Exercise 31

Markus Triska

May 1, 2005

Problem 13.1: Prove the maximal principle for the case where I is enumerable.

Proof: Enumerate the elements $i_{0}, i_{1}, i_{2}, \ldots$ of I, and build Γ^{*} as the union of sets Γ_{n} in P, where $\Gamma_{0}=\Gamma$, and $\Gamma_{n+1}=\Gamma_{n} \cup\left\{i_{n}\right\}$ if $\Gamma_{n} \cup\left\{i_{n}\right\}$ is in P, and $=\Gamma_{n}$ otherwise. It is clear that Γ^{*} contains Γ, and it is left to prove that Γ^{*} is maximal with respect to P. Suppose that Γ^{*} were not maximal, i.e., there exists a subset Δ of I that is in P and properly includes Γ^{*}. Since each element of I is considered for inclusion in the construction of Γ^{*}, there then must be an element i_{k} with smallest index k that can be found in Δ, but was not included in Γ^{*} on the ground that $\Gamma_{k} \cup\left\{i_{k}\right\}$ was not in P. Since i_{k} is in Δ, and Δ was assumed to (properly) include Γ^{*}, we obtain $\Gamma_{k} \cup\left\{i_{k}\right\} \subseteq \Delta$. Since $\Delta \in P$, all its finite subsets are also in P, and in particular, all finite subsets of $\Gamma_{k} \cup\left\{i_{k}\right\}$ are also in P. Therefore $\Gamma_{k} \cup\left\{i_{k}\right\}$ is itself in P, and this contradicts the assumption that i_{k} was rejected in the construction of Γ^{*}.

