Exercise 27

Markus Triska

November 8th, 2005

Derive (D) in system T.

The schema (that is, all instances thereof) $\Box A \supset A$ is in **T** by axiom (**T**). Also by axiom (**T**), the schema $\Box \neg A \supset \neg A$ is in **T**, and (by an instance of the CL-tautology $(P \supset Q) \supset (\neg Q \supset \neg P)$ and *modus ponens*) hence all instances of $\neg \neg A \supset \neg \Box \neg A$ are also in **T**. Making use of (CL-)equivalence of $\neg \neg A$ and A, and applying the definition of \diamond , this means that all instances of the schema $A \supset \diamond A$ are also in **T**. Again by *modus ponens* of $\Box A \supset A$ and the appropriate instance of the CL-tautology $A \supset (B \supset (A \land B))$, we can derive $(A \supset \diamond A) \supset ((\Box A \supset A) \land (A \supset \diamond A))$, from which we can obtain $(\Box A \supset A) \land (A \supset \diamond A)$, once again by *modus ponens*. One final application of *modus ponens* with an instance of the CL-tautology $((P \supset Q) \land (Q \supset R)) \supset (P \supset R)$ suffices to derive $\Box A \supset \diamond A$.