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Abstract Over the course of more than two millennia the philosophical school
of Mı̄mām. sā has thoroughly analyzed normative statements. In this paper we
approach a formalization of the deontic system which is applied but never ex-
plicitly discussed in Mı̄mām. sā to resolve conflicts between deontic statements
by giving preference to the more specific ones. We first extend with prohibi-
tions and recommendations the non-normal deontic logic extracted in Ciabat-
toni et al. (2015) from Mı̄mām. sā texts, obtaining a multimodal dyadic version
of the deontic logic MD. Sequent calculus is then used to close a set of prima-
facie injunctions under a restricted form of monotonicity, using specificity to
avoid conflicts. We establish decidability and complexity results, and investi-
gate the potential use of the resulting system for Mı̄mām. sā philosophy and,
more generally, for the formal interpretation of normative statements.

1 Introduction

The Mı̄mām. sā is a philosophical school which originated in ancient India in the
last centuries BCE and whose main focus was the exegesis of the prescriptive
portions of the Vedas – the Sacred Texts of (what is now called) Hinduism.
Together with Nyāya and Buddhist epistemology, Mı̄mām. sā is one of the fun-
damental schools of Indian philosophy, and the only one centered on deontic
concepts. In order to read the Vedas not as a religious text, but as a set of
precepts, and to explain “what has to be done” in presence of seemingly1 con-
flicting obligations, Mı̄mām. sā authors have thoroughly discussed and analyzed
normative statements. They have proposed a rich body of deontic, hermeneu-
tical and linguistic principles of interpretation, called nyāyas, which are so
modern, rational, scientific, and systematic (Bathia (2010)) that they are still

Address(es) of author(s) should be given

1 Since the Vedas are assumed not to be contradictory, Mı̄mām. sā authors invested all
their efforts in creating a consistent deontic system.
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applied in Indian jurisprudence, e.g. Katju (2006). Although not well known to
the logic community, the resulting theories are rightly considered early deontic
logic (Huisjes (1981)).

Among the deontic nyāyas, some can be transformed into properties (Hilbert
axioms) for the operators corresponding to the deontic concepts in Mı̄mām. sā;
this method led to the introduction of the non-normal dyadic deontic logic
bMDL (basic Mı̄mām. sā deontic logic), which was used in Ciabattoni et al.
(2015) to formally analyze a famous controversial passage in the Vedas. How-
ever, in the construction of bMDL only nyāyas concerning the obligation op-
erator were considered. Here we extend bMDL with new operators for pro-
hibitions and recommendations (or weak obligations); we call the resulting
logic MD+. We extracted the properties for these operators from additional
nyāyas that were translated from Sanskrit and interpreted only recently. Simi-
lar to the situation in Talmudic logic as investigated in Abraham et al. (2011),
the Mı̄mām. sā deontic operators are not interdefinable. Intuitively, the most
evident difference between them is in the achievable results: obeying Vedic
obligations yields good karma which leads to eternal happiness; in contrast,
following Vedic recommendations yields only specific immediate results; fi-
nally, following Vedic prohibitions only prevents the accumulation of negative
karma, see, e.g., Freschi (2012) and Freschi (2017). However, the main differ-
ence between the two deontic concepts of prescription (vidhi in Sanskrit) and
prohibition (niṡedha) is not properly dependent on the results of complying
with commands or disregarding them. The conveyed idea (buddhi) at the base
of the concept of obligation is “activation” or “being impelled to act”, while,
in case of prohibition, it is “inhibition” or “being prevented from taking an
action”, hence prescription and prohibition represent two genuinely different
notions of duty, one irreducible to the other.

Although specifically targeted at formalizing Mı̄mām. sā reasoning, these
operators canbe applied in different contexts. For instance, in line with the
argument for using deontic notions in the formalization of legal texts given
in Jones and Sergot (1992); Royakkers (1998), obligations and prohibitions
could be used for comparing moral and legal duties (see also Example 4 in Sec-
tion 6), and the distinction between obligations and recommendations could be
adapted for representing the difference between prescriptions to fulfil duties
within mandatory terms and within indicative terms, in some legal frame-
works.

Not all the nyāyas can be converted into Hilbert axioms though. Some
of these offer indeed more general interpretative principles to resolve ap-
parent contradictions in the Vedas; prominent examples of such nyāyas are
gun. apradhāna (also known as sāmānya-víses.a) and vikalpa, which are inves-
tigated in this paper. The vikalpa principle states that when there is a real
conflict between obligations, any of the conflicting injunctions may be adopted
as option: this principle is known in deontic logic as disjunctive response (Goble
(2013)) and is similarto the phenomenon of floating conclusions in nonmono-
tonic reasoning (Makinson and Schlechta (1991), see also Remark 7). Intro-
duced by Śabara (3rd-5th c. CE), the gun. apradhāna principle states that more
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specific rules override more generic ones; it is widely used, e.g., in Artificial In-
telligence, where it is known as specificity principle, and in Law as the principle
“Lex specialis derogat legi generali”. These principles are also used to capture
defeasible reasoning in the context of non-monotonic logics (see e.g. Delgrande
and Schaub (1997); Nute (2003); Hage (2003); Straßer and Antonelli (2016)).

Different methods and systems have been introduced in the literature to
deal with deontic conflict resolutions using specificity. Although some are close
to ours (e.g. Horty’s syntactic approach Horty (2012)), none of the various
proposals can be used “out of the box” for representing Mı̄mām. sā reasoning.
Indeed they are either based on logics different from MD+ (e.g. Straßer and
Arieli (2019)), or are implemented within general frameworks that do not
allow us to distinguish between Vedic commands and human deductions (e.g.
the argumentation-based approach in Prakken and Sartor (1999), and Deontic
Default logic in Horty (1993, 2012), see Remark 3), use explicit priorities
among rules – which are not present in Mı̄mām. sā – (e.g., Defeasible Deontic
logic in Governatori and Rotolo (2004) and Input/Output logic in Makinson
and van der Torre (2000)), or a different way to apply specificity (e.g. Horty’s
approach Horty (2012), see Ex. 2). Due to its relevance to legal reasoning, a
number of these approaches to conflict resolution have been applied in that
area, and often implementations are available. Good recent overviews and
comparisons are given, e.g., in Batsakis et al. (2018) and Calegari et al. (2019).

The aim of this article is to extend the basic deontic logic MD+ for obli-
gations, prohibitions and recommendations with reasoning from deontic as-
sumptions using specificity and vikalpa. We further explore the usefulness of
the resulting system for the evaluation of different competing formalisations in
Mı̄mām. sā and beyond.To this end we introduce a sequent-based approach to
deal in MD+ with specificity and vikalpa as well as a system implementation.
This work is a significantly extended version of the conference paper Cia-
battoni et al. (2018), which only concerned obligations, and did not discuss
potential applications.

Resolving conflicts using specificity, our calculus derives enforceable and
applicable commands from the explicit prescriptions contained in the Vedas
(śrauta in Sanskrit) and from a finite set of propositional facts. The calculus
presented here is also shown to satisfy vikalpa (disjunctive response). As, e.g.,
in Goble (2013), and van der Torre (1994), here we interpret the notion of a
conditional obligation being more specific than another one as the conditions
of the former implying those of the latter. Our calculus is built on the sequent
calculus for the �-free fragment of bMDL from Ciabattoni et al. (2015), which
turns out to be the dyadic version of the non-normal deontic logic MD consid-
ered, e.g., in Chellas (1980) (cf. Prop. 1 and Freschi et al. (2019)), extended
with new rules for recommendations and prohibitions. Additional rules to de-
rive all possible prescriptions are defined using limited monotonicity on the
conditions of the (non-nested) prescriptions in the Vedas (prima-facie deontic
statements) “up to conflicting deontic statements” relative to the given set
of facts. These rules offer the technical advantage that the consequences of a
set of prima-facie deontic statements can be constructed iteratively instead of
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by a fixed-point construction, as, e.g., in Horty (2012). Importantly, since the
prima-facie injunctions are assumed to constitute a closed set, the additional
rules contain statements expressing the underivability of a formula; these state-
ments do not compromise the decidability of the system and do not affect its
complexity, which remains PSPACE, i.e., as for deciding theoremhood in intu-
itionistic or many standard modal logics. The central technical result ensuring
these properties is the cut elimination theorem (Thm. 8). Similar underiv-
ability statements are present, e.g., in the sequent calculi for non-monotonic
(non-modal) logics of Bonatti and Olivetti (2002), but in contrast to that
work here we do not need to develop a full-fledged calculus for these state-
ments. Other sequent-based calculi capturing non-monotonicity in the context
of normative reasoning have been developed and applied in deontic logics (e.g.
Governatori and Rotolo (2006)) and in argument-based systems (e.g. Straßer
and Arieli (2019)).

The design of our system is motivated by the particular interpretation given
by most of Mı̄mām. sā authors and made explicit by the later author Medhātithi
(9-10th c. CE), that more specific śrauta precepts provide exceptions to more
general ones and that the latter apply to all circumstances but those indi-
cated in the exceptions (or implied by them). Apart from the nonmonotonic
inferences from prima-facie to actual deontic statements, all derivations use
the monotonic system MD+. Keeping the inferences of the logic at this level
deductive (i.e., monotone) is inspired by the effort of Indian philosophers –
in particular the Mı̄mām. sā author Kumārila – to keep their arguments not
defeasible “as much as possible”, see Taber (2004).

Applications of our system to Mı̄mām. sā philosophy, and, more generally,
to the formal interpretation of normative statements, e.g., in legal representa-
tion, are also provided. Prima-facie (śrauta) injunctions and statements about
factual conditions can indeed give rise to many interpretations, each of which
corresponds to a group of prima-facie commands and global assumptions about
facts. For instance, in Sanskrit the same word is used both for “obligations”
and “recommendations”, and the correct meaning has to be inferred by schol-
ars of Indian philosophy. Our system can be used to derive a set of conse-
quences for each of these groups. Using these consequences to compare the
different interpretations, it is then possible to choose the most suitable one.
In the case of Mı̄mām. sā philosophy, one criterium which was heavily used
in this comparison is to minimize applications of the vikalpa principle be-
tween prima-facie deontic statements; this is due to the fact that Mı̄mām. sā
authors considered applications of vikalpa to be “the last resort” and hence
to be avoided as much as possible. In our system this criterium can be evalu-
ated by checking how many of the prima-facie deontic statements are actually
derivable. This check can be performed with the help of our Prolog imple-
mentation of the system, available at http://subsell.logic.at/bprover/

deonticProver/version1.2/.

The rest of the paper is organized as follows: Section 2 recalls the base
logic bMDL. The simplified set of sequent calculus rules, from Ciabattoni et al.

http://subsell.logic.at/bprover/deonticProver/version1.2/
http://subsell.logic.at/bprover/deonticProver/version1.2/
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(2018), to reason about obligations in presence of specificity is given in Sec-
tion 3. The base logic is extended with prohibitions and recommendations
in Section 4, and the complete set of rules for reasoning using specificity is
introduced in Section 5. Consistency, decidability and complexity results for
the system are presented in Section 5.1, while its potential use for Mı̄mām. sā
philosophy and beyond is described in Section 6. The technical proof of cut
elimination is contained in the appendix.

2 The base logic: bMDL

Basic Mı̄mām. sā Deontic Logic bMDL was introduced in Ciabattoni et al.
(2015) as a first step towards mapping the structural elements of the Mı̄mām. sā
deontic system onto a formal framework. The idea was to define a logical sys-
tem following a bottom-up approach of extracting deontic principles from the
Mı̄mām. sā texts. The logic resulting from the analysis of circa 50 such princi-
ples extends the alethic system S4 with the following axiom schemata for the
deontic operator O(A/B), which intuitively reads as “A is obligatory under
the condition B”:

1. (�(A→ B) ∧ O(A/C))→ O(B/C)
2. �(B → ¬A)→ ¬(O(A/C) ∧ O(B/C))
3. (�((B → C) ∧ (C → B)) ∧ O(A/B))→ O(A/C)

Axioms (1)-(3) arise by rewriting some of the Mı̄mām. sā deontic interpretative
principles (nyāyas) as logic formulae, while the choice of modal logic S4 over S5
was suggested by some statements found in the texts as well as technical con-
venience, in particular the existence of cut-free sequent calculi. See Ciabattoni
et al. (2017, 2015) for more details.

Note that deontic statements in Mı̄mām. sā can also be analysed on a more
detailed level in the context of specific sacrifices, taking into account the nature
of the latter. Since here we are interested in the general properties of Mı̄mām. sā
reasoning, we do not consider this distinction and refer the reader to Freschi
et al. (2019) for details.

Remark 1 bMDL is weaker than most known deontic logics, e.g., the logics
considered in von Wright (1964, 1965); Hansson (1969); van Fraassen (1972);
Prakken and Sergot (1997); Goble (2019);in particular it has neither any
deontic aggregation principles like O(A/C) ∧ O(B/C) → O(A ∧ B/C) nor
any form of factual or deontic detachment, i.e., O(A/B) ∧ B → O(A) and
O(A/B)∧O(B/C)→ O(A/C) respectively. In part this is due to our bottom-
upmethodology: so far indeed we have not found any mention of corresponding
principles in the texts. However, the absence of (factual) detachment princi-
ples is also in line with the statement by one of the main authors of Mı̄mām. sā,
Prabhākara, that “A prescription regards what has to be done. But it does not
say that it has to be done” (Brhat̄ı I, 7th c. CE). We read this as stating that
a prescription states what is obligatory under certain conditions, but not that
this is unconditionally obligatory if these conditions hold.
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(M) O(A ∧B/C)→ O(A/C)
(D) ¬(O(A/B) ∧ O(¬A/B))

A↔ C B ↔ D

O(A/B)→ O(C/D)
Cg

Fig. 1 The modal part of a Hilbert-style system for dyadic MD.

A⇒ A
init ⊥ ⇒

⊥L
Γ,B ⇒ ∆ Γ ⇒ A,∆

Γ,A→ B ⇒ ∆
→L

Γ,A⇒ B,∆

Γ ⇒ A→ B,∆
→R

A⇒ C B ⇒ D D ⇒ B

O(A/B)⇒ O(C/D)
MonO

A,C ⇒ B ⇒ D D ⇒ B

O(A/B),O(C/D)⇒
DO

A⇒
O(A/B)⇒

PO

Γ,A,A⇒ ∆

Γ,A⇒ ∆
ConL

Γ ⇒ A,A,∆

Γ ⇒ A,∆
ConR

Γ ⇒ ∆

Γ,A⇒ ∆
WL

Γ ⇒ ∆

Γ ⇒ A,∆
WR

Fig. 2 The sequent calculus GMD for dyadic MD.

Here for simplicity we only consider the box-free fragment of bMDL. For-
mally, the set of formulae is given by the grammar A ::= p | ⊥ | A → A |
O(A/A). We treat the remaining propositional connectives ∧,∨,¬ as defined
by {⊥,→} in the usual way, i.e., ¬A :≡ A→ ⊥ as well as A ∨ B :≡ ¬A→ B
and A∧B :≡ ¬(¬A∨¬B). We will show in Prop. 1 below that the box-free frag-
ment of bMDL coincides with the dyadic version of the logic MD (see Chellas
(1980)) axiomatized as in Fig. 1

In this paper we will consider an extension of asequent calculus for this
logic. Here,a sequent is a tuple of multisets2 of formulae, written as Γ ⇒ ∆.
The rules of the base sequent calculus GMD are given in Fig. 2, those of the
calculus GbMDL for bMDL from Ciabattoni et al. (2015) in Fig. 3, where Γ�

denotes Γ in which all formulae not of the form �A are deleted. As usual, a
derivation is a finite labelled tree where every node is labelled with a sequent
such that the labels of a node follow from the labels of its children using the
rules of the calculus. In particular, the leaves are labelled with conclusions
of the zero-premise rules init or ⊥L, see also Troelstra and Schwichtenberg
(2000). For G one of GMD,GbMDL we write `G Γ ⇒ ∆ if there is a derivation
of Γ ⇒ ∆ in G. The following proposition gives a proof-theoretic proof of the
equivalence of the box-free fragment of bMDL and MD. For the original proof
using semantical methods, see Freschi et al. (2019).

Proposition 1 If Γ ⇒ ∆ does not contain �, then `GMD
Γ ⇒ ∆ iff `GbMDL

Γ ⇒ ∆. Hence the box-free fragment of bMDL is MD.

Proof One direction of the equivalence follows from changing the rules of
GbMDL into the corresponding rules of GMD possibly followed by the weak-
ening rules WL,WR. The other direction follows since a derivation in GMD is
a derivation in GbMDL with the addition of the structural rules of weakening
and contraction ConL,ConR, which are admissible in GbMDL (Ciabattoni et al.

2 Note that since we have contraction on both sides of the sequent we could alternatively
consider sequents as tuples of sets instead of multisets. To make the role of contraction
explicit and to facilitate a less error-prone cut elimination proof, we chose to use multisets.
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Γ� ⇒ A

Γ ⇒ �A,∆
4

Γ,�A,A⇒ ∆

Γ,�A⇒ ∆
T

Γ�, A⇒ C Γ�, B ⇒ D Γ�, D ⇒ B

Γ,O(A/B)⇒ O(C/D),∆
Mon′

Γ�, A⇒
Γ,O(A/B)⇒ ∆

D1
Γ�, A, C ⇒ Γ�, B ⇒ D Γ�, D ⇒ B

Γ,O(A/B),O(C/D)⇒ ∆
D2

Fig. 3 The modal part of the sequent calculus GbMDL for bMDL from Ciabattoni et al.
(2015).

2015, Lem. 1). Completeness and soundness of GMD for MD follow from gen-
eral methods (e.g. in Lellmann and Pattinson (2013)) for constructing sequent
calculi from axioms and proving cut elimination. ut

Remark 2 Following Ciabattoni et al. (2018), in this paper we employ a mech-
anism for handling propositional facts that differs from that in Ciabattoni
et al. (2015): whereas there we encoded such assumptions as boxed formulae
in the conclusion of a derivation, here we treat them as leaves in a derivation.
E.g., for deriving that the conditional obligation to not perform violence im-
plies the conditional obligation to not kill from the assumption that killing
implies violence, using the mechanism from Ciabattoni et al. (2015) we would
try to derive the sequent �(kill → violence),O(¬violence/C) ⇒ O(¬kill/C)
using only inital sequents at the leaves of the derivation. Here, instead we will
try to derive the sequent O(¬violence/C)⇒ O(¬kill/C), where the non-logical
axiom or ground sequent kill ⇒ violence may occur at a leaf of the derivation
(see Def. 1 below for the formal details). This has the welcome consequence
that we can avoid the alethic modality � including any question about its ax-
iomatisation, in line with the view that Mı̄mām. sā authors did not distinguish
between necessity and epistemic certainty.

3 Reasoning with more specific obligations in Mı̄mām. sā

Here we continue the proof-theoretic approach initiated in Ciabattoni et al.
(2015) to reproduce Mı̄mām. sā reasoning in a formal framework.

Before considering the full language, we first illustrate the main ideas be-
hind the sequent calculus approach to deal with specificity/gun. apradhāna in
the simplified context of Ciabattoni et al. (2018), i.e. using the (dyadic version
of the) logic MD with the obligation operator only.

Specificity is used in Mı̄mām. sā to resolve apparent contradictions which
may occur in the set of Vedic (śrauta) prescriptions or can be derived via
the facts. For example, consider the śrauta injunctions: (a) You ought not to
study the Vedas if you are a Śūdra (i.e., a member of the lower class), (b) Not
studying the Vedas implies not performing the Agnihotra sacrifice, and (c) You
ought to perform the Agnihotra if you are a chariot maker. The additional
fact (d) A chariot maker is a Śūdra, (apparently) leads to the conflicting
obligations that you ought to study the Vedas if you are a chariot maker and
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that at the same time you ought not to do so, as extensively discussed by the
Mı̄mām. sā author Jaimini (2nd c. BCE). The following example illustrates the
way Mı̄mām. sā authors reason to solve such kinds of conflicting obligations.
Moreover it shows that inferences which aim to mimic Mı̄mām. sā reasoning do
not satisfy some of the principles identified as key properties of non-monotonic
logics in Gabbay (1985).

Remark 3 A central feature of our calculus is the distinction between prima
facie and derived obligations, needed for differentiating Vedic commands from
human deductions. This distinction is instead missing in Deontic Default logic
Horty (2012), that also does not satisfy the Vikalpa principle.

From now on we will denote prima-facie obligations or deontic assumptions
(śrauta obligations) with Opf(A/B) to distinguish them from derived obli-
gations (written O(A/B)). Formally, the language of deontic assumptions is
obtained from the language of MD by replacing the operator O with its prima-
facie variant Opf .

Example 1 We formalize the above statements concerning the Agnihotra sacri-
fice as follows: (a) Opf(¬ved/sdr), (b) agn→ ved, (c) Opf(agn/chmk), and (d)
chmk→ sdr, where ved denotes the act of studying the Vedas, agn the perfor-
mance of the Agnihotra sacrifice, sdr the fact of being a Śūdra, and chmk being
a chariot maker. Using the monotonicity of the deontic operator in its first ar-
gument, from (b) and (c) we derive the obligation (e) O(ved/chmk) (“You
ought to study the Vedas if you are a chariot maker”). On the other hand, if
it were possible to use indiscriminately monotonicity in the second argument
of the deontic operator, from (a) and (d) we would derive (f) O(¬ved/chmk)
(“You ought not to study the Vedas if you are a chariot maker”), obtaining a
conflict between (e) and (f).

By applying the specificity principle, we implement a form of “limited”
monotonicity in the second argument of the operator; hence, following the
above example, the derivation of (f) is blocked by the presence of the prima-
facie obligation (c).

The derivations from prima-facie injunctions are non-monotonic, as adding
more premisses can change the derived result. However, they do not satisfy
for example cautious monotonicity (if Γ ` ϕ and Γ ` ψ, then Γ, ϕ ` ψ), one
of the crucial properties of non-monotonic logics. Indeed given the prima-facie
injunctions Opf(ved/>) and Opf(¬ved/sdr), both O(ved/tch) (“You ought to
study the Vedas if you are a teacher”) and O(¬ved/tch ∧ sdr) are derivable,
but, if one of these conclusions is considered as a premiss, the result changes,
i.e. {Opf(ved/>),Opf(¬ved/sdr),Opf(ved/tch)} 0 O(¬ved/tch ∧ sdr).

We extend below the sequent calculus GMD for the logic MD with spe-

cial rules OOpf(C/D)
L ,OOpf(C/D)

R to derive conditional obligations of the form
O(A/B) from prima-facie obligations (i.e. śrauta prescriptions) written as
Opf(C/D), adopting limited forms of monotonicity. (Sec. 3.1). The extension
to the full language will be considered in Sec. 4.
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3.1 Sequent calculus for specificity/gun. apradhāna

In order to extend the sequent calculus for MD to capture the specificity princi-
ple, loosely following (Goble 2013, p.281), we interpret the notion of specificity
as entailment in the presence of (global) propositional assumptions. I.e., given
a set F of propositional facts about the world we say that proposition A is at
least as specific as proposition B, if F entails A → B. Given this interpreta-
tion, the specificity principle can be understood as limiting monotonicity of
the operator O in the second argument in the following sense. Given a list
L of non-nested prima-facie obligations, and a proposition B, we should be
licensed to infer the actual obligation O(A/B) if

(A) there is an injunction Opf(A/D) in L which is applicable i.e. we can infer
using F that B → D, and there is no Opf(X/Y ) in L such that B is at
least as specific as Y , Y is at least as specific as D, and the formulae A
and X are inconsistent, i.e. we can infer ¬(A ∧X).

However, while this implements the notion that more specific śrauta obliga-
tions overrule less specific conflicting ones, this only resolves conflicts between
propositions Opf(G/H) and Opf(I/J) in L for which the conditions are com-
parable in the sense that either H implies J or J implies H. Hence, to make
the resulting theory consistent with MD, following the Mı̄mām. sā reasoning in
Ex. 1 we add a further condition stating that

(B) there is no obligation Opf(X/Y ) ∈ L such that B is at least as specific as
Y , the enjoined A and X are inconsistent, and which is not overruled by a
more specific obligation Opf(E/F ) from L.

At this point, in order to make this intuition formally precise we need to
take a fundamental design decision: given that our logic MD includes mono-
tonicity in the first argument, whenever we can derive an obligation O(A/B),
we should also be able to derive the obligation O(A ∨ C/B) as well. Given a
list of prima-facie obligations, the question then essentially is whether we first
eliminate all the conflicts from this list, and then saturate under monotonicity
in the first argument (as, e.g., in the suggested procedure of removing con-
flicts from NDSICs in Libal and Pascucci (2019)), or we first consider all the
consequences of the original list under monotonicity, and then eliminate all
the obligations which would yield a conflict. We clarify this with the following
example.

Example 2 Consider the list containing exactly the two prima-facie obligations
Opf(A ∧ B/C) and Opf(¬A/C). Since A ∧ B and ¬A are inconsistent, the
approach of ruling out conflicting obligations first and then saturating under
monotonicity in the first argument would yield an empty set of obligations.
In the second approach, instead, we first saturate under monotonicity, giving,
e.g., the obligation O((A ∧ B) ∨ ¬A/C), and only then rule out conflicts.
Since (A ∧ B) ∨ ¬A is contradicting neither A ∧ B nor ¬A, we thus would
keep the obligation O((A ∧ B) ∨ ¬A/C). Also, if we added the prima facie
obligation Opf(¬A/C ∧D) we would get bothO(B/C ∧D) and O(¬A/C ∧D),
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in contrast with the first approach which would first eliminate the assumption
Opf(A ∧B/C) and hence would not yield O(B/C ∧D).

While both approaches have their uses, in this work we choose to follow the
second one, because of two main reasons. It allows us to preserve the power of
deontic assumptions (Śrauta obligations) as much as possible, by suspending
only the part of an obligation which is in conflict with another one. Moreover,
it naturally implements the Mı̄mām. sā principle of vikalpa. Such a principle
corresponds to the disjunctive response: given two incompatible prima-facie
obligations Opf(A/B) and Opf(C/D), in a situation where both apply, i.e.,
where B ∧D holds, one may choose which one to follow, corresponding to the
obligation O(A ∨ C/B ∧D). We now make this formally precise.

In the remainder of this paper we assume that F is a finite set of sequents
containing only propositional variables, which is closed under cuts, i.e., when-
ever Γ ⇒ ∆, p and p,Σ ⇒ Π are in F, then so is Γ,Σ ⇒ ∆,Π, and closed
under contractions, i.e., whenever Γ, p, p⇒ ∆ or Γ ⇒ p, p,∆ are in F, then so
are Γ, p ⇒ ∆ and Γ ⇒ p,∆ respectively. We call F the set of (propositional)
facts. Note that, since every propositional formula is equivalent to a formula
in conjunctive normal form and sequents containing only propositional vari-
ables correspond to clauses of a formula in conjunctive normal form, using
this definition we can stipulate arbitrary propositional formulae as facts. We
further assume a finite set L of non-nested deontic assumptions, i.e., a finite
set L of formulae of the form Opf(A/B) where A and B do not contain the
O-operator. We call these formulae prima-facie obligations.

Remark 4 The facts expressed by the sequnts in F are assumed to be true
statements about the world: we do not consider the reliability of information
conveyed by such statements. Indeed, in contrast with Nute (1997), we do not
distinguish actual obligations —in force under conditions that are actually
verified— from apparent obligations, which are in force given all we know
about morally relevant circumstances, that is under conditions that are not
necessarily verified, but only believed to be true.

To capture the intuition for the specificity principle given above in a well-
behaved sequent system, we first need to make the notion of implication used
there formally precise. In particular, we would like to define a notion of infer-
ence ` from the facts in F depending on the set L, such that we can derive a
sequent ⇒ O(A/B) if and only if both of the following hold, corresponding
to the conditions (A) and (B) above:

– there is Opf(C/D) ∈ L such that F ` B ⇒ D and F ` C ⇒ A and for all
Opf(X/Y ) ∈ L we have: ( F 0 B ⇒ Y or F 0 Y ⇒ D or F 0 X,A⇒ )

– for all Opf(X/Y ) ∈ L we have: F 0 B ⇒ Y or F 0 X,A ⇒ or there is a
Opf(E/F ) ∈ L such that: (F ` B ⇒ F and F ` F ⇒ Y and F ` E ⇒ A).

To ensure that these conditions hold, we will simply turn them into premisses
of the corresponding sequent rules. At first this might seem rather problematic,
because we use underivability (0) to define derivability (`). However, we will
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∃Opf(C/D) ∈ L s.t. @Opf(X/Y ) ∈ L ∀Opf(X/Y ) ∈ L ∃Opf(E/F ) ∈ L

Fig. 4 A graphical representation of the conditions for O(A/B) being derivable. Areas can
be taken as formulae with containment representing entailment, i.e., more specific formulae
are contained in less specific ones.

show below that the resulting notion of derivability is well-defined, using the
technical tool of the cut elimination result.

Graphically, these two conditions can be visualised as in Fig. 4. The first
condition requires that the derivable obligationO(A/B) is implied (via upward
monotonicity on the first argument and downward monotonicity on the second
argument) by a less specific deontic assumption Opf(C/D) ∈ L and that there
is no Opf(X/Y ) ∈ L conflicting with O(A/B) which is more general than
that and more specific than Opf(C/D). This condition includes the choice
mentioned above. Indeed, it requires that any Opf(X/Y ) ∈ L, which is more
specific than Opf(C/D) and more general than O(A/B), does not conflict with
O(A/B), instead of requiring that it does not conflict with Opf(C/D). This
means that the specificity principle is applied for resolving conflicts only after
saturating the set of deontic assumptions under monotonicity.

The second condition models the fact that the conflicting prima-facie obli-
gationOpf(X/Y ) is overruled by the more specific prima-facie obligationOpf(E/F )
by stating that F ` E ⇒ A, i.e., that what is enjoined by Opf(E/F ) implies A.
While this implies that E and X are inconsistent, one may wonder whether it
is a too strong condition. In fact, as a consequence of our fundamental design
decision to first saturate the set of prima-facie obligations under monotonicity,
and then ruling out conflicts, the obvious alternative of only demanding X and
E to be inconsistent would lead to conflicting obligations rather quickly. Con-
ceptually, this is due to the fact that the more specific obligation Opf(E/F )
only suspends the part of the obligation Opf(X/Y ) which is in conflict with E,
but does not cancel the obligation completely. So in particular, if this part is
unrelated to A, then the part of Opf(X/Y ) which conflicts with O(A/B) will
remain unsuspended, and hence we should not be able to derive the latter. For
example, given the list L = {Opf(¬p/s),Opf(p∧q/s),Opf(¬q∧r/t),Opf(¬r/t)},
we would end up with the problematic situation of deriving both O(q/s ∧ t),
using Opf(p∧q/s) as the main obligation, and O(¬q/s∧ t), using Opf(¬q∧r/t)
as the main obligation. The stronger condition used above prevents this situ-
ation.

To turn these considerations into sequent rules (the rulesOOpf(C/D)
L ,OOpf(C/D)

R

in Def. 1 below), we convert every (meta-)conjunction and universal quantifier
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in this characterization into different premises, while (meta-)disjunctions and
existential quantifiers yield a split into different rules. To write the rules in an
economic way, we use the following notation.

Notation 1 If P is a set of premisses, and S = {S1, . . . ,Sn} is a set of sets
of premisses we write

P ∪ [S]

C for the set of rules
{P ∪ S1

C
, . . . ,

P ∪ Sn
C

}
E.g., we write

{X ⇒ Y } ∪ [{{Σ ⇒ Π}, {Ω ⇒ Θ,Ai | Ai ∈ F}}]
Γ ⇒ ∆

for the set containing the two rules

{X ⇒ Y } ∪ {Σ ⇒ Π}
Γ ⇒ ∆

and
{X ⇒ Y } ∪ {Ω ⇒ Θ,Ai | Ai ∈ F}

Γ ⇒ ∆
.

Note that we use set-theoretic notation for the sets of premisses, e.g., the rule
above left has the two premisses X ⇒ Y and Σ ⇒ Π and the conclusion C.

Since the rules now also will mention underivability, we further need to
add a judgment for this to some of the sequents, written as (F,L) 0GMDcut,
with the intended meaning that the sequent is not derivable from the facts F
and the prima-facie deontic statements L in the system GMDcut, in the sense

defined below (Def. 2). Thus we will obtain a set of rules OOpf(C/D)
R introducing

a formula of the form O(A/B) on the right hand side of the sequent. For

technical reasons we will also add rules OOpf(C/D)
L introducing such a formula

on the left hand side – these essentially follow from absorbing inferences using
the axiom (D) into the previous rule. We will show below, in the discussion of
the full system, that their addition indeed is merely a technical convenience
(see Lem. 1).

Remark 5 The formulae we want to infer might have nested deontic opera-
tors, setting the system apart from, e.g., the known systems of Input/Output
logic Makinson and van der Torre (2000). Indeed, they should capture key
prescriptions like “under the condition of having to perform sacrifice α under
the conditions β, you ought to do γ”. However, to ensure decidability of the
system we do not permit nested obligations in the deontic assumptions.

Definition 1 Let L = {Opf(A1/B1), . . . ,Opf(An/Bn)} be a finite set of non-
nested prima-facie obligation formulae and let F be a set of propositional
sequents. The rules of gaL (for global assumptions from L) are given in Fig. 5. A
proto-derivation with conclusion Γ ⇒ ∆ in the system GMD from assumptions
(F,L) is a finite labelled tree, where each internal node is labelled with a
sequent, each leaf is labelled with an initial sequent, a sequent from F, or an
underivability statement (F,L) 0GMDcut Σ ⇒ Π, such that the label of every
internal node is obtained from the labels of its children using the rules of
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{B ⇒ D} ∪ {C ⇒ A}

∪


{{(F,L) 0GMDcut B ⇒ Y

}}
∪
{{

(F,L) 0GMDcut Y ⇒ D
}}

∪
{{

(F,L) 0GMDcut X,A⇒
}}
 | Opf(X/Y ) ∈ L


∪


{{(F,L) 0GMDcut B ⇒ Y

}}
∪
{{

(F,L) 0GMDcut X,A⇒
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y } ∪ {E ⇒ A} | Opf(E/F ) ∈ L

}
 | Opf(X/Y ) ∈ L


⇒ O(A/B)

OOpf (C/D)

R

{B ⇒ D} ∪ {C,A⇒ }

∪


{{(F,L) 0GMDcut B ⇒ Y

}}
∪
{{

(F,L) 0GMDcut Y ⇒ D
}}

∪
{{

(F,L) 0GMDcut X ⇒ A)
}}
 | Opf(X/Y ) ∈ L


∪


{{(F,L) 0GMDcut B ⇒ Y

}}
∪
{{

(F,L) 0GMDcut X ⇒ A
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y } ∪ {E,A⇒ } | Opf(E/F ) ∈ L

}
 | Opf(X/Y ) ∈ L


O(A/B)⇒ OOpf (C/D)

L

Fig. 5 The rules of gaL with Opf(C/D) ∈ L.

GMD or gaL. The notion of a proto-derivation in the system GMDcut is defined
analogously, but also permitting applications of the cut rule

Γ ⇒ ∆,A A,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
cut

.

The depth of a proto-derivation is the depth of the underlying tree, i.e., the
maximal length of a branch in the tree plus one.

For future reference we divide the premisses of the rules in Fig. 5 into
different blocks in the following way: the first two premisses, i.e., {B ⇒ D}
and {C ⇒ A} together form the standard block, stating that the prima-facie
obligation Opf(C/D) potentially can be used to derive the conclusion O(A/B).
The following block

{(F,L) 0GMDcut B ⇒ Y }
{(F,L) 0GMDcut Y ⇒ D}
{(F,L) 0GMDcut X,A⇒ }

 | Opf(X/Y ) ∈ L


is called the not-excepted block, and states that the prima-facie obligation
Opf(C/D) is not overruled by another one which is at least as specific. The
remaining premisses together form the no-active-conflict block, which states
that there is no other conflicting prima-facie obligation which is not overruled
by a more specific one. For every formula Opf(X/Y ) the choices are divided
into the no-conflict block, stating that there is no conflict between the prima-
facie obligation Opf(X/Y ) and the desired conclusion O(A/B), and consisting
of the underivability statements

(F,L) 0GMDcut B ⇒ Y and (F,L) 0GMDcut X,A⇒ ,
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and the override block, consisting of the remaining possible premisses

{{B ⇒ F} ∪ {F ⇒ Y } ∪ {E,A⇒ } | Opf(E,F ) ∈ L}

and stating that the prima-facie obligation Opf(X/Y ) is overruled by another

one which is at least as specific. The terminology for the rule OOpf(C/D)
L is

analogous.

Definition 2 A proto-derivation in GMD (in GMDcut) from (F,L) is valid if
for each of the underivability statements (F,L) 0GMDcut Σ ⇒ Π, occurring as
one of the leafs of that derivation, there is no valid proto-derivation of Σ ⇒ Π
in GMDcut from (F,L). In case there is such a valid proto-derivation we also
write (F,L) `GMD

Γ ⇒ ∆ and (F,L) `GMDcut Γ ⇒ ∆ respectively.

Note that underivability statements are always evaluated in the system
with the cut rule. Since the definition of a valid proto-derivation involves the
notion of a valid proto-derivation itself, it is not immediately clear that this
notion is well-defined. We will show in the discussion of the full system below
(Cor. 1) that this is indeed the case. In particular, this along with the de-
cidability result follows from the crucial cut elimination theorem, stating the
redundancy of the cut rule:

Proposition 2 (Ciabattoni et al. (2018)) For every F,L and sequent Γ ⇒
∆ we have

(F,L) `GMDcut Γ ⇒ ∆ if and only if (F,L) `GMD
Γ ⇒ ∆ .

Since this proposition is a special case of the more general result for the
full system in Thm. 8 below we omit the proof.

Example 3 Consider the prima-facie obligations given by L = {Opf(agn/>),
Opf(¬agn/sdr)} (with agn, sdr and tch as in Ex. 1) and the set F = ∅ of
facts. Taking the formula Opf(agn/>) as the formula Opf(C/D) in the general
scheme of Fig. 5, we obtain the rules in Fig. 6. In particular, the sequent
⇒ O(agn/tch) would be derivable using, e.g., an instance of the rule

B ⇒ > agn⇒ A (F,L) 0GMDcut agn, A⇒ (F,L) 0GMDcut B ⇒ sdr

B ⇒ > > ⇒ > agn⇒ A (F,L) 0GMDcut B ⇒ sdr

⇒ O(A/B)

Similarly, taking the formula Opf(C/D) to be Opf(¬agn/sdr) we obtain, e.g.

B ⇒ sdr ¬agn⇒ A (F,L) 0GMDcut > ⇒ sdr (F,L) 0GMDcut ¬agn, A⇒
B ⇒ sdr sdr⇒ > ¬agn⇒ A B ⇒ sdr sdr⇒ sdr ¬agn⇒ A

⇒ O(A/B)

which serves to derive the sequent ⇒ O(¬agn/tch ∧ sdr). Finally, using
gaL with Opf(¬agn/sdr) for the formula Opf(C/D) yields a derivation of
O(agn/tch ∧ sdr) ⇒ and thus ⇒ ¬O(agn/tch ∧ sdr). Note that even for
just two prima-facie obligations we obtain many (often redundant) rules.
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{B ⇒ >}
∪ {agn⇒ A} ∪

{{(F,L) 0GMDcut B ⇒ >
}}

∪
{{

(F,L) 0GMDcut > ⇒ >
}}

∪
{{

(F,L) 0GMDcut agn, A⇒
}}
 ∪

{{(F,L) 0GMDcut B ⇒ sdr
}}

∪
{{

(F,L) 0GMDcut sdr⇒ >
}}

∪
{{

(F,L) 0GMDcut ¬agn, A⇒
}}


∪


{{

(F,L) 0GMDcut B ⇒ >
}}

∪
{{

(F,L) 0GMDcut agn, A⇒
}}

∪ {{B ⇒ >} ∪ {> ⇒ >} ∪ {agn⇒ A}}
∪ {{B ⇒ sdr} ∪ {sdr⇒ >} ∪ {¬agn⇒ A}}



∪


{{

(F,L) 0GMDcut B ⇒ sdr
}}

∪
{{

(F,L) 0GMDcut ¬agn, A⇒
}}

∪ {{B ⇒ >} ∪ {> ⇒ sdr} ∪ {agn⇒ A}}
∪ {{B ⇒ sdr} ∪ {sdr⇒ sdr} ∪ {¬agn⇒ A}}


⇒ O(A/B)

Fig. 6 The rule OOpf (C/D)

R from Ex. 3.

4 Extending bMDL with new deontic operators

The preliminary analysis of Mı̄mām. sā reasoning purely in terms of obligations
is rather simplistic, since it considers other deontic concepts such as prohibi-
tions as defined notions. It turned out, indeed, that obligations and prohibi-
tions are treated markedly different3 in Mı̄mām. sā : on a “meta-logical” level,
obeying a Vedic obligation gives positive results and disrespecting it implies
just the lack of these results; conversely, the observance of a Vedic prohibition
gives no result and the violation of it leads to a sanction (the accumulation
of negative karma). Hence it is not enough to model prohibitions as negative
obligations.

In addition the difference between prescriptions and prohibitions is not only
on the results of obeying or disrespecting them; one of the most important dif-
ferences is the idea at the base of those two deontic concepts, i.e. “activation”
in case of injunctions and “inhibition” for prohibitions. To confirm such a
distinction, let us consider the debate in Mı̄mām. sā commentaries on the in-
junction not to eat kalajañja (probably a variety of garlic). If the command
represents a prohibition, it means that, independently from the agents’ de-
sires and motivations, the agents have the duty not to consume this product:
in principle, even eating it by accident would constitute a violation. On the
other hand, if the command is a negative obligation, the agents have the duty
to choose to refrain from eating kalañja; hence, theoretically, if the agents de-
cide to eat that vegetable, they are not compliant with the obligation, even
if an external contingency prevents them from realizing their intentions. For
these reasons, prescriptions and prohibitions should be considered as genuine
deontic concepts: they cannot be deprived of their deontic content and reduced
to instructions for obtaining desirable results or avoiding sanctions. Such an
interpretation —that could be formally represented by a Kanger-Andersonian

3 A similar phenomenon happens in Talmudic logic, were distinct operators are
needed Abraham et al. (2011).
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reduction— would be closer to the instrumental reading of commands given
by the late author Man.d. ana Mísra (c. 8th century CE), which was in between
the Mı̄mām. sā and the Vedanta schools of Indian philosophy.

In this section we continue and refine the analysis of Mı̄mām. sā reason-
ing in Ciabattoni et al. (2015) by extending the �-free fragment of the logic
bMDL with new operators for prohibitions and recommendations. We call the
resulting logic MD+. As for the obligation operator O, axioms and rules for
the new operators are extracted from the Mı̄mām. sā nyāyas, that have been in
the meanwhile4 found in the texts, translated from Sanskrit, interpreted and
abstracted.

Prohibitions are modeled in MD+ using the operator F(A/B), to be
read as “A is forbidden under the conditions B”. As in the case of obligations,
prohibitions are better expressed by a dyadic operator. They can apply un-
conditionally to the person throughout her life (purus. ārtha), as in the Vedic
command “one should not perform violence on any living being”, or be rela-
tive to a particular ritual context (kratvartha), as for the example “one should
not utter the ‘ye yajāmahe’ mantra during the after-sacrifices” discussed in
Jaimini’s Pūrva Mı̄mām. sā Sūtra (henceforth PMS).

A first natural property for prohibitions is expressed by the axiom DF

¬(F(A/B) ∧ F(¬A/B))

motivated by the consideration that, because of the “meaningfulness of Vedic
commands” (in PMS 1.2.23) stating that no injunction can be meaningless or
inapplicable, there is always a way to obey all needed commands and avoid
sanctions; this would be impossible having the prohibition of an action and its
negation under the same conditions. The downward monotonicity rule (MonF )

C → A B ↔ D
F(A/B)→ F(C/D)

is justified by argumentations as the one in Medhātithi’s Manubhās.ya, where
the prohibition to commit suicide (F(suicide/>)) is derived from the more
comprehensive prohibition to commit violence (F(violence/>)), since there it
is explicitly assumed that suicide→ kill and kill→ violence.

Finally, the axiom DOF

¬(O(A/B) ∧ F(A/B))

arises again from the nyāya about meaningfulness of commands, and from
what is known as “ought implies can principle”, extracted from the discussion
on the concept of adhikāra in Jaimini’s texts. According to this principle, a
person who is prescribed to perform an action is assumed to have not only
physical and economical capacities, but also the “practical” possibility to com-
plete the action without undesirable consequences, like damages or sanctions.
Therefore, performing a prescribed act can never lead to a sanction, hence it
is impossible that the same act is prohibited.

4 This is an ongoing project, which is carried out together with Sanskritists.
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Recommendations: Besides the distinction between obligations and pro-
hibitions, a more refined analysis should take into account the different notions
of prescriptions used by Mı̄mām. sā authors. Traditionally, rituals prescribed
by the Vedas are distinguished into fixed (nitya), occasional (naimittika), and
elective (kāmya); fixed ritual actions should be performed, in order to ob-
tain the positive result of good karma, regularly throughout the whole life,
occasional ones have similar properties, but should be carried out in special
occasions, like the birth of a child, whilst the third kind includes rituals to be
executed only in order to obtain a specific result. It has been noticed (Freschi
et al. (2019)) that, while the characteristics of the operator O in bMDL are well
suited to describe fixed and occasional prescriptions, the elective rituals rep-
resent recommendations or instruction for achieving a result in a “Vedic” way,
more than proper obligations. We call these weaker obligations recommenda-
tions and express them with the operator R(./.). We model R(./.) using the
dyadic version of the modal logic MP, see, e.g., Chellas (1980), in line with
the analysis in Freschi et al. (2019) where also the axioms for R(./.) are mo-
tivated. Note that it might be possible for something to be obligatory and
recommended at the same time, as, e.g., in the case of the Agnihotra sacrifice.
Indeed, the sequence of actions constituting the Agnihotra ritual represents
the content both of a fixed sacrifice (corresponding to obligations) and of an
elective one (corresponding to recommendations). In other words, if the agents
perform such a ritual perfectly, according to the stricter rules governing elective
sacrifices, they are compliant both with the recommendation (hence obtaining
the desired result) and with the obligation (fulfilling their duties).

The axiom

¬R(⊥/A)

guarantees that there are no self-contradictory recommendations, which rep-
resents a minimal condition for any Vedic instruction. Notice that it is weaker
than DO and DF , as, in contrast with obligations and prohibitions, it is possi-
ble to have two recommended rituals for getting the same result which cannot
be performed at the same time. In those cases (e.g., in the case of the prescrip-
tions of kāriri sacrifice and twelve-nights sacrifice for obtaining the rain, see,
e.g., Freschi et al. (2019)) Mı̄mām. sā authors assume that one of the two sac-
rifices is enough to get the intended result, but both recommendations remain
in force.

The rule
A→ C B ↔ D
R(A/B)→ R(C/D)

is justified by the following abstraction of the nyāyas in the Tantrarahasya
IV.4.3.3 (see Freschi (2012)):

“if the accomplishment of X presupposes the accomplishment of Y, the
obligation to perform X prescribes also Y”.

Already mentioned in Ciabattoni et al. (2015) regarding obligations, this prin-
ciple is suitable also for recommendations because, as noticed in Freschi et al.
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(MonF ) :

C → A B ↔ D

F(A/B)→ F(C/D) (MonR) :

A→ C B ↔ D

R(A/B)→R(C/D)

(DF ) : ¬(F(A/B) ∧ F(¬A/B)) (PR) : ¬R(⊥/A)

(DOF ) : ¬(O(A/B) ∧ F(A/B))

Fig. 7 The Hilbert-style axiomatisations for prohibitions and weak obligations in MD+.

C ⇒ A B ⇒ D D ⇒ B

F(A/B)⇒ F(C/D)
MonF

A⇒ C B ⇒ D D ⇒ B

O(A/B),F(C/D)⇒
DOF

A⇒ C B ⇒ D D ⇒ B

R(A/B)⇒R(C/D)
MonR

A⇒
R(A/B)⇒

PR

⇒ A,B C ⇒ D D ⇒ C

F(A/C),F(B/D)⇒
DF

⇒ A

F(A/B)⇒
PF

Fig. 8 The sequent rules of GMD+ for the logic with prohibitions and recommendations.

(2019), it is more about how Mı̄mām. sā authors consider the relations among
facts than about a specific kind of prescription.

The axioms and rules of all the operators in a Hilbert-style system are given
in Fig. 7, and the corresponding sequent rules, obtained using the method in
Lellmann and Pattinson (2013), are given in Fig. 8. Note that the resulting se-
quent calculus admits cut-elimination by construction and hence the resulting
logic is consistent.

Permissions: MD+ does not include an explicit operator for permissions:
they are instead treated exclusively as explicit exceptions to obligations or
to prohibitions, and hence considered only on the prima-facie level. This for-
malization is motivated by Mı̄mām. sā authors’ interpretation, which assumes
that “there cannot be a prescription prescribing a person to do something she
is already inclined to do” (novelty nyāya in Jaimini’s PMS 1.2.19). Hence
permissions, having the same linguistic form as prescriptions but conveying
something that is naturally desired by anyone, are interpreted as exceptions
to more general commands. For instance, the statement (in Śabara on PMS
10.7.28) “the five five-nailed animals can be eaten” is interpreted, at the prima-
facie level, as the prohibition to eat meat plus the permission to eat five species
of five-nailed animals (i.e., some species of wild rodents, wild boars, lizards,
hares, and turtles).

5 Defeasible reasoning in Mı̄mām. sā

We introduce a sequent calculus to reason in presence of specificity in the
extended logic. In order to incorporate into our framework prohibitions, per-
missions as exceptions to prescriptions or prohibitions, and recommendations,
we extend the list of deontic assumptions or prima-facie (śrauta) prescriptions
to also include prima-facie prohibitions, prima-facie obligation-permissions
(exceptions to obligations), prima-facie prohibition-permissions (exceptions
to prohibitions) and prima-facie recommendations, denoted by the operators
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B ⇒ D D ⇒ B C ⇒ A (F,L) 0GMD+cut C ⇒

⇒R(A/B)
RRpf (C/D)

R

Fig. 9 The global assumption rules for recommendations, based on the prima-facie recom-
mendation Rpf(C/D) ∈ L

Fpf(./.), POpf (./.), PFpf (./.) and Rpf(./.) respectively. Hence, the list L of prima-
facie deontic statements now contains finitely many (non-nested) formulae of
these forms. In particular, if L only contains prima-facie obligation formulae,
we recover the simplified situation of Sec. 3. The construction of the global
assumption rules then follows the same principle as before, incorporating speci-
ficity.

For the recommendations we need to make sure that we do not derive
R(A/B) with A equivalent to ⊥. In particular, following Freschi et al. (2019)
we use the Mı̄mām. sā reasoning that the Vedas do not recommend anything
which is self-contradictory, to rule out prima-facie recommendations R(A/D)
where it follows from the facts that A implies ⊥. Hence we only need one
global assumption rule of the form given in Fig. 9.

Remark 6 Due to the presence in MD+ of axiom DOF , the cases for the obli-
gations and prohibitions are somewhat more complex than cases involving
recommendations, as prima-facie obligations and prohibitions can overrule
each others according to the specificity principle.

For the sake of an economical presentation we employ Notation 1 from
Section 3.1. The rationale for the construction of the rules then is as follows:

– Due to DO (resp. DF ), more specific conflicting obligations (resp. prohibi-
tions) overrule less specific obligations (resp. prohibitions)

– Due to the interaction rule DOF , more specific conflicting obligations over-
rule less specific prohibitions and vice versa

– Due to the interpretation of permissions as explicit exceptions to obli-
gations or prohibitions, more specific obligation-permissions overrule less
specific obligations, but have no relevance for prohibitions, and analogously
for prohibition-permissions.

Right Rules: Following this, for obligations we obtain the following char-
acterisation. An obligation O(A/B) follows from a set L of śrauta deontic
statements if there is a śrauta obligation Opf(C/D) in L such that:

– The assumption is applicable, because the condition B is at least as specific
as D, i.e., (F,L) ` B ⇒ D

– A is entailed by C, i.e., (F,L) ` C ⇒ A
– There is no more specific conflicting śrauta obligation or obligation-permission

(POpf ), i.e., for every Opf(X/Y ) ∈ L or POpf (X/Y ) ∈ L we have ((F,L) 0
B ⇒ Y or (F,L) 0 Y ⇒ D or (F,L) 0 X,A⇒ )

– There is no more specific conflicting śrauta prohibition, i.e., for every
Fpf(X/Y ) ∈ L we have ((F,L) 0 B ⇒ Y or (F,L) 0 Y ⇒ D or (F,L) 0
A⇒ X)
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– Every conflicting śrauta obligation is overruled by a more specific obli-
gation, prohibition, or obligation-permission (POpf ) i.e., for every śrauta
obligation Opf(X/Y ) with (F,L) ` B ⇒ Y and (F,L) ` X,A ⇒ there is
a śrauta obligation Opf(E/F ) with ((F,L) ` B ⇒ F and (F,L) ` F ⇒ Y
and (F,L) ` E ⇒ A) or there is a śrauta prohibition Fpf(E/F ) with
((F,L) ` B ⇒ F and (F,L) ` F ⇒ Y and (F,L) ` ⇒ A,E) or there is a
śrauta permission POpf (E/F ) with ((F,L) ` B ⇒ F and (F,L) ` F ⇒ Y
and (F,L) ` E ⇒ A).

– Every conflicting śrauta prohibition is overruled by a more specific obli-
gation, prohibition or prohibition-permission, i.e., for every śrauta prohi-
bition Fpf(X/Y ) with (F,L) ` B ⇒ Y and (F,L) ` A ⇒ X there is a
śrauta obligation Opf(E/F ) with ((F,L) ` B ⇒ F and (F,L) ` F ⇒ Y
and (F,L) ` E ⇒ A) or there is a śrauta prohibition Fpf(E/F ) with
((F,L) ` B ⇒ F and (F,L) ` F ⇒ Y and (F,L) ` ⇒ A,E) or there is a
śrauta permission PFpf (E/F ) with ((F,L) ` B ⇒ F and (F,L) ` F ⇒ Y
and (F,L) ` E ⇒ A).

– Every conflicting śrauta obligation-permission is overruled by a more spe-
cific obligation, i.e., for every śrauta obligation-permission POpf (X/Y ) with
(F,L) ` B ⇒ Y and (F,L) ` A,X ⇒ there is a śrauta obligation
Opf(E/F ) with ((F,L) ` B ⇒ F and (F,L) ` F ⇒ Y and (F,L) `
E ⇒ A).

The notion of being conflicting here is different, depending on the two con-
flicting statements. In particular, two obligations Opf(A/B) and Opf(C/D) are
conflicting if what is obligatory, i.e., A and C, cannot be true at the same time.
This is equivalent to stating that we can derive ¬(A ∧C), or equivalently the
sequent A,C ⇒ from the facts. In contrast, an obligation Opf(A/B) conflicts
with a prohibition Fpf(C/D) if following the obligation would necessarily vio-
late the prohibition, or in other words if the implication A → C follows from
the facts, i.e., the sequent A⇒ C is derivable from the facts. Two prohibitions
Fpf(A/B) and Fpf(C/D) then conflict if it is not possible to follow both. This
means that the formula A ∨ C resp. the sequent ⇒ A,C follows from the
facts. Finally, a prohibition-permission PFpf (A/B) conflicts with a prohibition
Fpf(C/D) if the permitted A implies the forbidden C, i.e., if A→ C resp. the
sequent A⇒ C is derivable.

Incorporating this rationale into the construction of the assumption right

rule for obligations leads to the rules OOpf(C/D)
R for every formula Opf(C/D) ∈

L shown in Fig. 10. Similarly, using the above rationale to construct the as-

sumption right rule for prohibitions yields the rule FFpf(C/D)
R given in Fig. 11.

Left Rules: In order to obtain a cut-free system again we need to absorb
cuts between the principal formulae of these two rules and the remaining rules
into the rule set. In particular, saturating the rule set under cuts between the
assumption right rule for obligations and the rule DO and the interaction rule

DOF respectively yields the rules OOpf(C/D)
L and FOpf(C/D)

L shown in Fig. 12
and Fig. 13. Using these rules it is possible to derive an obligation and pro-
hibition respectively on the left, from a prima-facie obligation Opf(C/D) ∈ L.
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{B ⇒ D} ∪ {C ⇒ A}

∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ D
}}

∪
{{

(F,L) 0GMD+cut X,A⇒
}}
 | Opf(X/Y ) ∈ L or POpf (X/Y ) ∈ L


∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ D
}}

∪
{{

(F,L) 0GMD+cut A⇒ X
}}
 | Fpf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut X,A⇒
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} | Opf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {⇒ E,A} | Fpf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} | POpf (E/F ) ∈ L

}


| Opf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut A⇒ X
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} | Opf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {⇒ A,E} | Fpf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} | PFpf (E/F ) ∈ L

}


| Fpf(X/Y ) ∈ L


∪



{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X,A⇒}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E ⇒ A} | Opf(E/F ) ∈ L

}
 | POpf (X/Y ) ∈ L


⇒ O(A/B)

OOpf (C/D)

R

where Opf(C/D) ∈ L.

Fig. 10 The assumption right rule for obligations in presence of prohibitions and permis-
sions.

Similarly, cuts between the assumption right rule for prohibitions and the rule

DF and the interaction rule DOF respectively yield the rules FFpf(C/D)
L and

OFpf(C/D)
L shown in Fig. 14 and Fig. 15, respectively. Note that in the case

where L contains only prima-facie obligation formulae we obtain exactly the
rules of gaL in Fig. 5 of the previous section.

Again, for each of these rules we divide the premisses into the standard
block consisting of the first two premisses, the not-excepted block, consisting
of the underivability statements stating that there is no conflicting and at
least as specific prima facie deontic statement, and the no-active-conflict block,
consisting of the last three sets of premisses and stating that every conflicting
prima-facie deontic statement is overruled by a more specific one. For every
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{B ⇒ D} ∪ {A⇒ C}

∪


 {{(F,L) 0GMD+cut B ⇒ Y }}
∪ {{(F,L) 0GMD+cut Y ⇒ D}}
∪ {{(F,L) 0GMD+cut X ⇒ A}}

 | Opf(X/Y ) ∈ L or PFpf (X/Y ) ∈ L


∪


 {{(F,L) 0GMD+cut B ⇒ Y }}
∪ {{(F,L) 0GMD+cut Y ⇒ D}}
∪ {{(F,L) 0GMD+cut ⇒ X,A}}

 | Fpf(X/Y ) ∈ L



∪





{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X ⇒ A}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒ } | Opf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{A⇒ E} | Fpf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒ } | POpf (E/F ) ∈ L

}


| Opf(X/Y ) ∈ L



∪





{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut ⇒ X,A}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒} | Opf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{A⇒ E } | Fpf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒} | PFpf (E/F ) ∈ L

}


| Fpf(X/Y ) ∈ L


∪



{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X ⇒ A}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{A⇒ E} | Fpf(E/F ) ∈ L

}
 | PFpf (X/Y ) ∈ L


⇒ F(A/B)

FFpf (C/D)

R

where Fpf(C/D) ∈ L

Fig. 11 The assumption right rule for prohibitions.

prima-facie deontic statement, the corresponding possible premisses in the no-
active-conflict block again are divided into the no-conflict block consisting of
the underivability premisses, and the override block, consisting of the premisses
stating that the deontic statement is overridden.

Similarly to the simplified case without prohibitions and permissions, we
use the following notation.

Definition 3 We write (F,L) `GMD+cut Γ ⇒ ∆ if there is a valid proto-
derivation of Γ ⇒ ∆ from F in the system GMD+ extended with the following
global assumption rules for L:

gaL :=

{
op1op2(C/D)

s | op1 ∈ {O,F}, op2 ∈ {Opf ,Fpf},
op2(C/D) ∈ L, s ∈ {L,R}

}
.

The following lemma shows that the rules OOpf(C/D)
L ,FOpf(C/D)

L ,FFpf(C/D)
L

and OFpf(C/D)
L in the presence of the cut rule can be seen as a mere technical
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{B ⇒ D} ∪ {C,A⇒ }

∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ D
}}

∪
{{

(F,L) 0GMD+cut X ⇒ A
}}
 | Opf(X/Y ) ∈ L or POpf (X/Y ) ∈ L


∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ D
}}

∪
{{

(F,L) 0GMD+cut ⇒ A,X
}}
 | Fpf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut X ⇒ A
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A,E ⇒ } | Opf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A⇒ E} | Fpf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A,E ⇒ } | POpf (E/F ) ∈ L

}


| Opf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut ⇒ A,X
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A,E ⇒ } | Opf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A⇒ E} | Fpf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A,E ⇒ } | PFpf (E/F ) ∈ L

}


| F(X/Y ) ∈ L


∪



{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X ⇒ A}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒} | Opf(E/F ) ∈ L

}
 | POpf (X/Y ) ∈ L


O(A/B)⇒ OOpf (C/D)

L

where Opf(C/D) ∈ L.

Fig. 12 The assumption left rule for obligations in presence of prohibitions and permissions.

convenience, because they do not change the set of derivable sequents. How-
ever, in order to be able to perform automated reasoning in our system, we
also would like to eliminate the cut rule itself, and the resulting system would
not be complete without these rules.

Lemma 1 (Redundancy of the left rules) If there is a valid proto-derivation
of Γ ⇒ ∆ in GMD+cut from (F,L), then there is a valid proto-derivation of
Γ ⇒ ∆ from (F,L) in the system without the rules in Figs. 12, 13, 14 and 15.

Proof We show how to replace every application of one of these rules by cuts

and an application ofOOpf(C/D)
R and FFpf(C/D)

R respectively. So consider first an

application of the rule OOpf(C/D)
L as in Fig. 12. From every premiss of the form

Γ,A⇒ ∆ and Σ ⇒ A,Π using weakening and the implication rules we obtain
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{B ⇒ D} ∪ {C ⇒ A }

∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ D
}}

∪
{{

(F,L) 0GMD+cut X,A⇒
}}
 | Opf(X/Y ) ∈ L or POpf (X/Y ) ∈ L


∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ D
}}

∪
{{

(F,L) 0GMD+cut A⇒ X
}}
 | Fpf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut X,A⇒
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} | Opf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ { ⇒ A,E} | Fpf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} | POpf (E/F ) ∈ L

}


| Opf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut A⇒ X
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} | Opf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ { ⇒ A,E} | Fpf(E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} | PFpf (E/F ) ∈ L

}


| Fpf(X/Y ) ∈ L


∪



{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X,A⇒}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E ⇒ A} | Opf(E/F ) ∈ L

}
 | POpf (X/Y ) ∈ L


F(A/B)⇒ FOpf (C/D)

L

where Opf(C/D) ∈ L.

Fig. 13 The derived left rule for prohibitions in presence of prohibitions and permissions.

the corresponding premiss Γ ⇒ A → ⊥, ∆ and Σ,A → ⊥ ⇒ Π, respectively.
Further, from every underivability statement (F,L) 0GMD+cut Γ ⇒ A,∆ we
obtain the corresponding statement (F,L) 0GMD+cut Γ,A → ⊥ ⇒ ∆, since if
for the latter there were a valid proto-derivation, we could extend it to one of
the former via:

Γ,A⇒ A,⊥, ∆
Γ ⇒ A,A→ ⊥, ∆

→R
Γ,A⇒ ∆

Γ ⇒ A,∆
cut

Analogously, from every underivability statement (F,L) 0GMD+cut Σ,A⇒ Π we
obtain the corresponding statement (F,L) 0GMD+cut Σ ⇒ A→ ⊥, Π. Hence we

have all the premisses necessary to apply the ruleOOpf(C/D)
R with conclusion ⇒
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{B ⇒ D} ∪ {⇒ A,C}

∪


 {{(F,L) 0GMD+cut B ⇒ Y }}
∪ {{(F,L) 0GMD+cut Y ⇒ D}}
∪ {{(F,L) 0GMD+cut X,A⇒}}

 | Opf(X/Y ) ∈ L or PFpf (X/Y ) ∈ L


∪


 {{(F,L) 0GMD+cut B ⇒ Y }}
∪ {{(F,L) 0GMD+cut Y ⇒ D}}
∪ {{(F,L) 0GMD+cut A⇒ X}}

 | Fpf(X/Y ) ∈ L



∪





{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X,A⇒}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E ⇒ A } | Opf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{⇒ A,E} | Fpf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E ⇒ A } | POpf (E/F ) ∈ L

}


| Opf(X/Y ) ∈ L



∪





{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut A⇒ X}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E ⇒ A} | Opf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{⇒ E,A } | Fpf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E ⇒ A} | PFpf (E/F ) ∈ L

}


| Fpf(X/Y ) ∈ L


∪



{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X,A⇒}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{⇒ A,E} | Fpf(E/F ) ∈ L

}
 | PFpf (X/Y ) ∈ L


F(A/B)⇒ FFpf (C/D)

L

where Fpf(C/D) ∈ L

Fig. 14 The assumption left rule for prohibitions.

O(A→ ⊥/B). From this we obtain the conclusion of the original application

of the rule OOpf(C/D)
L using cut on the conclusion of the rule DO as follows:

⇒ O(A→ ⊥/B)

A→ ⊥, A⇒ B ⇒ B

O(A/B),O(A→ ⊥/B)⇒ DO

O(A/B)⇒

The premisses are clearly derivable.

In a similar way we obtain the conclusion of an application of FOpf(C/D)
L

from an application of OOpf(C/D)
R and a cut with the conclusion of the rule

DOF . The reasoning for the remaining rules is analogous. ut

The central technical result about the system stating elimination of the cut
rule then follows a reasonably standard pattern of a cut elimination proof, but
slightly adjusted to also accommodate for the underivability statements. The
proof is detailed in the Appendix. In the following we write (F,L) `GMD+

for
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{B ⇒ D} ∪ {A⇒ C}

∪


 {{(F,L) 0GMD+cut B ⇒ Y }}
∪ {{(F,L) 0GMD+cut Y ⇒ D}}
∪ {{(F,L) 0GMD+cut X ⇒ A}}

 | Opf(X/Y ) ∈ L or PFpf (X/Y ) ∈ L


∪


 {{(F,L) 0GMD+cut B ⇒ Y }}
∪ {{(F,L) 0GMD+cut Y ⇒ D}}
∪ {{(F,L) 0GMD+cut ⇒ X,A}}

 | Fpf(X/Y ) ∈ L



∪





{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X ⇒ A}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒ } | Opf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{A⇒ E} | Fpf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒ } | POpf (E/F ) ∈ L

}


| Opf(X/Y ) ∈ L



∪





{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut ⇒ X,A}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒} | Opf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{A⇒ E } | Fpf(E/F ) ∈ L

}
{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒} | PFpf (E/F ) ∈ L

}


| Fpf(X/Y ) ∈ L


∪



{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X ⇒ A}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{A⇒ E} | Fpf(E/F ) ∈ L

}
 | PFpf (X/Y ) ∈ L


O(A/B)⇒ OFpf (C/D)

L

where Fpf(C/D) ∈ L

Fig. 15 The new assumption left rule for obligations.

the cut-free system, i.e., the calculus (F,L) `GMD+cut with the cut rule removed.
Note that again in the cut-free calculus GMD+ the non-derivability statements
range over the system with the cut rule.

Theorem 2 (Cut elimination) If (F,L) `GMD+cut Γ ⇒ ∆, then (F,L) `GMD+

Γ ⇒ ∆.

Proof See the Appendix.

From the cut elimination theorem we then obtain equivalence of the sys-
tems with and without the cut rule:

Proposition 3 For every F,L we have

(F,L) `GMD+cut Γ ⇒ ∆ if and only if (F,L) `GMD+
Γ ⇒ ∆ .

Proof The “only if” direction is the statement of the cut elimination theorem.
The proof for the “if” direction is straightforward, since every rule in GMD is
also a rule in GMDcut, and since the underivability statements range over the
same system for valid proto-derivations in both systems. ut
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5.1 Consequences of cut elimination

The Cut Elimination Theorem has a number of important consequences, in
particular the fact that the notion of a valid proto-derivation is well-defined,
consistency of the system, and a decidability and complexity result. The latter
shows that despite the somewhat complicated shape of the assumption rules,
reasoning in the calculus does not have a higher complexity than reasoning in
standard modal logics such as K or in intuitionistic logic.

The fact that valid proto-derivations are well-defined can be seen by con-
sidering the following alternative stratified definition.

Definition 4 A proto-derivation of rank n in GMD+ (in GMD+cut) from (F,L)
with conclusion Γ ⇒ ∆ is a proto-derivation in GMD+ (in GMD+cut) from (F,L)
with conclusion Γ ⇒ ∆ such that

– every formula occurring in the proto-derivation has modal nesting depth
at most n

– every formula occurring in an underivability statement in the proto-derivation
has modal nesting depth at most n− 1.

If n is a natural number, then a proto-derivation is n-valid if it is of rank n
and for every k < n, for none of the underivability statements occurring in it
there is a k-valid proto-derivation in GMD+cut from (F,L).

Since the modal nesting depth of the formulae in the underivability state-
ments in the rules of gaL is stricly lower than that of the formulae in the
conclusion, the question whether a proto-derivation is n-valid only depends on
k-validity for k < n. Hence this definition is inductive and not circular. Using
the Cut Elimination Theorem we obtain that it is equivalent to unrestricted
validity of proto-derivations as follows.

Theorem 3 For every sequent Γ ⇒ ∆ with modal nesting depth at most
n there is a valid proto-derivation in GMD+cut from (F,L) with conclusion
Γ ⇒ ∆ if and only if there is a n-valid proto-derivation in GMD+cut from
(F,L) with conclusion Γ ⇒ ∆.

Proof By induction on n. So suppose the statement holds for every k < n.
If there is a valid proto-derivation of Γ ⇒ ∆ from (F,L) in GMD+cut with
conclusion Γ ⇒ ∆, then by Cut Elimination (Thm. 8) there is a valid proto-
derivation of Γ ⇒ ∆ from (F,L) in GMD+. Since none of the rules of GMD+

or gaL increases the modal nesting depth from conclusion to premiss(es), the
maximal modal nesting depth of formulae occurring in this proto-derivation is
n. Further, since the modal nesting depth of the formulae in the underivability
statements in the rules gaL is strictly smaller than that of the conclusion, every
formula occurring in an underivability statement in this proto-derivation has
modal nesting depth at most n − 1. Hence the proto-derivation is of rank n.
Since the modal nesting depth of the formulae in the underivability statements
is at most n − 1, by induction hypothesis we obtain that for these there is
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no k valid proto-derivation for any k ≤ n − 1. Hence the proto-derivation
is n-valid. Conversely, if we have a n-valid proto-derivation, then again by
induction hypothesis we obtain that for none of the underivability statements
occurring in it there is a valid proto-derivation. Since a proto-derivation of
rank n in particular is a proto-derivation, we obtain a valid proto-derivation
for the same conclusion. ut

Well-definedness of the notion of a valid proto-derivation then follows im-
mediately from the previous theorem together with the fact that n-validity is
well-defined:

Corollary 1 (Well-definedness) The notion of a valid proto-derivation is
well-defined. ut

As a second consequence of Cut Elimination we obtain that the rules gaL
are compatible with the logic MD+ as given in Fig. 1 and Fig. 7 in the sense
that they do not yield any conflicting obligations or prohibitions:

Theorem 4 (Consistency) For any L and F not containing the empty se-
quent, the consequences of L under F are consistent over MD+, i.e., (F,L) 0GMD+cut

⇒ ⊥. Hence in particular

– there are no A,B with (F,L) `GMD+cut ⇒ O(A/B) ∧ O(¬A/B);
– there are no A,B with (F,L) `GMD+cut ⇒ F(A/B) ∧ F(¬A/B);
– there are no A,B with (F,L) `GMD+cut ⇒ O(A/B) ∧ F(A/B);
– there is no B with (F,L) `GMD+cut ⇒ R(⊥/B).

Proof By inspection it is clear that all the rules in the calculus GMD+gaL have
the subformula property relative to L in the sense that every formula occurring
in a premise of a rule, including the underivability statements, is a subformula
of a formula occurring in its conclusion or in L. Since the empty sequent is
not in F, and apart from WR there is no rule introducing ⊥ on the right hand
side of a sequent, we cannot derive ⇒ ⊥. The second statement follows from
this using derivability of O(A/B) ∧O(¬A/B)⇒ and the analogous sequents
for the statements involving F and R together with the cut rule. ut

The third major consequence of the Cut Elimination Theorem is that it
permits the restriction of proof search to proto-derivations in the system with-
out the cut rule. Using the (extended) subformula property of the rules of the
cut-free system this yields a decision procedure for the logic. To make this
precise, the derivability problem is given by the following:

Mı̄mām. sā derivability using specificity
Input: Finite lists F,L of propositional facts and prima-facie

deontic statements, and a sequent Γ ⇒ ∆
Question: Do we have (F,L) `GMD+cut Γ ⇒ ∆?
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Γ, p⇒ p,∆
init

Γ,⊥ ⇒ ∆
⊥L

Γ,B ⇒ ∆ Γ ⇒ A,∆

Γ,A→ B ⇒ ∆
→L

Γ,A⇒ B,∆

Γ ⇒ A→ B,∆
→R

A⇒ C B ⇒ D D ⇒ B

Γ,O(A/B)⇒ O(C/D),∆
MonO

A,C ⇒ B ⇒ D D ⇒ B

Γ,O(A/B),O(C/D)⇒ ∆
DO

A⇒
Γ,O(A/B)⇒ ∆

PO

C ⇒ A B ⇒ D D ⇒ B

Γ,F(A/B)⇒ F(C/D),∆
MonF

⇒ A,B C ⇒ D D ⇒ C

Γ,F(A/C),F(B/D)⇒ ∆
DF

⇒ A

Γ,F(A/B)⇒ ∆
PF

A⇒ C B ⇒ D D ⇒ B

Γ,R(A/B)⇒R(C/D),∆
MonR

A⇒
Γ,R(A/B)⇒ ∆

PR
A⇒ C B ⇒ D D ⇒ B

∆,O(A/B),F(C/D)⇒ ∆
DOF

Fig. 16 The system G3MD+ without the assumption rules.

We will show a decidability and complexity result via a natural implementation
of backwards proof search on an alternating Turing machine (see Chandra
et al. (1981) for details). As usual, for this we first eliminate the structural
rules from the system.

Definition 5 The system G3MD+ is the system in Fig. 16, obtained from
GMD+ by restricting initial sequents to atomic formulae, dropping the weak-
ening and contraction rules, and absorbing weakening into the conclusion of
the logical rules. Similarly, for a list L of prima-facie deontic statements, the
rules ga∗L are the rules from gaL with weakening absorbed into the conclusion

(only!). E.g., the rule OOpf(C/D)
R

∗
has exactly the same premisses as the rule

OOpf(C/D)
R from Fig. 10, but the conclusion Γ ⇒ O(A/B), ∆. A valid proto-

derivation in G3MD+ from (F,L) is defined as for GMD+ with the exception that
leaves may also be labelled with sequents Γ,Σ ⇒ Π,∆, where Σ ⇒ Π ∈ F and
Γ ⇒ ∆ is an arbitrary sequent. In particular, the underivability statements
also range over GMD+cut.

The following properties of the calculus are shown by standard methods.

Lemma 2 (Generalised initial sequents) The generalised initial sequent
rule

Γ,A⇒ A,∆

is admissible in G3MD+.

Proof By induction on the complexity of the formula A, using the rules MonO,
MonF , MonR in case the outermost connective is one of O,F ,R. ut

Lemma 3 (Invertibility of the propositional rules) The rules →∗R and
→∗L are depth-preserving invertible in G3MD+, i.e., whenever there is a valid
proto-derivation of their conclusion in G3MD+ with depth n from (F,L), then
for each of the premisses there is a valid proto-derivation with depth n from
(F,L) as well.

Proof By induction on the depth of the valid proto-derivation. ut
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Lemma 4 (Admissibility of Weakening and Contraction) The weak-
ening and the contraction rules are depth-preserving admissible, i.e., whenever
there are valid proto-derivations in G3MD+ of the premisses of these rules with
depth n from (F,L), then there are valid proto-derivations of their conclusions
with the same depth from (F,L) as well.

Proof By induction on the depth of the valid proto-derivation, using Lem. 3 in
case the contracted formula is a principal formula in a propositional rule. ut

Lemma 5 Let F,L be finite lists of propositional facts and prima-facie deontic
statements, respectively, and let Γ ⇒ ∆ be a sequent. Then (F,L) `GMD+

Γ ⇒
∆ if and only if (F,L) `G3MD+

Γ ⇒ ∆.

Proof Since the underivability statement range over the same system, we only
need to show how to convert proto-derivations from one system to the other.
For the “only if” direction, we replace applications of the weakening and con-
traction rules with invocations of Lem. 4, and simulate the generalised intitial
sequents of GMD+ using Lem. 2. For the “if” direction, we make the absorbed
weakening explicit using the rules WL,WR. ut

Using the previous lemma, to solve the Mı̄mām. sā derivability problem, it
is then enough to perform backwards proof search in the system G3MD+ with
the rules ga∗L. Recall that for the assumption rules from Figs. 10-15 we divide
the schematic premisses into blocks: the standard block contains the first two
premisses; the not-excepted block contains the schematic premisses of the sets
in the second and third line, i.e., all those underivability statements stating
that the prima-facie deontic statement is not overridden by a more specific one;
the no-active-conflict block contains the schematic premisses of the remaining
sets. The premisses of the no-active-conflict blocks for each formula from L
are further divided into the conflict block consisting of the first two premisses
in the [.] construct and the override block consisting of the remaining ones
(which again depend on additional formulae from L).

Theorem 5 (Decidability and complexity) The Mı̄mām. sā derivability
problem using specificity is decidable in polynomial space.

Proof The implementation of the decision procedure on an alternating Turing
machine is shown as Alg. 1. Intuitively, the algorithm makes existential guesses
for the last applied rule, then makes universal choices to verify that every
premiss is derivable.

Claim 1. Alg. 1 terminates in polynomial time.
Suppose that n is the size of the input, i.e., the sum of the number of sym-
bols in F,L and Γ ⇒ ∆. Let the complexity of a sequent be the number of
occurrences of propositional or modal connectives in it. Every application of
a propositional rule removes a propositional connective by replacing a propo-
sitional formula with its immediate subformulae, and hence reduces the com-
plexity of the sequents. Hence the number of such applications is bounded by
the number of subformulae of the conclusion, F or L, and thus bounded by n.
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Algorithm 1: Decision procedure for the Mı̄mām. sā derivability prob-
lem
Input: a tuple (F,L) of finite sets of propositional facts and prima-facie deontic

statements and a sequent Γ ⇒ ∆
Output: Is (F,L) `GMD+cut Γ ⇒ ∆?

1 if ⊥ ∈ Γ or Γ ∩∆ 6= ∅ then
2 halt and accept;
3 if there is Σ ⇒ Π ∈ F with Σ ⊆ Γ and Π ⊆ ∆ then
4 halt and accept;
5 existentially guess a rule scheme R (propositional, modal or assumption) from

G3MD+ or ga∗L and a matching (tuple of) principal formula(e) from Γ ⇒ ∆;
6 else if R is a propositional rule scheme then
7 universally choose one of its premisses Σ ⇒ Π;
8 check recursively whether (F,L) `G3MD+cut Σ ⇒ Π, output the answer and halt;

9 else if R is a modal rule scheme then
10 universally choose one of its premisses Σ ⇒ Π;
11 check recursively whether (F,L) `G3MD+cut Σ ⇒ Π, output the answer and halt;

12 else
/* Then R is an assumption schema */

13 universally choose a block B of premisses;
14 if B is the standard block then
15 Universally choose a premiss Σ ⇒ Π in B;
16 Recursively check whether (F,L) `G3MD+cut Σ ⇒ Π, output the answer and

halt;

17 else if B is the non-excepted block then
18 universally choose a formula from L and existentially guess a premiss

(F,L) 0G3MD+cut Σ ⇒ Π from the block of premisses for this formula;

19 Recursively check whether (F,L) `G3MD+cut Σ ⇒ Π, flip the answer and

halt;

20 else
/* Then B is the no-active-conflict block */

21 Universally choose a formula from L and existentially guess a block C of
premisses for this formula;

22 if C is the conflict block then
23 existentially guess a premiss (F,L) 0G3MD+cut Σ ⇒ Π from C;
24 Recursively check whether (F,L) `G3MD+cut Σ ⇒ Π, flip the answer

and halt;

25 else
/* Then C is the override block */

26 existentially guess a formula from L and universally choose a premiss
Σ ⇒ Π from the corresponding set of premisses;

27 Recursively check whether (F,L) `G3MD+cut Σ ⇒ Π, output the answer

and halt;

28 end

29 end

30 end
31 halt and reject;
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Moreover, from the shape of the modal and assumption rules together with
the fact that the assumptions in L do not contain nested modal operators it
follows that each of the recursive calls in lines 11, 16, 19, 24 and 27 is on a
sequent of strictly lower maximal nesting depth of the modal operators. Hence
the maximal modal nesting depth of a sequent is bounded by the size n of
the input as well, and the maximal number of formulae in a sequent is thus
bounded by 2n. Due to the fact that there are only finitely many different
rule schemes, all the existential and universal choices can be encoded by a
suitable combination of a rule scheme, principal formula(e), or sequents of size
bounded by 2n, consisting only of subformulae of the conclusion. This yields
witnesses of size polynomial in n for each of the nondeterministic steps. More-
over, since each recursive call either reduces the complexity or decreases the
maximal modal nesting depth, a run of the algorithm makes at most O(n2)
recursive calls, after which it either accepts with lines 2 or 4 or rejects with
line 31. Thus, the algorithm terminates after at most O(n2) steps.

Claim 2. Algorithm 1 accepts an input (F,L), Γ ⇒ ∆ if and only if
(F,L) `GMD+cut Γ ⇒ ∆.
We show the claim by induction on the maximal modal nesting depth of
Γ ⇒ ∆. If (F,L) `GMD+cut Γ ⇒ ∆, then there is a valid proto-derivation for
Γ ⇒ ∆ in GMD+cut. Hence by Cut Elimination (Thm 8) and Lem. 5 there is a
valid proto-derivation for Γ ⇒ ∆ in G3MD+. By induction hypothesis we know
that the algorithm rejects all the underivability statements occurring in this
proto-derivation. Hence the existential and universal choices corresponding to
the rules of the proto-derivation together with recursive calls of the algorithm
witness that the algorithm accepts the input. Conversely, from an accepting
run of the algorithm we obtain first a cut-free proto-derivation of Γ ⇒ ∆ in
G3MD+ by applying the rules corresponding to the existential choices of the
algorithm. Then by induction hypothesis we obtain that none of the underiv-
ability statements occurring in this proto-derivation are derivable in GMD+cut
from (F,L), and hence the proto-derivation is valid. Now Lem. 5 yields a valid
proto-derivation in GMD+ and hence in GMD+cut.

The two claims together show that Algorithm 1 decides the Mı̄mām. sā
derivability problem in alternating polynomial time, which is equivalent to
polynomial space Chandra et al. (1981). ut

A Prolog implementation of the decision procedure is available under http:
//subsell.logic.at/bprover/deonticProver/version1.2/.

6 Applications: Deciding between different interpretations

Possible applications of the introduced system are provided by the problem
of validating the interpretation or formalisation of a normative text, and in
particular the related problem of deciding between different interpretations or
formalisations. Both of these problems are of course common to many ar-
eas also outside of Indian Philosophy, including Legal Representation, see,

http://subsell.logic.at/bprover/deonticProver/version1.2/
http://subsell.logic.at/bprover/deonticProver/version1.2/
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– Do A in B
– Don’t do A

in B

...

Natural language

– Opf(A/B)
– Fpf(A/B)

...

...

– Opf(A/B)
– Opf(A/¬B)

...

Interpretation
and formalisation

Śrauta level

|∼

|∼

O(A ∨ ¬A/B)

F(A ∧ ¬A/B)

...

O(A/B)

O(A/¬B)

Derived level Final result

?

Decision

Fig. 17 The procedure for deciding between different interpretations.

e.g., Bartolini et al. (2018); Libal and Steen (2020) The main setting here
is the following. Suppose that we are given a natural language text, e.g., a
passage of a Mı̄mām. sā text or a specific law or regulation, that we would like
to formalize. Because of the ambiguity inherent in natural language as well
as, e.g., certain difficulties of interpretation specific to Sanskrit we are almost
guaranteed to obtain not a single formalisation, but a number of different com-
peting ones. Hence we are faced with the task of deciding which of these is the
most appropriate. One way of doing so is to consider the consequences of the
different interpretations under an assumed system of background reasoning, in
our case the logic MD+, and to compare them with respect to certain criteria.
We will see a specific possible criterium used by Mı̄mām. sā authors below, but
in general such criteria would involve a basic sanity check in the form of consis-
tency, or checking whether certain statements, which intuitively should hold,
are derivable (compare, e.g., the quality assurance procedures in Libal and
Steen (2020)). Whenever the principles of the assumed background reason-
ing match the guiding principles of our system MD+, the decision procedure
given above can be used to check the consequences of the different interpreta-
tions, and hence aid in comparing them. The general procedure is illustrated
in Fig. 17. In view of the fact that in this article our main application is to
Mı̄mām. sā reasoning, in the figure the stage containing the different competing
first formalisations is labelled the śrauta level, but it is worth noting again that
the procedure itself in principle can be applied to any collection of normative
statements, including regulations and laws, as long as the formal language and
the assumed system of background reasoning match the ones considered here.

Example 4 Suppose we encounter the following statements:

1. One should refrain from smoking in the presence of a baby.
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2. Smoking in a bar incurs a sanction.
3. One may smoke if there is sufficient ventilation.

Further suppose that we have already established that the first of these should
be read as an obligation, e.g., in a moral sense, whereas due to the mention of
a sanction the second one should be read as a prohibition in the legal sense.
The corresponding formalisation would be given by:

1. Opf(¬smoke/baby)
2. Fpf(smoke/bar)

For the third statement, however, it is not clear whether the “may” constitutes
an exception to the moral kind of obligation of the first statement or to the legal
kind of prohibition of the second. I.e., in the formal language of MD+ we could
formalise this statement either as POpf (smoke/vent) or as PFpf (smoke/vent). A
possible way to decide between these two interpretations is to consider the
consequences together with the formalisations of the first two statements. In
particular, under the interpretation as POpf (smoke/vent) and assuming our sys-
tem of background reasoning, we obtain that O(¬smoke/baby∧bar∧vent) is
not derivable, whereas F(smoke/baby∧bar∧vent) is, i.e., while it still incurs
a legal sanction, from a moral point of view one need not refrain from smoking
in the presence of a baby in a well-ventilated bar. In contrast, under the alter-
native interpretation as PFpf (smoke/vent) we would derive O(¬smoke/baby ∧
bar ∧ vent), but would not derive F(smoke/baby ∧ bar ∧ vent). I.e., in the
same situation smoking would not be illegal, but still morally objectionable.
Checking these two possible sets of consequences either against our moral in-
tuitions or against information on the legal aspects of smoking would provide
us with a method for deciding which of the two possible interpretations of the
permission statement would be more plausible.

Similarly to the previous example, we can also use the general procedure
of Fig. 17 to decide about assumptions on the level of facts as follows.

Example 5 Suppose that we have a text stipulating that unjustified violence
incurs certain sanctions, i.e., is explicitly forbidden. Hence Fpf(violence/>).
Further, suppose that we are interested in the status of suicide. Adding the
seemingly plausible fact that suicide is unjustified violence, i.e., suicide →
violence to the factual assumptions would, in absence of any other prima-facie
deontic statements, yield derivability of the formula F(suicide/>). Thus, if
we find evidence that (attempted) suicide is not forbidden, possibly because
it does not incur any sanctions, we should conclude that the authors do not
consider suicide to be a form of unjustified violence, and hence remove the
corresponding factual assumption. Note that in a certain sense the factual
assumptions hence could also be used in a coarse (and perhaps oversimplified)
representation of constitutive norms, see, e.g., Boella and van der Torre (2004).
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6.1 The evaluation criterium of vikalpa

Coming back to Mı̄mām. sā reasoning, it is interesting to note that the outlined
procedure seems to be the method employed, in an informal manner, by var-
ious Mı̄mām. sā authors to decide between different interpretations of deontic
statements found in the Vedas. One particular decision criterium employed
in this context is that of minimising instances of the so-called vikalpa prin-
ciple. This principle was alreadystated explicitly in the founding text of the
Mı̄mām. sā school, the Pūrva Mı̄mām. sā Sūtra of Jaimini, with the following
English translation (and reformulation).

If a prescription enjoins X and a prohibition forbids one to perform the
same act X under the same conditions, and no other interpretation is
possible, the act X should be considered optional.

The problem with such optional acts lies in the fact that for the Mı̄mām. sā
authors if the act is optional, the deontic statement prescribing or prohibiting
it would be superfluous in the sense of not being applicable. However, from
their point of view the Vedas would not give superfluous information. Hence
they see vikalpa as a very last resort, and strive to develop an interpretation
of the Vedas which makes use of this device as little as possible.

In our formal framework the discussion around the vikalpa principle has
two aspects. The first one is that we should be able to derive it in our system.
Abstracting from the particular action X in the quote above, and concentrat-
ing on obligations only, this means that, for a set L = {Opf(a/b),Opf(c/d)}
and facts F = {a, c ⇒ } establishing that a and c are not jointly possible,
neither of the formulae O(a/b∧d) and O(c/b∧d) should be derivable, because
it should be considered optional whether a or c is performed. However, while
it is optional which of the two is performed, it is still obligatory to perform
one of them, hence the formula O(a ∨ c/b ∧ d) should be derivable.

Remark 7 It is worth noting that more than two millennia after its formulation
by Jaimini this principle was also formulated in modern deontic logic and in
nonmonotonic reasoning: In the former, it is known, e.g., under the name of
disjunctive response, where from the two conflicting assumptions O(a/c) and
O(b/c) we are able to derive at least the obligation of the disjunctionO(a∨b/c),
see Goble (2013); in the area of nonmonotonic reasoning it roughly corresponds
to the phenomenon of floating conclusions for skeptical semantics, where in
our example neither of the contents a and b of the two conflicting assumptions
would be in all the extensions, but the formula a ∨ b is, see Makinson and
Schlechta (1991).

Generalising the above example to sets of obligations, and adding that all the
enjoined acts should be possible by themselves and that the result should not
be blocked by any obligation, prohibition, or permission outside the set, we
can derive the vikalpa principle in our system:

Theorem 6 Let X = {Opf(A1/B1), . . . ,Opf(An/Bn)} ⊆ L be a set such that
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– (F,L) 0GMD+cut Ai ⇒ for every i ≤ n
– (F,L) 0GMD+cut

∨
i≤nAi, C ⇒ for every Opf(C/D) ∈ LrX with (F,L) `GMD+cut∧

i≤nBi ⇒ D
– (F,L) 0GMD+cut

∨
i≤nAi ⇒ C for every Fpf(C/D) ∈ LrX with (F,L) `GMD+cut∧

i≤nBi ⇒ D

– (F,L) 0GMD+cut

∨
i≤nAi, C ⇒ for every POpf (C/D) ∈ LrX with (F,L) `GMD+cut∧

i≤nBi ⇒ D

Then (F,L) `GMD+cut ⇒ O(
∨

i≤nAi/
∧

i≤nBi).

Proof We show that we have all the premises to apply the rule OOpf(A1/B1)
R .

From the propositional rules we obtain (F,L) `GMD+cut A1 ⇒
∨

i≤nAi and
(F,L) `GMD+cut

∧
i≤nBi ⇒ B1. Moreover, for every j ≤ n we obtain (F,L) 0GMD+cut

Aj ,
∨

i≤nAi ⇒ , since otherwise in particular we would have (F,L) `GMD+cut

Aj , Aj ⇒ , and hence (F,L) `GMD+cut Aj ⇒ . Furthermore, by assumption,
for every Opf(C/D) ∈ L r X we have either (F,L) 0GMD+cut

∧
i≤nBi ⇒ D

or (F,L) 0GMD+cut C,
∨

i≤nAi ⇒ . The analogous statement holds for every

prima-facie deontic statement of the form Fpf(C/D) or POpf (C/D). Now ap-

plying the rule OOpf(A1/B1)
R yields ⇒ O(

∨
i≤nAi/

∧
i≤nBi). ut

It should be noted that for the statement of the theorem it is not relevant
whether the Ai from the set X are jointly possible or not, only that their
disjunction

∨
i≤mAi is not blocked by any C from outside that set. In partic-

ular, it also applies to the case where the Ai are not jointly possible. Thus,
our system as described indeed satisfies the disjunctive response resp. vikalpa.
The corresponding statement for prohibitions is shown completely analogously,

using the rule FFpf(A1/B1)
R instead of OOpf(A1/B1)

R :

Theorem 7 Let X = {Fpf(A1/B1), . . . ,Fpf(An/Bn)} ⊆ L be a set such that

– (F,L) 0GMD+cut ⇒ Ai for every i ≤ n
– (F,L) 0GMD+cut C ⇒

∧
i≤nAi for every Opf(C/D) ∈ LrX with (F,L) `GMD+cut∧

i≤nBi ⇒ D
– (F,L) 0GMD+cut ⇒

∧
i≤nAi, C for every Fpf(C/D) ∈ LrX with (F,L) `GMD+cut∧

i≤nBi ⇒ D

– (F,L) 0GMD+cut C ⇒
∧

i≤nAi for every PFpf (C/D) ∈ LrX with (F,L) `GMD+cut∧
i≤nBi ⇒ D

Then (F,L) `GMD+cut ⇒ O(
∧

i≤nAi/
∧

i≤nBi).

The previous theorems show that in our system we can use the fundamen-
tal principle of vikalpa to obtain derived deontic statements from conflicting
prima-facie statements. But how can we evaluate different interpretations with
respect to minimising the number of applications of this principle? At this
point it is important to note that what should be minimised is not the num-
ber of applications of the vikalpa principle to different derived formulae, but to
prima-facie deontic statements, since only superfluousness of the latter is prob-
lematic. The general idea then is that a prima-facie deontic statement Opf(a/b)
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or Fpf(a/b) is involved in an application of the vikalpa principle with another
prima-facie deontic statement in a context given by (L,F) exactly when the
corresponding formula O(a/b) or F(a/b) is not derivable from (L,F). Hence
given such a context we can use the decision procedure of Alg. 1 to identify
exactly those prima-facie deontic statements involved in applications of the
problematic principle. Apart from providing us with the number of possibly
problematic prima-facie formulae, this method has the additional benefit that
it explicitly gives these problematic formulae, hence yielding clues as to which
parts of the interpretation could be changed in order to avoid applications of
the vikalpa principle. Note that this amounts to a form of inconsistency check-
ing using the formalisation of a text similar to that used in Libal and Norotná
(2020) for finding and correcting inconsistencies in legal texts This general idea
for identifying applications of the vikalpa principle is made formally precise in
the following two propositions.

Proposition 4 Let Opf(A/B) ∈ L. Then (F,L) 0GMD+cut ⇒ O(A/B) holds if
and only if at least one of the following holds:

– There is a Opf(C/D) ∈ L with (F,L) `GMD+cut A,C ⇒ and (F,L) `GMD+cut

⇒ B ↔ D; or
– There is a POpf (C/D) ∈ L with (F,L) `GMD+cut A,C ⇒ and (F,L) `GMD+cut

⇒ B ↔ D; or
– There is a Fpf(C/D) ∈ L with (F,L) `GMD+cut A ⇒ C and (F,L) `GMD+cut

⇒ B ↔ D.

Proof Using cut elimination and a close inspection of the rules, the only way
in which the sequent ⇒ O(A/B) could be derived is via an instance of the

assumption rule OOpf(E/F )
R for some Opf(E/B) ∈ L. From this the “if” part

follows directly, since in case one of the three conditions hold, not all of the
underivability statements in the not-excepted block hold. For the “only if”
direction, suppose that (F,L) 0GMD+cut ⇒ O(A/B) holds. Then in particular,

the sequent ⇒ O(A/B) is not derivable via the specific rule OOpf(A/B)
R . Since

the premisses of this rule in the standard block are

B ⇒ B and A⇒ A

which are initial sequents, some of the premisses in the not-excepted block
or in the no-active-conflict block must not hold. However, since the formula
Opf(A/B) is in L and overrules any conflicting formula from L (since both
B ⇒ B and B ⇒ Y are derivable for any conflicting obligation Opf(X/Y ),
prohibition F(X/Y ), or permission PO(X/Y ) for which B ⇒ Y is derivable),
all of the premisses in the no-active-conflict block do hold. Hence some of the
premisses in the not-excepted block hold, which means that there is a formula
Opf(X/Y ), Fpf(X/Y ) or POpf (X/Y ) from L satisfying the conditions given in
the statement of the proposition. ut

The analogous proposition for prohibitions is proved in the same way:
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Proposition 5 Let Fpf(A/B) ∈ L. Then (F,L) 0GMD+cut ⇒ F(A/B) holds if
and only if at least one of the following holds:

– There is a Fpf(C/D) ∈ L with (F,L) `GMD+cut ⇒ A,C and (F,L) `GMD+cut

⇒ B ↔ D; or
– There is a PFpf (C/D) ∈ L with (F,L) `GMD+cut C ⇒ A and (F,L) `GMD+cut

⇒ B ↔ D; or
– There is a Opf(C/D) ∈ L with (F,L) `GMD+cut C ⇒ A and (F,L) `GMD+cut

⇒ B ↔ D. ut

Using these propositions we can now formally evaluate an interpretation
given by a list L of prima-facie deontic statements and a set F of propositional
facts with respect to the criterion of minimising the number of instances of
vikalpa among the prima-facie deontic statements as follows: For every prima-
facie statement Opf(A/B) ∈ L and for every Fpf(C/D) ∈ L check whether
(F,L) 0GMD+cut ⇒ O(A/B) and (F,L) 0GMD+cut ⇒ F(C/D) respectively, and
return all those formulae for which this holds. The implementation avail-
able under http://subsell.logic.at/bprover/deonticProver/version1.
2/ includes this check together with the possibility of automatically gener-
ating alternative formalisations by systematically reinterpreting the deontic
operators, e.g., by rewriting prohibitions as negative obligations.

The following Mı̄mām. sā example arises from the consideration that recom-
mendations and obligations are expressed by the same Sanskrit word: vidhi.
Therefore in absence of further discriminating elements the classification of
a command could be based on the principle of avoiding vikalpa as much as
possible, as shown in the following example.

Example 6 Consider the following simplified interpretation of part of the de-
bate about the Sat̄ı sacrifice5, discussed in depth in Brick (2010):

(i) “When a woman’s husband has died, she should perform the Sat̄ı sacrifice
by ascending the funeral pyre after him.” Opf(sat̄ı/widow)

(ii) “Every rite which is violence itself is forbidden, therefore the Sat̄ı sacrifice
for widows is forbidden” Fpf(sat̄ı/widow)
None of these injunctions is derivable in the logic, therefore, under this in-
terpretation, the Sat̄ı sacrifice should be considered optional. However some
Mı̄mām. sā authors propose to interpret the injunction (i) as the recommen-
dation Rpf(sat̄ı/widow), conditioned by a general woman’s desire of positive
karma for her husband and herself. This explanation should be preferred as not
giving rise to cases of vikalpa: the sacrifice remains forbidden, but a woman
can chose to perform it for obtaining a desired result; i.e., both F(sat̄ı/widow)
and R(sat̄ı/widow) are derivable in the logic.

Another example of how the mechanism can be used for choosing between
conflicting interpretations is given by the discussion about permissions: even
if they do not appear as operators in MD+, reading a prima-facie permission
as an exception to a prohibition (PFpf ) or to an obligation (POpf ) affects the
derivability of the other prescriptions.

5 Sat̄ı is an old custom where a widow immolates herself on her husband’s funeral pyre.

http://subsell.logic.at/bprover/deonticProver/version1.2/
http://subsell.logic.at/bprover/deonticProver/version1.2/
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Example 7 Consider the following situation which abstracts part of the dis-
cussion in Kumārila’s Tantravārttika on 1.3.3-4:

(i) “During a particular sacrifice it is forbidden to eat” Fpf(eat/sacr)
(ii) “In the second part of this sacrifice it is also obligatory (rewarded with good
karma) not to eat” Opf(¬eat/sacr IIpart)

(ii) “In the second part of this sacrifice it is also permitted to eat”

If the permission is considered as an exception to the obligation and formalized
as POpf (eat/sacr IIpart), then it blocks the derivation ofO(¬eat/sacr IIpart)
in the logic. Hence, to ensure that the maximum number of śrauta injunctions
are derivable in the logic (i.e. the instances of vikalpa are minimized) the per-
mission should be interpreted as an exception to the first prohibition –since,
intuitively, sacr IIpart → sacr– and formalized as PFpf (eat/sacr IIpart).
Under this interpretation, eating is forbidden only in the other parts of the
sacrifice (Fpf(eat/sacr) is derivable and Fpf(eat/sacr IIpart) is not), but
it remains obligatory not to eat in the second part (O(¬eat/sacr IIpart) is
derivable).

7 Conclusion

Focusing on the specificity principle, we have explored connections between
the Mı̄mām. sā school of Indian philosophy and symbolic deontic logic. We
have first extended the basic logic of Mı̄mām. sā in Ciabattoni et al. (2015)
with new operators for prohibitions and recommendations whose properties
have been extracted from the Mı̄mām. sā texts. The paper’s main result is a
sequent-based system to reason in this logic using specificity/gun. apradhāna;
some of its properties have been investigated and its potential use as a tool
for Mı̄mām. sā philosophy as well as to aid formalisation tasks, e.g., in Legal
Representation, have been explored.

Future research directions include the extension of the system to deal with
further Mı̄mām. sā rules (nyāyas) to avoid contradictions; we are planning to
work on those just discovered in Kumārila’s Tantravārttika on 3.3.14 (balābala-
adhikaran. a) which comprise a prioritisation of rules based on an existing hier-
archy of sources (e.g. a Vedic prescription defeats a contradictory prescription
in the ‘traditional texts based on the Vedas’), and on the criteria of invalidating
as few injunctions as possible.

From the technical side, we plan to investigate the system’s semantics, and
to abstract and generalize it to work for base deontic logics other than MD+
and to further explore its use in other fields, in particular Legal Representation
and Reasoning, in detail.

Apart from the technical content, this paper illustrates some of the vast
potential for cross-fertilisation between Mı̄mām. sā and deontic logic. This en-
terprise is the subject of ongoing work in collaboration with Sanskritists and
experts of Indian philosophy.
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logic: proof theory and applications. In TABLEAUX 2015, volume 9323 of LNCS, pages
323–338. Springer, 2015.

Agata Ciabattoni, Elisa Freschi, Francesco A. Genco, and Björn Lellmann. Understanding
prescriptive texts: Rules and logic as elaborated by the Mı̄mām. sā school. Online Journal
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A Appendix

Theorem 8 (Cut elimination) If (F,L) `GMD+cut Γ ⇒ ∆, then (F,L) `GMD+
Γ ⇒ ∆.

Proof We show how to eliminate topmost applications of the multicut rule

Γ ⇒ ∆,An Am, Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
mcut

from a proto-derivation, preserving validity (here An is the multiset containing n copies of
A). Since cut is a case of mcut and mcut is derivable using ConL,ConR and cut, this suffices.
The proof is by double induction on the complexity of the cut formula A and the sum of the
depths of the derivations of the two premises of the application of mcut (see (Troelstra and
Schwichtenberg 2000, Sec. 4.1.9) for the classical case without underivability statements).

If the complexity of the cut formula is 0, then it is a propositional variable, and hence
not principal in a modal or propositional rule or a rule from gaL. Thus, as usual, we permute
mcut into the premises of the last applied rules using the inner induction on the depths of the
derivations, until it is absorbed by an application of weakening, or reaches the leaves of the
proto-derivation. In this case the premises of the multicut are initial sequents or elements
of F. If at least one of these is an initial sequent, the multicut is eliminated as usual, if both
sequents are elements of F we use that F is closed under contraction and cuts and replace
the multicut with the corresponding element of F.

So assume that the complexity of the cut formula is n + 1. Again, using the inner
induction on the depth of the proto-derivation we permute the multicut into the premise(s)
of the last applied rules, until it is in an initial sequent or it is principal in the last rules of
the derivations of both premises of the multicut. In case the cut formula is propositional we
use the standard transformation, see Troelstra and Schwichtenberg (2000).

The only interesting case is where the cut formula is a deontic formula and neither of the
two premisses of the multicut is an initial sequent. If the last applied rules both are among
PO, PF , PR, DO, DF , DOF , MonO, MonF , MonR, then the transformation is essentially
as for the system GMD, see Lellmann and Pattinson (2013) for the general transformations.
E.g., if the last applied rules were MonO and DO, the multicut has the following form:

C ⇒ A D ⇒ B B ⇒ D

O(C/D)⇒ O(A/B)
MonO

A,E ⇒ B ⇒ F F ⇒ B

O(A/B),O(E/F )⇒
DO

O(C/D),O(E/F )⇒
mcut

Using the induction hypothesis on the complexity of the cut formula we obtain valid proto-
derivations of the conclusions of

C ⇒ A A,E ⇒
C,E ⇒ mcut

D ⇒ B B ⇒ F

D ⇒ F
mcut

F ⇒ B B ⇒ D

F ⇒ D
mcut

Now an application of the rule DO yields the sequent Γ,O(C/D), Σ,O(E/F ) ⇒ ∆,Π. In
case both principal formulae of the application of DO are cut formulae, we proceed similarly,
only using the rule PO in the last step. The other cases of the modal rules are similar.

In the most interesting cases at least one of the premises of the cut was derived using
a rule from gaL. For each operator op ∈ {O,F ,R} there are three major groups of cases:

(i) op
op′(C/D)
R or op

op′(C/D)
L versus a rule not from gaL where the multicut has non-empty

conclusion; (ii) op
op′(C/D)
R or op

op′(C/D)
L versus a rule not from gaL where the multicut has

an empty conclusion; or (iii) op
op′(C/D)
R versus op

op′(G/H)
L . We consider all the different

cases for op = O. The cases for the operators F and R are analogous, and much simpler in
the case of R.
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Case (i): The prime example of this case is the case where the two last applied rules were

OOpf (C/D)

R and MonO. Then the two derivations end in an instance of a rule from

{B ⇒ D} ∪ {C ⇒ A}

∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ D
}}

∪
{{

(F,L) 0GMD+cut X,A⇒
}}
 | Opf(X/Y ) ∈ L or POpf (X/Y ) ∈ L


∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ D
}}

∪
{{

(F,L) 0GMD+cut A⇒ X
}}
 | Fpf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut X,A⇒
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} |
Opf(E/F ) ∈ L

or POpf (E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {⇒ E,A} | Fpf(E/F ) ∈ L

}


| Opf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut A⇒ X
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {E ⇒ A} |
Opf(E/F ) ∈ L

or PFpf (E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {⇒ A,E} | Fpf(E/F ) ∈ L

}


| Fpf(X/Y ) ∈ L


∪



{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X,A⇒}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E ⇒ A} | Opf(E/F ) ∈ L

}
 | POpf (X/Y ) ∈ L


⇒ O(A/B)

OOpf (C/D)

R

(1)
and

A⇒ G B ⇒ H H ⇒ B

O(A/B)⇒ O(G/H)
MonO

respectively. By induction hypothesis on the complexity of the cut formula we obtain valid
proto-derivations of H ⇒ D and C ⇒ G, as well as the sequents H ⇒ F and F ⇒ Y

and E ⇒ G whenever the corresponding sequents occur in the application of OOpf (C/D)

R .
Further, for every underivability statement (F,L) 0GMD+cut B ⇒ Y together with derivability

of B ⇒ H we obtain the underivability statement (F,L) 0GMD+cut H ⇒ Y by contradiction:
assuming there is a valid proto-derivation of H ⇒ Y in GMDgaLcut from F we could apply cut
to this and B ⇒ H to obtain F `GMDgaLcut B ⇒ Y , in contradiction to (F,L) 0GMD+cut B ⇒
Y . Similarly, for every underivability statement (F,L) 0GMD+cut X,A ⇒ using derivability

of A ⇒ G we obtain the underivability statement (F,L) 0GMD+cut X,G ⇒ ; analogously for

the underivability statements (F,L) 0GMD+cut A ⇒ X using derivability of A ⇒ G we get

(F,L) 0GMD+cut G⇒ X. Hence we can apply the rule OOpf (C/D)

R to obtain a proto-derivation

of ⇒ O(G/H). By the reasoning above, all the underivability statements hold, hence the
proto-derivation is valid.

The cases where the two last applied rules were OOpf (C/D)

R and DO with only one of the

principal formulae a cut formula or MonO and OOpf (C/D)

L are similar, in each case finishing

with an application of OOpf (C/D)

L .
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Similarly, in the case where the last applied rules were OOpf (C/D)

R and DOF we reason

as above, but finishing with an application of FO(C/D)
L .

The case where the last applied rules were MonO and OFpf (C/D)

L is also similar, finishing

with an application of OFpf (C/D)

L .

Case (ii): The prime example for this case is when the last rules were OOpf (C/D)

R and
PO. We claim that this case actually cannot occur. For otherwise the derivations end in an
instance of (1) and

A⇒
O(A/B)⇒

PO
.

However, then for X := C and Y := D we have valid proto-derivations for all three of
B ⇒ Y and Y ⇒ D and X,A ⇒ . The first one is the first premise of the application of

OOpf (C/D)

R , the second one is easily derivable since Y = D, and the last one follows from
the premise of PO using WL. But then the proto-derivation of ⇒ O(A/B) cannot have
been valid since for some of the underivability statements in the not-excepted block of the

premisses of the rule OOpf (C/D)

R there is a valid proto-derivation.

The case where the last rules were OOpf (C/D)

R and DO with both principal formulae of
the latter cut formulae is analogous to the previous case.

Case (iii): Assume that both last applied rules are from gaL. The prime example of this

is where the last rules were OOpf (C/D)

R and OOpf (G/H)

L . Again, we claim that this cannot
happen. For suppose it did, then the derivations would end in (1) and

{B ⇒ H} ∪ {G,A⇒ }

∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ H
}}

∪
{{

(F,L) 0GMD+cut X ⇒ A
}}
 | Opf(X/Y ) ∈ L or POpf (X/Y ) ∈ L


∪



{{

(F,L) 0GMD+cut B ⇒ Y
}}

∪
{{

(F,L) 0GMD+cut Y ⇒ H
}}

∪
{{

(F,L) 0GMD+cut ⇒ A,X
}}
 | Fpf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut X ⇒ A
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A,E ⇒ } |
Opf(E/F ) ∈ L

or POpf (E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A⇒ E} | Fpf(E/F ) ∈ L

}


| Opf(X/Y ) ∈ L



∪





{{
(F,L) 0GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) 0GMD+cut ⇒ A,X
}}

∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A,E ⇒ } |
Opf(E/F ) ∈ L

or PFpf (E/F ) ∈ L

}
∪
{
{B ⇒ F} ∪ {F ⇒ Y }

∪ {A⇒ E} | Fpf(E/F ) ∈ L

}


| F(X/Y ) ∈ L


∪



{{(F,L) 0GMD+cut B ⇒ Y }}
{{(F,L) 0GMD+cut X ⇒ A}}{
{B ⇒ F} ∪ {F ⇒ Y }

∪{E,A⇒} | Opf(E/F ) ∈ L

}
 | POpf (X/Y ) ∈ L


O(A/B)⇒ OOpf (G/H)

L
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But then in particular the no-active conflict block of the application of the rule OOpf (C/D)

R
has either (a) one of the premises (F,L) 0GMD+cut B ⇒ H and (F,L) 0GMD+cut G,A ⇒ ; or

(b) all of the three premises

B ⇒ F F ⇒ H E ⇒ A

for some Opf(E/F ) or POpf (E/F ) from L; or (c) all of the three premises

B ⇒ F F ⇒ H ⇒ A,E

for some Fpf(E/F ) from L. However, the first case of (a) gives a contradiction with the

premise B ⇒ H of the application of OOpf (G/H)

L using validity of the proto-derivation.

The second case gives a contradiction with the premise G,A⇒ of OOpf (G/H)

L , again using
validity of the proto-derivation. Case (b) gives a contradiction because the not-excepted

block of the application of OOpf (G/H)

L contains one of the premises

(F,L) 0GMD+cut B ⇒ F (F,L) 0GMD+cut F ⇒ H (F,L) 0GMD+cut E ⇒ A

and the proto-derivation is valid. Case (c) is similar, but with (F,L) 0GMD+cut ⇒ A,E instead
of the last underivability statement. Hence this case also cannot occur.

The case of OOpf (C/D)

R versus OFpf (G/H)

L is analogous. ut
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