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Abstract. Density elimination by substitutions is introduced as a uniform method
for removing applications of the Takeuti-Titani density rule from proofs in first-
order hypersequent calculi. For a large class of calculi, density elimination by this
method is guaranteed by known sufficient conditions for cut-elimination. More-
over, adding the density rule to any axiomatic extension of a simple first-order
logic gives a logic that is rational complete; i.e., complete with respect to lin-
early and densely ordered algebras: a precursor to showing that it is a fuzzy logic
(complete for algebras with a real unit interval lattice reduct). Hence the suffi-
cient conditions for cut-elimination guarantee rational completeness for a large
class of first-order substructural logics.

1 Introduction

Elimination of the cut-rule is a fundamental topic in proof theory, corresponding to
the removal of lemmas in proofs. However, the addition and subsequent elimination of
other rules can also be of considerable interest. In this paper we consider one such rule
of importance in Fuzzy Logic: the so-called “density rule” of Takeuti and Titani [14]:

T ` (A → p) ∨ (p → B) ∨ C

T ` (A → B) ∨ C
(density)

where p is a propositional variable not occurring in T , A, B, or C. Ignoring T and
C, the negation of the conclusion may (roughly) be interpreted as “A > B” and the
negation of the premise as “for some p: A > p and p > B”. That is, between every two
elements there exists another element. Note that adding this rule to any axiomatization
of Classical Logic leads to inconsistency (e.g. take A to be > and B to be ⊥).

The density rule was used by Takeuti and Titani to axiomatize Intuitionistic Fuzzy
Logic [14], better known as first-order Gödel logic, one of the main formalizations
of Fuzzy Logic [8]. Alternative axiomatizations by Horn and Takano [13] show that
(density) is not required; giving a kind of “semantic elimination” of the rule. Baaz
and Zach [2] have also provided a syntactic elimination of (density) using a proof
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system for first-order Gödel logic in the framework of hypersequents, a generalization
of Gentzen sequents introduced by Avron [1]. This elimination procedure follows the
spirit of Gentzen’s cut-elimination method, proceeding by induction on the height of a
proof of the premise and shifting applications of the rule upwards.

In [10], Metcalfe and Montagna recognized that these two steps - adding and elim-
inating the density rule - provide a general method for establishing the so-called “stan-
dard completeness” of t-norm3 based (and related) fuzzy logics: that is, completeness
of axiomatic systems with respect to algebras whose lattice reduct is the real unit in-
terval [0, 1]. In particular, it was shown that any axiomatic extension of the elemen-
tary propositional fuzzy logic UL extended with (density) is complete with respect
to corresponding linearly and densely ordered algebras. This constitutes the so-called
“rational completeness” step of the proof. Standard completeness may then be obtained
in many cases (but not in general) by means of the Dedekind-MacNeille completion. It
was also shown in [10] that for particular propositional logics possessing a suitable hy-
persequent calculus, density elimination can be established (Gentzen-style, following
[2]) thereby giving standard completeness for the original logic without density. This
general approach is in contrast to more logic-specific “semantic” techniques for proving
standard completeness [8, 9, 6, 11].

The contribution of this paper is in two parts. First, we introduce a new general
method for density elimination. In this approach, similar to normalization for natu-
ral deduction systems, applications of the density rule are removed by making suit-
able substitutions for the new propositional variables. This avoids the combinatorial
difficulties of the Gentzen-style proofs in [2, 10]. Applying this method to first-order
single-conclusion hypersequent calculi with weakening rules, we are able to show that
the syntactic conditions defined in [3] for cut-elimination also guarantee density elim-
ination. In the second part of the paper we show that adding the density rule to any
axiomatic extension of the first-order version of UL, gives a logic that is complete with
respect to linearly and densely ordered algebras. Combining the two parts we obtain
rational completeness for a wide class of first-order fuzzy logics with weakening (see
[5] for details). These include the first-order versions of (the logic of left-continuous
t-norms) Monoidal t-norm based logic MTL [7] (proved standard complete in [11] by
a different method) and its extensions SMTL [6] and CnMTL (with n ≥ 2) [4].

2 (Hyper)Sequent Calculi

We consider formulae built over a vocabulary V consisting of (countably many): (term)
variables x, y, z, . . ., for each n ≥ 0, constants c, d, . . ., n-ary predicate symbols, as
well as m-ary connectives ?1, ?2, . . . for each m ≥ 0 and the quantifiers ∀ and ∃. Terms
are defined in the usual way. A formula (in the vocabulary V) is either an atomic formula
or a compound formula of the form ?i(A) orQxA with ?i an m-ary connective, which
connect formulae A ≡ A1, . . . , An and Q ∈ {∀,∃}. For convenience we call nullary
predicate symbols, propositional variables, denoted by p, q, . . ..

We indicate with Γ,∆,Π, Σ, . . . (possibly empty) multisets of formulae. To spec-
ify inference rules we use meta-variables X, Y, Z standing for arbitrary formulae and
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Θ, Ξ,Φ, Ψ, Υ, . . . standing for (possibly empty) multisets of meta-variables. When λ ≥
0, Γλ (resp. Θλ) denotes Γ, . . . , Γ (resp. Θ, . . . , Θ), λ times. A (meta)sequent Γ ⇒ ∆
(Θ ⇒ Ξ), where Γ (Θ) is said to be antecedent and ∆ (Ξ) consequent, is single-
conclusion if ∆ (Ξ) contains at most one formula (meta-variable). A sequent calculus
is single-conclusion if all its sequents are single-conclusion.

Definition 1. We call any propositional single-conclusion sequent calculus LL sim-
ple whenever LL consists of the identity axiom of the form X ⇒ X , together with:
the (multiplicative version of the) cut rule (CUT ), structural rules {(ri)}i∈Λ0 and
for each logical connective ?, left logical rules {(?, l)j}j∈Λ1 and right logical rules
{(?, r)k}k∈Λ2 (Λ0, Λ1, Λ2 can be empty):

Θ ⇒ X Θ′, X ⇒ Ξ

Θ, Θ′ ⇒ Ξ
(CUT )

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θ ⇒ Ξ
(ri)

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θ, ?(X) ⇒ Ξ
(?, l)j

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θ ⇒ ?(X)
(?, r)k

In the rules (ri), (?, l)j , and (?, r)k, n ≥ 0 and the meta-variables in Θ (called left
context meta-variables), those in Ξ (called right context meta-variables), and the meta-
variables in X ≡ X1, . . . , Xm, m ≥ 0 (called active meta-variables) are mutually
disjoint. In addition, the structural (and logical) rules satisfy the following condition:
(∗) Any meta-variable in Υ1, . . . , Υn is a left context meta-variable (or an active meta-
variable), and any meta-variable in Ψ1, . . . , Ψn is a right context meta-variable (or an
active meta-variable).

As usual, an instance of a logical or structural rule is obtained by substituting arbitrary
formulae for meta-variables. In an instance of a logical or structural rule, the formulae
replacing context meta-variables (active meta-variables, respectively) are called context
formulae (active formulae, respectively) and formulae of the form ?(A) as well as the
formulae replacing X in identity axioms are called principal formulae. The two oc-
currences of the formula instantiating X in (CUT ) are called cut formulae. Proofs (or
derivations) are defined in the usual way.

Definition 2. A w-simple calculus is a simple sequent calculus containing the weak-
ening rules (w, l) and (w, r) of Fig. 1. A first-order (w-)simple sequent calculus is a
(w-)simple sequent calculus extended with the rules for quantifiers in Gentzen’s calcu-
lus LJ for intuitionistic logic.

Hypersequent calculi arise by extending Gentzen calculi to refer to many (a multiset of)
sequents, instead of just one. Introduced by Avron in [1], they are particularly suitable
for dealing with logics with the linearity axiom (lin) (A→ B)∨ (B → A), prominent
examples being t-norm based fuzzy logics [8].

Definition 3. A hypersequent is a multiset S1 | . . . | Sn where each Si for i = 1 . . . n
is a sequent, called a component of the hypersequent. A hypersequent is called single-
conclusion if all its components are single-conclusion.

We will assume from now on that we deal only with single-conclusion (hyper)sequent
calculi. Like sequent calculi, hypersequent calculi consist of initial hypersequents, log-
ical rules, and structural rules, where we write rules using meta-sequents and a variable



X ⇒ X
(ID)

Θ,⊥ ⇒ Ξ
(⊥)

Θ ⇒ X Φ, X ⇒ Ξ

Θ, Φ ⇒ Ξ
(CUT )

Θ ⇒ Ξ
Θ, X ⇒ Ξ

(w, l)
Θ ⇒

Θ ⇒ X
(w, r)

Θ, X, Y ⇒ Ξ

Θ, X � Y ⇒ Ξ
(�, l)

Θ ⇒ X Θ′ ⇒ Y

Θ, Θ′ ⇒ X � Y
(�, r)

Θ, Xi ⇒ Ξ

Θ, X1 �X2 ⇒ Ξ
(∧, l)i=1,2

Θ ⇒ X Θ ⇒ Y
Θ ⇒ X ∧ Y

(∧, r)

Θ, Y ⇒ Ξ Θ′ ⇒ X

Θ, Θ′, X → Y ⇒ Ξ
(→, l)

Θ, X ⇒ Y

Θ ⇒ X → Y
(→, r)

Θ, X ⇒ Ξ Θ, Y ⇒ Ξ

Θ, X ∨ Y ⇒ Ξ
(∨, l)

Θ ⇒ Xi

Θ ⇒ X1 ∨X2
(∨, r)i=1,2

Fig. 1: The sequent calculus FLew.

G (with an instance G) standing for an arbitrary hypersequent. Logical rules for connec-
tives are then the same as those in sequent calculi, except that a “side hypersequent” may
occur, denoted by G. Structural rules are divided into two categories. Internal rules deal
with formulae within sequents as in sequent calculi. External rules manipulate whole
sequents. For example, external weakening and contraction rules (EW ) and (EC) add
and contract components respectively:

G
G | Θ ⇒ Ξ

(EW )
G | Θ ⇒ Ξ | Θ ⇒ Ξ

G | Θ ⇒ Ξ
(EC)

while the key rule to deal with the axiom (lin) is Avron’s communication rule (COM)
which permits interaction between sequents:

G | Θ, Θ′ ⇒ Ξ G | Θ1, Θ
′
1 ⇒ Ξ ′

G | Θ, Θ1 ⇒ Ξ | Θ′, Θ′
1 ⇒ Ξ ′ (COM)

For a sequent rule with premises S1 . . . Sn and conclusion S, its hypersequent version
is the rule with premises G | S1 . . .G | Sn and conclusion G | S. E.g., the hypersequent
version of the quantifier rules (∃, l) and (∀, r) are:

G | Θ ⇒ Y (a)

G | Θ ⇒ (∀x)Y (x)
(∀, r)

G | Y (a), Θ ⇒ Ξ

G | (∃x)Y (x), Θ ⇒ Ξ
(∃, l)

where the eigenvariable condition (on the rules’ instances) applies to the whole hyper-
sequent conclusions of the rules.

Definition 4. Let LL be any (first-order) w-simple sequent calculus. HLC
L , the hyper-

sequent version of LL extended with (COM), consists of the hypersequent versions of
the axioms and rules of LL plus (EC), (EW ), and (COM).



Example 1. Let ∀FLew be the first-order multiset version of the Full Lambek calculus
with exchange and weakening [12] (see Fig. 1), roughly speaking a calculus for first-
order intuitionistic logic without contraction with an internalized exchange rule. We
illustrate the use of (COM) with a proof of (lin) in H∀FLC

ew, a hypersequent calculus
for the first-order version of the logic of left-continuous t-norms MTL [7, 11]:

A ⇒ A
(ID)

B ⇒ B
(ID)

A ⇒ B | B ⇒ A
(COM)

⇒ A → B | ⇒ B → A
(→, r)× 2

⇒ (A → B) ∨ (B → A) | ⇒ (A → B) ∨ (B → A)
(∨, r)× 2

⇒ (A → B) ∨ (B → A)
(EC)

3 Criteria for Cut-Elimination

Syntactic criteria for the preservation of cut-elimination when a sequent calculus LL

is “lifted” to the hypersequent calculus HLC
L were introduced in [3]. The criteria in-

tuitively say that (a) any application of (CUT ) can be shifted upwards over each
premise’s rule (i.e. rules are substitutive) and (b) each (CUT ) in which the cut formula
is principal in both premises can be replaced by applications of (CUT ) over smaller
cut-formulae (i.e. logical rules are reductive).

Definition 5. Let LL be a simple sequent calculus. We call its logical rules {(?, r)k}k∈Λ

and {(?, l)l}l∈Λ′ for introducing a logical connective ? reductive in LL if either Λ or
Λ′ is empty, or for any k ∈ Λ, l ∈ Λ′, and instances :

Γ1 ⇒ ∆1 · · · Γn ⇒ ∆n

Σ ⇒ ?(A1, . . . , Ap)
(?, r)k

Γ ′
1 ⇒ ∆′

1 · · · Γ ′
m ⇒ ∆′

m

Σ′, ?(A1, . . . , Ap) ⇒ Π
(?, l)l

the sequent Σ, Σ′ ⇒ Π is derivable from {Γi ⇒ ∆i}1≤i≤n and {Γ ′i ⇒ ∆′
i}1≤i≤m

using only (CUT ) with cut formulae in {A1, . . . , Ap} and the structural rules of LL.

Example 2. The logical rules for the connectives � (multiplicative ”and”), ∧ (additive
”and”), ∨, and→ in the calculus FLew (see Fig. 1) are reductive.

Let S be a sequent and A a formula; we define:

[S ←↩rA (Σ, A⇒ Π)] = {Γ,Σ ⇒ Π | S ≡ Γ ⇒ A}
[S ←↩lA (Σ ⇒ A)] = {Γ,Σλ ⇒ ∆ | S ≡ Γ,Aλ ⇒ ∆}

Definition 6. Let LL be a (first-order) simple sequent calculus. A rule (r) is said to be
substitutive in LL if for each instance of (r) with premises S1, . . . , Sn and conclusion
S0 the following condition holds:

(*) for any c ∈ {r, l}, context formula A (right or left context formula, depending on
c) and single-conclusion sequent S′ (which does not contain any eigenvariable of
(r)), every U ∈ [S0 ←↩cA S′] has a derivation from [S1 ←↩cA S′] . . . [Sn ←↩cA S′]
using only the structural rules of LL and (r).



Example 3. All the rules of the calculus ∀FLew (see Fig. 1 for FLew) are substitutive
in ∀FLew, as are, e.g. the following forms of weak contraction (n ≥ 2):

Θ, X, X ⇒
Θ, X ⇒ (wc)

Θ, Ψn
1 ⇒ Ξ . . . Θ, Ψn

n−1 ⇒ Ξ

Θ, Ψ1, . . . , Ψn−1 ⇒ Ξ
(nc)

Theorem 1 ([3]). Let LL be a (first-order) simple calculus in which (a) logical rules
are reductive and (b) rules are substitutive, then HLC

L admits cut-elimination.

4 Density Elimination by Substitutions

Instances of the density rule for hypersequent calculi are of the form:

G | Σ, p ⇒ ∆ | Γ ⇒ p

G | Σ, Γ ⇒ ∆
(D)

where p is a propositional variable not occurring in Σ, Γ,∆, or G. We show here that
the conditions given above for cut elimination also guarantee density elimination for
the hypersequent version of any w-simple sequent calculus extended with (COM) and
(D). We introduce for this purpose density elimination by substitutions: a density elim-
ination method that, similarly to normalization for natural deduction systems, removes
applications of (D) by making suitable substitutions in the proof for the introduced vari-
ables. Proceeding “by substitutions” instead of shifting applications of (D) upwards
in the proof (as e.g. in [2, 10]) avoids the need for more complicated combinatorial
(“Gentzen’s mix”-style) rules as induction hypotheses.

First some notation. Let HL be any (hyper)sequent calculus. d, S1, . . . , Sn `HL S
stands for a derivation d in HL of the (hyper)sequent S from the assumptions S1, . . . , Sn.
Let H be a hypersequent. H[Σ/pl ,Γ⇒∆ /pr ] is the hypersequent obtained by replac-
ing in H all the left occurrences of p with Σ and all the components Π ⇒ p with
Π,Γ ⇒ ∆. d(s) and H(s) denote the results of substituting the term s for all free oc-
currences of x in the derivation d(x) and in the (hyper)sequent H(x), respectively. The
length |d| of a derivation d in HL is (the maximal number of inference rules occurring
on any branch of d) + 1.

We require the following crucial lemma (proved by easy inductions on the lengths
of derivations) asserting the “substitutivity” of calculi with substitutive rules:

Lemma 1. Let LL be a (first-order) simple sequent calculus with substitutive rules:

(1) If d1(x) `HLC
L

H(x), then d1(y) `HLC
L

H(y) where y does not occur in d1(x).
(2) If `HLC

L
H , then `HLC

L
H[A/pl ,⇒A /pr ] for any formula A and propositional

variable p.

Our density elimination method proceeds by removing applications of (D) which are
topmost in the proof. Let, e.g. d be:

··· d
′

G | Γ ⇒ p | Σ, p ⇒ ∆
(D)

G | Γ, Σ ⇒ ∆



a subderivation ending in such an application of (D). The idea is to replace the occur-
rences of p in d in an “asymmetric” way, according to whether p occurs in the antecedent
or consequent of a sequent (component of the hypersequent). Roughly speaking, in d
each sequent Π, p ⇒ Π ′ is replaced by Π,Γ ⇒ Π ′ and each Π ⇒ p by Π,Σ ⇒ ∆.
(Note that condition (∗) in Definition 1 prevents p’s from jumping from one side of a
sequent in a rule’s premise, to the other in the rule’s conclusion.) The resulting tree is
then transformed into a density-free derivation by replacing:

(a) the application of (D) above by (EC).
(b) each application of a substitutive rule by suitable inferences.
(c) each subproof ending in an application of (COM) and containing one occurrence

of the axiom p⇒ p, as e.g. in
··· d1

G | Γ ′, Π ⇒ Π ′ G | Γ, Σ ⇒ ∆
(COM)

G | Γ, Π ⇒ Π ′ | Γ ′, Σ ⇒ ∆

by a suitable derivation of the form
··· d1

G | Γ ′, Π ⇒ Π ′

···
G | Γ, Π ⇒ Π ′ | Γ ′, Σ ⇒ ∆

Theorem 2 (Density Elimination). Let LL be a (first-order) w-simple sequent calcu-
lus whose rules are reductive and substitutive. If LL includes the rules (�, l) and (�, r)
in Fig. 1 then HLC

L plus (D) admits density elimination.

Proof. W.l.o.g. consider the above (sub)derivation d in HLC
L plus (D) ending in a

topmost application of (D). By Theorem 1 we can assume that d is cut-free. We first
show that for each hypersequent H in d′ in which no component has the form Π, pj ⇒
p, with j ≥ 1, one can find d′H such that

d′H `HLC
L

G | H[Γ /pl ,Σ⇒∆ /pr ]

The proof proceeds by induction on the length of the cut-free derivation dH of H in
HLC

L . We distinguish cases according to the last rule (r) applied in dH .

– If |dH | = 0, i.e. H is G′ | B ⇒ B, then the claim holds by applying (EW ).
– If (r) is (EC) or (EW ), then the claim follows by the i.h. and applying (r).
– Let (r) be a rule other than (EC), (EW ), or (COM), w.l.o.g. of the form:

G′ | S1 . . . G′ | Sm

G′ | S

Since G′ | S does not contain any component of the form Π, pj ⇒ p, with j ≥ 1,
by condition (∗) in Def. 1 and the absence of cuts, no G′ | Si (with i ∈ {1, . . . ,m})
contains any Π, pj ⇒ p, with j ≥ 1. Hence by the i.h.:

`HLC
L

G | (G′ | S1)[Γ /pl ,Σ⇒∆ /pr ] . . . `HLC
L

G | (G′ | Sm)[Γ /pl ,Σ⇒∆ /pr ]



Since the rules of LL are substitutive, using Lemma 1.(1) to take care of renaming
variables, there exists a derivation for:

S1[Γ /pl ,Σ⇒∆ /pr ], . . . , Sm[Γ /pl ,Σ⇒∆ /pr ] `LL
S[Γ /pl ,Σ⇒∆ /pr ]

that uses only the structural rules of LL and (possibly) (r). The claim then follows
by (EW ), lifting the above derivation from LL to HLL.

– If (r) is (COM), two cases can occur: (a) none of its premises contains any
Π, pj ⇒ p, with j ≥ 1 or (b) one of the premises does. For (a), the claim holds by
applying the i.h. followed by an application of (COM). As an example, consider
the application of (COM):

··· d1

G′ | Γ ′, Π ⇒ p

··· d2

G′ | Σ′, pk, Π ′ ⇒ B
(COM)

G′ | Γ ′, Σ′, pk ⇒ B |Π, Π ′ ⇒ p

Let G∗ = G′[Γ /pl ,Σ⇒∆ /pr ]. By the i.h.:

`HLC
L

G | G∗ | Γ ′,Π, Σ ⇒ ∆ and `HLC
L

G | G∗ | Σ′, Γ k,Π ′ ⇒ B

Hence by (COM), `HLC
L

G | G∗ | Γ ′, Σ′, Γ k ⇒ B | Π,Π ′, Σ ⇒ ∆.
For (b), we have an application of (COM):

G′ | Γ ′, Π, pl ⇒ p G′ | Σ′, p(k−l), Π ′ ⇒ B
(COM)

G′ | Γ ′, Σ′, pk ⇒ B |Π, Π ′ ⇒ p

Letting again G∗ = G′[Γ /pl ,Σ⇒∆ /pr ], by the i.h.:

d1 `HLC
L

G | G∗ | Σ′, Γ (k−l),Π ′ ⇒ B.

Our aim is to show `HLC
L

G | G∗ | Γ ′, Σ′, Γ k ⇒ B | Π,Π ′, Σ ⇒ ∆. If Π ′ = ∅,
then the result follows by (w, l) so assume that Π ′ = A1, . . . , Am. Let d′1 be the
derivation obtained by m applications of (�, l) to the end-hypersequent of d1, i.e.

··· d1

G | G∗ | Σ′, Γ (k−l), Π ′ ⇒ B
(�,l)×m

G | G∗ | Σ′, Γ (k−l), A1 � . . .�Am ⇒ B

Denote (A1�. . .�Am) by�Π ′. Consider the proof d′ above ending in the premise
G | Γ ⇒ p | Σ, p ⇒ ∆ of the (D) rule. By Lemma 1.(2), d2 `HLC

L
(G | Γ ⇒

p | Σ, p⇒ ∆)[�Π′
/pl ,�Π′

/pr ] for some derivation d2, that is:

d2 `HLC
L

G | Γ ⇒ �Π ′ | Σ,�Π ′ ⇒ ∆.

The desired derivation is then obtained by applying (CUT) to the easily derived
sequent Π ′ ⇒ �Π ′ and the end sequent of the following derivation:

··· d2

G | Γ ⇒ �Π ′ | Σ,�Π ′ ⇒ ∆
(EW)

G | G∗ | Γ ⇒ �Π ′ | Σ,�Π ′ ⇒ ∆

··· d
′
1

G | G∗ | Σ′, Γ (k−l),�Π ′ ⇒ B
(CUT)

G | G∗ | Σ′, Γ (k−l), Γ ⇒ B | Σ,�Π ′ ⇒ ∆



with subsequent applications of (w, l).

Finally, let H be the premise G | Γ ⇒ p | Σ, p ⇒ ∆ of the (D) rule in d. We have
shown that `HLC

L
G | G | Γ,Σ ⇒ ∆ | Γ,Σ ⇒ ∆. (Note that G[Γ /pl ,Σ⇒∆ /pr ] = G).

The desired proof of G | Γ,Σ ⇒ ∆ follows by multiple applications of (EC). ut

Theorem 3. Let LL be a (first-order) w-simple sequent calculus whose rules are reduc-
tive and substitutive. HLC

L plus (D) admits cut elimination and density elimination.

Proof. Let ? be a new 2-ary connective. Let L′L be LL extended with the following
(reductive and substitutive) rules:

Θ, X, Y ⇒ Ξ

Θ, X ? Y ⇒ Ξ
(?, l)

Θ ⇒ Y Θ′ ⇒ X

Θ, Θ′ ⇒ X ? Y
(?, r)

HL′CL admits cut elimination by Theorem 1. Also, as ? has the rules of �, HL′CL plus
(D) admits density elimination by Theorem 2. Then since HL′CL has the subformula
property, HLC

L plus (D) admits cut elimination and density elimination. ut

5 Axiomatizations

We use density elimination to establish so-called “rational completeness” for a wide
class of first-order substructural logics described below. Our vocabulary is assumed to
include the binary connectives ∧, ∨, �, →; the constants f , t, >, ⊥; and the defined
connective A ↔ B =def (A → B) ∧ (B → A). A logic L is treated as a Hilbert
system, where T `L A if there exists a derivation (in the usual sense) of a formula A
from a set of formulae T in L. We begin by recalling the (propositional) Uninorm logic
UL of [10] (an axiomatization for FLe plus (L5)), given by the axiom schema:

(L1) X → X (L8) X → (X ∨ Y )
(L2) (X → Y ) → ((Y → Z) → (X → Z)) (L9) Y → (X ∨ Y )
(L3) (X → (Y → Z)) → (Y → (X → Z)) (L10) (X ∧ Y ) → Y
(L4) ((X � Y ) → Z) ↔ (X → (Y → Z)) (L11) (X ∧ Y ) → X
(L5) ((X → Y ) ∧ t) ∨ ((Y → X) ∧ t) (L12) X ↔ (t → X)
(L6) ((X → Z) ∧ (Y → Z)) → ((X ∨ Y ) → Z) (L13) ⊥ → X
(L7) ((X → Y ) ∧ (X → Z)) → (X → (Y ∧ Z)) (L14) X → >

together with the inference rules:

X X → Y
Y

(mp)
X Y
X ∧ Y

(adj)

Definition 7. We call any logic L resulting from UL by adding “extra” propositional
axioms (possibly with “extra” connectives), and satisfying for all formulae A, B, C:

A↔ B `L C(A)↔ C(B)

a core UL-expansion.4

4 A related notion of a “core fuzzy logic”, restricted to logics with weakening, is used in [5].



Definition 8. For any core UL-expansion L, ∀L consists of L plus:

(∀1) ∀xY → Y (x/t) (t substitutable for x in Y )
(∀2) ∀x(Y → Z) → (Y → ∀xZ) (x not free in Y )
(∀3) ∀x(Y ∨ Z) → (Y ∨ ∀xZ) (x not free in Y )
(∃1) Y (x/t) → ∃xY (t substitutable for x in Y )
(∃2) ∀x(Y → Z) → (∃xY → Z) (x not free in Z)

Y
∀xY

(gen)

Semantics for these logics are based on pointed bounded commutative residuated lat-
tices: algebras 〈L,∧,∨,�,→, t, f,⊥,>〉 with binary operations ∧, ∨, �,→, and con-
stants t, f , ⊥, > such that 〈L,∧,∨,⊥,>〉 is a bounded lattice; 〈L,�, t〉 is a commuta-
tive monoid; and z ≤ x→ y iff x� z ≤ y for all x,y,z ∈ L.

A UL-algebra is a pointed bounded commutative residuated lattice satisfying:

t ≤ ((x→ y) ∧ t) ∨ ((y → x) ∧ t)

IfA is an algebra such that each connective of a languageL occurs as an operation ofA,
then (L-)valuations for A with (non-empty) domain D are defined as partial functions
v from sentences of L with parameters in D into A, total on atomic sentences, where:

1. If v(Ai) is defined for i = 1 . . .m, then v(?(A1, . . . , Am)) = ?(v(A1), . . . , v(Am))
for each m-ary connective ? of L.

2. If for all c ∈ D, v(A(x/c)) is defined and inf({v(A(x/c)) : c ∈ D}) exists, then
v(∀xA) = inf({v(A(x/c)) : c ∈ D}).

3. If for all c ∈ D, v(A(x/c)) is defined and sup({v(A(x/c)) : c ∈ D}) exists, then
v(∃xA) = sup({v(A(x/c)) : c ∈ D}).

A valuation v for A with domain D is safe if v(A) is defined for every sentence with
parameters in D. A formula A is valid in A (assuming that A contains the constant t)
iff for every non-empty set D and for every safe valuation v with domain D, v(A) ≥ t.

Definition 9. For a core UL-expansion L with extra connectives I , an L-algebra is an
algebra A = 〈L,∧,∨,�,→, t, f,⊥,>, (c)c∈I〉 such that 〈L,∧,∨,�,→, t, f,⊥,>〉 is
a UL-algebra and each additional axiom of L is valid in A. An L-algebra is called an
L-chain if it is linearly ordered, and a dense L-chain if it is linearly and densely ordered.

Recall that a first-order theory T is a set of sentences:

1. T is linear if for each pair A, B of sentences, either A→ B ∈ T or B → A ∈ T .
2. T is ∀L-dense if for each pair A, B of sentences, whenever T 6`∀L A → B, then

for some sentence C, T 6`∀L A→ C and T 6`∀L C → B.
3. T is ∀L-Henkin if for each sentence of the form ∀xA(x) where T 6`∀L ∀xA(x),

there is a constant c in the language of T such that T 6`∀L A(c).

The Lindenbaum algebra of a theory T is defined as follows, justified by the fact that
the connective↔ has the property of a “congruence” for any core UL-expansion:



Definition 10. Let L be a core UL-expansion L and T a theory. The Lindenbaum
algebra A∀LT of a theory T has universe LT = {[A]T : A a sentence} where [A]T =
{B : T `∀L A ↔ B}, and operations ?([A1]T , . . . , [An]T ) = [?(A1, . . . , An)] for
each n-ary connective ? of L .

The proof of the following lemma then proceeds exactly as for Lemma 5.2.6 in [8]:

Lemma 2. Let L be a core UL-expansion L and T a ∀L-Henkin theory. Then for
any formula A(x) with one free variable x: [∀xA]T = infc[A(c)]T and [∃xA]T =
supc[A(c)]T where c runs over all constants of T .

6 Adding Density

Here we show that adding the density rule to any first-order core UL-expansion L
gives a logic that is complete with respect to dense L-chains. To add the density rule to
our axiomatizations, we explicitly define derivations from a set of formulae T to take
account of the fact that applications of (density) are sensitive to T and might therefore
require new propositional variables.

Definition 11. For L a core UL-expansion, let ∀LD be ∀L extended with the rule
(density) (see Section 1). A ∀LD-derivation of a formula C from a set of formulae
T , written T `∀LD C, consists of a sequence of formulae in the vocabulary of ∀LD

extended with countably many new constants and propositional variables, ending with
C and such that each member A of the sequence satisfies one of the following:

(1) A ∈ T or A is an axiom of ∀L for the extended language.
(2) A is obtained from previous members of the sequence by (mp), (adj), or (gen) i.e.

either B and B → A, B and C (where A is B ∧ C), or B(a) (where A is ∀xB(x)
and the eigenvariable condition for T is satisfied) occur earlier in the sequence.

(3) A is obtained from a previous member of the sequence by (density), i.e. A is
(B → C)∨D and (B → p)∨ (p→ C)∨D occurs earlier in the sequence, where
p is a new propositional variable not occurring in T , B, C, or D.

Soundness for ∀LD with respect to dense L-chains is established as follows.

Lemma 3. Let L be a core UL-expansion. If T `∀LD A, then for every dense L-chain
and safe valuation v with non-empty domain D, if v(B) ≥ t for all B ∈ T , then
v(A) ≥ t. In particular, if `∀LD A, then A is valid in all dense L-chains.

Proof. We proceed by induction on the height of a ∀LD-derivation for T `∀LD A,
checking the validity of axioms and soundness of rules in the usual manner, the only
novel case being (density). Suppose contrapositively that there is a dense L-chain and
non-empty domain D with a safe valuation v such that v(D) ≥ t for all D ∈ T , and
v((A → B) ∨ C) < t. It follows that v(A → B) < t and v(C) < t, and hence
also that v(A) > v(B). Since the algebra is dense, there exists an element w such that
v(A) > w > v(B). Recall that the propositional variable p in (density) does not occur
in T , A, B, or C. Hence we can extend the valuation v with v(p) = w. It follows that
v((A→ p) ∨ (p→ B) ∨ C) < t. ut



We require the following properties (established as in the propositional case in [10]):

Lemma 4. Let L be a core UL-expansion:

(a) If T,A `∀LD C and T,B `∀LD C, then T,A ∨B `∀LD C.
(b) If T,A `∀LD C and T `∀LD A ∨ C, then T `∀LD C.

Definition 12. A confusion of a set of formulae T is defined inductively as follows:

1. t, >, and any element of T are confusions of T .
2. If C1 and C2 are confusions of T , then so are C1 � C2 and C1 ∧ C2.

Lemma 5. Let L be a core UL-expansion:

(a) If T `∀LD A, then T0 `∀LD A for some finite subset T0 of T .
(b) If T is finite, then T `∀LD A iff `∀LD C → A for some confusion C of T .
(c) If A is a confusion of T , then T `∀L A.

We are now in a position to establish our key lemmas.

Lemma 6. Let L be a core UL-expansion and T a countable theory. If T 6`∀LD A,
then there exists a countable linear ∀L-dense ∀L-Henkin theory T̂ such that T ⊆ T̂
and T̂ 6`∀LD A.

Proof. We construct T̂ in countably many steps. First we extend the vocabulary with
countably many new propositional variables and constants not occurring in T or A. In
the construction of T̂ we have to: (1) deal with linearity and ∀L-density for each pair of
sentences (in the extended vocabulary), and (2) deal with the ∀L-Henkin property for
each sentence of the form ∀xA (in the extended vocabulary). Since these are countably
many tasks we can interleave them.

We begin by defining T0 = T and C0 = A, noting that T0 6`∀LD C0. Now for the
induction step, assume that Tn and Cn have been constructed such that Tn 6`∀LD Cn.
We construct Tn+1 and Cn+1 such that Tn ⊆ Tn+1; Tn+1 6`∀LD Cn+1; Tn+1 `∀LD

Cn → Cn+1; and Tn+1 fulfills the n-th task. We have two cases:
(1) The n-th task is dealing with linearity and ∀L-density for the sentences A, B.

– If Tn ∪ {A→ B,B → A} 6`∀LD Cn, then it is sufficient to define:

Tn+1 = Tn ∪ {A→ B,B → A} and Cn+1 = Cn

– Suppose that the previous case does not apply. Let q be a propositional variable not
occurring in Tn, A, B, or Cn. We claim that one of the following conditions holds:
(a) Tn ∪ {A→ B} 6`∀LD Cn ∨ (B → q) ∨ (q → A).
(b) Tn ∪ {B → A} 6`∀LD Cn ∨ (A→ q) ∨ (q → B).
Suppose that (a) does not hold. Then by the density rule:

Tn ∪ {A→ B} `∀LD Cn ∨ (B → A)

and since Tn ∪ {A→ B, B → A} `∀LD Cn, by Lemma 4 (b):

Tn ∪ {A→ B} `∀LD Cn



If (b) also does not hold, Tn ∪ {B → A} `∀LD Cn, so by Lemma 4 (a):

Tn ∪ {(A→ B) ∨ (B → A)} `∀LD Cn

But since `UL (A → B) ∨ (B → A) (see e.g. [10]), we get Tn `LD Cn which
contradicts the induction hypothesis. Hence, if (a) holds, let:

Tn+1 = Tn ∪ {A→ B} and Cn+1 = Cn ∨ (B → q) ∨ (q → A)

and if (b) holds, let:

Tn+1 = Tn ∪ {B → A} and Cn+1 = Cn ∨ (A→ q) ∨ (q → B)

Clearly Tn+1 is linear in both cases, Tn+1 6`∀LD Cn+1, and Tn+1 `∀LD Cn →
Cn+1. Moreover, if Tn+1 6`∀L A→ B, then Tn+1 6`∀LD Cn∨(A→ q)∨(q → B),
so Tn+1 6`∀L A → q and Tn+1 6`∀L q → B. Similarly, if Tn+1 6`∀L B → A, then
Tn+1 6`∀L B → q and Tn+1 6`∀L q → A, so ∀L-density holds.

(2) Suppose that the n-th task is dealing with the ∀L-Henkin property for ∀xA(x).
Let c be a new constant not occurring in Tn, Cn, or A(x).

– If Tn 6`∀L Cn ∨ A(c), then Tn 6`∀L ∀xA(x), and let Tn+1 = Tn, and Cn+1 =
Cn ∨A(c).

– If Tn `∀L Cn ∨ A(c), then Tn `∀L Cn ∨ A(x) (replacing c in the proof by a
variable x not occurring in Cn). Hence Tn `∀L ∀x(Cn ∨ A(x)) by (gen), and by
(∀3), Tn `∀L Cn ∨ ∀xA(x). So Tn ∪ {∀xA(x) → Cn} `∀L Cn. It follows that
Tn ∪ {Cn → ∀xA(x)} 6`∀L Cn (since otherwise Tn `∀LD Cn a contradiction)
and Tn ∪ {Cn → ∀xA(x)} `∀L ∀xA(x) (using Tn `∀L Cn ∨ A(c)). So let
Tn+1 = Tn ∪ {Cn → ∀xA(x)} and Cn+1 = Cn.

Now take T̂ =
⋃

n∈N Tn. T̂ is linear and ∀L-dense by construction. Also T̂ 6`∀LD A
since otherwise Tn `∀LD A for some n, and since Tn `∀LD Ci → Ci+1 for i =
1 . . . n, Tn `∀LD Cn, a contradiction. Finally to see that T̂ is ∀L-Henkin, suppose
that T̂ 6`∀L ∀xA(x) where ∀xA(x) is a sentence dealt with in step n. It follows that
Tn+1 6`∀L ∀xA(x). But then for step n in the above construction, we must have the first
possibility Tn 6`∀L Cn∨A(c) where Cn+1 = Cn∨A(c). Hence also T̂ 6`∀L Cn∨A(c).
So T̂ 6`∀L A(c). ut

Lemma 7. Let L be a core UL-expansion and T a countable linear ∀L-dense ∀L-
Henkin theory. If T 6`∀LD A, then there exists a countable dense L-chain and safe
valuation v with non-empty domainD, such that v(B) ≥ t for all B ∈ T , and v(A) < t.

Proof. A∀LT is an L-algebra. Moreover, A∀LT is linearly and densely ordered, since for
all sentences A, B: (1) either A → B ∈ T or B → A ∈ T , and (2) if T 6`∀L A → B,
then T 6`∀L A → C and T 6`∀L C → B for some sentence C. Let D be the set of all
constants of the vocabulary of T (adding one if necessary so that D is non-empty) and
A. Define a valuation v with domain D such that v(p(c1, . . . , cm)) = [p(c1, . . . , cm)]T
for each m-ary predicate p. We claim that v(B) = [B]T for all formulae B and hence in
particular v(B) ≥ t for all B ∈ T , and v(A) = [A]T < [t]T as required. We proceed by
induction on the complexity of B, the atomic case holding by definition and the case of
propositional connectives being easy. The quantifier cases follow using Lemma 2. ut



Combining Lemmas 6 and 7 with Lemma 3 we obtain the following result:

Theorem 4. Let L be a core UL-expansion and T a countable theory. The following
are equivalent:

(1) T `∀LD A.
(2) For every dense L-chain and safe valuation v with non-empty domainD, if v(B) ≥

t for all B ∈ T , then v(A) ≥ t.

In particular, `∀LD A iff A is valid in all dense L-chains.

As an interesting aside, note that C = ∀x(A(x)� B)→ (∀xA(x)� B) is valid in all
dense BL-chains [8], where BL is Hájek’s Basic fuzzy logic, the logic of continuous
t-norms. So by the preceding theorem C is derivable in ∀BLD. However, C is not valid
in all BL-chains [7] and hence not derivable in ∀BL. The density rule is therefore not
admissible for ∀BL, and it remains an intriguing question as to whether ∀BLD can be
obtained as an axiomatic extension of this logic.

7 Rational Completeness

We are ready now to put together the various pieces and establish rational complete-
ness for a wide class of first-order logics; i.e. show completeness with respect to dense
chains. First, we need a way of connecting axiomatizations with hypersequent calculi.

Definition 13. The standard interpretation function I is defined as follows:

1. I(Γ ⇒ C) = �Γ → C, I(⇒ C) = C, I(Γ ⇒) = �Γ → ⊥, and I(⇒) = ⊥.
2. I(Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n) = I(Γ1 ⇒ ∆1) ∨ . . . ∨ I(Γn ⇒ ∆n).

Lemma 8. Let L be a core UL-expansion and LL a (first-order) w-simple sequent
calculus whose rules are reductive and substitutive, such that `HLC

L
G iff `∀L I(G):

(a) `HLC
L +(D) G iff `∀LD I(G). (b) `∀L A iff `∀LD A.

Proof. (a) For the left-to-right direction, suppose that `∀L I(G) ∨ I(Γ1, p ⇒ ∆) ∨
I(Γ2 ⇒ p) where p does not occur in G, Γ1, Γ2, or ∆. It follows easily that `∀L I(G)∨
(p→ I(Γ1 ⇒ ∆))∨I(Γ2 ⇒ p), and hence by (density), that `∀LD I(G)∨I(Γ1, Γ2 ⇒
∆) as required. For the right-to-left direction, it is sufficient to show that (density)
(with T = ∅) is admissible for HLC

L + (D). If `HLC
L +(D)⇒ (A→ p) ∨ (p→ B) ∨C

where p does not occur in A, B, or C, then (easily) `HLC
L +(D) A⇒ p | p⇒ B | ⇒ C.

Hence by (D), `HLC
L +(D) A ⇒ B | ⇒ C. Using (EC), (∨, r)1, (∨, r)2, and (→, r),

it follows that `HLC
L +(D)⇒ (A→ B) ∨ C as required.

(b) The left-to-right direction is trivial. For the right-to-left direction, suppose that
`∀LD A. Then by (a), `HLC

L +(D)⇒ A, and by Theorem 2, `HLC
L
⇒ A. Hence by

hypothesis and Definition 13, `∀L A. ut

Our main theorem now states that the first order version of any core UL-expansion
which has a suitable hypersequent calculus is rational complete.



Theorem 5. Let L be a core UL-expansion and LL a (first-order) w-simple sequent
calculus whose rules are reductive and substitutive, such that `HLC

L
G iff `∀L I(G).

Then ∀L is rational complete, i.e. the following are equivalent:

(1) T `∀L A.
(2) For every dense L-chain and safe valuation v with non-empty domainD, if v(B) ≥

t for all B ∈ T , then v(A) ≥ t.

In particular, `∀L A iff A is valid in all dense L-chains.

Proof. From (1) to (2) is easy. If (2) holds, then by Theorem 4, T `∀LD A. By Lemma
5 (a), there is a finite subset T0 of T such that T0 `∀LD A, and by Lemma 5 (b),
`∀LD C → A for some confusion C of T0. By Lemma 8 (b), `∀L C → A and, by
Lemma 5 (c), T0 `∀L C. Hence, by (mp), T0 `∀L A and therefore also T `∀L A. ut

For example, let ∀SMTL and ∀CnMTL (n ≥ 2) be the first-order versions of the
logics SMTL [6] and CnMTL (n ≥ 2) [4]. Hypersequent calculi for these logics,
HLC

SMTL and HLC
CnMTL are obtained by adding hypersequent versions of the rules

(wc) and (nc) to the calculus H∀FLC
ew for ∀MTL (see Examples 1 and 3). Hence:

Corollary 1. ∀MTL , ∀SMTL, and ∀CnMTL (n ≥ 2) are rational complete.
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