the
same multiset of formulas, where each formula F may occur at possibly different positions
(1 for N, 2 for Ω and 3 for Γ). The context [A3] = [A1] ˜̀ [A2] is obtained as follows.

(i) Start with [A3] = · ; · ; · .

6 We stress out that we always take/add a formula F from/to the context respecting the ∆, E contexts. Hence, for example,
if F ∈ N∆, then N \ {F} actually means N \ {F :: ·}.

11

Ciabattoni, Lellmann, Olarte and Pimentel

Negative Rules

L ; ∆,⊥; E ` C / L ; E
⊥L

L ; ∆; E ` > / L ; E
>R

L ; ∆, F,G; E ` C / L′ ; E′

L ; ∆, F ⊗G; E ` C / L′ ; E′
⊗L

L ; ∆, F; E ` G / L′ ; E′

L ; ∆; E ` F ⊃ G / L′ ; E′
⊃R

L ; ∆; E ` F / L1 ; E1 L ; ∆; E ` G / L2 ; E2

L ; ∆; E ` F ∧G / L1˜̀L2 ; E1 ` E2

∧R

L ; ∆, F; E ` C / L1 ; E1 L ; ∆,G; E ` C / L2 ; E2

L ; ∆, F ∨G; E ` C / L1˜̀L2 ; E1 ` E2

∨L

Positive Rules

L ; ·; ∆ :: E ` F / L′ ; ∆′ :: E′ L′ ; ·; ∆′ :: E′ ` G / L′′ ; ∆′′ :: E′′

L ; ∆; E ` F ⊗G / L′′ ; E′′
⊗R

L ; ·; ∆ :: E ` F / L′ ; ∆′ :: E′ L′ ; G; ∆′ :: E′ ` C / L′′ ; ∆′′ :: E′′

L ; ∆, F ⊃ G; E ` C / L′′ ; E′′
⊃L

L ; ∆, Fi; E ` C / L′ ; E′

L ; ∆, F1 ∧ F2; E ` C / L′ ; E′
∧Li

L ; ∆; E ` Fi / L′ ; E′

L ; ∆; E ` F1 ∨ F2 / L′ ; E′
∨Ri

Structural Rules
take(p,∆, L ; E) = L′ ; E′

L ; ∆; E ` p / L′ ; E′
init

L \ F ; ∆, F; E ` C / L′ ; E′

L ; ∆; E ` C / L′ ; E′
DL

L ; ∆, F; E ` C / L′ ; E′

L ; ∆; E, F ` C / L′ ; E′
DE

Υ1 Υ2 · · · Υk

L ; ∆; E ` C / Lk ; Ek
k

Υ1 = L :: · ; · ; ∆ :: E ; ·; · ` C / L1 :: Γ1 ; Ω∆ :: ΩE ; ∆1 :: E1 ; ·

Υi = Li−1 :: · ; · ; ∆i−1 :: Ei−1 ; Ω∆; ΩE ` C / Li :: Γi ; Ωi ; ∆i :: Ei ; Ωi
E , 2 ≤ i ≤ k

Fig. 4. Lazy-splitting LFLk
ew system. In the init axiom, p is atomic. Rules &L, ∨LC , ⊃LCC , ⊃LCG in Figure 2 apply also on

the Γ context. ` represents multiset intersection. The definitions of ˜̀ and take(F,∆, L ; E) are given in Definition 5.2. In
rule DL, L \ F means take(F, ·, L ; ·). Rule init assumes that p occurs either in ∆, L or E. In k, {∆, E} must be non-empty.

12

Ciabattoni, Lellmann, Olarte and Pimentel

(ii) Let F be a formula in [A1] and let n,m ∈ {1, 2, 3} be the left most positions of F in
[A1] and [A2] respectively.

(iii) Add F at position max(n,m) in [A3] .

(iv) Delete one occurrence of F at position n (resp. m) in [A1] (resp. [A2]).

(v) If [A1] , · ; · ; · , goto to (ii).

Given two lists of triples L and L′ of the same length and with each correspondent triple
containing the same multiset of formulas, we define L ˜̀ L′ by point-wise applying ˜̀ to
each correspondent triple.

Observe that the changes in the context L are governed by the initial rule, due to the
take procedure, as follows: if p occurs in ∆ (which is non returnable), p is taken from that
context and the input and output coincide; otherwise, p is removed from E or it is shifted
to the left in the L context.

Theorem 5.3 (Soundness and Completeness) The sequent ·; ∆ ` G is provable in FLk
ew if

and only if · ; · ; · ; ∆; · ` G is provable in LFLk
ew.

Proof. The proof follows by mutual induction on sequents. We will show here how to
mimic a proof of ·; ∆ ` G into LFLk

ew and vice-versa.
Starting from the sequent ·; ∆ ` G in FLk

ew, one applies negative rules until only k or
positive rules can be applied. These will match exactly the moves for applying negative
rules for proving · ; · ; · ; ∆; · ` G in LFLk

ew, since only the non returnable linear context is
considered.

Consider now that the rule k is applied (for the first time):

π1
∆1; ∆ ` G · · ·

πk
∆k; ∆ ` G

·; ∆,∆1, . . . ,∆k ` G k

We may assume, for every 1 ≤ i ≤ k and without loss of generality, that formulas in ∆i

(resp. ∆) were used two or more times (resp. at most once) in πi, since ∆ is linear (with
weakening). Moreover, if F ∈ ∆i was used at most once, it can be moved to ∆ (again, due
to weakening).

On mimicking π1, in order to have a proof π′1 of the sequent

· ; · ; ∆,∆1, . . . ,∆k :: · ; ·; · ` G / Γ1 ; Ω1 ; N1 ; ·

we have that: Γ1 = ∆1 since formulas in ∆1 were used two or more times, Ω1 are formulas
in ∆ used exactly once in π1, and N1 = ∆2, . . . ,∆k, (∆ −Ω1) :: ·, since those formulas were
never used in π1. Due to weakening, we may adapt π′1 so that Ω1 = ∆.

Following the same argument, we can mimic πi to a proof of the sequent

· ; · ; ∆i, . . . ,∆k :: · ; ∆; · ` G / Γi ; Ωi ; ∆i+1, . . . ,∆k :: · ; ·

Hence the output of · ; · ; · ; ∆,∆1, . . . ,∆k :: ·; · ` G will be · ; · ; · ; ·.
The positive rules are handled in the exact same way as in [LP99], so we will omit the

details.

13

Ciabattoni, Lellmann, Olarte and Pimentel

For the converse, let’s take a closer look at the (lazy) rule k

Υ1 Υ2 · · · Υk

L ; ∆; E ` C / Lk ; Ek
k

On trying to prove the formula C, we move the whole linear context ∆, E to the “clas-
sical wannabe” context L :: · ; · ; ∆ :: E . Some formulas in ∆, E are linearly consumed
(Ω∆,ΩE), some are classically consumed (Γ1) and some are not used at all (∆1, E1). We
now try to prove the same C with the same resources but the classical formulas in Γ1.

L :: · ; · ; ∆1 :: E1 ; Ω∆,ΩE; · ` C

This will consume formulas in Ω∆,ΩE ,∆
1, E1: some classically (Γ2), some linearly (Ω2)

and some will not be used at all (∆2, E2,Ω2
E , where Ω2

E = Ω∆,ΩE − Ωi). And so on. This
process mimics perfectly the application of the rule k in FLk

ew, where part of the linear
context becomes classical and it is not delivered to the other branches of derivation. �

In Appendix C of [CLOP16] we present some examples of derivations in both systems,
to illustrate better the use of contexts and rules.

5.1 Eager lazy k rule and implementation

We have implemented in Maude http://maude.cs.illinois.edu the system FFL2
ew

(for k = 2), FFL2
ew with lazy splitting for the linear logic connectives only (lazy-FL2

ew
system) and the system LFL2

ew in Figure 4. In this section, we report some experiments
on these systems. All the tests were performed on an iMac, 2.9 GHz Intel Core i5 with
8 GB of RAM running Maude 2.7. The source code and examples can be downloaded
from http://subsell.logic.at/flew. We stress out that, although the examples were
implemented for k = 2, the implementation for any k is a trivial adaptation of the systems
implemented so far.

Figure 5 summarizes the results of the tests. We tested the canonical examples for
cut-elimination as those described in Section 2. As expected, the lazy strategies improved
considerably the efficiency of the system. The advantages of using the lazy version of k can
be appreciated in the last entries of the table. In those experiments, we added into the con-
text some “useless” formulas, that can be weakened. It can be noted that the uncontrolled
use of k in the system lazy-FL2

ew affects considerable the performance of the solver.
Some engineering can be used in order to improve the proof search procedure. For

instance, the rule init in System LFLk
ew introduces a non-determinism (predicate taken).

As pointed out in Definition 5.2, we can eliminate some of the choices by taking the atom
p from the context ∆ that cannot be returned. If the atom is not in ∆, it should be taken
from the context Γ and the output coincides with the input. In other case, it must be taken
from the other contexts.

Other improvements can be also applied. For instance, it is easy to prove that the
following context transformations are safe and improve the search procedure (since they
reduce the number of formulas in the context):

• Γ ; Ω ; N, F, F { Γ ∪ {F} ; Ω ; N, F .
• Γ ; Ω ; N ; ∆, F, F; E { Γ, F ; Ω ; N ; ∆; E.

14

http://maude.cs.illinois.edu
http://subsell.logic.at/flew

Ciabattoni, Lellmann, Olarte and Pimentel

Sequent FFL2
ew lazy-FL2

ew LFL2
ew

p ⊃ ⊥, (p ⊃ q) ` (p ⊃ q)3 2ms 2ms 7 ms

r, p ⊃ r ⊃ q, p ⊃ q ` (p ⊃ q)3 47ms 18ms 8ms

r, p ⊃ r ⊃ q, (p ⊃ q)3 ⊃ s ` s 77ms 33ms 8ms

a, r, p ⊃ r ⊃ q, (p ⊃ q)3 ⊃ s ` s 4.2s 576ms 55ms

a, b, r, p ⊃ r ⊃ q, (p ⊃ q)3 ⊃ s ` s - 168s 55ms

Fig. 5. Tests of the systems FFLk
ew, lazy-FL2

ew (FFLk
ew + lazy rules for linear logic connectives) and LFFLk

ew (Figure 4). “-”
means more than 5 minutes.

• Γ, F ; Ω ; N ; ∆, F; E { Γ, F ; Ω ; N ; ∆; E.
• Γ, F ; Ω ; N ; ∆; E, F { Γ, F ; Ω ; N ; ∆; E.
• Γ, F, F ; Ω ; N ; ∆; E { Γ, F ; Ω ; N ; ∆; E.

More interestingly and actually quite surprising, Proposition 5.5 below shows a suffi-
cient condition for determining if an application of the rule k can be avoided. For that, we
introduce the system KLFLew that differs from LFLk

ew only in the rule k.

Definition 5.4 (System KLFLew) The system KLFLew shares with LFLk
ew all the proof

rules but k, that is substituted by the following rules

Υ1 · · · Υk ?

L ; ∆; E ` C / Lk ; Ek
k1

Υ1 ?

L ; ∆; E ` C / L1 ; E1
k2

where Υ1, . . . ,Υk are as in Figure 4 and ? (resp. ?) means that Γ1 , ∅ (resp. Γ1 = ∅).
Similar to LFLk

ew, {∆, E} must be non-empty.

Rule k1 is the same as k in the LFLk
ew system. Rule k2 detects whether the application

of k is “useless”. This happens when the formulas were used at most once and then, the Γ1

context remains empty. In that case, a proof of Υ1 is indeed a proof of the sequent in the
conclusion. For instance, consider a proof of the sequent a, b ` a ⊗ b where k (in LFLk

ew)
is not needed. If we (eagerly) apply k, we obtain the following (omitting the redundant
premises):

π1

· ; · ; a, b :: · ; ·; · ` a ⊗ b / · ; a, b :: · ; ·
π2

· ; · ; · ; a, b; · ` a ⊗ b / [L2] ; E2 . . .

[·] ; a, b; · ` a ⊗ b / [·] ; ·
k

Note that π1 (up to some minor syntactic conversions) is indeed the proof of the sequent
in the conclusion (which is the same as the ones on the other premises). Since π1 only uses
once the formulas a, b, they are returned in the Ω context and Γ remains empty. Then, we
have the following proof in KLFLew

π1

[·] :: · ; · ; a, b :: · ; ·; · ` a ⊗ b / [·] :: · ; a, b :: · ; ·

[·] ; a, b; · ` a ⊗ b / [·] ; ·
k2

that ignores the useless application of k.

Proposition 5.5 The sequent L ; ∆; E ` G is provable in LFLk
ew iff it is provable in

KLFLew.

15

Ciabattoni, Lellmann, Olarte and Pimentel

Proof. (⇒) If there is a proof of a sequent Υ in KLFLew, it is easy to produce a proof of
Υ in LFLk

ew by simply dropping the applications of k2 and substituting any instance of k1

with k in LFLk
ew.

(⇐) We proceed by induction on the length of the derivation of the sequent Υ in LFLk
ew.

We need to show that ki can be always introduced before any other connective (belonging
to the positive phase). Consider for instance the following derivation where k is not used in
πi – since k permutes down due to Proposition 3.2 (we omit some of the outputs):

π1

L ; ·; ∆ :: E ` G / L′ ; ∆′ :: E′
π2

L′ ; ·; ∆′ :: E′ ` G′

L ; ∆; E ` G ⊗G′
⊗R

In KLFLew, we have the following derivation (we also omit some of the outputs):

π′1

L :: · ; · ; ∆ :: E ; ·; · ` G

π′2

L′ :: · ; ∆1 :: E1 ; ∆2 :: E2 ; ·; · ` G′

L :: · ; · ; ∆ :: E ; ·; · ` G ⊗G′
⊗R

L ; ∆; E ` G ⊗G′
k2

Derivations π′1 and π′2 can be easily built from π1 and π2 (up to some simple syntactic
conversions). We note that ∆1 ∪ ∆2 = ∆ and similarly for E. The interesting part is that the
output of the derivation on the left must be L′ ; ∆ :: E since none of the formulas in ∆, E
was moved into the Γ contexts. This justifies the use of k2. �

6 Conclusion and future work

In this work we introduced focused proof systems FFLk
ew (k > 1) for Full Lambek Calculus

with exchange and weakening extended with bounded contractions. The system was used
to show that the validity problem is in EXPTIME. Although, proof theoretically speaking,
these are satisfactory results, they do not lead to good implementation strategies.

We then proposed a new and non-trivial extension of lazy splitting to bounded contrac-
tions, showing soundness and completeness of the resulting systems LFLk

ew. This notion
of laziness for bounded contractions is crucial for implementing good provers for all the
logics considered in this paper.

There are a number of ways of continuing this work. The first goal is to determine the
exact complexity of FLew plus bounded contractions. That is, knowing that checking va-
lidity in such systems is PSPACE-hard [HT11], Theorem 4.2 implies that such complexity
can be either PSPACE-complete or EXPTIME-complete.

Also, all the results presented in this paper strongly rely on the fact that the base logical
system allows weakening. Without it, the situation is more complicated. For example, there
is no more a clear separation between formulas behaving classically or linearly, and hence
the notion of lazy splitting has to be completely reformulated.

We are currently working on implementing the system KLFLew (Definition 5.4) (a pro-
totypical version can be found at http://subsell.logic.at/flew). The main chal-
lenge is guaranteeing termination (note that one implication on the Γ context may generate
a loop). The implementation of the system in Figure 4 guarantees termination by keeping

16

http://subsell.logic.at/flew

Ciabattoni, Lellmann, Olarte and Pimentel

the history of sequents and detecting loops (see Theorem 4.1). Loop detection in KLFLew

is harder: after applying −◦L, some formulas can be moved into the linear context and then,
the lazy version of k can be eagerly applied again. Hence, the sequents in the history are
not exactly the same since the list of [A] contexts grows after applying k. We can rely
on Theorem 4.2 to bound the size of such list. However, we believe that something better
can be done: if a new [A] context is added, and it shares with the previous ones the same
formulas in the Ω and N contexts, then a loop is detected.

The bounded contraction rules are a proper subset of the sequent rules that can be
extracted from the Hilbert axioms in the class N2 in the hierarchy of [CGT08] (see
https://www.logic.at/tinc/webaxiomcalc/axiomcalc.html for an implementa-
tion of this algorithm). A great step forward would be to transform all sequent calculi for
substructural logics generated by the algorithm in [CGT08] into efficient automatic provers.

References
[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and Computation,

2(3):297–347, 1992.

[CGT08] Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. From axioms to analytic rules in nonclassical logics.
In 23th Symp. on Logic in Computer Science, pages 229–240. IEEE Computer Society Press, 2008.

[CHP00] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource management for linear logic proof
search. Theoretical Computer Science, 232(1-2):133–163, 2000.

[CLOP16] Agata Ciabattoni, Björn Lellmann, Carlos Olarte, and Elaine Pimentel. From cut-free calculi to automated
deduction: the case of bounded contraction (technical report), 2016. Available on authors’ web pages.

[Dyc92] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J. of Symbolic Logic, 57(3):795–807,
September 1992.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[GJ13] N. Galatos and P. Jipsen. Residuated frames with applications to decidability. Transactions of the AMS, 365(3),
2013.

[GJKO07] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: an algebraic glimpse at substructural logics.
Elsevier, 2007.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic. Information and
Computation, 110(2):327–365, 1994.

[HOS94] R. Hori, H. Ono, and H. Schellinx. Extending intuitionistic linear logic with knotted structural rules. Notre Dame
Journal of Formal Logic, 35(2):219–242, 1994.

[HT11] Rostislav Horcik and Kazushige Terui. Disjunction property and complexity of substructural logics. Theoretical
Computer Science, 412:3992–4006, 2011.

[LP99] Pablo López and Ernesto Pimentel. Resource management in linear logic search revisited. In Harald
Ganzinger, David A. McAllester, and Andrei Voronkov, editors, Logic Programming and Automated Reasoning,
6th International Conference, LPAR’99, Tbilisi, Georgia, September 6-10, 1999, Proceedings, volume 1705 of
Lecture Notes in Computer Science, pages 304–319. Springer, 1999.

[MS07] Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular proof of focalization in linear logic.
In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume 4646 of LNCS, pages
405–419. Springer, 2007.

[OT99] M. Okada and K. Terui. The finite model property for various fragments of intuitionistic linear logic. J. Symbolic
Logic, 64(2):790–802, 1999.

[Pri96] Andreja Prijatelj. Bounded contraction and gentzen-style formulation of lukasiewicz logics. Studia Logica,
57(2/3):437–456, 1996.

17

https://www.logic.at/tinc/webaxiomcalc/axiomcalc.html

	Introduction
	FLew with bounded contraction
	A focused, cut-free system for bounded contractions
	Decidability and Complexity
	Lazy Splitting
	Eager lazy k rule and implementation

	Conclusion and future work
	References

