
A Normative Supervisor for Reinforcement
Learning Agents

Emery Neufeld1[0000−0001−5998−3273], Ezio Bartocci1[0000−0002−8004−6601], Agata
Ciabattoni1[0000−0001−6947−8772], and Guido Governatori2[0000−0002−9878−2762]

1 TU Wien, Austria
2 Data61, CSIRO, Australia

Abstract. We introduce a modular and transparent approach for aug-
menting the ability of reinforcement learning agents to comply with a
given norm base. The normative supervisor module functions as both
an event recorder and real-time compliance checker w.r.t. an external
norm base. We have implemented this module with a theorem prover for
defeasible deontic logic, in a reinforcement learning agent that we task
with playing a “vegan” version of the arcade game Pac-Man.

1 Introduction

Autonomous agents are an increasingly integral part of modern life. While
performing activities formerly reserved for human agents, they must possess
the ability to adapt to (potentially unpredictable) changes in their environment;
reinforcement learning (RL) teaching agents this behaviour (see, e.g. [16,13]).
Performing human roles further requires that agents align themselves with
the ethical standards their human counterparts are subject to, introducing
a requirement for ethical reasoning. RL has been employed to enforce such
standards as well (see, e.g., [14]); agents can be trained to act in line with further
rewards/penalties assigned according to the performance of ethical/unethical
behaviour through a reward function. However, this does not provide a guarantee
of the desired behaviour. Moreover, such techniques are not well equipped to
handle the complexities of ethical reasoning. In general, like other black-box
machine learning methods, RL cannot transparently explain why a certain policy
is compliant or not. Additionally, when the ethical values are embedded in the
learning process, a small change in their definition would require us to retrain
the policy from scratch.

To obviate the limitations of RL to represent ethical norms, the approach
we follow in this paper combines RL with Deontic Logic, the branch of formal
logic that is concerned with prescriptive statements; we implement a normative
supervisor to inform a trained RL agent of the ethical requirements in force in a
given situation. Since the pioneering works [17,15], it has been well understood
that Deontic Logic can be applied to model ethical norms; the difference between
ethical and legal norms is indeed only on how they emerge, not what normative
consequences are entailed by them. We implement our normative supervisor using

This work was partially supported by WWTF project MA16-28 and the DC-RES run by the TU
Wien’s Faculty of Informatics and the FH-Technikum Wien.

2 Emery Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori

defeasible deontic logic [8,9]. This is a simple and computationally feasible, yet
expressive, logic allowing for defeasible reasoning, and can easily accommodate
changes to the norm base, should the ethical requirements become more complex
(see Sect. 3.4 for a brief walk-through). Moreover, the constructive nature of this
logic allows us to determine how a given conclusion has been reached.

By embedding the normative supervisor into the RL agent architecture, the
agent can follow near-optimal learned policies while enforcing ethical actions
in a modular and transparent way. The supervisor functions as both an event
recorder and real-time compliance checker; it corrects the choice of a given action
from the policy only when this violates a norm. It is furthermore used as an
event logger to identify and extract new sets of (ethical) norms to promote
particular goals. We demonstrate our approach on an RL agent that plays a
“vegan” version of Pac-Man, with an “ethical” constraint forbidding Pac-Man
from eating ghosts. Already used as a case study in [14,10], the Pac-Man game
is a closed environment for testing with clearly defined game mechanics and
parameters which are easy to isolate, manipulate, and extend with variably
intricate rule sets. We successfully evaluated our approach with several tests,
consisting of “vegan” games and a “vegetarian” version of the game where the
agent can eat only one type of ghost. The achievement of full compliance in the
latter case was possible with the introduction of additional norms identified via
the event recorder.
Related Work. The papers [14] and [10] on Pac-Man motivated our work. The
former employs multi-objective RL with policy orchestration to impose normative
constraints on vegan Pac-Man. It seamlessly combines ethically compliant be-
haviour and learned optimal behaviour; however, the ethical reasoning performed
is still to a degree implicit, it does not provide justifications for the choices
made, and it is not clear how the approach would remain reasonably transpar-
ent with more complex norm sets. [10] takes steps to integrate more complex
constraints on a RL agent, but as they are embedded in the learned policy, it
lacks the transparency of a logic-based implementation. [1] and [2] address the
problem of transparency in the implementation of ethical behaviours in AI, but
their approach has not been implemented and tested yet. Symbolic reasoning
for implementing ethically compliant behaviour in autonomous agents has been
used in many frameworks, such as [5], which models the behaviour from a BDI
perspective. This approach does not allow for defeasible reasoning, and focuses on
avoiding ethical non-compliance at the planning level. Non-monotonic logic-based
approaches that extend BDI with a normative component appear in [6,9], whose
solutions remain only at the theoretical level. These papers belong to the related
field of Normative Multi-Agent Systems, which is not specifically concerned with
the ethical behaviour of agents [3], and whose introduced formalisms and tools
(e.g. [12]) have not yet been used in combination with RL.

2 Background
Normative Reasoning. Normative reasoning differs from the reasoning cap-
tured by classical logic in that the focus is not on true or false statements, but
rather the imposition of norms onto such statements.

A Normative Supervisor for Reinforcement Learning Agents 3

We will deal with two types of norms: constitutive and regulative norms
(see [4] for the terminology). Regulative norms describe obligations, prohibitions
and permissions. Constitutive norms regulate instead the creation of institutional
facts as well as the modification of the normative system itself; their content is a
relation between two concepts, and they will typically take the form “in context
c, concept x counts as concept y”, where x refers to a more concrete concept (e.g.,
walking) and y to a more abstract one (e.g., moving). We say concept x is at a
lower level of abstraction than concept y in context c if there is a constitutive
norm with context c asserting that x counts as y (henceforth denoted C(x, y)).

Reinforcement Learning (RL). RL refers to a class of algorithms specialized
in learning how an agent should act in its environment to maximize the expected
cumulative reward. Given a function that assigns rewards/penalties to each state
and successor state pair (or state-action pairs), the RL algorithm learns an
optimal policy, a function from states to actions that can govern its behaviour.

In our case study we chose Q-learning [18] with function approximation as
a RL algorithm. In Q-learning, the RL algorithm first learns a function Q(s, a)
to predict the expected cumulative reward (Q-value) from state s taking action
a. The learned policy picks the action argmaxa∈possible Q(s, a) with the highest
Q-value over a list of possible actions. The function Q is approximated as a linear
function which is the weighted sum of features describing some elements of the
environment (e.g., the distance between the agent and object X); the features
which are most relevant to predicting the agent success are weighted most heavily.

Vegan Pac-Man. In the arcade game Pac-Man, an eponymous agent is situated
inside a maze over a grid, where some cells contain a ‘food pellet’ which Pac-Man
will eat if it moves inside the cell. Pac-Man’s goal is to maximize his score; when
Pac-Man eats a food pellet he gains a reward (+10 points), but there is also a
time penalty (−1 point for every time step). Pac-Man wins when he has eaten
all the food pellets in the maze (resulting in +500 points), and he loses if he
collides with one of the ghost agents wandering around the maze (resulting in
−500 points). However, after eating a ‘power pellet’ (of which there are two), the
ghosts become ‘scared’, and Pac-Man can eat them (for +200 points).

Inspired by [14], we consider a variation of the UC Berkeley AI Pac-Man
implementation [7], where Pac-Man cannot eat ghosts (only blue ghosts in the
vegetarian version). Our Pac-Man agent utilizes a Q-learning policy; for the
utility function we use the game’s score, and we take the game states as states.
We use the same game layout as in [14]; this is a 20 × 11 maze populated with 97
food pellets and two ghosts (blue and orange) which follow random paths, where
the maximum score available is 2170, and 1370 when eating ghosts is forbidden.

3 The Normative Supervisor

The key component of our approach is a normative supervisor whose architecture
is illustrated in Fig. 1. This module consists of a normative reasoning engine (we
use the SPINdle theorem prover [11]), and of other components that encode the

4 Emery Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori

norms and environmental data into defeasible deontic logic rules, and translate
the conclusions of the reasoning engine into instructions for the agent.

RL Agent

Norm
Base

Agent’s State
Possible Actions

Translator

Reasoner

Normative
Prescriptions

Normative Supervisor

Tr
an

sla
to

r

Legal Actions

Fig. 1. Key components and placement of the Normative Supervisor.

We place the normative supervisor in the already-trained agent’s control loop
between the localization and policy module. The localization module identifies
the current agent’s state with respect to its environment and returns a list of
possible actions to the normative supervisor. This module filters out all the
actions that are not compliant with the norms. The policy will then identify,
among the pool of the compliant actions, the optimal one for generating the next
game state. If there are no available compliant actions the normative supervisor
will select the ’lesser evil’ action. This module additionally enables the logging of
events during the game for later scrutiny.

3.1 Configuring the Norm Base

We start with a simple normative prescription, consisting only of the behavioral
constraint proposed in [14] that “Pac-Man must not eat ghosts”, represented as
vegan ∶ F(eat(pacman, ghost)), where F denotes prohibition.

If this norm base is to inform our agent’s actions, it needs to reference concepts
that correspond to the information directly processed by the agent, which is
limited to the locations of game entities and the actions that Pac-Man can
perform, which we denote as North, South, East, West, and Stop. The only
way eat(pacman, ghost) can be done is if (a) the ghost is in a ‘scared’ state,
and (b) Pac-Man and the ghost move into the same cell. These are expressed
as scared(ghost) and inRange(pacman, ghost) respectively. Pac-Man does not
know which direction the ghost will move in, but we will assume a “cautious”
model of action where Pac-Man is not to perform any action that could constitute
eating a ghost; that is, if Pac-Man takes an action that could reasonably lead
to him violating a norm, we will consider that norm violated. Since Pac-Man’s
next action determines what is in range, we will actually need five entities
to express inRange(pacman, ghost), one corresponding to each action. These

For the time being we generalize the blue and the orange ghosts as ghost.

A Normative Supervisor for Reinforcement Learning Agents 5

concepts are used to construct a constitutive norm, or a kind of strategy, regarding
eating, strategyNorth ∶ C(North, eat(pacman, ghost)), which is applicable in
the context {scared(ghost), inNorthRange(pacman, ghost)}.

For inNorthRange(pacman, ghost), we have access to the positions of Pac-
Man and the ghosts, so we can create another set of constitutive norms for
this, which apply in the context {pacman(i, j)}, rangeNorth ∶ C(ghost(k, l),
inNorthRange(pacman, ghost)), where (k, l) has a Manhattan distance of one
or fewer cells from (i, j + 1).

Finally, we need to consider additional relationships between norms and
concepts. For this norm base, we only have one regulative norm, so a mechanism
for conflict resolution is not needed. However, as Pac-Man can only execute one
action at a time, we have a non-concurrence relation between every action. This
amounts to an inability to comply with multiple obligations over distinct actions.
However, since Vegan Pac-Man does not deal with any obligations, additional
rules will not be needed.

Representing the Norm Base. We need a formal language – equipped with
an automated theorem prover – capable of effectively representing and reasoning
with the norm base; we chose defeasible deontic (propositional) logic (DDPL
for short) [8]. DDPL is defined over literals and modal literals, and the key
ingredient is the rules we can construct from them. For the purposes of this paper
we only consider one deontic modality (obligation O) and define prohibition and
permission as F(p) ≡ O(¬p) and P(p) ≡ ¬O(¬p).

Definition 1. A rule is an expression r∶A(r)↪∗ N(r) where r is a label uniquely
identifying the rule, A(r) = {a1, ..., an} is the antecedent, N(r) is the consequent,
↪∗∈ {→∗,⇒∗, ∗}, and the mode of each rule is designated with ∗ ∈ {C,O}.

Rules labelled by C and O are constitutive and regulative rules, respectively. Strict
rules (→∗) are rules where the consequent strictly follows from the antecedent
without exception. Defeasible rules (⇒∗) are rules where the consequent typically
follows from the antecedent, unless there is evidence to the contrary. Defeaters
(∗) are rules that only prevent a conclusion from being reached by a defeasible
rule; regulative defeaters are used to encode permissive rules (see [8]).

The central concept of DDPL (and our application of it) is:

Definition 2. A defeasible theory D is a tuple ⟨F,RO,RC ,>⟩, where F is a set
of literals (facts), RO and RC are sets of regulative and constitutive rules, and >

is a superiority relation over rules.

As shown below, these tools will be utilized to map Pac-Man’s environment to
the set of facts and use the other components to represent the norm base.

3.2 Automating Translation

We are now dealing with three kinds of syntax: our informal representation of the
norm base, the input and output of the host process, and the formal language
of the reasoner (DDPL and its theorem prover SPINdle [11]). If we frame the

6 Emery Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori

reasoner as a central reasoning facility, the agent as a front-end, and the norm
base as a back-end, we can implement this dynamic as a translator with two
faces, one front-facing and one back-facing, feeding information into the reasoner
from the agent and the norm base respectively.

Front End Translation. The front-end translator will be continuously in use,
sending new data to be translated and requiring translated proposed actions
as the environment changes. This will be an algorithm that transforms input
data from the agent into propositions which assert facts about the agent or
the environment, and then logical conclusions into instructions the agent will
understand. Each cell of the Pac-Man grid can contain characters (Pac-Man or
one of the ghosts), an object (a wall or a food pellet), or nothing at all. Walls
are accounted for during the localization stage of Pac-Man’s algorithm and food
pellets are not an entity that appears in the norm base, so we will need to reason
only about the characters. Hence we have two sets of variables in each game;
pacmani,j and ghosti,j (along with scared(ghost) if the ghost is in a scared
state) assert the current coordinates of Pac-Man and of each ghost, and appear
in a set Facts in the defeasible theory GameState = ⟨Facts,RC ,RO,>⟩.

Actions will be represented as deontic literals, in the set

Actions = {North,South,East,West, Stop}

A query from Pac-Man to the reasoner will be accompanied by a representation
of the current game state, along with a list of possible actions, possible, which
will be translated to the corresponding literal in Actions.

Back End Translation. In this critical task it is crucial to ensure that norms
dictate the same behaviour once translated into this language. Besides making
sure that each component of the norm can be represented by the language, we
must also analyse our translated norm base with respect to how the available
metadata is accommodated by the reasoner’s rules of inference.

We represent the regulative norm of Vegan Pac-Man (vegan) as:

⇒O ¬eatpacman,ghost ∈ RO

where defeasibility is given as a precautionary measure, in case we want to add
(potentially conflicting) norms later.

Note that if moving North counts as eating a ghost, an obligation to go
North counts as being obligated to eat a ghost, and a prohibition to eat a
ghost implies a prohibition to move North. So we can rewrite strategyNorth as
C(O(¬eat(pacman, ghost)),O(¬North)), or with the applicable context as:

scaredghost, inNorthRangepacman,ghost,O(¬eatpacman,ghost)⇒O ¬North ∈ RO

Note that though this a constitutive rule, in DDPL it will be in RO. This will
work for all of the constitutive norms attached to a prohibited action, where
we place the context and the prohibition in question in the antecedent, and the
prohibition of the concrete action in the strategy is the consequent.

For the remaining constitutive norms, we have a rather simple conversion.
These norms will be generated w.r.t. the input from the agent; for example, if
the agent (Pac-Man) tells us that he is at (2,3), the rule rangeNorth will be:

pacman2,3, ghost2,4 →C inNorthRangepacman,ghost ∈ RC

A Normative Supervisor for Reinforcement Learning Agents 7

We have found that it is more time-efficient to generate these constitutive
norms anew whenever the fact set changes, instead of generating every possible
constitutive norm ahead of time, and having SPINdle deal with all at once.

3.3 Classify and Assess Conclusions

Once we understand how various concepts are represented in the reasoner lan-
guage, we need to parse the possible outputs of the reasoning engine into indicators
as to which actions in the agent’s arsenal are compliant with the norm base.

Compliant Solutions. Ideally, we will want to locate a compliant solution – an
action that constitutes a possible course of action for the agent that does not
violate any norms – from the conclusions yielded by the reasoner.

Definition 3. A set of compliant solutions is: (1) non-empty, and consisting
only of (2) solutions composed of possible actions, (3) solutions that do not violate
any norms, and (4) solutions that are internally consistent.

The manner in which we construct such a set is heavily influenced by the
output (conclusions) yielded by SPINdle. Conclusions in DDPL are established
over proofs and can be classified as defeasible or definite, and positive or negative.
A positive conclusion means that the referenced literal holds, while a negative
indicates that this literal has been refuted. A definite conclusion is obtained by
using only strict rules and facts using forward chaining of rules. A conclusion holds
defeasibly (denoted by +∂C for a factual conclusion and +∂O for an obligation) if
there is an applicable rule for it and the rules for the opposite cannot be applied
or are defeated. Over the course of a proof, each rule will be classified as either
applicable (i.e., the antecedent holds and the consequent follows), discarded (i.e.,
the rule is not applied because the antecedent doesn’t fully hold), or defeated
by a defeater or a higher priority rule. For a set of rules R, R[p], RO and Rsd

are, respectively, the subsets of: the rules for p, regulative rules, and strict or
defeasible rule. The definition of provability for defeasible obligations [8] (we
define only defeasible conclusions, because in our formalization regulative norms
were expressed as defeasible rules) is:

Definition 4. Given a defeasible theory D, if D ⊢ +∂O p, then:

1. ∃r ∈ Rsd
O [p] that is applicable defeasible, and

2. ∀s ∈ RO[¬p] either: (a) s is discarded, or (b) s ∈ Rsd and ∃t ∈ RO[p] s.t. t is
applicable, t > s, or (c) s is a defeater, ∃t ∈ Rsd

O [p] s.t. t is applicable, t > s

A derivation in DDPL has a three phase argumentation structure, where argu-
ments are simply applicable rules: (1) we need an argument for the conclusion we
want to prove, (2) we analyse all possible counter-arguments, and (3) we rebut
the counter-arguments. An argument can be rebutted when it is not applicable or
when it is defeated by a stronger applicable argument. If we exclude the undercut
case, in every phase the arguments attack the arguments in the previous phase.
A rule attacks another rule if the conclusions of the two rules are contradictory
(note that P(q) and P(¬q) are not a deontic contradiction). Accordingly, any

8 Emery Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori

regulative rule for q attacks a strict or defeasible regulative rule for ¬q. However, a
regulative defeater for q is not attacked by a regulative defeater for ¬q (condition
2(c) above).

We parse out a solution set by: (1) if we do not receive a full set of conclusions
from SPINdle, we return an empty set; (2) we remove all conclusions that do
not reference a literal in possible; (3) any action corresponding to a defeasibly
proved positive literal occurs in every solution; and (4) any action corresponding
to a defeasibly proved negative literal is discarded from every solution.
Claim: the above procedure yields either an empty set or a compliant solution.
Proof sketch: If our solution is not internally consistent, we can prove both +δO a
and +δO¬a for some action a. In this case SPINdle will return neither, and the
above procedure leads to an empty set in step (1). Only possible actions will
occur in a solution as per step (2), and any solutions which fail to comply with an
obligation or prohibition will be excluded through step (3) and (4) respectively.

‘Lesser of two Evils’ Solutions. If the above procedure leaves us with an
empty solution set, we want to identify which non-compliant actions constitute
the “best” choice (i.e. are minimally non-compliant). Our characterization of
degrees of non-compliance depends on the way the reasoner constructs solutions,
and what information it logs during this process. SPINdle has an inference logger
that classifies every rule in the theory as discarded, applicable, or defeated. For
our agent, the chosen degree is a score derived from the of norms that have been
applied versus those that have been defeated (discarded norms are ignored):

score ∶= #complied −#violated = #applied −#defeated

This score is computed through the theory GameStatea, which is constructed
by adding a fact O(a) to GameState. Recall that a rule will be defeated when
its defeasible theory includes a fact that conflicts with the head of this rule.
So when we add O(a) to GameState, all norms that prescribed F(a) = O(¬a)
for GameState are defeated and any prescribing O(a) is applied. To compute
the score, we use SPINdle in a rather unconventional way, ignoring conclusions
yielded and checking the inference log to count which rules have been applied
during reasoning (#applied) and which were defeated (#defeated) and set
score = #applied −#defeated. This procedure is completed for every action in
possible, and we select the action(s) with the highest score. If there are multiple
actions with a highest score, we send multiple solutions to the agent and it will
pick the best action according to its policy.
Claim: computing scores for all possible actions is completed in polynomial time.
Proof sketch: As shown in [8], conclusions in DDPL can be computed in linear
time with respect to the the number of literal occurrences plus the number of
the rules in the theory. The claim holds since every action in possible is a literal,
and the above procedure is completed ∣possible∣ times.

3.4 Revising the Norm Base

We demonstrate the advantages of our approach – modularity, configurability,
and capability as an event recorder – through revising our norm base.

A Normative Supervisor for Reinforcement Learning Agents 9

Inherent to Pac-Man’s environment is the possibility of encountering a state
where no compliant action is possible; in this section we explore how to address
cases like this through adding or removing rules to the norm base.

When playing “vegan” Pac-Man, we may encounter the case depicted in
Fig. 2(a). In absence of additional information Pac-Man will eat whichever ghost

(a) (b) (c)

Food pellet

Power pellet

Fig. 2. Pac-Man trapped between two ghosts (a) or in a corner (b). In (c) Pac-Man
consumes the power pellet and eats the ghost at the same time.

the policy indicates it should, and a violation report is generated. Each violation
report is saved as a timestamped file accompanied with the representation of
the current game state. This report can be used to retroactively examine the
context in which violations occur, and we can thereby revise our norm base
which is independent from the agent’s RL policy. In the case of “vegan” Pac-Man,
these reports make it clear that this version of the game will be susceptible to
somewhat regular violations in the form of Fig. 2(a).

If we consider instead “vegetarian” Pac-Man, we can restrict our norm base
to the vegan rule only applied to the blue ghost. However, situations in which
compliance is not possible can still occur; for instance the one depicted in Fig. 2(b),
or the case where Pac-Man consumes a power pellet and the blue ghost at the
same time, as shown in Fig. 2(c). In the latter case, the violation occurs because,
prior to Pac-Man’s consumption of the power pellet, the blue ghost is not scared
and Pac-Man’s strategy to comply with vegan will not be triggered. This is
roughly analogous to an agent committing an unethical act because it has no
way of recognizing that it is unethical.

Summarily, the violation reports show that there are four points in the maze
where Pac-Man, potentially, cannot comply, given the information he has access
to; in response, we add a norm danger steering Pac-Man away from these areas:

⇒O ¬enterpacman,danger

which is accompanied by constitutive norms defining the abstract action of
“entering danger” (for some pre-defined location denoted as danger), such as:

inNorthRangepacman,danger, inRangeghost,danger ⇒O ¬North

4 Evaluation and Conclusion

We have presented a modular and transparent approach that enables an au-
tonomous agent in pursuing ethical goals, while still running an RL policy that
maximizes its cumulative reward. Our approach was evaluated on six tests, in

We use a laptop with Intel i5-8250U CPU (4 cores, 1.60 GHz) and 8GB RAM, running
Ubuntu 18.04, Java 8, Python 2.7.

10 Emery Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori

batches of 100 games. The results are displayed in the following table and dis-
cussed below; we give data on both game performance (average score and %
games won) and ethical performance (ghosts eaten). Refer to Sec. 2 for a thorough
description of the testing environment.

Test Won Score (Avg [Max]) Avg ghosts eaten

RL policies without Normative Supervisor (Baseline tests)

1a – Safe 88 % 1189.4 [1526] 0.02 (blue)/0.03 (orange)

1b – Hungry 87 % 1503.5 [2133] 0.89 (blue)/ 0.81 (orange)

RL policies with Normative Supervisor

2a – SafeVegan 89 % 1193.39 [1526] 0.01 (blue)/0.02 (orange)

2b – HungryVegan 92 % 1211.67 [1350] 0.00 (blue)/0.00 (orange)

3 – Vegetarian 94 % 1413.8 [1742] 0.01 (blue)/0.79 (orange)

4 – SafeVegetarian 87 % 1336.2 [1747] 0.00 (blue)/0.88 (orange)

The first two baseline tests measured the performance of Pac-Man using two
different (ethically agnostic) RL policies without the normative supervisor; this
establishes a baseline for Pac-Man’s game performance. We refer to the first
RL policy (in Test 1a) as safe because the algorithm used to train it does not
differentiate between regular ghosts and scared ghosts, learning how to avoid
them altogether. We refer to the other RL policy (in Test 1b) as hungry because
the corresponding algorithm differentiates between regular ghosts and scared
ghosts, and the agent learns how to eat the scared ghosts. The results for Test 1b
(average score of 1503.5 maximum score of 2133) were comparable to the baseline
version in [14] (average score of 1675.9, max score of 2144).

Tests 2a, 2b, 3, and 4 make use of the normative supervisor. In 2a and 2b, we
subject Pac-Man to a “vegan” norm base, prohibiting eating all ghosts (for both
the safe and hungry policies respectively). The results obtained for test 2a were
comparable to those in [14]: the average number of violations was the same in
both tests (0.03 ghosts), and our average score was only slightly smaller (1193.39
instead of 1268.5). Compared with the baseline, the game performance did not
suffer. For test 2b we obtained instead full compliance. Test 3 and 4 both use the
hungry policy. In test 3 we subject Pac-Man to a “vegetarian” norm base, where
only eating blue ghosts is forbidden. Allowing Pac-Man to eat one of the ghosts
allows him to further maximize his score and avoid the violations depicted in
Fig. 2(a). Test 4 addresses the two edge cases of non-compliance occurring in
Test 3 as depicted in Fig. 2(b) and Fig. 2(c) by adding the new rules defined
in Sec. 3.4, steering Pac-Man away from entering the “dangerous” areas. Here,
violations were completely eliminated.

These tests, along with the analysis of the violation reports created in non-
compliant cases, yielded several insights. The module did not cause Pac-Man’s
game performance to suffer, and could successfully identify non-compliant be-
haviour. It implemented compliant behaviour in most cases, with the exception

A Normative Supervisor for Reinforcement Learning Agents 11

of situations where compliance was not possible. The violation reports allowed us
to identify such situations with ease.

The game used in this paper offers limited opportunities to work with mean-
ingful (ethical) norms. We aim to explore alternative case studies with more
options to define multiple (and possibly conflicting) ethical goals to test the
interactions between RL and a normative supervisor based on DDPL.

References

1. Aler Tubella, A., Dignum, V.: The glass box approach: Verifying contextual ad-
herence to values. In: Proc. of AISafety@IJCAI: Workshop on Artificial Intelli-
gence Safety co-located with the 28th International Joint Conference on Artifi-
cial Intelligence. CEUR Workshop Proceedings, vol. 2419. CEUR-WS.org (2019),
http://ceur-ws.org/Vol-2419/paper 18.pdf

2. Aler Tubella, A., Theodorou, A., Dignum, F., Dignum, V.: Governance by glass-box:
Implementing transparent moral bounds for AI behaviour. In: Proc. of IJCAI 2019:
the 28th International Joint Conference on Artificial Intelligence. ijcai.org (2019).
https://doi.org/10.24963/ijcai.2019/802

3. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N. (eds.): Nor-
mative Multi-Agent Systems, Dagstuhl Follow-Ups, vol. 4. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2013), http://drops.dagstuhl.de/opus/portals/
dfu/index.php?semnr=13003

4. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative
multiagent systems. In: Proc. of KR 2004: the 9th International Conference on
Principles of Knowledge Representation and Reasoning. pp. 255–266. AAAI Press
(2004), http://www.aaai.org/Library/KR/2004/kr04-028.php

5. Bremner, P., Dennis, L.A., Fisher, M., Winfield, A.F.T.: On proactive, transparent,
and verifiable ethical reasoning for robots. Proc. IEEE 107(3), 541–561 (2019).
https://doi.org/10.1109/JPROC.2019.2898267

6. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The boid archi-
tecture: conflicts between beliefs, obligations, intentions and desires. In: Proceedings
of the fifth international conference on Autonomous agents. pp. 9–16 (2001)

7. DeNero, J., Klein, D.: UC Berkeley CS188 intro to AI – course materials (2014)
8. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and

weak permissions in defeasible logic. Journal of Phil. Logic 42(6), 799–829 (2013).
https://doi.org/10.1007/s10992-013-9295-1

9. Governatori, G., Rotolo, A.: BIO logical agents: Norms, beliefs, intentions in
defeasible logic. Journal of Autonomous Agents and Multi Agent Systems 17(1),
36–69 (2008). https://doi.org/10.1007/s10458-008-9030-4

10. Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.:
Reinforcement learning for temporal logic control synthesis with probabilistic
satisfaction guarantees. In: Proc. of CDC 2019: the 58th IEEE Conference on
Decision and Control (2019). https://doi.org/10.1109/CDC40024.2019.9028919

11. Lam, H.P., Governatori, G.: The making of SPINdle. In: Proc. of RuleML 2009:
International Symposium on Rule Interchange and Applications. LNCS, vol. 5858.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04985-9

12. Lam, H.P., Governatori, G.: Towards a model of UAVs navigation in urban canyon
through defeasible logic. Journal of Logic and Computation 23(2), 373–395 (2013).
https://doi.org/10.1007/978-3-642-04985-9

http://ceur-ws.org/Vol-2419/paper_18.pdf
https://doi.org/10.24963/ijcai.2019/802
http://drops.dagstuhl.de/opus/portals/dfu/index.php?semnr=13003
http://drops.dagstuhl.de/opus/portals/dfu/index.php?semnr=13003
http://www.aaai.org/Library/KR/2004/kr04-028.php
https://doi.org/10.1109/JPROC.2019.2898267
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/s10458-008-9030-4
https://doi.org/10.1109/CDC40024.2019.9028919
https://doi.org/10.1007/978-3-642-04985-9
https://doi.org/10.1007/978-3-642-04985-9

12 Emery Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori

13. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17, 39:1–39:40 (2016), http://jmlr.org/papers/v17/
15-522.html

14. Noothigattu, R., Bouneffouf, D., Mattei, N., Chandra, R., Madan, P., Varsh-
ney, K.R., Campbell, M., Singh, M., Rossi, F.: Teaching AI agents ethi-
cal values using reinforcement learning and policy orchestration. In: Proc of
IJCAI: 28th International Joint Conference on Artificial Intelligence (2019).
https://doi.org/10.24963/ijcai.2019

15. Nowell-Smith, P.H., Lemmon, E.J.: Escapism: The logical basis of ethics. Mind
69(275), 289–300 (1960)

16. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T.P., Hui,
F., Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering
the game of Go without human knowledge. Nat. 550(7676), 354–359 (2017).
https://doi.org/10.1038/nature24270

17. Von Wright, G.H.: An essay in deontic logic and the general theory of action. Acta
Philosophica Fennica 21 (1968)

18. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, King’s College,
Cambridge, UK (May 1989), http://www.cs.rhul.ac.uk/∼chrisw/new thesis.pdf

http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
https://doi.org/10.24963/ijcai.2019
https://doi.org/10.1038/nature24270
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

	A Normative Supervisor for Reinforcement Learning Agents

