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How infinitely good that Providence is, which has provided, in its govern-
ment of mankind, such narrow bounds to his sight and knowledge of things;
and though he walks in the midst of so many thousand dangers, the sight
of which, if discovered to him, would distract his mind and sink his spirits,
he is kept serene and calm, by having the events of things hid from his eyes,
and knowing nothing of the dangers which surround him.

Daniel Defoe, The Life and Adventures of Robinson Crusoe
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Abstract

Constraint logic programming (CLP) is a declarative formalism for describ-
ing conditions a solution must satisfy. Constraint logic programming over
finite domains, denoted as CLP(FD), considers problems involving integers,
including combinatorial problems such as planning, scheduling and alloca-
tion tasks. Given a problem description, a constraint solver tries to find
valid solutions via constraint propagation and search.

Constraint solvers are complex programs, and many existing and widely
used CLP(FD) systems suffer from limitations and mistakes that can cause
them to miss valid solutions or give wrong answers.

In this thesis, we show examples of common limitations and mistakes of
several widely used CLP(FD) systems. We then present a new CLP(FD)
system that overcomes some of these issues. Our system has several unique
features such as monotonicity, reasoning over arbitrarily large integers and
always terminating propagation. This yields new application opportunities
for constraint solvers which we also present. We develop new domain-specific
languages that let us concisely and declaratively express parts of our system
whose encoding would otherwise be difficult and error prone, such as parsing,
propagator selection and constraint reification. We present two methods
for testing our solver: systematic test cases, and automated analysis of
individual propagators. Our contributions are applicable to other constraint
systems as well and may improve their correctness.
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Zusammenfassung

Constraint Logic Programming (CLP) ist ein deklarativer Formulismus zur
Beschreibung von Bedingungen, die von gesuchten Lösungen erfüllt werden
müssen. Constraint Logic Programming über endlichen Wertebereichen,
abgekürzt als CLP(FD), befasst sich mit Problemstellungen mit ganzen
Zahlen und umfasst kombinatorische Probleme wie Planung, Scheduling
und Allokationsaufgaben. Ein Constraint Solver sucht unter Anwendung
von Constraint Propagierung nach Lösungen, welche die angegebenen Be-
dingungen erfüllen.

Constraint Solver sind komplexe Programme, und viele existierende und
in vielen Bereichen eingesetzte CLP(FD) Systeme weisen Einschränkungen
und Fehler auf, durch die sie gültige Lösungen nicht finden oder falsche
Antworten geben.

In dieser Dissertation zeigen wir Beispiele für typische Einschränkungen
und Fehler von weit verbreiteten CLP(FD) Systemen. Anschließend präsen-
tieren wir ein neues CLP(FD) System, das einige dieser Einschränkungen
aufhebt. Mehrere Eigenschaften wie Monotonie, Schließen über beliebig
großen ganzen Zahlen und immer terminierende Propagierung werden von
unserem System erstmals garantiert. Dadurch entstehen neue Anwendungs-
möglichkeiten für Constraint Solver, die wir ebenfalls beschreiben. Wir
entwickeln neue domänenspezifische Sprachen, mit denen wir kompakt und
deklarativ Teile unseres Systems ausdrücken können, die sonst schwierig und
fehleranfällig wären, wie Parsen, Propagator-Auswahl und Reifikation von
Constraints. Wir präsentieren zwei Methoden, mit denen wir unseren Con-
straint Solver testen: systematische Testfälle, und automatisierte Analyse
einzelner Propagatoren. Unsere Beiträge sind auch auf andere Constraint
Systeme anwendbar und können ihre Korrektheit verbessern.
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1 Introduction

Constraint logic programming (CLP) is a declarative formalism for describ-
ing conditions a solution must satisfy. Constraint logic programming over
finite domains, denoted as CLP(FD), considers problems involving integers,
including combinatorial problems such as planning, scheduling and alloca-
tion tasks. Given a problem description, a constraint solver tries to find
valid solutions via constraint propagation and search.

Constraint solvers are complex programs, and many existing and widely
used CLP(FD) systems suffer from limitations and mistakes that can cause
them to miss valid solutions or give wrong answers. One frequent source of
erroneous answers in common constraint systems are their – either implicit
or explicit – restrictions to quite small values. Consider for example the
following interaction with GNU Prolog 1.4.0 (32-bit):

| ?- X #> 200, X #\= 2.

X = _#2(201..268435455)

yes

As expected, the conjunction of these two constraints succeeds, since
there clearly are integers that are greater than 200 and not equal to 2.
However, if we exchange the two goals by commutativity of conjunction, we
get the incorrect answer “no” instead of “yes”:

| ?- X #\= 2, X #> 200.

Warning: Vector too small - maybe lost solutions (...)

no

In this case, at least a warning is emitted that solutions may have been
lost (as they indeed have been), but according to the manual, this may not
be detected in all cases, and indeed the system fails without qualification
for example in:

| ?- X #= Y*Z.

no

As we show in this thesis, similar problems are easily found in other
constraint systems as well. Since CLP(FD) is applied in many industrial
settings like systems verification, it is natural to ask: How can we implement
constraint solvers that are more reliable?
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In this thesis, we approach this question by first asking: What do we
guarantee in our systems? Clearly, it would be ideal if we could for example
answer with “We guarantee correctness.”, or “If there is a solution, our sys-
tem will always find it.”, or “Our system will never emit a wrong answer.”.
However, these guarantees are very hard to ensure, and to the best of our
knowledge, no CLP(FD) system can justifiably give them yet. We therefore
aim for useful properties that are easier to ensure, and which help us to es-
tablish further guarantees towards the ultimate goal of ensuring correctness
of our systems.

We will describe a new CLP(FD) system that gives strong guarantees
with respect to:

• domains
Our system reasons over arbitrarily large integers.

• termination
In our system, constraint propagation always terminates.

• monotonicity
Our system is monotonic when a specific flag is set to true.

We will demonstrate the importance of each of these guarantees through-
out this thesis. To the best of our knowledge, ours is the first widely available
CLP(FD) system that gives any of these guarantees.

As we will show in this thesis, mistakes in CLP(FD) systems can be
very subtle and occur only rarely. We will see an example of a mistake
that occurs only after weeks of computation time. Very isolated mistakes
are hard to find with black-box tests. We will therefore develop a way
to make further guarantees about individual propagators, using abstract
interpretation. This technique is easily applicable for a homoiconic language
like Prolog, which we use for implementing our system. It is harder to make
comparable guarantees for systems that are written in other languages.

Based on the observation that isolated mistakes are hard to find, the
second question we ask is: How can we make mistakes less isolated? In our
view, which may appear counter-intuitive at first and which we will justify
with specific examples throughout this thesis, an ideal CLP(FD) system
satisfies the following property:

If there is a single mistake anywhere in the implementation of the system,
then the system does not work at all.

In our system, we are aiming to satisfy this property as far is we can
with the development and use of new domain-specific languages that are also
applied to new domains such as compactified arithmetic and propagator
selection. These languages let us generate large portions of our system
from concise and declarative specifications. If there is any mistake in the
expansion phase, it is likely to affect several parts of our system at once.
Mistakes in these portions are therefore less isolated and thus easier to find.
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1.1 Goals of this thesis

1.1 Goals of this thesis

The goals of this thesis are:

1. to show examples of common limitations and mistakes of several widely
used CLP(FD) systems to increase awareness of these issues among
authors and users of these systems

2. to present a new CLP(FD) system that overcomes some of these issues
and gives guarantees that other systems do not give

3. to outline systematic test cases based on these guarantees

4. to apply the system on benchmarks and real-life problems.

1.2 Main results of this thesis

We briefly summarize the main results of this thesis:

1. We identify limitations and mistakes in several widely used CLP(FD)
systems and show that these limitations prevent the use of these sys-
tems on interesting classes of programs that have hitherto received
little attention from the constraint community.

2. We develop and present a new CLP(FD) system with several unique
features and guarantees: monotonicity, reasoning over arbitrarily large
integers and always terminating propagation.

3. We show new domain-specific languages that are used for parsing arith-
metic expressions, propagator selection, compactified arithmetic and
constraint reification to improve correctness and efficiency.

4. We present systematic test cases which are also applicable to other
systems, and describe how we ensure several important properties in
our system via automated analysis of individual propagators.

5. We apply parts of our CLP(FD) system in real-life rotating workforce
scheduling instances with competitive results.

Our CLP(FD) system is entirely written in Prolog and available in the
free Prolog system SWI-Prolog as library(clpfd). In this thesis, we in-
clude several pages of the concrete Prolog source code of this library. The
reason is that we consider it essential to refer to concretely executable code
when discussing correctness considerations. Readers are encouraged to read
and verify for themselves all portions of code, which we consider an integral
part of our contribution. Little would be gained for our purpose by studying
code that is not actually executed, since who could then tell whether what
is actually executed is correct?
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1.3 Publications

1.3 Publications

Some results of this thesis appear in the following publications:

Books

• SWI Prolog Reference Manual 6.2.2
JanWielemaker, Thom Fruehwirth, Leslie De Koninck, Markus Triska,
Marcus Uneson
Books on Demand, ISBN: 3848226170

Journal papers

• SWI-Prolog
Jan Wielemaker, Tom Schrijvers, Markus Triska and Torbjörn Lager
TPLP 12 (2012), pp. 67–96

Conference papers

• The Finite Domain Constraint Solver of SWI-Prolog
Markus Triska
FLOPS 2012, LNCS 7294, pp. 307–316

• Domain-specific Languages in a Finite Domain Constraint
Programming System
Markus Triska
Proceedings of INAP 2011, Technical report

• A Constraint Programming Application for Rotating Work-
force Scheduling
Markus Triska and Nysret Musliu
EA/AIE 2011, Studies in Computational Intelligence 363 (2011), pp. 83–
88

• Generalising Constraint Solving over Finite Domains
Markus Triska
ICLP 2008, LNCS 5366, pp. 820–821

The introduction to CLP(FD) that appears in this thesis is an extended
and improved version of a chapter published in the author’s Masters thesis,
Solution Methods for the Social Golfer Problem.
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2 Constraint Programming and CLP(FD)

2.1 Introduction

Constraint programming (CP) is a declarative formalism that lets users
specify conditions a solution must satisfy. Based on that description, a
constraint solver can then search for solutions.

The first ideas for CP date back to the sixties and seventies ([Sut63]),
with the scene labelling problem ([Wal75]) being one of the first constraint
satisfaction problems (CSPs) that were formalised. A CSP consists of:

• a set X of variables, X = {x1, . . . , xn}

• for each variable xi, a set D(xi) of values that xi can assume, which
is called the domain of xi

• a set of constraints, which are relations among variables in X, and
which can further restrict their domains.

One key observation, made by Jaffar, Lassez ([JL87a]), Gallaire ([Gal85])
and others, was the insight that pure logic programming (LP) can be re-
garded as an instance of constraint solving, namely as solving constraints
over variables whose domains are Herbrand terms. In addition, LP and
CP share an important intention, which is to make users less concerned
about how a problem should be solved, and instead let them focus on a
clear description of what should be solved. From that description, a logic
engine or constraint solver can, in principle, compute a solution without ad-
ditional instructions. Logic programming languages like Prolog are therefore
among the most important host platforms for constraint solvers, and most
Prolog implementations nowadays ship with several libraries for constraint
programming. When CP is used with a logic programming language as
its host, it is referred to as constraint logic programming (CLP). However,
constraint programming is not restricted to CLP: It is possible to embed
constraint solvers in other host languages, even if they might not blend in
as seamlessly as they do with Prolog.

2.2 CLP(FD)

In connection with combinatorial optimisation or completion problems, one
of the most frequently used instances of constraint programming is con-
straint logic programming over finite domains, denoted as CLP(FD). This
means that all domains are sets of integers, and the available constraints in-
clude at least the common arithmetic relations between integer expressions.

One advantage when reasoning over integers is that many known laws
of arithmetic can be used to further reduce the domains of variables that
participate in the provided relations. Another advantage is that there is a
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2.3 Example: Sudoku

predefined total order over the integers, which can often help to eliminate
uninteresting symmetries between solutions and reduce the search space.

CLP(FD) can also help to solve problems over rational numbers. The
following example is known as the “7-11 problem” ([PG83]):

Example 2.1. The total price of 4 items is e 7.11. The product of their
prices is e 7.11 as well. What are the prices of the 4 items?
Answer. The prices are e 3.16, e 1.50, e 1.25 and e 1.20. A CLP(FD)
solution for this problem is shown in Fig. 2.1. Line 1 states the domain of
all variables, lines 2 and 3 post the two known constraints. The product of
all variables equals a quite large constant, which is beyond the capabilities of
several current constraint systems on still common 32-bit platforms. Line 4
imposes additional constraints to break symmetries between values. Finally,
line 5 searches for valid ground instantiations of all variables, using a strategy
which we explain in Section 2.6. Notice that other constraints could be
imposed as well. For example, due to the fundamental theorem of arithmetic,
the factorisation of one of the variables must contain one of the prime factors
of 711 × 1003. However, imposing such a constraint would in general also
require weakening the ordering relation, and it is not a priori clear which of
the formulations is better.

1 ?− Vs = [A,B,C,D], Vs ins 0..711,
2    A * B * C * D #= 711*100^3,
3    A + B + C + D #= 711,
4    A #>= B, B #>= C, C #>= D,
5    labeling([ff], Vs).

Figure 2.1: Solving the 7-11 problem with a single query

2.3 Example: Sudoku

In the recent past, a combinatorial number puzzle called Sudoku has at-
tracted significant attention. Sudoku puzzles are commonly found in news-
papers and periodicals and are naturally modelled as CSPs. A Sudoku Latin
square is a particular kind of Latin square ([CD96b]):

Definition 2.1. A Latin square of order n is an n× n array in which each
cell contains a single symbol from a set S with n elements, such that each
symbol occurs exactly once in each row and exactly once in each column.

Definition 2.2. Let a, b and n be positive integers with a×b = n. Partition
an n×n array into a×b rectangles. An (a, b)-Sudoku Latin square is a Latin
square on the symbol set {1, . . . , n} where each (a, b)-rectangle contains all
symbols. A Sudoku Latin square is a (3, 3)-Sudoku Latin square.

9



2.4 Consistency

1 sudoku(Rows) :−
2         length(Rows, 9), maplist(length_(9), Rows),
3         append(Rows, Vs), Vs ins 1..9,
4         maplist(all_different, Rows),
5         transpose(Rows, Columns), maplist(all_different, Columns),
6         Rows = [A,B,C,D,E,F,G,H,I],
7         blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).
8

9 length_(N, Ls) :− length(Ls, N).
10

11 blocks([], [], []).
12 blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :−
13         all_different([A,B,C,D,E,F,G,H,I]),
14         blocks(Bs1, Bs2, Bs3).

Figure 2.2: A CLP(FD) description of Sudoku Latin squares

Definition 2.3. An (a, b)-Sudoku critical set is a partial Latin square P
that is completable in exactly one way to an (a, b)-Sudoku Latin square,
and removal of any of the filled cells from P destroys the uniqueness of
completion.

Fig. 2.2 shows a CLP(FD) formulation for Sudoku Latin squares. Here,
a Sudoku Latin square is modelled as a list of rows, with each row being
a list of variables with domain {1, . . . , 9}. Line 2 ensures the correct list
structure, which makes it possible to use the predicate in all directions:
One can use the specification to test and complete partially filled squares
as well as to enumerate all possible squares. The only constraint used in
this formulation is the built-in constraint all different/1, which imposes
pairwise disequalities between all variables occurring in a list. The constraint
is imposed for each row (line 4), column (line 5), and 3× 3-subsquare (lines
6, 7 and 11–14).

A valid Sudoku puzzle as commonly found in contemporary newspapers
and periodicals is a partial Latin square that is completable in exactly one
way to a Sudoku Latin square. Fig. 2.3 (a) shows an example of a valid
Sudoku puzzle, which is simultaneously a (3, 3)-Sudoku critical set. In fact,
the figure shows one of the “hardest” Sudoku puzzles with respect to the
number of hints: There is no (3, 3)-Sudoku critical set with fewer than 17
given numbers ([MTC12]). Fig. 2.3 (b) shows the Sudoku Latin square that
is uniquely determined by this Sudoku critical set.

2.4 Consistency

ACSP is called consistent if it has a solution. An element v of a domainD(x)
is said to be inconsistent with respect to a given CSP if there is no solution
in which x assumes the value v. Consistency techniques were introduced
in [Wal75] and are derived from graph notions (see [Bar99]).

A domain D(x) is called domain consistent with respect to a constraint c
if D(x) contains all valid values of x with respect to c, and no proper subset

10



2.5 Constraint propagation and search

1

2 7 4

5 4

3

7 5

9 6

4 6

7 1

1 3

(a)

1 8 4 9 6 3 7 2 5

5 6 2 7 4 8 3 1 9

3 9 7 5 1 2 8 6 4

2 3 9 6 5 7 1 4 8

7 5 6 1 8 4 2 9 3

4 1 8 2 3 9 6 5 7

9 4 1 3 7 6 5 8 2

6 2 3 8 9 5 4 7 1

8 7 5 4 2 1 9 3 6

(b)

Figure 2.3: (a) A (3, 3)-Sudoku critical set, and (b) the induced Sudoku
Latin square

of D(x) contains all valid values.
Different notions of bounds consistency appear in the literature (see for

example [CHLS06] for an overview). In this thesis, we use the following
definition throughout: A set of integers D(x) is bounds consistent with
respect to a constraint c if it contains all valid values of x with respect
to c and it is a subset of the smallest interval of integers that contains all
valid values. Note that the interval need not be finite.

2.5 Constraint propagation and search

A constraint propagator is a method for filtering inconsistent elements from a
domain. The process of deterministically ensuring some form of consistency
is called constraint propagation.

Since propagation alone is in general insufficient to reduce all domains
to singleton sets and thus produce concrete solutions, some form of search
is necessary in addition to constraint propagation. Systematically trying
out values for variables is called labeling, and we discuss it in the next
section. As soon as a variable is labeled, constraint propagation is used
to further prune the search space. Conversely, propagation can in itself
yield a singleton set for a variable’s domain, thus causing the variable to
be instantiated to a ground value. Search and propagation are therefore
interleaved when solving a CSP. Clearly, a trade-off must be reached between
strong propagation, implying great reduction of the search space for some
problems, and computational tractability.

As an example for different consistency notions, consider again Sudoku
puzzles. In this case, the search space is often quite large when traversed
naively. However, a constraint solver is typically able to delete many values
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2.5 Constraint propagation and search
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Figure 2.4: Subdivision of a single cell
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Figure 2.5: Domain elements that can be removed after posting the Sudoku
puzzle with (a) a bounds consistent constraint solver and (b) a stronger
solver

from the domains of those variables that correspond to free cells before the
search even begins.

To give a visual impression of the values that can be removed from
domains, we proceed as follows: First, we subdivide all free cells into 9
small regions as shown in Fig. 2.4. Each region corresponds to the domain
element that it contains in this figure. Then, a dot is drawn in those regions
that correspond to domain elements which can be excluded due to the given
constraints. Fig. 2.5 shows which values can be excluded by two different
constraint solvers without performing any search. Fig. 2.5 (a) was created
with a bounds consistent solver, and Fig. 2.5 (b) was created with a solver
with stronger filtering.

Since Sudoku puzzles only have a single solution, a solver with perfect
filtering would reduce all domains to singleton sets in this case, making
further search unnecessary while expending more computation time on the
propagation itself. However, note that even if we use a domain consistent
variant of all different/1, we do not necessarily obtain such a strong
filtering, because the consistency notions only apply to individual constraints
in isolation and do not take combinations of constraints into account.
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2.6 Selection strategies for variables and values

When searching for solutions of a CSP by trying ground values for variables,
there are at least two degrees of freedom: First, the instantiation order of
variables. Second, the order in which values are tried for each variable.
Choosing good orders can significantly reduce computation time.

We first discuss the impact of variable instantiation orders. Fig. 2.6
depicts two possible search tree shapes arising from complete enumerations
of two unconstrained variables, X and Y , with domains of size 2 and 5,
respectively. The order or type of actual values that are tried for each
variable is currently of no concern, as we focus on the order in which the
variables themselves are instantiated. Inner nodes of the search tree, which
are the variables, are shown as circles, and leaves are shown as boxes. When
a leaf is reached in the search process, all variables are instantiated. Clearly,
the number of leaves must be the same for all possible shapes of the search
tree, while the number of inner nodes can obviously differ significantly.

X

Y Y

(a)

Y

X X X X X

(b)

Figure 2.6: Search tree shapes arising from different instantiation orders

In typical CSPs, many values can turn out to be infeasible. In fact, a
significant number of subtrees of the search tree will often turn out to be
of no interest at all. We expect the greatest reduction of inner nodes that
must still be visited by first trying to instantiate the variable with the fewest
domain elements left. The strategy of instantiating the variables in order
of increasing size of domains is called “first-fail”, and often performs very
well in practice. The intention here is twofold: First, variables with small
domains are likely to run out of domain elements, causing their instantia-
tion to fail. Clearly, it is advantageous to detect inevitable failure as early
as possible. Second, instantiating variables can only further constrain the
domains of remaining variables. Therefore, we want to instantiate variables
with small domains while that is still possible, since the situation can only
become worse for them. For a probabilistic analysis of the impact of this
strategy, see [HE80].

Constraint solvers typically provide several pre-defined variable selection
strategies that users can choose from, and which can influence computa-
tion time considerably. For example, SICStus Prolog provides the following
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2.6 Selection strategies for variables and values

strategies to instantiate a list of variables (ties are broken by selecting the
leftmost variable in the list), which are also available in most other constraint
solvers:

• leftmost
Instantiate the variables from left to right in the order they occur in
the given list.

• ff (“first-fail”)
Instantiate a variable with smallest domain next.

• ffc
Of the variables having smallest domains, one involved in most con-
straints is instantiated next.

• min
Instantiate a variable whose lower bound is the lowest next.

• max
Instantiate a variable whose upper bound is the highest next.

For most of these options, it is important to accurately assess a variable’s
current domain, and thus solvers with different propagation strengths can
lead to very different instantiation orders of variables. Somewhat counter-
intuitively, stronger propagation can even have an adverse effect in this case.
This was first pointed out in [SF94] and can be explained by the fact that
stronger propagation can also lead an instantiation strategy away from a
“good” ordering, since propagation affects the variables’ domains and thus
the selected variable for many of these options.

After having selected a variable x for instantiation, a constraint solver
must choose a value from D(x) that should be assigned to x. A good strat-
egy is often to instantiate x to a value of its domain which constrains the
remaining variables the least. However, determining which of the values
have this property can be costly, and many constraint solvers therefore do
not provide this option. Two examples for value selection strategies are:

• up
The values of each domain are tried in ascending order.

• down
The values are tried in descending order.

In addition to these pre-defined selection strategies and value ordering
options, users are free to implement their own allocation strategies. We re-
gard this as one of the great advantages of constraint-based approaches over
other methods: Once all constraints are stated, variables can be instanti-
ated in any order and to any values, and infeasible choices are automatically
rejected.
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2.7 Visualising the constraint solving process

2.7 Visualising the constraint solving process

In many cases, it is very interesting to visualise the constraint solving process
graphically. At the very least, one can get an impression of how the search
progresses. Based on that observation, one can then try different allocation
strategies, which sometimes work much better than others.

Transparent constraint animations have not received much attention in
the literature so far: In [NRS97], Neumerkel et al. explain the importance
of visualisations in the context of GUPU, a teaching environment for Pro-
log. However, they do not mention the potential usefulness of visualisa-
tions for deducing alternative strategies. Fages et al. present a graphical
user interface for CLP in [FSC04]. Their approach typically requires several
changes in the actual program code to obtain visualisations. In addition, it is
hard to customise towards problem-specific visualisations. Finally, Ducassé
and Langevine present abstract visualisations generated from an automated
analysis of execution traces in [DL02]. This requires a rather involved event
filtering and transformation scheme.

We now adapt the approach proposed in [NRS97] to the free Prolog sys-
tem SWI-Prolog and explain it in more detail than the authors themselves.
Our intention is to make their very transparent and portable approach more
widely accessible and understandable also for casual users of constraint pro-
gramming systems.

To focus on the main points involved when producing animations, we
use the so-called N -queens problem as a self-contained and simple example,
which is also presented in [NRS97]. The task is to place N queens on an
N × N chess board in such a way that no two queens attack each other,
which we call a consistent placement. Fig. 2.7 shows a consistent placement
of 8 queens.

Q
Q

Q
Q

Q
Q

Q
Q

Figure 2.7: A consistent placement of 8 queens

Fig. 2.8 shows a CLP(FD) formulation for the N -queens problem: We
use N variables Q1, . . . , QN , where Qi denotes the row number of the queen
in column i. Lines 13 and 14 impose the necessary constraints: The queens’
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2.7 Visualising the constraint solving process

rows must be pairwise distinct to forbid horizontal attacks, and diagonal
attacks are prohibited as well.

Fig. 2.9 shows how the CLP(FD) formulation can be transparently ex-
tended to emit PostScript instructions that visualise the constraint solving
process: For each value ni of the domain of queen Qj, a so-called reified
constraint of the form (Qj = ni) ↔ Bij is posted. Constraint reification is
a common feature of constraint solvers and lets us reflect the truth value of
many constraints into Boolean variables. When ni vanishes from the domain
of Qj , Bij becomes 0. In that case, PostScript instructions for graying out
the corresponding square are emitted. When Bij becomes 1, the equality
holds, and instructions for placing the queen are emitted. On backtrack-
ing, the square is cleared in both cases. To make the example completely
self-contained, we show the necessary PostScript definitions in Fig. 2.10.
Fig. 2.11 (a) shows an example of its usage and Fig. 2.11 (b) shows the
resulting picture. To obtain a real-time animation of the constraint solving
process, the PostScript instructions that are generated can be directly fed
into a PostScript interpreter.

Fig. 2.12 shows an animation for 50 queens. The labeling strategy is first-
fail, modified as proposed by Ertl in [Ert90]: In case of ties, we try to dis-
tribute the queens across the two horizontal halves of the board. In [Ert90],
this strategy is proposed without further explanation, and it is not men-
tioned how this heuristic could be improved for board sizes where it does
not perform well. However, when an animation of the process is available,
alternative strategies are often apparent. For example, in Fig. 2.12, one can
see that the strategy does not distribute the queens as evenly as intended
towards the end.

1 n_queens(N, Qs) :−
2         length(Qs, N),
3         Qs ins 1..N,
4         safe_queens(Qs).
5

6 safe_queens([]).
7 safe_queens([Q|Qs]) :−
8         safe_queens_(Qs, Q, 1),
9         safe_queens(Qs).
10

11 safe_queens_([], _, _).
12 safe_queens_([Q|Qs], Q0, D0) :−
13         Q0 #\= Q,
14         abs(Q0 − Q) #\= D0,
15         D1 #= D0 + 1,
16         safe_queens_(Qs, Q0, D1).

Figure 2.8: A CLP(FD) formulation for the N -queens problem
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2.7 Visualising the constraint solving process

1 animate(Qs) :− animate(Qs, Qs, 1).
2

3 animate([], _, _).
4 animate([_|Rest], Qs, N) :−
5         animate_(Qs, 1, N),
6         N1 #= N + 1,
7         animate(Rest, Qs, N1).
8

9 animate_([], _, _).
10 animate_([Q|Qs], C, N) :−
11         freeze(B, queen_value_truth(C,N,B)),
12         Q #= N #<==> B,
13         C1 #= C + 1,
14         animate_(Qs, C1, N).
15

16 queen_value_truth(Q, N, 1) :− format("~w ~w q\n", [Q,N]).
17 queen_value_truth(Q, N, 0) :− format("~w ~w i\n", [Q,N]).
18 queen_value_truth(Q, N, _) :− format("~w ~w c\n", [Q,N]), false.

Figure 2.9: Observing the constraint solving process for N -queens

1 /init {  /N exch def 322 N div dup scale −1 −1 translate
2     /Palatino−Roman 0.8 selectfont 0 setlinewidth
3     1 1 N { 1 1 N { 1 index c } for pop } for } bind def
4     
5 /r { translate 0 0 1 1 4 copy rectfill 0 setgray rectstroke } bind def
6 /i { gsave .5 setgray r grestore } bind def
7 /q { gsave r 0.5 0.28 translate (Q) dup stringwidth pop
8            −2 div 0 moveto 1 setgray show grestore } bind def
9 /c { gsave 1 setgray r grestore } bind def

Figure 2.10: PostScript definitions for visualising N -queens

2 init
2 1 q
1 1 q
1 1 c
1 2 i

(a)

QQ
(b)

Figure 2.11: (a) PostScript instructions and (b) the resulting picture
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(b) after 0.12 seconds

Q
Q

Q
Q

Q
Q

Q

Q
Q

(c) after 0.13 seconds
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(e) after 0.19 seconds
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(f) after 0.24 seconds

Figure 2.12: 50 queens, strategy first-fail, breaking ties as proposed
in [Ert90], using SWI-Prolog 6.5.2 on a 2.66 GHz iMac
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3 Current CLP(FD) systems and their properties

In this chapter, we give a brief overview of a several prominent existing
constraint solvers over finite domains. They are all widely used in com-
mercial and academic environments and are well known in the constraint
programming community.

Throughout this chapter, we present characteristic properties of these
systems. We give special attention to known shortcomings and correctness
issues, to raise awareness of these issues among the users and authors of
these systems. Shortcomings in these CLP(FD) systems are almost invari-
ably due to conscious decisions, for example, because performance is deemed
more important than declarative correctness, or because certain use cases
are deemed more important than others. However, we also present exam-
ples of unintended and previously unknown mistakes, which were typically
corrected after we reported them to the authors of these systems.

Despite all shortcomings and mistakes, these systems deserve to be ad-
mired for their great practical value and gracious designs. They have been
useful to practitioners, researchers and students for many years and have set
a standard against which every future CLP(FD) system will be measured.

3.1 Terminology

We first define a few concepts that are applicable to all CLP(FD) systems
that we discuss in this chapter. A CLP(FD) system is given a logic pro-
gram. Users run the program by posting a query. The textual response of
the system is called an answer. An answer is for example:

• a solution, which is a set of bindings of the query’s variables to concrete
values that turn the query into a logical consequence of the given
program.

• an exception, indicating that an error arose in the course of the com-
putation.

• false, indicating that there is no solution.

• a conditional solution, indicating that there is a solution if some con-
ditions, which are called residual constraints or residual goals, hold.

There are also other kinds of output, for example, because the program
itself emits text during the computation.

3.2 Kinds of mistakes

When considering pure logic programs that terminate without raising an
exception, there are two ways in which a system can yield wrong results:
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3.3 GNU Prolog

1. it fails to find a solution that actually exists. We call such a system
incomplete.

2. it emits an answer that is not a consequence of the given logic program.
We call such a system unsound .

From a user’s perspective, an incomplete system is typically the worse
case. This is because it is typically easy to verify any answer the system
emits, and to discard invalid answers. It is much harder to detect the case
that valid solutions are not emitted, because they are lost internally in the
system and never appear outside of it.

Note that we are not talking about mistakes in the user-supplied logic
program, but about mistakes in the CLP(FD) system itself. That is, we as-
sume that a given problem is correctly formulated via CLP(FD) constraints,
but the system does not behave according to its documentation.

Also note that raising an exception is not considered a mistake in this
sense, since it is then clear that there is some kind of problem, and no
unconditional answer is reported to the user.

3.3 GNU Prolog

GNU Prolog ([DC01], [DAC12]) is one of the most established and well
known Prolog systems. It is available as free software and used in teaching
and research at several universities.

GNU Prolog’s finite domain constraint solver is an integral part of the
system, and all its predicates are available even without loading any li-
braries. The solver does not support negative integers, and could therefore
be called a CLP(N) solver. According to the manual, there are two internal
representations for the domain of a finite domain variable:

• interval representation, which maintains the end-points of an integer
interval. It can represent values between 0 and the greatest value that
any finite domain variable can take, called fd max integer.

• sparse representation, where an additional bit-vector is used to repre-
sent the domain. It can represent values between 0 and an internal
value called vector max, which is 127 by default and adjustable via
the built-in predicate fd set vector max/1.

Quoting from GNU Prolog’s manual: “The initial representation for an
FD variable X is always an interval representation and is switched to a
sparse representation when a ‘hole’ appears in the domain (e.g. due to an
inequality constraint). Once a variable uses a sparse representation it will
not switch back to an interval representation even if there are no longer
holes in its domain. When this switching occurs some values in the domain
of X can be lost since vector max is less than fd max integer.”
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Further, the manual states: “As seen before, the solver tries to display a
message when a failure occurs due to a too short vector max. Unfortunately,
in some cases it cannot detect the lost of values and no message is emitted.
So the user should always take care to this parameter to be sure that it is
large to encode any vector.”

3.3.1 Toplevel interaction

We present a few examples of interacting with GNU Prolog 1.4.1 (32-bit).
Let us first ask if there are finite domain elements less than 0:

| ?- X #< 0.

no

The system answers “no”, indicating that no term X satisfies this con-
straint. However, it also says that −1 does satisfy the constraint:

| ?- X = -1, X #< 0.

X = -1

yes

GNU Prolog’s constraint solver is thus not monotonic, since adding con-
straints (in this case, X = -1) can yield additional solutions. This is not
a problem in most practical applications, but you have to keep it in mind
when testing or reasoning about the system. Moreover, even the constraint
solver itself can yield negative integers, since integer overflow is not detected
for performance reasons:

| ?- X #= 268435455 + 1.

X = -268435456

yes

It is understandable that GNU Prolog omits overflow checks for better
performance, especially because the system is mainly used to solve combi-
natorial tasks that involve only quite small values in practice. On the other
hand, users who are interested in other kinds of tasks may not even consider
using GNU Prolog due to this trade-off.

The disequality in the following conjunction causes GNU Prolog to use
its sparse representation for the domain of X, limiting it to integers up to at
most 127 by default:
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| ?- X #\= 2, X #> 200.

Warning: Vector too small - maybe lost solutions (...)

no

In this case, at least a warning is emitted that solutions may have been
lost. If we exchange the two constraint goals, we get the opposite and correct
answer “yes” instead of “no”, since there clearly are integers greater than 200
that do not equal 2:

| ?- X #> 200, X #\= 2.

X = _#2(201..268435455)

yes

As the manual notes, the solver cannot detect lost values in some cases.
For example, the system incorrectly fails without qualification in:

| ?- X #= Y*Z.

no

On the other hand, the following case which also involves only variables
works as one may expect:

| ?- X #= Y*Y.

X = _#21(0..268402689)

Y = _#2(0..16383)

yes

Again, this trade-off has little impact for most practical applications for
which GNU Prolog is being used. However, more predictable behaviour of
propagators is very desirable for automated testing and declarative debug-
ging, which rely on properties like monotonicity and commutativity.

3.3.2 Indexicals

Internally, GNU Prolog uses indexicals ([CD96a], [HSD98]) to implement
propagators. The main idea of indexicals is to declaratively describe the
domains of variables as functions of the domains of related variables. The
indexical language consists of the constraint in/2 and expressions such as
min(X)..max(X). It also includes specialized constructs that make it appli-
cable to describe a large variety of arithmetic and combinatorial constraints.
Fig. 3.1 shows several examples of indexicals, cited from the actual source
code of GNU Prolog. Notice how compact and elegant these definitions are.
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1 /*−−−−−−−−−−−−* 
2  * Partial AC * 
3  *−−−−−−−−−−−−*/
4

5

6 x_eq_y(fdv X,fdv Y)
7

8 {
9  start X in min(Y) .. max(Y)
10  start Y in min(X) .. max(X)
11 }
12

13

14

15

16 x_plus_c_eq_y(fdv X,int C,fdv Y)
17

18 {
19  start X in min(Y) − C .. max(Y) − C
20  start Y in min(X) + C .. max(X) + C
21 }
22

23

24 /*−−−−−−−−−−−−* 
25  *  Full AC   * 
26  *−−−−−−−−−−−−*/
27

28

29 x_eq_y_F(fdv X,fdv Y)
30

31 {
32  start X in dom(Y)
33  start Y in dom(X)
34 }
35

36

37

38

39 x_plus_c_eq_y_F(fdv X,int C,fdv Y)
40

41 {
42  start X in dom(Y) − C
43  start Y in dom(X) + C
44 }
45

46

47 xy_eq_z_F(fdv X,fdv Y,fdv Z)
48

49 {
50  start Z in dom(X)**dom(Y)
51  wait_switch
52     case min(Z)>0
53             start Y in 1..max_integer
54             start X in dom(Z)//dom(Y)
55             start Y in dom(Z)//dom(X)
56

57     case max(Z)==0 && min(Y)>0
58             start X in { 0 }
59

60     case max(Z)==0 && min(X)>0
61             start Y in { 0 }
62 }
63

Figure 3.1: Examples of indexicals in GNU Prolog
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3.3.3 Application: Constructing 2-(16,4,2) designs

To illustrate some of the phenomena one encounters when working with
a typical CLP(FD) system, we now use GNU Prolog to search for specific
combinatorial objects from design theory, a subfield of discrete mathematics:

Definition 3.1. A t-(v, k, λ) design is a collection of k-element subsets
(called blocks) of a v-element set V , such that every t-element subset of V
is contained in exactly λ blocks.

In this section, our goal is to find 2-(16,4,2) designs that are decompos-
able, that is, the union of two 2-(16,4,1) designs, and supersimple, which
means that every two blocks share at most two points. We actually faced
this task in a real-life situation: We wanted to reproduce the results de-
scribed by Colbourn in [Col99] for reasons that are completely unrelated
to the present thesis, and one of the steps outlined in that paper is the
construction of such designs.

Fig. 3.2 shows a GNU Prolog program that describes such designs declar-
atively with finite domain constraints, using the integers 0, . . . , 15 as the
set V . Each block is a list containing 4 finite domain variables, which are con-
strained to be strictly ascending to break symmetries within blocks (line 27).
To express that every pair of numbers occurs in at most one block, we
build a multiplication table (lines 56 and 57) consisting of triples of the
form (ni, nj , pij) for each pair of numbers ni, nj, ni < nj. The value pij is
computed as n1 × 16 +n2 and is thus unique for each such pair of numbers.
Next, we collect all pairs of variables that occur in the same block, and
extend them to triples by adding one new variable to each of them.

CBABlock 1

FEDBlock 2

Figure 3.3: Two blocks of a design containing variables

For example, given the two blocks of a (different) design shown in Fig. 3.3,
this yields the triples (A,B,x1), (A,C,x2), (B,C,x3), (D,E,x4), (D,F,x5) and
(E,F,x6), where xi denotes a free variable that does not occur anywhere else
in the formulation. Each of these triples is constrained to be an element
of the previously built multiplication table (using GNU Prolog’s built-in
fd relation/2 constraint in line 58), and the variables xi are constrained to
be pairwise distinct (using the fd all different/1 constraint in line 60).
These steps guarantee that every pair of numbers occurs in at most one
block:

Proof. Suppose integers a and b, a < b, occur together in two different
blocks, and let (a, b, xi) and (a, b, xj) be triples that were built from such
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blocks. Then, by the fd relation/2 constraint, xi = xj = a× 16 + b. But
by the fd all different/1 constraint, xi 6= xj. Contradiction.

This example shows that quite large numbers can arise even when for-
mulating tasks that involve only small values on the surface. In the present
case, we describe designs that consist of numbers between 0 and 15, using
a multiplication table that contains numbers as high as 14× 16 + 15 = 239.
This already exceeds the default value of GNU Prolog’s vector max variable,
and we therefore set it to a higher value in line 25.

We exhaustively search for such designs and emit them via forced back-
tracking with the following query:

?- supersimple_decomposable_16_4_2(Solution, Vs),

fd_labelingff(Vs),

portray_clause(Solution),

fail.

The first-fail search strategy in the above query works well in this case:
On a 2.66 GHz iMac, GNU Prolog 1.3.1 emits its first solution (Fig. 3.4) after
a few seconds. After about 2 weeks of computation time and exactly 22, 219
correct solutions, it emits its first invalid answer, shown in Fig. 3.5, followed
by many other answers that are no solutions, indicating a mistake in the
internal mechanism of GNU Prolog.

In this case, the solver’s failure to emit a valid design is so obvious that
it is easy to spot. In more complex applications, it is easy to miss such
mistakes especially when one does not expect them.

We reported this problem on the GNU Prolog mailing list. The source of
the problem was found to be an overflow in the system’s time-stamp mech-
anism that is used for scheduling propagators. The author of GNU Prolog
included a change that resets an internal counter of the solver to 1 when
it has become negative due to overflow in the next release of GNU Prolog,
version 1.4.0. In that version, the code that assesses the size of a domain
was also changed. The new code contains a mistake which affects the vari-
able selection strategy used in our query (which chooses a variable with the
smallest domain and therefore uses the code) so heavily that not a single
solution is emitted with the above query even after several days of com-
putation time. This independent mistake was corrected in the next release
of GNU Prolog, version 1.4.1. After about 16 days of computation time,
this version emits a different, but also invalid, answer after again emitting
exactly 22, 219 correct solutions with the above query. We again reported
this problem on the GNU Prolog mailing list, and the author made another
change to the constraint solver that is included in GNU Prolog as of ver-
sion 1.4.2. After about 27 days of computation time that version emits more
than 22, 219 solutions, all of which are correct.
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1 supersimple_decomposable_16_4_2(D1−D2, Vs) :−
2         d_16_4_1(D1, Vs1), d_16_4_1(D2, Vs2),
3         leq2_in_common(D1, D2),
4         D1 = [[_,_,X,_]|_], D2 = [[_,_,Y,_]|_], X #< Y,
5         append(Vs1, Vs2, Vs).
6

7 leq2_in_common([], _).
8 leq2_in_common([Block|Blocks], D2) :−
9         leq2_each(D2, Block), leq2_in_common(Blocks, D2).
10

11 leq2_each([], _).
12 leq2_each([B|Bs], Block) :−
13         phrase(in_common(B, Block), Cs), sum(Cs, #=, N), N #=< 2,
14         leq2_each(Bs, Block).
15

16 in_common([], _) −−> [].
17 in_common([X|Xs], Bs) −−> in_common_(Bs, X), in_common(Xs, Bs).
18

19 in_common_([], _) −−> [].
20 in_common_([X|Xs], Y)  −−> { X #= Y #<=> B }, [B], in_common_(Xs, Y).
21

22 length_(L, Ls) :− length(Ls, L).
23

24 d_16_4_1(Blocks, Vars) :−
25         fd_set_vector_max(500),
26         length(Blocks, 20),
27         maplist(length_(4), Blocks), maplist(block, Blocks),
28         maplist(nth0(0), Blocks, Firsts),
29         chain(Firsts, #=<), length(Five, 5),
30         append(Five, [F1,F2,F3,F4,F5,F6,F7|_], Blocks),
31         Blocks = [[0,1,_,_]|_], ordered_by_second(Blocks),
32         maplist(first(0), Five), maplist(first(1), [F1,F2,F3,F4]),
33         maplist(first(2), [F5,F6,F7]), append(Blocks, Vars),
34         numlist(0, 15, Players),
35         maplist(fd_exactly(5, Vars), Players), unique_pairs(Blocks),
36         rests_diff(Five),
37         rests_diff([F1,F2,F3,F4]),
38         rests_diff([F5,F6,F7]).
39

40 rests_diff(Ls) :− maplist(arg(2), Ls, Rests), append(Rests, Diff),
41         fd_all_different(Diff).
42

43 ordered_by_second([]).
44 ordered_by_second([_]) :− !.
45 ordered_by_second([[A,B|_],Second|Rest]) :−
46         Second = [C,D|_], A #= C #==> B #< D,
47         ordered_by_second([Second|Rest]).
48

49 block(Block) :− chain(Block, #<).
50

51 first(N, [N|_]).
52

53 unique_pairs(Blocks) :−
54         phrase(blocks_triples(Blocks), Triples),
55         findall([A,B,P], (fd_domain([A,B], 0, 15), A #< B,
56                            P #= A*16+B, fd_labeling([A,B])), Table),
57         maplist(fd_relation(Table), Triples),
58         maplist(nth0(2), Triples, Ps),
59         fd_all_different(Ps).
60

61 blocks_triples([])     −−> [].
62 blocks_triples([B|Bs]) −−> block_triples(B), blocks_triples(Bs).
63

64 block_triples([])     −−> [].
65 block_triples([L|Ls]) −−> block_triples(Ls, L), block_triples(Ls).
66

67 block_triples([], _)     −−> [].
68 block_triples([Y|Ys], X) −−> [[X,Y,_]], block_triples(Ys, X).

Figure 3.2: GNU Prolog CLP(FD) formulation of supersimple decomposable
2-(16,4,2) designs (omitted predicates are defined as in SWI-Prolog)
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Figure 3.4: A supersimple decomposable 2-(16,4,2) design found by GNU
Prolog, displayed as two 2-(16,4,1) designs
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Figure 3.5: Erroneous answer emitted by GNU Prolog 1.3.1 after about
2 weeks of computation time. It contains several identical blocks, for exam-
ple blocks 14 through 19 are (erroneously) the same even in both of the two
substructures.
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3.4 SICStus Prolog

SICStus Prolog ([CM12]) is well-known by academic and industrial users
alike as one of the most advanced CLP systems that is currently available.
In SICStus Prolog, CLP(FD) is available as library(clpfd), which must
be explicitly loaded before it can be used. In comparison with many other
Prolog systems, the CLP(FD) solver of SICStus Prolog stands out particu-
larly both due to the large number of semantically rich constraints that it
provides and its high performance on many problems of practical relevance.

In SICStus Prolog, most global constraints are implemented in the pro-
gramming language C. Like GNU Prolog, SICStus uses indexicals to imple-
ment several arithmetic constraints.

3.4.1 Symbolic infinities as domain boundaries

SICStus is notable as the first widely available Prolog system that uses
a symbolic notion for infinities as domain boundaries in CLP(FD): The
atoms inf and sup denote negative and positive infinity, respectively. These
atoms can be used when constraining the domain of a variable (in/2) and
are also used in residual goals, for example, with SICStus 4.2.3 (32-bit):

| ?- Y in inf..0, X #> 3.

Y in inf..0,

X in 4..sup ?

However, these atoms only mask underlying and still comparatively small
numbers which are the actual domain boundaries for finite domain variables
in SICStus Prolog. When these boundaries are exceeded, a representation
error is thrown:

| ?- X #= 1000000000 + 1.

! Representation error in argument 2 of user: #= /2

This is a declaratively valid way to denote that a system limit has been
breached. In cases like this, it is clearly preferable to silent failure, which
indicates that no solution exists.

In contrast, arbitrary precision integers are supported in SICStus Prolog
when evaluating arithmetic expressions with is/2:

| ?- X is 100000000000000000000000000000000000000 + 1.

X = 100000000000000000000000000000000000001 ?

Clearly, it would be ideal if finite domain constraints could be used uni-
formly for all integer calculations that arise in programs. However, since
finite domain constraints cannot handle arbitrarily large numbers in SICS-
tus Prolog, its lower-level arithmetic predicates need to be taught, learned
and used until finite domain constraints become sufficiently general to be
the only predicates that are needed to perform integer arithmetic.
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3.4 SICStus Prolog

3.4.2 Termination properties

Since SICStus provides notions for infinities, it is natural to ask: Does con-
straint propagation in SICStus Prolog always terminate? In practice, we
can observe terminating propagation on still common 32-bit platforms even
when SICStus takes some time for apparently simple queries, such as:

| ?- X #> abs(X).

! Representation error in user:’t=<u+c’/3

| ?- X #> Y, Y #> X, X #> 0.

! Representation error in user:’t>=u+c’/3

On 32-bit platforms, these queries terminate as shown in that they yield
a representation error after a quite noticeable delay. On increasingly more
common 64-bit platforms, this can no longer be observed. We will say more
about desirable termination properties of propagation in Section 4.6.

3.4.3 Semantic inconsistencies

Although the CLP(FD) solver of SICStus Prolog is widely used throughout
academia and industry alike and thus benefits from a lot of testing, one can
readily find semantic inconsistencies in the system’s answers that make it
hard to tell what the constraints actually mean. For example, using the
most recent version of SICStus Prolog (4.2.3) at the time of this writing, we
see that #=/2 does not constrain its arguments to integers in cases like:

| ?- 0 #= X - X.

true ?

Notice that the query succeeds unconditionally, meaning that it is true
for any term X. As a consequence, we have for example:

| ?- X = f(a), 0 #= X - X.

X = f(a) ?

From this and elementary syntactic substitution, we should be able to
deduce that 0 #= f(a) - f(a) holds as well. But it does not hold:

| ?- 0 #= f(a) - f(a).

! Existence error in user:f/1

Moreover, applying a syntactic substitution can also yield new and unin-
tended solutions. For example, the following yields a type error , as intended:

| ?- Y = 0, X #= Y*a.

! Type error in argument 2 of user:’x*y=z’/3
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3.4 SICStus Prolog

but after substituting 0 for Y, we obtain:

| ?- X #= 0*a.

X = 0 ?

In the above cases, one may argue that the system’s behaviour is justifiably
undefined because the input is ill-typed in the first place. However, such
phenomena also occur with valid arithmetic expressions, as in:

| ?- 1 + 2 #= 3.

yes

whereas if we simply introduce an additional unification, we get:

| ?- X = (1 + 2), X #= 3.

! Type error in argument 1 of user: #= /2

! expected an integer, but found 1+2

! goal: 1+2#=3

In contrast, using setof/3 to collect all solutions works as intended even
in the case above:

| ?- X = (1 + 2), setof(X, X #= 3, Solutions).

X = 1+2,

Solutions = [1+2] ? ;

no

Unexpectedly though, it again raises an error if we combine both goals:

| ?- setof(X, (X = (1 + 2), X #= 3), Solutions).

! Type error in argument 1 of user: #= /2

! expected an integer, but found 1+2

! goal: 1+2#=3

The lack of such elementary algebraic properties in a constraint system
significantly complicates reasoning about queries and their results and thus
makes it harder to apply declarative debuggers and black-box tests. For
practical scheduling tasks, these properties are usually less relevant.

In our tests of SICStus Prolog, we also found a category of mistakes that
involve only finite domain variables and constraints without any syntactic
substitutions. They occur when reifying expressions that involve division,
mod and rem. For example, queries like:

| ?- X #= Y/0 #<=> B.

| ?- X #= Y mod 0 #<=> B.

incorrectly failed although they should succeed with B = 0. We reported
this issue to the support team of SICStus, and it is corrected as of ver-
sion 4.0.3.
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3.5 ECLiPSe

ECLiPSe ([SS12]) is another popular and widely used plattform for CLP.
ECLiPSe ships with an IC (Interval Constraint) library, which is a hybrid
integer/real interval arithmetic constraint solver. IC replaces the fd, ria
and range libraries which are also included in the ECLiPSe distribution.

According to the ECLiPSe constraint library manual which describes the
IC library, “integer variables and constraints ought to behave as expected
until the values being manipulated become large enough that they approach
the precision limit of a double precision floating point number (251 or so).
Beyond this, lack of precision may mean that the solver cannot be sure
which integer is intended, in which case the solver starts behaving more like
an interval solver than a traditional finite domain solver.”

Indeed, using the latest version of ECLiPSe (6.1) at the time of this
writing, we find for example that 252 is correctly evaluated using the IC
library on a 32-bit platform:

[eclipse 5]: X #= 2^52.

X = 4503599627370496

Yes (0.00s cpu)

However, when evaluating 253, the IC library resorts to intervals:

[eclipse 6]: X #= 2^53.

X = X{9007199254740991 .. 9007199254740994}

Delayed goals:

X{9007199254740991 .. 9007199254740994} #=

9007199254740991.0__9007199254740994.0

Yes (0.00s cpu)

This behaviour of the IC library means that it cannot be uniformly used for
all integer calculations that arise in programs. In Section 4.5, we will see
why this is desirable.

3.6 Gecode

Gecode is a toolkit for developing constraint-based systems and applica-
tions. Like ILOG, Choco (see respective homepages) and other CP systems,
Gecode is not a logic programming system and therefore also not a CLP(FD)
system. Nevertheless, it is interesting to briefly compare correctness aspects
of a CP system to the CLP(FD) systems we discuss in this chapter. We
choose Gecode as one of the most prominent and well-known representa-
tives of CP systems.
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3.6.1 Guarantee of mistakes

To the question “Does Gecode have bugs?”, we find in the Gecode man-
ual ([STL10]) the following answer:

Yes, of course! But, Gecode is very thoroughly tested (tests cover
almost 100%) and extensively used (several thousand users). If
something does not work, we regret to inform you that this is
most likely due to your program and not Gecode. Again, this
does not mean that Gecode has no bugs. But it does mean that
it might be worth searching for errors in your program first.

Given the complexity of Gecode, it is understandable that its authors
have taken this attitude towards the inevitable mistakes in contains. How-
ever, as authors of constraint systems, can we not formulate and guarantee
more interesting properties about our systems? We will see examples for
formulating and verifying specific properties of our code in Section 5.6.

3.6.2 History of corrections

Gecode is notable for the meticulous ChangeLog that is included in the
source distribution. The authors of Gecode are to be applauded for stating
precisely what was corrected and improved for each release, and giving full
credits to contributors and users who reported issues. Fig. 3.6 shows an
excerpt of a ChangeLog entry that describes corrections in the finite do-
main integer component of Gecode. We include this excerpt to show that
correctness considerations must also be applied in constraint systems that
do not support logical variables.

1 Changes in Version 4.0.0 (2013−03−14)
2

3   − Bug fixes
4     − Fixed precede constraint with less than two values.
5       (minor, thanks to Roberto Castañeda Lozano)
6     − Fixed a bug where bounds consistent distinct reported
7       subsumption instead of failure in certain cases.
8       (major, thanks to Lin Yong)
9     − Fixed potential rounding issues in sqr and sqrt constraints.
10       (minor)
11     − Fixed copying of tuple sets in extensional constraints and
12       IntSets in sequence constraints (could lead to crashes when
13       using parallel search). (major, thanks to Manuel Baclet)
14     − Added missing propagation for nary min/max constraint.
15       (minor, thanks to Jean−Noël Monette)
16     − Make extensional constraints work with empty tuple sets.
17       (minor, thanks to Peter Nightingale)
18     − Fix count (global cardinality constraint) for multiple
19       occurrences of the same value in the cover array.
20       (minor, thanks to Peter Nightingale)

Figure 3.6: Examples of corrections in Gecode
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3.7 Summary of properties

B-Prolog ([Zho12]) is an example of another widely used CLP(FD) system.
It is notable for using action rules ([Zho06]) in its implementation.

However, instead of attempting to cover or even mention all CLP(FD)
systems that are currently available, we now summarize some important
properties of available CLP(FD) systems as follows:

• Reasoning is limited to comparatively small integers. When these
limits are exceeded, one of the following happens:

(1) errors are thrown (example: SICStus Prolog)

(2) the system fails silently (example: GNU Prolog)

(3) the behaviour is hard to predict (example: ECLiPSe)

Of these options, only (1) is declaratively sound. However, to find all
solutions, it would be even better if these limits did not exist at all.

• The CLP(FD) systems we discuss in this chapter are inherently not
monotonic or fail to satisfy elementary algebraic properties such as
commutativity of conjunction due to their defaulty representation (see
Section 4.2) of arithmetic expressions: Variables that occur in expres-
sions are implicitly constrained to integers, although declaratively,
they stand for compound expressions as well. We will discuss this
problem and how it can be avoided in the following chapter.

• No guarantees are provided regarding termination. In the following
chapters, we will see why it is desirable that constraint propagation
always terminates in a CLP(FD) system.

• If guarantees are given, they typically state the efficiency of global
propagators in O-notation, or the type of consistency that is reached
after filtering. However, there are other important guarantees that
should be stated explicitly in manuals. Examples of valid questions
that should be answered in manuals are:

1. Can labeling yield redundant solutions?

2. Does labeling always terminate?

3. Is labeling always complete?

We will see why such guarantees are desirable, and also formulate
guarantees for individual propagators in the following chapters.
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4.1 Introduction

To overcome several of the limitations that we explained in the previous
chapter, we implemented a new CLP(FD) system. When we started to
implement the system in 2007, our goals were:

• No artificial limits on the size of domains and arising numbers.

• Always terminating propagation.

• The system shall be implemented in Prolog to keep it concise and easy
to study, analyse and improve.

Ultimately, and as we will show in this chapter, these goals all serve the
purpose of ensuring correctness above all else. We present the system in
the following sections, giving special attention to correctness considerations.
We again emphasize our conscious decision to include portions of the actual
Prolog source code, since only the code that is actually executed matters
when considering correctness issues. Even if there were a different language
to precisely describe what our solver does, that description would in our
opinion likely be at least as verbose as the actual Prolog implementation
that we present, and the advantage of the Prolog code is that it is directly
executable. We hope that our readers enjoy studying the code, learn from
it, and find all remaining mistakes.

4.2 Defaulty representations and monotonicity

Before describing any particular feature or approach of our system, we ex-
plain the notion of defaulty representations of data and why we avoid them
in our solver. Consider the following type definition, describing a Prolog
clause body:

is_body(true).

is_body((A,B)) :- is_body(A), is_body(B).

is_body(G) :- is_goal(G).

Informally, this means:

• the atom true is a valid clause body

• a term of the form (A,B), sometimes called “and-list”, is a clause body
if both A and B are clause bodies

• a term G is a clause body if it is a goal . We omit the definition of
is goal/1 since it is not relevant for explaining the main problem
with this representation of clause bodies.
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According to this definition, the term (true,(true,true)), which can
also be written as (true,true,true) is a valid clause body. And indeed we
see from the following interaction with SWI-Prolog that it is the case:

?- is_body((true,true,true)).

true .

However, from the blank that it issued after true, we also see that
is body/1 is not deterministic in this case. The reason is that the third
clause head (is body(G)) is so general that it subsumes every term, and
this has to be so because there is no more specific term that subsumes all
possible goals in this representation of Prolog code. To obtain a determinis-
tic predicate, it is tempting to introduce !/0 to commit as early as possible,
leaving the third clause as a default case that is tried when the ones before
it cannot be applied:

is_body(true) :- !.

is_body((A,B)) :- !, is_body(A), is_body(B).

is_body(G) :- is_goal(G).

A representation whose handling requires or suggests such a default case,
or – more generally – cannot be expressed via pattern matching, is aptly
called defaulty and is problematic for the following reason: While the addi-
tion of !/0 makes the above query deterministic

?- is_body((true,true,true)).

true.

the most general query now only yields a single solution:

?- is_body(Body).

Body = true.

This destroys commutativity of goals:

?- is_body(Body), Body = (true,true).

false.

?- Body = (true,true), is_body(Body).

Body = (true, true).

and renders the program non-monotonic, meaning that adding further
constraints can yield new solutions:
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4.2 Defaulty representations and monotonicity

?- is_body(Body), Body = (true,true).

false.

?- Body = (true,true), is_body(Body), Body = (true,true).

Body = (true, true).

We cannot change the built-in representation of Prolog clause bodies, but
we can:

1. avoid defaulty representations for all internal data structures

2. transform defaulty representations to cleaner data structures before
doing anything else with them, and – if necessary – transform them
back to defaulty structures only after nothing else needs to be done
with them.

Defaulty representations do have an advantage, which is mainly convenience
for users when typing them. Suppose for example that we settle on the fol-
lowing representation of Prolog clause bodies and at the same time represent
the program itself according to this specification:

is_body(true).

is_body((A,B)) :- g(is_body(A)), g(is_body(B)).

is_body(g(G)) :- g(is_goal(G)).

Informally, this means:

• the atom true is a valid clause body

• (A,B) is a clause body if A and B are clause bodies

• a term g(G) is a clause body if G is a goal.

This representation is not defaulty since goals are now uniquely distin-
guished by a common functor g/1. Note, however, that this representation
requires that users consistently wrap goals into such a structure, as the ex-
ample itself already shows in the bodies of the last two clauses. While the
declarative advantages of this representation are evident, the program itself
can hardly be called more readable than the initial version. In practice,
therefore, we will often have to allow defaulty data structures for the sake
of convenience, and convert them to cleaner representations before doing
anything else with them.

A Prolog list is an example of a data structure that is not defaulty, since
the two possible cases are readily distinguished by their functors:

is_list([]).

is_list([_|Rest]) :- is_list(Rest).
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A list is not a defaulty data structure even when its elements use a
defaulty representation.

Throughout the implementation of our system, we use lists to represent
conjunctions of goals, since lists can be conveniently described with Prolog’s
definite clause grammars (DCGs) and many built-in predicates are readily
available for reasoning about lists. When actual Prolog code needs to be
emitted, we use the predicate list goal/2 (Fig. 4.1) to convert such lists
to executable Prolog goals.

1 list_goal([], true).
2 list_goal([G|Gs], Goal) :− foldl(list_goal_, Gs, G, Goal).
3

4 list_goal_(G, G0, (G0,G)).

Figure 4.1: Converting a list of goals to an executable Prolog goal

4.3 A monotonic CLP(FD) system

We discussed the notion of defaultyness and its relation to monotonicity for
the following reason: All CLP(FD) systems that we describe in this the-
sis use a defaulty representation for finite domain expressions and are also
not monotonic. We have already seen an example of GNU Prolog’s non-
monotonicity in Section 3.3.1. However, there is an even deeper declarative
shortcoming that all mentioned systems have in common: When a logical
variable is encountered in a finite domain expression, it is implicitly con-
strained to integers, while declaratively, it stands for other expressions as
well. Consider for example the following interaction with GNU Prolog:

| ?- X #= 3, X = (1+2).

no

and contrast it with the result of exchanging the two goals, which makes
the query succeed, violating commutativity of goals and monotonicity:

| ?- X = (1+2), X #= 3.

X = 1+2

yes

Indeed, the query succeeds for any finite domain expression X that evalu-
ates to 3, for example X = (5-2) or X = (3*2-3), but only if the unification
is placed before the finite domain constraint. Similar declarative problems
are readily found in other constraint systems as well. Clearly, there is no
way to satisfy both of the following requirements at the same time:
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(1) the query X #= 3 must yield the fixed solution X = 3

(2) the query X #= 3must yield as solutions all finite domain expressions X
that evaluate to 3.

Requirement (1) is necessitated by the way users interact with the con-
straint system and expect concrete integers as solutions, and requirement (2)
is necessary for obtaining commutativity of goals and monotonicity.

In our system, users can avoid this dilemma by explicitly marking finite
domain variables in CLP(FD) expressions with the functor ?/1: When ?(X)

appears in a finite domain expression, X is constrained to integers and cannot
be any compound expression. For better readability, users can define ? as
a postfix operator with the declaration

:- op(5, xf, ?).

so that ?(X) can also be written as X?. Using this syntax with our
system, which we will do throughout the following sections, the above queries
yield:

?- X? #= 3, X = (1+2).

false.

?- X = (1+2), X? #= 3.

ERROR: Type error: ‘integer’ expected, found ‘1+2’

Note that this type error can be replaced by silent failure while pre-
serving declarative equivalence, but in general instantiation errors cannot.
When the ?/1-syntax is used consistently in queries, our CLP(FD) system
is monotonic: Posting further constraints cannot yield new solutions. For
backwards compatibility with other Prolog systems, we also support plain
variables in constraints, which are still implicitly constrained to integers.
However, our system also provides the flag clpfd monotonic to enforce the
?/1 syntax. When this flag is set to true, then a query like

?- X #= 3.

yields an instantiation error because too little is known about X in this
case: Declaratively, X stands for every finite domain expression that eval-
uates to 3, and there is no way to express that with residual goals when
we want to obtain the single solution X = 3 at the same time. When X is
wrapped in ?/1, then the query succeeds as expected with the unique solu-
tion X = 3. The wrapper ?/1 can be omitted for variables that are already
constrained to integers, for example:

?- X? #> 0, abs(X) #= 3.

X = 3.
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4.4 System architecture

We now describe the architecture of our CLP(FD) system, by which we
mean the interaction of its most important components. These components
are in turn explained in more detail in the following sections.

We start by defining what we want from a CLP(FD) system. Speaking
in most general terms, we expect:

(a) to be able to provide a set of terms, namely constraints

(b) to obtain again a set of terms, namely residual goals, as a result.

Between these two steps, the CLP(FD) system should make an effort
to compute results that are in some sense appropriate or satisfy a property
like bounds consistency. Notice that unconditional solutions, which are re-
ported as a set of syntactic unifications, can be regarded as a special case of
residual goals.

To satisfy these requirements, our constraint solver:

(1) provides a set of predicates that implement constraints and search

(2) performs constraint propagation on variables that are involved in con-
straints

(3) transforms remaining constraints into residual goals so that they can
be reported.

In these steps, the contributions that distinguish our system from others
are, in no particular order:

• Constraints are monotonic if the flag clpfd monotonic is set to true.

• New domain-specific languages are used in the internal implementa-
tion of several important constraints that our system provides. These
languages describe the semantics of constraint reification, compactified
arithmetic, propagator selection, and parsing of expressions in arith-
metic constraints and are explained throughout the following sections.

• Our system reasons over arbitrarily large integers, which yields new
application opportunities that we present.

• Constraint propagation always terminates in our system. As we will
show, this is an important property in several scenarios.

In typical CSPs, a constraint solver spends most of its computation time
in step (2) above: This is where propagators are applied until some form of
consistency is reached or it becomes clear that the problem has no solution.

In our system, we use attributed variables ([Hol92]) to store the con-
straints each variable is involved in. More precisely, each CLP(FD) variable
gets an attribute of the form:
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clpfd_attr(Left, Right, Spread, Dom, Ps)

The purpose of Left, Right and Spread is explained in Section 4.6. Dom
is the variable’s domain, represented as explained in Section 4.10. Ps stores
the propagators that need to be invoked when the variable is instantiated
or its domain changes. Ps is a term of the form:

fd_props(Gs, Bs, Os)

where Gs, Bs and Os are lists of propagators that need to be invoked in
different situations:

• Gs are propagators that must be invoked (only) when the variable
becomes ground, i.e., instantiated to a concrete integer. An example
is the propagator for disequality (X? #\= Y?), which can only perform
any filtering when either of its arguments is instantiated and need not
be invoked in other situations.

• Bs are propagators that must be invoked (only) when one of the domain
boundaries of the variable changes. An example is the propagator
for addition (X? #= Y? + Z?), which ensures bounds consistency and
need not be invoked in other situations.

• Os are propagators that must be invoked when the domain of the vari-
able changes in any way. An example is the all distinct/1 constraint
which we explain in Section 4.13.2.

As can be deduced from this description, all propagators that can affect
a variable are invoked when the variable becomes instantiated to a concrete
integer, since this means that its domain is restricted to a single element.

The propagators that need to be invoked are stored in each of these lists
in the form:

propagator(P, State)

P denotes the propagator that needs to be invoked and its arguments, for
example pplus(X, Y, Z). We show the entire source code of two propaga-
tors in Section 4.11. State is a free variable that can be used to change the
state of the propagator via attributes. This can be used to avoid redundant
invocations of the same propagator, or to disable future invocations of the
propagator for this variable.

In our CLP(FD) system, there is a predicate run propagator/2 which
must be called like:

run_propagator(P, State)
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when a specific propagator P needs to be invoked. Each propagator
corresponds to a specific clause of this predicate, from which other predicates
can be invoked as well. Users can also provide their own clauses to implement
custom filtering algorithms.

As we explain in Section 4.6, propagation always terminates in our sys-
tem. However, for any fixed integer N , it is easy to construct cases where
run propagator/2 is invoked N times even with a fixed set of constraints.
For example, the query

?- X? #> Y?, Y #> X, X in 0..1000.

false.

leads to more than 500 invocations of run propagator/2, in which the
domains of both X and Y are reduced until no more elements remain.

To limit the amount of local stack space that such propagation chains
require, run propagator/2 does not usually call itself recursively either di-
rectly or indirectly when further constraints need to be invoked. Instead,
we maintain two global queues of propagators that still need to be invoked.
We use SWI-Prolog’s global backtrackable variables to store both queues in
a single term of the form:

fast_slow(Ps1, Ps2)

Both Ps1 and Ps2 are either the atom [] or queues of the form Ps-Tail

where further elements can be appended in O(1) time by instantiating Tail.
Ps is a list of propagators that need to be invoked. Fig. 4.2 shows how the
queues are created and accessed. As can be seen from this code, when
a propagator is fetched via pop queue/1, the propagators that are stored
in the first argument of the global queue representation have priority over
those that are stored in the second. As the functor already indicates, this
is because the propagators that are stored in the first argument are typi-
cally faster. The more time consuming propagators of global constraints are
only run after the faster propagators have already filtered as many domain
elements as possible. It is important to reset each of the two queues to []

when no more elements remain (line 21), so that the elements that have
been removed from the queue can be properly garbage collected. The predi-
cate do queue/0 (not shown) triggers all queued propagators, until fixpoint.

We have consciously kept our system’s architecture as simple as possible
while trying to get acceptable performance in typical use cases. It is clear
that one propagator queue is needed to perform constraint propagation in
O(1) local stack space. An additional, second propagator queue seems to be
the bare minimum that is necessary for meaningful performance improve-
ments. Yet, this apparently simple design already provides ample room for
mistakes, as we will see in Section 5.5.
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1 make_queue :− nb_setval(’$clpfd_queue’, fast_slow([], [])).
2

3 push_queue(E, Which) :−
4         nb_getval(’$clpfd_queue’, Qs),
5         arg(Which, Qs, Q),
6         (   Q == [] −>
7             setarg(Which, Qs, [E|T]−T)
8         ;   Q = H−[E|T],
9             setarg(Which, Qs, H−T)
10         ).
11

12 pop_queue(E) :−
13         nb_getval(’$clpfd_queue’, Qs),
14         (   pop_queue(E, Qs, 1) −>  true
15         ;   pop_queue(E, Qs, 2)
16         ).
17

18 pop_queue(E, Qs, Which) :−
19         arg(Which, Qs, [E|NH]−T),
20         (   var(NH) −>
21             setarg(Which, Qs, [])
22         ;   setarg(Which, Qs, NH−T)
23         ).

Figure 4.2: Accessing the propagator queues

4.5 Reasoning over arbitrarily large integers

As already mentioned, our CLP(FD) systems supports reasoning over arbi-
trarily large integers. For compatibility with SICStus Prolog, we support
the atoms inf and sup in domain expressions. However, these atoms now
denote the actual infinities instead of masking underlying smaller numbers.
As we show in this section, supporting arbitrarily large integers yields new
and interesting application opportunities for constraint solvers.

One can hardly speak of finite domain constraint solvers any more when
domains can clearly be infinite as well. Still, given that there are always tech-
nological limits for the representation of any particular integer in a CLP(FD)
system, calling them CLP(Z) seems at least equally deceiving. We there-
fore continue to call the systems we discuss in this thesis – including ours –
CLP(FD) systems, since this is how they are known by convention although
some of them can also represent and reason about infinite domains.

4.5.1 Large integers in conventional CLP(FD) tasks

In Section 2.2, we have already seen an example where reasoning over com-
paratively large integers is necessary to solve a problem over rational num-
bers with integer arithmetic. Well-known examples of large integers that
arise in conventional CLP(FD) tasks are still comparatively rare, since most
CLP(FD) systems can currently reason only over quite small integers and
have therefore so far not been applicable to such problems. However, large
integers arise not only in contrived examples, but in interesting practical
applications as well.

For instance, a Prolog library called julian is an interesting practical
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example where large integers arise in the context of calculations with dates
and times that can be specified up to nanosecond resolution. Internally,
this library uses our CLP(FD) system to efficiently evaluate queries that
can be very general. Michael Hendricks has generously made this library
freely available as a package for SWI-Prolog. You can install it with SWI-
Prolog 6.3 or later via:

?- pack_install(julian).

When this library and our CLP(FD) system are loaded, we can for ex-
ample ask: “During Dwight D. Eisenhower’s presidency (1953–1961), when
did the 4th of July fall on Sunday?”:

?- form_time([dow(sunday), Year-07-04]),

Year in 1953..1961.

and obtain the system’s answer:

Year = 1954.

As another example, asking for the representation of today via:

?- form_time(today, T).

yields an integer that determines the current day, and a finite domain vari-
able whose domain contains every nanosecond of this day:

T = datetime(56599, _G299),

_G299 in 0..86399999999999.

library(julian) is a great application of traditional CLP(FD) reason-
ing over comparatively large and naturally arising domains, and an example
where our system’s support for arbitrarily large integers is very useful.

4.5.2 Uniform integer arithmetic

Our constraint system’s ability to reason over arbitrarily large integers al-
lows you to use finite domain constraints instead of conventional built-in
arithmetic with is/2, >/2 etc. This makes integer arithmetic uniformly
available via finite domain constraints.

Uniform integer arithmetic via finite domain constraints has obvious
didactic advantages when teaching Prolog, since a smaller set of predicates
needs to be explained and learned. At the same time, using finite domain
constraints instead of low-level arithmetic can make programs significantly
more general with acceptable overhead.

For example, consider the definition of n factorial/2 shown in Fig. 4.3.
It uses finite domain constraints uniformly, and the predicate can therefore
be used in all directions.
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1 n_factorial(0, 1).
2 n_factorial(N, F) :−
3         N? #> 0,
4         N1? #= N − 1,
5         F? #= N * F1?,
6         n_factorial(N1, F1).

Figure 4.3: Relating a non-negative integer N to its factorial F

As with the conventional definition, we can ask for a number’s factorial:

?- n_factorial(38, F).

F = 523022617466601111760007224100074291200000000 ;

false.

Moreover, we can now also ask in the other direction:

?- n_factorial(N, 3).

false.

?- n_factorial(N, 265252859812191058636308480000000).

N = 30.

We can also leave both arguments unspecified and still obtain solutions:

?- n_factorial(N, F).

N = 0, F = 1 ;

N = 1, F = 1 ;

N = 2, F = 2 ;

N = 3, F = 6 .

A version of n factorial/2 that is deterministic when its first argument is
instantiated is shown in Fig. 4.4. It uses zcompare/3, which is a CLP(FD)
version of the built-in compare/3 predicate. zcompare(R, X, Y) is true if
X is in relation R to Y, where R is either <, = or >.

1 n_factorial(N, F) :−
2         zcompare(R, N, 0),
3         n_factorial_(R, N, F).
4

5 n_factorial_(=, _, 1).
6 n_factorial_(>, N, F) :−
7         F? #= F0? * N,
8         N1? #= N − 1,
9         n_factorial(N1, F0).

Figure 4.4: Relating N to its factorial F, deterministic when N is instantiated

To transparently bring the performance of CLP(FD) constraints closer to
that of conventional arithmetic predicates when the constraints are used in
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modes that can also be handled by built-in arithmetic, our system uses
goal expansion/2 to rewrite constraints at compilation time. Code that
dynamically checks whether built-in arithmetic predicates can be used di-
rectly is transparently inserted.

CLP(FD) constraints can thus be used instead of conventional integer
arithmetic with acceptable performance overhead in most programs.

4.6 Ensuring terminating propagation

In CLP(FD) systems that support arbitrarily large numbers, nonterminating
propagation chains can arise. For example, the following queries lead to
nonterminating propagation unless we take measures against it:

?- X? #> Y?, Y #> X, X #> 0.

?- X? #> X? * X? .

?- X? #> abs(X?).

Even if we were to allow unbounded propagation, we could not solve all
tasks that can be expressed in our system. This is because our system can
represent arbitrary Diophantine equations, which are known to be undecid-
able in general.

It is very desirable that constraint propagation always terminates, for
the following reasons:

• when propagation cannot tell whether a set of constraints is consis-
tent, the system should show residual goals instead of looping, so that
stronger reasoners can be applied

• it significantly simplifies black-box testing (see Chapter 5), since con-
straints can be posted in any order, without risking nontermination

• it is a necessary condition for guaranteeing that labeling/2 always
terminates (see Section 4.14)

There are three ways in which nonterminating propagation can arise:
Either the lower boundary of some domain increases without bound, or
the upper boundary decreases without bound, or the distance between the
smallest and largest integer in a domain representation (see Section 4.10.1)
increases without bound. These three cases are shown in Fig. 4.5.

In our system, we guarantee terminating propagation by allowing each
of these changes to occur at most once for each domain that is still infi-
nite. The terms Left, Right and Spread (see Section 4.4) are used to keep
track of these three changes for each domain. We reset the history of these
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changes when users post new constraints, to give each posted constraint
an opportunity for propagation. So far, this simple restriction has worked
acceptably well in most practical use cases we are aware of. Users who abso-
lutely need it and are aware of the possible consequences can set the Prolog
flag clpfd propagation to full for unrestricted propagation.

(a) (b) (c)

Figure 4.5: The three possible shapes of nonterminating domain changes.

4.7 Source code organisation

At the time of this writing, library(clpfd) comprises about 6, 400 lines
of Prolog source code, including documentation and comments. The ap-
proximate number of lines of codes (LOC) that are dedicated to its most
important components are shown in Table 4.1. Most of these components
are explained in the following sections.

system component LOC

global constraints 1, 883
propagators for arithmetic constraints 951
reification 622
reasoning about domains 600
labeling and optimisation 331
queue handling 295
compactified arithmetic 185
projecting attributes to residual goals 169
selecting propagators for constraints 164
parsing arithmetic expressions 76

Table 4.1: Amount of source code for important system components

4.8 Domain-specific languages

Our system is entirely written in Prolog. However, we found that some of
its parts are best described by dedicated domain-specific languages (DSLs),
which we translate to executable Prolog code at compile-time. DSLs are
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typically devised with the goal of increased expressiveness and ease of use
compared to general-purpose programming languages in their domains of
application ([MHS05]). Examples of DSLs include lex and yacc ([JL87b])
for lexical analysis and parsing, regular expressions for pattern matching,
HTML for document mark-up, VHDL for electronic hardware descriptions
and many other well-known instances.

DSLs are also known as “little languages” ([Ben86]), where “little” pri-
marily refers to the typically limited intended or main practical application
scope of the language. For example, PostScript is a “little language” for
page descriptions in this terminology.

Indexicals (see Section 3.3.2) are among the most prominent and well-
known examples of DSLs in CLP(FD) systems.

The usefulness of deriving large portions of code automatically from
shorter descriptions also motivates the use of variable views, a DSL to au-
tomatically derive perfect propagator variants, in the implementation of
Gecode ([ST08], [ST13]).

Action rules (see Section 3.7) and Constraint Handling Rules ([Frü98])
are both Turing-complete languages that are very well-suited for implement-
ing constraint propagators and even entire constraint systems like the finite
domain constraint solver of B-Prolog.

These examples of DSLs are mainly used for the description and gener-
ation of constraint propagation code in practice. In the following sections,
we contribute to these uses of DSLs by presenting new DSLs that we use in
new and different contexts. They allow you to concisely express compact-
ified arithmetic, selection of propagators (which is a task that is distinct
and independent of their actual underlying implementation) and constraint
reification with desirable declarative properties.

4.9 Compactified arithmetic

The first example of a DSL that we devised when implementing our con-
straint solver is the simplest to explain and understand: It describes the
properties of compactified integer arithmetic, which means arithmetic on
the topologically compact set Z ∪ {−∞,+∞}. As already mentioned in
Section 4.5, we support the atoms inf and sup (denoting negative and pos-
itive infinity, respectively) in domain expressions. Internal calculations for
domain boundaries must be able to correctly handle these atoms. When
a domain boundary is the number N , it is internally represented as the
compound term n(N).

As an example of a domain calculation that arises in a solver, consider
shifting a domain boundary B by an integer offset O, where S shall be the
shifted result. This shifting occurs for example in the propagator for addi-
tion, when one of the summands or the sum is already instantiated. If all
domain boundaries were integers, we could obtain it via:
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S is B + O

However, B might be infinite, and therefore the built-in is/2 predicate
cannot be used directly. We therefore introduced a predicate cis/2 (com-
pactified is/2) that behaves like is/2 and correctly handles infinities in
addition to numbers (with wrapper n/1), allowing us to write:

S cis B + n(O)

In addition to cis/2, we define cis geq/2, cis gt/2, cis leq/2 and
cis lt/2 as infix operators that we use to evaluate and compare expressions
of compactified arithmetic.

For cis/2, we adopted the convention that a variable that is not wrapped
in n/1 is either one of the two infinities or a number (wrapped in n/1) at
run-time, but never a compound expression. This convention lets us expand
cis/2 calls to auxiliary predicates at compile-time, reducing the overhead
of inspecting the expression at run-time.

Compactified arithmetic expressions are partially evaluated at compile-
time by using the goal expansion/2 mechanism of SWI-Prolog as shown
in Fig. 4.6. The first clause of goal expansion/2 relates the right-hand
side of a cis/2 call to its left-hand side by producing a conjunction of goals
that replaces the call. The other clauses of goal expansion/2 transform
the different comparison operators to a few elementary cases. In contrast
to cis/2, these operators cannot handle nested expressions, since there was
so far no need support this in the implementation of our system.

We use the following cis/2 call to illustrate the expansion mechanism:

NXU cis min((abs(n(Z))+n(1))*abs(n(Y))-n(1), XU)

This goal actually occurs in our solver during the calculation of upper
boundaries of division. It is replaced by the following goals at compile-
time. Variables that start with an underscore are introduced during the
goal expansion phase and do not occur anywhere else:

cis_abs(n(Z), _G369),

cis_plus(_G369, n(1), _G375),

cis_abs(n(Y), _G380),

cis_times(_G375, _G380, _G384),

cis_minus(_G384, n(1), _G390),

cis_min(_G390, XU, NXU))

To complete our implementation of compactified arithmetic, we show
the Prolog definitions for arithmetic operations with infinities in Fig. 4.7
and Fig. 4.8. Due to the previous expansion phase, these predicates only

48



4.9 Compactified arithmetic

1 goal_expansion(A cis B, Expansion) :−
2         phrase(cis_goals(B, A), Goals),
3         list_goal(Goals, Expansion).
4 goal_expansion(A cis_lt B, B cis_gt A).
5 goal_expansion(A cis_leq B, B cis_geq A).
6 goal_expansion(A cis_geq B, cis_leq_numeric(B, N)) :−
7         nonvar(A), A = n(N).
8 goal_expansion(A cis_geq B, cis_geq_numeric(A, N)) :−
9         nonvar(B), B = n(N).
10 goal_expansion(A cis_gt B, cis_lt_numeric(B, N))   :−
11         nonvar(A), A = n(N).
12 goal_expansion(A cis_gt B, cis_gt_numeric(A, N))   :−
13         nonvar(B), B = n(N).
14

15 cis_goals(V, V)          −−> { var(V) }, !.
16 cis_goals(n(N), n(N))    −−> [].
17 cis_goals(inf, inf)      −−> [].
18 cis_goals(sup, sup)      −−> [].
19 cis_goals(sign(A0), R)   −−>
20         cis_goals(A0, A), [cis_sign(A, R)].
21 cis_goals(abs(A0), R)    −−>
22         cis_goals(A0, A), [cis_abs(A, R)].
23 cis_goals(−A0, R)        −−>
24         cis_goals(A0, A), [cis_uminus(A, R)].
25 cis_goals(A0+B0, R)      −−>
26         cis_goals(A0, A), cis_goals(B0, B), [cis_plus(A, B, R)].
27 cis_goals(A0−B0, R)      −−>
28         cis_goals(A0, A), cis_goals(B0, B), [cis_minus(A, B, R)].
29 cis_goals(min(A0,B0), R) −−>
30         cis_goals(A0, A), cis_goals(B0, B), [cis_min(A, B, R)].
31 cis_goals(max(A0,B0), R) −−>
32         cis_goals(A0, A), cis_goals(B0, B), [cis_max(A, B, R)].
33 cis_goals(A0*B0, R)      −−>
34         cis_goals(A0, A), cis_goals(B0, B), [cis_times(A, B, R)].
35 cis_goals(div(A0,B0), R) −−>
36         cis_goals(A0, A), cis_goals(B0, B), [cis_div(A, B, R)].
37 cis_goals(A0//B0, R)     −−>
38         cis_goals(A0, A), cis_goals(B0, B), [cis_slash(A, B, R)].
39 cis_goals(A0^B0, R)      −−>
40         cis_goals(A0, A), cis_goals(B0, B), [cis_exp(A, B, R)].

Figure 4.6: Goal expansion of compactified arithmetic

need to cover three elementary cases: the two infinities and numbers, but
no compound expressions. Note that indeterminate forms like +∞+ (−∞)
are pragmatically defined by these predicates as needed for the specific use
cases of our constraint solver (in this concrete case: sup+inf = sup), and
may need different interpretations in other applications. As can be seen in
these definitions, Prolog’s built-in arithmetic with is/2 is internally used
when possible, i.e., when no infinities are involved. This is where we trans-
parently benefit from the underlying Prolog system’s arbitrary precision
integer arithmetic, which is available in most modern Prolog systems.

Of the DSLs presented in this chapter, the language of compactified
arithmetic is maybe least applicable to other finite domain constraint sys-
tems, since only a few of them need to support expressions with symbolic
infinities. Still, we consider it a valuable tool for documenting, in directly
executable form, the error-prone boundary expressions for constraints like
multiplication and floored division, which are much less obvious than those
of addition especially when infinities are involved.
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1 cis_gt(sup, B0) :− B0 \== sup.
2 cis_gt(n(N), B) :− cis_lt_numeric(B, N).
3

4 cis_lt_numeric(inf, _).
5 cis_lt_numeric(n(B), A) :− B < A.
6

7 cis_gt_numeric(sup, _).
8 cis_gt_numeric(n(B), A) :− B > A.
9

10 cis_geq(inf, inf).
11 cis_geq(sup, _).
12 cis_geq(n(N), B) :− cis_leq_numeric(B, N).
13

14 cis_leq_numeric(inf, _).
15 cis_leq_numeric(n(B), A) :− B =< A.
16

17 cis_geq_numeric(sup, _).
18 cis_geq_numeric(n(B), A) :− B >= A.
19

20 cis_min(inf, _, inf).
21 cis_min(sup, B, B).
22 cis_min(n(N), B, Min) :− cis_min_(B, N, Min).
23

24 cis_min_(inf, _, inf).
25 cis_min_(sup, N, n(N)).
26 cis_min_(n(B), A, n(M)) :− M is min(A,B).
27

28 cis_max(sup, _, sup).
29 cis_max(inf, B, B).
30 cis_max(n(N), B, Max) :− cis_max_(B, N, Max).
31

32 cis_max_(inf, N, n(N)).
33 cis_max_(sup, _, sup).
34 cis_max_(n(B), A, n(M)) :− M is max(A,B).
35

36 cis_plus(inf, _, inf).
37 cis_plus(sup, _, sup).
38 cis_plus(n(A), B, Plus) :− cis_plus_(B, A, Plus).
39

40 cis_plus_(sup, _, sup).
41 cis_plus_(inf, _, inf).
42 cis_plus_(n(B), A, n(S)) :− S is A + B.
43

44 cis_minus(inf, _, inf).
45 cis_minus(sup, _, sup).
46 cis_minus(n(A), B, M) :− cis_minus_(B, A, M).
47

48 cis_minus_(inf, _, sup).
49 cis_minus_(sup, _, inf).
50 cis_minus_(n(B), A, n(M)) :− M is A − B.
51

52 cis_uminus(inf, sup).
53 cis_uminus(sup, inf).
54 cis_uminus(n(A), n(B)) :− B is −A.

Figure 4.7: Arithmetic operations with infinities (part 1/2)
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1 cis_abs(inf, sup).
2 cis_abs(sup, sup).
3 cis_abs(n(A), n(B)) :− B is abs(A).
4

5 cis_times(inf, B, P) :−
6         (   B cis_lt n(0) −> P = sup
7         ;   B cis_gt n(0) −> P = inf
8         ;   P = n(0)
9         ).
10 cis_times(sup, B, P) :−
11         (   B cis_gt n(0) −> P = sup
12         ;   B cis_lt n(0) −> P = inf
13         ;   P = n(0)
14         ).
15 cis_times(n(N), B, P) :− cis_times_(B, N, P).
16

17 cis_times_(inf, A, P)     :− cis_times(inf, n(A), P).
18 cis_times_(sup, A, P)     :− cis_times(sup, n(A), P).
19 cis_times_(n(B), A, n(P)) :− P is A * B.
20

21 cis_exp(inf, n(Y), R) :−
22         (   even(Y) −> R = sup
23         ;   R = inf
24         ).
25 cis_exp(sup, _, sup).
26 cis_exp(n(N), Y, R) :− cis_exp_(Y, N, R).
27

28 cis_exp_(n(Y), N, n(R)) :− R is N^Y.
29 cis_exp_(sup, _, sup).
30 cis_exp_(inf, _, inf).
31

32

33 cis_sign(sup, n(1)).
34 cis_sign(inf, n(−1)).
35 cis_sign(n(N), n(S)) :− S is sign(N).
36

37 cis_div(sup, Y, Z)  :− ( Y cis_geq n(0) −> Z = sup ; Z = inf ).
38 cis_div(inf, Y, Z)  :− ( Y cis_geq n(0) −> Z = inf ; Z = sup ).
39 cis_div(n(X), Y, Z) :− cis_div_(Y, X, Z).
40

41 cis_div_(sup, _, n(0)).
42 cis_div_(inf, _, n(0)).
43 cis_div_(n(Y), X, Z) :−
44         (   Y =:= 0 −> (  X >= 0 −> Z = sup ; Z = inf )
45         ;   Z0 is X // Y, Z = n(Z0)
46         ).
47

48 cis_slash(sup, _, sup).
49 cis_slash(inf, _, inf).
50 cis_slash(n(N), B, S) :− cis_slash_(B, N, S).
51

52 cis_slash_(sup, _, n(0)).
53 cis_slash_(inf, _, n(0)).
54 cis_slash_(n(B), A, n(S)) :− S is A // B.

Figure 4.8: Arithmetic operations with infinities (part 2/2)
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4.10 Domains

In this section, we explain how domains are internally represented in our
solver, and which predicates are available for reasoning about domains.

4.10.1 Domain representation

In our constraint solver over integers, a domain is a finite set of disjoint
integer intervals. Internally, domains are represented as interval trees. Each
node of an interval tree in our solver is one of:

• The atom empty, representing the empty set.

• A term from to(F, T), where F and T are domain boundaries, de-
noting all integers I such that F cis leq n(I) and n(I) cis leq T.
This definition works for finite as well as infinite boundaries. See Sec-
tion 4.9 for the representation of domain boundaries with compactified
arithmetic (n(N), inf and sup).

• A term split(N, Left, Right), where N is an integer, and Left

and Right are domains (again represented as interval trees) whose
elements are all less than and greater than N, respectively. The rep-
resented domain is the union of Left and Right. The integer N is a
hole, i.e., an integer that is not an element of the domain.

Fig. 4.9 shows a Prolog “type” definition to clarify our domain represen-
tation. The type definition can be used for internal consistency checks in the
constraint solver. It also serves as our first example of how the compactified
arithmetic operators are used.

Our choice to represent domains as interval trees remains to some ex-
tent arbitrary and motivated for example by trying to implement global
constraints like tuples in/2 efficiently. This global constraint repeatedly
checks whether a domain contains a specified integer, which is implemented
by domain contains/2 in our system (see Section 4.10.2). When an interval
tree is (sufficiently) balanced, domain contains/2 is performed in O(log(n))
time, where n denotes the number of intervals of the domain.

Lists of intervals, which are used for example in SICStus Prolog, are
another natural Prolog representation of domains. One advantage of lists is
that all required domain operations can be performed in O(n) time, where n
is again the number of intervals.
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1 is_domain(empty).
2 is_domain(from_to(From,To)) :−
3         is_boundary(From), is_boundary(To),
4         From cis_leq To.
5 is_domain(split(S, Left, Right)) :−
6         integer(S),
7         is_domain(Left), is_domain(Right),
8         all_less_than(Left, S),
9         all_greater_than(Right, S).
10

11 is_boundary(n(N)) :− integer(N).
12 is_boundary(inf).
13 is_boundary(sup).
14

15 all_less_than(empty, _).
16 all_less_than(from_to(From,To), S) :−
17         From cis_lt n(S), To cis_lt n(S).
18 all_less_than(split(S0,Left,Right), S) :−
19         S0 < S,
20         all_less_than(Left, S),
21         all_less_than(Right, S).
22

23 all_greater_than(empty, _).
24 all_greater_than(from_to(From,To), S) :−
25         From cis_gt n(S), To cis_gt n(S).
26 all_greater_than(split(S0,Left,Right), S) :−
27         S0 > S,
28         all_greater_than(Left, S),
29         all_greater_than(Right, S).

Figure 4.9: Type definition of our domain representation
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4.10.2 Domain properties

Fig. 4.10 shows several predicates that give us useful information about
domains: First of all, default domain/1 states the default domain for all
finite domain variables. It is not advisable to change the default domain to
a finite one, since that can lead to the loss of valid solutions without raising
an error. As the names imply, domain infimum/2 and domain supremum/2

relate a domain to its infimum and supremum, domain num elements/3

gives us the number of elements of a finite domain, and domain contains/2

is true iff the domain contains the given integer. Notice that the integer
must be wrapped in n/1 when it is used in a cis/2 expression.

We show these definitions as examples for working with our domain
representation. We do not show the Prolog definitions of all predicates that
we use to test domain properties in the following sections; the remaining
definitions are reasonably straight-forward, and interested readers can study
them in the latest source code of our library.

1 default_domain(from_to(inf,sup)).
2

3 domain_infimum(from_to(I, _), I).
4 domain_infimum(split(_, Left, _), I) :− domain_infimum(Left, I).
5

6 domain_supremum(from_to(_, S), S).
7 domain_supremum(split(_, _, Right), S) :− domain_supremum(Right, S).
8

9 domain_num_elements(empty, n(0)).
10 domain_num_elements(from_to(From,To), Num) :− Num cis To − From + n(1).
11 domain_num_elements(split(_, Left, Right), Num) :−
12         domain_num_elements(Left, NL),
13         domain_num_elements(Right, NR),
14         Num cis NL + NR.
15

16 domain_contains(from_to(From,To), I) :−
17         From cis_leq n(I), n(I) cis_leq To.
18 domain_contains(split(S, Left, Right), I) :−
19         (   I < S −> domain_contains(Left, I)
20         ;   I > S −> domain_contains(Right, I)
21         ).

Figure 4.10: Examples of domain properties

4.10.3 Relations between domains

In addition to the simple definitions of domain properties, there are of course
also predicates that define relations between two or more domains. They
are used for set-theoretic operations on domains like removing elements and
constructing unions and intersections. Again, these predicates essentially
need to consider the three possible cases (empty, from to/2, split/3) of an
interval node and manipulate it accordingly.

We now present the full source code of two domain operations. The first
example is one of the simplest domain operations: shifting a domain by an
integer offset, shown in Fig. 4.11. Notice that as in domain contains/2, the
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second argument of the predicate is a Prolog integer, and that it again must
be wrapped in n/1 when it is used in a cis/2 expression.

1 domain_shift(empty, _, empty).
2 domain_shift(from_to(From0,To0), O, from_to(From,To)) :−
3         From cis From0 + n(O), To cis To0 + n(O).
4 domain_shift(split(S0, Left0, Right0), O, split(S, Left, Right)) :−
5         S is S0 + O,
6         domain_shift(Left0, O, Left),
7         domain_shift(Right0, O, Right).

Figure 4.11: Shifting a domain by an integer offset

The second example, shown in Fig. 4.12, relates two domains to their in-
tersection. Notice that the intersection cannot be empty, since this would
mean that some variable has run out of domain elements. Moreover, empty
leaves are eliminated from the interval tree already when the intersection is
being constructed.

Note that an interval tree representation of a domain is not uniquely
determined. For example, the following terms represent the same domain:

split(0, from_to(n(-5),n(-3)), from_to(n(1),n(2)))

split(-2, from_to(n(-5),n(-3)), from_to(n(1),n(2)))

However, our implementation of domains intersection/3 preserves the
following important property, where ==/2 denotes Prolog term equivalence:

If T1 and T2 are interval trees in our representation, and T1 contains
all integers that are contained in T2, and domains intersection(T1, T2, I)
holds, then I == T1.

This property lets us use ==/2 to detect whether a domain has changed,
provided that we adopt the following convention:

When a domain D1 must be assigned to a variable X whose domain is cur-
rently D0, then we first call domains intersection(D0, D1, DN), where DN
is a fresh variable, and then assign the domain DN to X.

As we will see in the next section, propagators adhere to this convention.

Other relations between domains include for example domain expand/3

and domain contract/3, which are used to scale intervals by a constant mul-
tiple, domains union/3, domain negate/2 etc. We again refer interested
readers to the actual source code of our library to study these definitions.
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1 domains_intersection(D1, D2, Intersection) :−
2         domains_intersection_(D1, D2, Intersection),
3         Intersection \== empty.
4

5 domains_intersection_(empty, _, empty).
6 domains_intersection_(from_to(L0,U0), D2, Dom) :−
7         narrow(D2, L0, U0, Dom).
8 domains_intersection_(split(S,Left0,Right0), D2, Dom) :−
9         domains_intersection_(Left0, D2, Left1),
10         domains_intersection_(Right0, D2, Right1),
11         (   Left1 == empty −> Dom = Right1
12         ;   Right1 == empty −> Dom = Left1
13         ;   Dom = split(S, Left1, Right1)
14         ).
15

16 narrow(empty, _, _, empty).
17 narrow(from_to(L0,U0), From0, To0, Dom) :−
18         From1 cis max(From0,L0), To1 cis min(To0,U0),
19         (   From1 cis_gt To1 −> Dom = empty
20         ;   Dom = from_to(From1,To1)
21         ).
22 narrow(split(S, Left0, Right0), From0, To0, Dom) :−
23         (   To0 cis_lt n(S) −> narrow(Left0, From0, To0, Dom)
24         ;   From0 cis_gt n(S) −> narrow(Right0, From0, To0, Dom)
25         ;   narrow(Left0, From0, To0, Left1),
26             narrow(Right0, From0, To0, Right1),
27             (   Left1 == empty −> Dom = Right1
28             ;   Right1 == empty −> Dom = Left1
29             ;   Dom = split(S, Left1, Right1)
30             )
31         ).

Figure 4.12: Intersection of two domains
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4.11 Arithmetic constraints

We now give a more formal definition of arithmetic constraints that are
implemented in our system. An arithmetic expression is one of the Prolog
terms described in Table 4.2. The definition is inductive: expr1 and expr2
again denote arithmetic expressions.

expression meaning

logical variable unknown integer (see Section 4.3)
?(Var) Var is a finite domain variable or integer
integer given number
-expr unary minus

expr1 + expr2 addition
expr1 * expr2 multiplication
expr1 - expr2 subtraction
expr1 ^ expr2 exponentiation

min(expr1,expr2) minimum
max(expr1,expr2) maximum
expr1 mod expr2 modulo induced by floored division
expr1 rem expr2 modulo induced by truncated division

abs(expr1) absolute value
expr1 / expr2 truncated integer division

Table 4.2: Arithmetic expressions

Arithmetic constraints are relations between arithmetic expressions. Ta-
ble 4.3 lists arithmetic constraints that are available in all systems that we
mention in this thesis.

constraint meaning

expr1 #>= expr2 expr1 is greater than or equal to expr2
expr1 #=< expr2 expr1 is less than or equal to expr2
expr1 #= expr2 expr1 equals expr2
expr1 #\= expr2 expr1 is not equal to expr2
expr1 #> expr2 expr1 is strictly greater than expr2
expr1 #< expr2 expr1 is strictly less than expr2

Table 4.3: Arithmetic constraints

In our system, we generally aim for bounds consistency in the implemen-
tation of all arithmetic constraints, at least for the most common use cases.
For example, addition and multiplication are always bounds consistent, and
division is bounds consistent (at least) if the divisor is instantiated.
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4.11.1 Parsing arithmetic expressions

Our system provides infix operators so that arithmetic expressions and con-
straints can be naturally written and processed as Prolog terms. When
parsing a compound arithmetic expression, we introduce auxiliary variables
for subexpressions. For example, the arithmetic expressions in:

X? #= Y? * Z? + D?

are decomposed as follows, where T is a fresh variable:

X? #= T? + D?,

T? #= Y? * Z?

This decomposition allows us to limit the implementation of arithmetic
propagators to a few elementary cases. Hence, each arithmetic expression
shown in Table 4.2 and each arithmetic constraint shown in Table 4.3 corre-
sponds to a propagator that only needs to consider finite domain variables
and integers as its arguments, but no compound expressions. The names of
these propagators are built by prepending a p to the arithmetic operation,
for example: pplus, ptimes, pmin etc.

We have devised a DSL for describing this decomposition of arithmetic
expressions into elementary cases. The language is a list of decomposition
rules of the form M => As, where M is a matcher and As is a list of actions
that are performed when Mmatches the expression that is being decomposed.
At compilation time, Prolog clauses are generated from this DSL.

More formally, a matcher M is one of the terms m(P), g(G) or ?(X). P is
a pattern that involves an arithmetic expression and its arguments, and G is
a Prolog goal. A rule is applicable for a given expression E if:

• the matcher is m(P) and E is syntactically subsumed by P. Each vari-
able in P stands for the decomposition of the corresponding subexpres-
sion of E according to the same decomposition rules. This is where
the rules are applied recursively to each subexpression.

• the matcher is g(G) and G succeeds

• the matcher is ?(X) and E has the form ?(X). Note that the subexpres-
sion of E that corresponds to X is not decomposed but taken exactly
as it appears. This is because, as explained in Section 4.3, ?/1 is used
to indicate a finite domain variable or integer, and a type error must
be raised for other terms.

In a decomposition rule M => As, each element in the list As is one of
the two actions described in Table 4.4. When a rule is applicable, its actions
are performed in the order they occur in As, and no further rules are tried.
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g(G) Call the Prolog goal G.
p(P) Post a constraint P. This is a shorthand notation for a spe-

cific sequence of goals that attach a constraint to all involved
variables and trigger it.

Table 4.4: Valid actions in a list As of a decomposition rule M => As

Fig. 4.13 shows the complete declarative description of how arithmetic
expressions are decomposed, using our DSL. Given expression E, the result
is the finite domain variable or integer R, using the decomposition rules.

1 :− op(800, xfx, =>).
2

3 parse_clpfd(E, R,
4      [g(cyclic_term(E)) => [g(domain_error(clpfd_expression, E))],
5       g(var(E))         => [g(non_monotonic(E)),
6                             g(constrain_to_integer(E)), g(E = R)],
7       ?(E)              => [g(must_be_fd_integer(E)), g(R = E)],
8       g(integer(E))     => [g(R = E)],
9       m(−A)             => [p(ptimes(−1,A,R))],
10       m(A+B)            => [p(pplus(A, B, R))],
11       g(power_var_num(E, V, N)) => [p(pexp(V, N, R))],
12       m(A*B)            => [p(ptimes(A, B, R))],
13       m(A−B)            => [p(pplus(R,B,A))],
14       m(A^B)            => [p(pexp(A, B, R))],
15       m(min(A,B))       => [g(A #>= ?(R)), g(B #>= R), p(pmin(A,B,R))],
16       m(max(A,B))       => [g(A #=< ?(R)), g(B #=< R), p(pmax(A,B,R))],
17       m(A mod B)        => [g(B #\= 0), p(pmod(A, B, R))],
18       m(A rem B)        => [g(B #\= 0), p(prem(A, B, R))],
19       m(abs(A))         => [g(?(R) #>= 0), p(pabs(A, R))],
20       m(A/B)            => [g(B #\= 0), p(pdiv(A, B, R))],
21       g(true)           => [g(domain_error(clpfd_expression, E))]
22      ]).

Figure 4.13: Parsing arithmetic expressions

As can be seen in this code, a domain error is raised when E is a cyclic
term. The predicate non monotonic(X) raises an instantiation error if X

is an unconstrained variable and the flag clpfd monotonic is set to true

(see Section 4.3). constrain to integer/1 does what its name implies:
It constrains a variable to integers. must be fd integer(X) succeeds if its
argument is a variable or an integer, and otherwise raises an exception.
power var num(E, V, N) is true when E can be written as V^N. When none
of the previous rules matches, a domain error is used to indicate that the
given expression is not an arithmetic expression according to Table 4.2.

Parsing arithmetic expressions is comparatively straight-forward, and
one may wonder whether implementing a DSL is worth the effort when using
plain Prolog is almost equally convenient. Indeed we initially used Prolog
for this task. However, only after using our DSL did we for example notice
that subtraction can be expressed as addition (line 13). We found a different
CLP(FD) system that needlessly uses one addition and one multiplication.
In our experience, such improvements are easier to notice with our DSL.
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4.11.2 Selecting propagators for constraints

Some propagators are already chosen when arithmetic expressions are de-
composed as explained in the previous section. It now remains to choose
suitable propagators for arithmetic constraints. First, notice that the arith-
metic constraints shown in Table 4.3 can be reduced at least to the following
elementary cases: #>=, #= and #\=. The other arithmetic constraints can be
expressed with them. For example, the constraint

X? #< Y?

can be written as:

Y? #>= T?,

X? + 1 #= T?

One could even further reduce the set of supported elementary con-
straints. However, this is not advisable for performance reasons: Introduc-
ing auxiliary variables and constraints can lead to intermediate propagation
steps that may not even be necessary. For example, consider the constraint:

X? + Y? #\= Z?

According to the decomposition rules shown in the previous section, we
can decompose the arithmetic expression on the left-hand side and transform
this constraint into:

X? + Y? #= T?,

T? #\= Z?

The drawback of this decomposition is that significant information has
been lost: In the original disequality constraint (#\=), it is clear that the
propagator can only perform any filtering and therefore only needs to be
invoked when either X + Y or Z are concrete integers. In the shown de-
composition, X and Y are involved in an equality constraint that performs
constraint propagation for addition every time a domain boundary changes,
even if the variables are not yet fully instantiated.

We therefore implement more propagators than are strictly needed, giv-
ing special priority to patterns that frequently occur in practical applica-
tions. It is then left to detect when such specialized propagators can actu-
ally be applied to a given constraint expression. This is the task of selecting
suitable propagators for specified constraints.

Manually selecting fitting propagators for given constraints is quite error-
prone, and one has to be careful not to accidentally unify variables that occur
in expressions with patterns one looks for. To simplify this task and make it
less error-prone, we devised a DSL in the form of a simple committed-choice
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language that consists of matching rules. As in the previous section, each
rule is again a term of form M => As, where M is a matcher and As is a list
of actions that are performed when M matches the constraint that is being
posted.

The syntax and meaning of terms are now slightly different: A matcher M

is a term of the form m c(P, G). P is a pattern that involves an arithmetic
constraint and its arguments, and G is a Prolog goal. The basic building-
blocks of a pattern are explained in Table 4.5. These building-blocks can be
nested inside arbitrary symbolic expressions. A rule is applicable for a given
constraint if the constraint is subsumed by P and its building-blocks, and
additionally G succeeds. A matcher m c(P, true), can be more compactly
written as m(P).

any(X) Matches any term, unifying X with it.
var(X) Matches a variable or integer, unifying X with it.

integer(X) Matches an integer, unifying X with it.

Table 4.5: Basic building-blocks of a pattern

In a rule M => As, each element in the list As is one of the actions
described in Table 4.6. When a rule is applicable, its actions are performed
in the order they occur in As, and no further rules are tried.

g(G) Call the Prolog goal G.
d(X, Y) Decompose the arithmetic expression X according to the de-

composition rules of the previous section. The result is Y.
p(P) Post a constraint propagator P.

r(X, Y) Rematch the rule’s constraint, using arguments X and Y.
Equivalent to g(call(F,X,Y)), where F is the functor of
the rule’s pattern.

Table 4.6: Valid actions in a list As of a matching rule M => As

Figure 4.14 shows some of the matching rules that we use in our con-
straint system. We omit several actions (indicated by [...]), since they
are not particularly instructive. It is more interesting to see which patterns
of constraints are actually handled specially in our system. Yet, the figure
is only an excerpt. For example, in our actual system, nested additions are
also detected via our DSL, and handled by a dedicated propagator which
includes specialized reasoning for linear equations. symmetric/1 is used to
state which of the constraints are symmetric. For these constraints, the
patterns are also applied symmetrically.

At compilation time, actual Prolog code is again generated from this DSL.
To detect whether a pattern can be applied, the generated clauses frequently
use a sequence like nonvar(T), T = ... to avoid accidentally unifying a
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variable with a term we want to detect. Such mistakes are easy to make in
practice when writing matching code manually, and are then often made in
only some of several clauses. By using a DSL to generate matching code
mechanically in all cases, such errors are much easier to detect, because
they likely affect several or even all clauses. Once corrected, all of them are
correct at once.

Such a declarative description has also other advantages: First, it allows
automated subsumption checks to detect whether specialized propagators
are accidentally overshadowed by other rules. This is also a mistake that we
found easy to make and hard to detect when manually selecting propaga-
tors. Second, when DSLs similar to the one we propose here are also used
in other constraint systems, it is easier to compare supported specialized
propagators, and to support common ones more uniformly across systems.
Third, improvements to the expansion phase of the DSL benefits potentially
many propagators at once.

We found that the languages features we introduced above for matchers
and actions allow us to select a large variety of intended specialized prop-
agators in practice, and believe that other constraint systems may benefit
from this or similar syntax as well. To the best of our knowledge, our system
is the first CLP(FD) solver that uses such a DSL to select propagators for
constraints.

1 symmetric(#=).
2 symmetric(#\=).
3

4 matches([
5          m(any(X) − any(Y) #>= integer(C))     => [...],
6          m(integer(X) #>= any(Z) + integer(A)) => [...],
7          m(abs(any(X)−any(Y)) #>= integer(I))  => [...],
8          m(abs(any(X)) #>= integer(I))         => [...],
9          m(integer(I) #>= abs(any(X)))         => [...],
10          m(any(X) #>= any(Y))                  =>
11              [d(X, RX), d(Y, RY), g(geq(RX, RY))],
12

13          m(var(X) #= var(Y))        => [...],
14          m(var(X) #= var(Y)+var(Z)) => [p(pplus(Y,Z,X))],
15          m(var(X) #= var(Y)−var(Z)) => [p(pplus(X,Z,Y))],
16          m(var(X) #= var(Y)*var(Z)) => [p(ptimes(Y,Z,X))],
17          m(var(X) #= −var(Z))       => [p(ptimes(−1, Z, X))],
18          m(var(X) #= any(Y))        => [d(Y,X)],
19          m(any(X) #= any(Y))        => [d(X, RX), d(Y, RX)],
20

21          m(var(X) #\= integer(Y))             => [...],
22          m(var(X) #\= var(Y))                 => [...],
23          m(var(X) #\= var(Y) + var(Z))        => [...],
24          m(var(X) #\= var(Y) − var(Z))        => [...],
25          m(var(X) #\= var(Y)*var(Z))          => [...],
26          m(integer(X) #\= abs(any(Y)−any(Z))) => [...],
27          m(any(X) #\= any(Y) + any(Z))        => [...],
28          m(any(X) #\= any(Y) − any(Z))        => [...],
29          m(any(X) #\= any(Y))                 =>
30              [d(X, RX), d(Y, RY), g(neq(RX, RY))]
31         ]).

Figure 4.14: Selecting propagators for arithmetic constraints (excerpt)
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4.11.3 Limitations of indexicals

It is sometimes desirable to dynamically take the effects of variable aliasing
into account in propagators. However, this cannot be easily expressed with
indexicals. As a consequence, we have for example in GNU Prolog:

| ?- X + X #= 4.

X = 2

yes

which also works when different but aliased variables are used:

| ?- X = Y, X + Y #= 4.

X = 2

Y = 2

yes

When we exchange the goals, we obtain a different result:

| ?- X + Y #= 4, X = Y.

X = _#22(0..4)

Y = _#41(0..4)

yes

In SICStus Prolog, we obtain:

| ?- X + X #= 4.

X = 2 ?

However, even when two different variables are aliased before the con-
straint is posted, we obtain a different result:

| ?- X = Y, X + Y #= 4.

Y = X,

X in inf..sup ?

In order to avoid such discrepancies in our system’s answers, we have
chosen not to use indexicals in our implementation. Instead, we implement
all propagators in plain Prolog, which gives us the necessary constructs to
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handle variable aliasing and similar special cases that cannot be expressed
with indexicals.

Notice also from Fig. 3.1 that indexicals become increasingly more com-
plicated for nonlinear constraints like xy eq z. Moreover, in the case of
GNU Prolog, reasoning only needs to be applied to non-negative integers.
As we will see in the definition of multiplication, the boundary expressions
are much more complicated when negative integers can arise as well. The
corresponding indexical will also increase in complexity.

4.11.4 Important internal predicates

In the following sections, some predicates are used which are internally de-
fined in our solver. Instead of providing the Prolog specification of these
predicates, we describe them informally in Table 4.7. The implementation
of these predicates is reasonably straight-forward, and interested readers can
study their definitions in the actual source code of our system.

goal meaning

do queue As mentioned in Section 4.4, do queue

triggers all queued propagators, until fix-
point. This predicate is typically not in-
voked directly in propagators. It is called
for example in attr unify hook/2, an in-
ternal predicate that is called after unify-
ing attributed variables.

fd get(X, XD, XPs) Equivalent to fd get(X, , ,XD,XPs).
fd get(X,XL,XU,XD,XPs) True if X is a finite domain variable with

domain XD, lower boundary XL, upper
boundary XU, and Ps are the propagators
that need to be invoked when the domain
of X changes. Fails if X is an integer.

fd put(X, XD, Ps) Assigns the domain XD and propagators Ps
to the finite domain variable X. Raises an
error when X is an integer. When XD dif-
fers from the previous domain of X and
constraint propagation is admissible (see
Section 4.6), it adds the propagators that
need to be invoked to the propagation
queues (see Section 4.4). When XD con-
sists of a single element I, it posts X = I.

kill(State) Prevents further invocations of the prop-
agator whose state is State.

Table 4.7: Important internal predicates

64



4.11 Arithmetic constraints

4.11.5 Addition

We now present the complete source code of the propagator that implements
addition of arithmetic expressions in our system. Other arithmetic con-
straints are implemented analogously. Addition is a simple and frequently
used constraint that has a comparatively straight-forward implementation
because propagation proceeds in similar ways for each of the arguments.

Like all arithmetic propagators, addition only needs to handle the case
of variables or integers as its arguments, since nested expressions are decom-
posed to elementary cases by applying our DSL. Moreover, when arithmetic
propagators are triggered, these variables are already constrained to inte-
gers. Therefore, the ?/1 syntax need not be used when these variables occur
in constraints that are posted within arithmetic propagators.

As explained in Section 4.4, the propagator for addition is implemented
as a clause of run propagator/2. Since addition is a relation between three
finite domain expressions, it is represented by a propagator with three ar-
guments: pplus(X, Y, Z), which means that the sum of X and Y is Z. This
term is inserted into the list of propagators that each of these variables is
involved in. pplus/3 is a propagator that implements bounds consistency
and is only invoked when a domain boundary of any of the involved variables
changes. State is a variable that is shared among all three arguments, to
avoid redundant invocations of the same propagator, and also to deactivate
the propagator for all variables at once when it is no longer needed.

Fig. 4.15 shows the complete source code of the propagator that imple-
ments addition in our system. We have opted for a monolithic implemen-
tation that performs filtering for all three variables in the same clause. It
is possible to split the filtering logic into several distinct cases that may
depend for example on whether the lower or upper domain boundaries of
any variable have changed. However, this would require us to manage more
propagators and to consider all possible interactions between them to en-
sure that propagation still works as intended in all cases. We have therefore
chosen not to do this. It would be interesting to derive these distinct cases
automatically from a more declarative description.

The code applies filtering as far as it can, depending on which of the
arguments are already instantiated. For example, if nonvar(X) succeeds
because X is instantiated, and X is 0, then the propagator is deactivated and
Y = Z is posted. If both X and Y are instantiated, the propagator is deacti-
vated and Z is unified with the arithmetic result of X+Y. The propagator is
deactivated and further filtering is delegated to multiplication when X and Y

are aliased.
When fd put/3 is called, further constraints may be triggered, and we

have to be careful not to accidentally invoke fd put/3 when its first argu-
ment is instantiated. We will say more about these properties in Section 5.6.
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4.11 Arithmetic constraints

1 run_propagator(pplus(X,Y,Z), MState) :−
2         (   nonvar(X) −>
3             (   X =:= 0 −> kill(MState), Y = Z
4             ;   Y == Z −> kill(MState), X =:= 0
5             ;   nonvar(Y) −> kill(MState), Z is X + Y
6             ;   nonvar(Z) −> kill(MState), Y is Z − X
7             ;   fd_get(Z, ZD, ZPs),
8                 fd_get(Y, YD, _),
9                 domain_shift(YD, X, Shifted_YD),
10                 domains_intersection(ZD, Shifted_YD, ZD1),
11                 fd_put(Z, ZD1, ZPs),
12                 (   fd_get(Y, YD1, YPs) −>
13                     O is −X,
14                     domain_shift(ZD1, O, YD2),
15                     domains_intersection(YD1, YD2, YD3),
16                     fd_put(Y, YD3, YPs)
17                 ;   true
18                 )
19             )
20         ;   nonvar(Y) −> run_propagator(pplus(Y,X,Z), MState)
21         ;   nonvar(Z) −>
22             (   X == Y −> kill(MState), even(Z), X is Z // 2
23             ;   fd_get(X, XD, _),
24                 fd_get(Y, YD, YPs),
25                 domain_negate(XD, XDN),
26                 domain_shift(XDN, Z, YD1),
27                 domains_intersection(YD, YD1, YD2),
28                 fd_put(Y, YD2, YPs),
29                 (   fd_get(X, XD1, XPs) −>
30                     domain_negate(YD2, YD2N),
31                     domain_shift(YD2N, Z, XD2),
32                     domains_intersection(XD1, XD2, XD3),
33                     fd_put(X, XD3, XPs)
34                 ;   true
35                 )
36             )
37         ;   (   X == Y −> kill(MState), 2*X #= Z
38             ;   X == Z −> kill(MState), Y = 0
39             ;   Y == Z −> kill(MState), X = 0
40             ;   fd_get(X, XD, XL, XU, XPs),
41                 fd_get(Y, _, YL, YU, _),
42                 fd_get(Z, _, ZL, ZU, _),
43                 NXL cis max(XL, ZL−YU),
44                 NXU cis min(XU, ZU−YL),
45                 update_bounds(X, XD, XPs, XL, XU, NXL, NXU),
46                 (   fd_get(Y, YD2, YL2, YU2, YPs2) −>
47                     NYL cis max(YL2, ZL−NXU),
48                     NYU cis min(YU2, ZU−NXL),
49                     update_bounds(Y, YD2, YPs2, YL2, YU2, NYL, NYU)
50                 ;   NYL = n(Y), NYU = n(Y)
51                 ),
52                 (   fd_get(Z, ZD2, ZL2, ZU2, ZPs2) −>
53                     NZL cis max(ZL2,NXL+NYL),
54                     NZU cis min(ZU2,NXU+NYU),
55                     update_bounds(Z, ZD2, ZPs2, ZL2, ZU2, NZL, NZU)
56                 ;   true
57                 )
58             )
59         ).
60

61 update_bounds(X, XD, XPs, XL, XU, NXL, NXU) :−
62         (   NXL == XL, NXU == XU −> true
63         ;   domains_intersection(XD, from_to(NXL, NXU), NXD),
64             fd_put(X, NXD, XPs)
65         ).

Figure 4.15: Propagator for addition, where X + Y #= Z
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4.11 Arithmetic constraints

4.11.6 Multiplication

As the second example for an arithmetic propagator, we present the entire
source code formultiplication in our system. The source is similar to addition
in that it consists of a case distinction that applies filtering for all variables
in a single clause, shown in Fig. 4.16. However, the code is significantly more
involved and requires several auxiliary predicates which we also present.

Ensuring bounds consistency for multiplication requires us to consider
more cases than one may initially expect. While computing the domain
boundaries of the product of a multiplication is very simple (see Fig. 4.17),
it is much harder to correctly adjust the boundaries of each of the two
factors.

Several rules for propagating multiplication are given in [AZ07]. As is
well-noted in the paper, these rules fail to enforce bounds consistency for
the constraint x · y = z when D(x) and D(y) are both of the form [l..h]
with l < 0 and h > 0 while z can assume either only positive numbers, or
only negative numbers. The solution that is proposed in the paper, and
which we also employ in our propagator, is to temporarily split the domains
in a positive interval and a negative interval. Bounds consistency is then
achieved by applying the rules to the resulting subproblems, and updating
the domain of each variable with the union of the domains that are com-
puted in these subproblems. This decomposition is performed in the pred-
icate min max factor/8, shown in Fig. 4.18. For the constraint x · y = z,
min max factor/8 is given, in the following order: l(z), u(z), l(x), u(x),
l(y), u(y) and computes the new values of l(y) and u(y) in its last two argu-
ments, where l and u denote the lower and upper boundary of its argument’s
domain, respectively.

An example where the decomposition into subproblems is performed
internally:

?- X in -2..1, Y in -2..1, X*Y #= 2.

X in -2.. -1,

X? * Y? #= 2,

Y in -2.. -1.

For all other cases, the decomposition into subproblems is not used.
Instead, the predicates min factor/5 and max factor/5, both shown in
Fig. 4.19, are used to compute the new l(y) and u(y) in a comparatively
straight-forward way. Note though that these predicates still contain quite
elaborate and error-prone conditions that distinguish the different cases.
In [SS05], similar rules are defined that do not require a decomposition into
subproblems. However, these rules cannot be used directly in our solver
because they may lead to float overflows when dividing large arbitrary pre-
cision integers. We therefore show our own implementation, which also
ensures bounds consistency, in directly executable form in these figures.
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4.11 Arithmetic constraints

1 run_propagator(ptimes(X,Y,Z), MState) :−
2     (   nonvar(X) −>
3         (   nonvar(Y) −> kill(MState), Z is X * Y
4         ;   X =:= 0 −> kill(MState), Z = 0
5         ;   X =:= 1 −> kill(MState), Z = Y
6         ;   nonvar(Z) −> kill(MState), 0 =:= Z mod X, Y is Z // X
7         ;   (   Y == Z −> kill(MState), Y = 0
8             ;   fd_get(Y, YD, _),
9                 fd_get(Z, ZD, ZPs),
10                 domain_expand(YD, X, Scaled_YD),
11                 domains_intersection(ZD, Scaled_YD, ZD1),
12                 fd_put(Z, ZD1, ZPs),
13                 (   fd_get(Y, YDom2, YPs2) −>
14                     domain_contract(ZD1, X, Contract),
15                     domains_intersection(YDom2, Contract, NYDom),
16                     fd_put(Y, NYDom, YPs2)
17                 ;   kill(MState), Z is X * Y
18                 )
19             )
20         )
21     ;   nonvar(Y) −> run_propagator(ptimes(Y,X,Z), MState)
22     ;   nonvar(Z) −>
23         (   X == Y −>
24             kill(MState),
25             integer_kth_root(Z, 2, R),
26             NR is −R,
27             X in NR \/ R
28         ;   fd_get(X, XD, XL, XU, XPs),
29             fd_get(Y, _, YL, YU, _),
30             min_max_factor(n(Z), n(Z), YL, YU, XL, XU, NXL, NXU),
31             update_bounds(X, XD, XPs, XL, XU, NXL, NXU),
32             (   fd_get(Y, YD2, YL2, YU2, YPs2) −>
33                 min_max_factor(n(Z),n(Z),NXL,NXU,YL2,YU2,NYL,NYU),
34                 update_bounds(Y, YD2, YPs2, YL2, YU2, NYL, NYU)
35             ;   (   Y =\= 0 −>
36                     0 =:= Z mod Y, kill(MState), X is Z // Y
37                 ;   kill(MState), Z = 0
38                 )
39             )
40         ),
41         (   Z =\= 0 −> neq_num(X, 0), neq_num(Y, 0)
42         ;   true
43         )
44     ;   (   X == Y −> kill(MState), X^2 #= Z
45         ;   fd_get(X, XD, XL, XU, XPs),
46             fd_get(Y, _, YL, YU, _),
47             fd_get(Z, _, ZL, ZU, _),
48             min_max_factor(ZL, ZU, YL, YU, XL, XU, NXL, NXU),
49             update_bounds(X, XD, XPs, XL, XU, NXL, NXU),
50             (   fd_get(Y, YD2, YL2, YU2, YPs2) −>
51                 min_max_factor(ZL, ZU, NXL, NXU, YL2, YU2, NYL, NYU),
52                 update_bounds(Y, YD2, YPs2, YL2, YU2, NYL, NYU)
53             ;   NYL = n(Y), NYU = n(Y)
54             ),
55             (   fd_get(Z, ZD2, ZL2, ZU2, ZPs2) −>
56                 min_product(NXL, NXU, NYL, NYU, NZL),
57                 max_product(NXL, NXU, NYL, NYU, NZU),
58                 (   NZL cis_leq ZL2, NZU cis_geq ZU2 −> ZD3 = ZD2
59                 ;   domains_intersection(ZD2, from_to(NZL,NZU), ZD3),
60                     fd_put(Z, ZD3, ZPs2)
61                 ),
62                 (   domain_contains(ZD3, 0) −>  true
63                 ;   neq_num(X, 0), neq_num(Y, 0)
64                 )
65             ;   true
66             )
67         )
68     ).

Figure 4.16: Propagator for multiplication, where X*Y #= Z
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4.11 Arithmetic constraints

1 min_product(L1, U1, L2, U2, Min) :−
2         Min cis min(min(L1*L2,L1*U2),min(U1*L2,U1*U2)).
3

4 max_product(L1, U1, L2, U2, Max) :−
5         Max cis max(max(L1*L2,L1*U2),max(U1*L2,U1*U2)).

Figure 4.17: Domain boundary calculations for a multiplication’s product

1 min_max_factor(L1, U1, L2, U2, L3, U3, Min, Max) :−
2         (   U1 cis_lt n(0),
3             L2 cis_lt n(0), U2 cis_gt n(0),
4             L3 cis_lt n(0), U3 cis_gt n(0) −>
5             maplist(in_(L1,U1), [Z1,Z2]),
6             in_(L2, n(−1), X1), in_(n(1), U3, Y1),
7             (   X1*Y1 #= Z1 −>
8                 (   fd_get(Y1, _, Inf1, Sup1, _) −> true
9                 ;   Inf1 = n(Y1), Sup1 = n(Y1)
10                 )
11             ;   Inf1 = inf, Sup1 = n(−1)
12             ),
13             in_(n(1), U2, X2), in_(L3, n(−1), Y2),
14             (   X2*Y2 #= Z2 −>
15                 (   fd_get(Y2, _, Inf2, Sup2, _) −> true
16                 ;   Inf2 = n(Y2), Sup2 = n(Y2)
17                 )
18             ;   Inf2 = n(1), Sup2 = sup
19             ),
20             Min cis max(min(Inf1,Inf2), L3),
21             Max cis min(max(Sup1,Sup2), U3)
22         ;   L1 cis_gt n(0),
23             L2 cis_lt n(0), U2 cis_gt n(0),
24             L3 cis_lt n(0), U3 cis_gt n(0) −>
25             maplist(in_(L1,U1), [Z1,Z2]),
26             in_(L2, n(−1), X1), in_(L3, n(−1), Y1),
27             (   X1*Y1 #= Z1 −>
28                 (   fd_get(Y1, _, Inf1, Sup1, _) −> true
29                 ;   Inf1 = n(Y1), Sup1 = n(Y1)
30                 )
31             ;   Inf1 = n(1), Sup1 = sup
32             ),
33             in_(n(1), U2, X2), in_(n(1), U3, Y2),
34             (   X2*Y2 #= Z2 −>
35                 (   fd_get(Y2, _, Inf2, Sup2, _) −> true
36                 ;   Inf2 = n(Y2), Sup2 = n(Y2)
37                 )
38             ;   Inf2 = inf, Sup2 = n(−1)
39             ),
40             Min cis max(min(Inf1,Inf2), L3),
41             Max cis min(max(Sup1,Sup2), U3)
42         ;   min_factor(L1, U1, L2, U2, Min0),
43             Min cis max(L3,Min0),
44             max_factor(L1, U1, L2, U2, Max0),
45             Max cis min(U3,Max0)
46         ).
47

48 in_(L, U, X) :−
49         fd_get(X, XD, XPs),
50         domains_intersection(XD, from_to(L,U), NXD),
51         fd_put(X, NXD, XPs).

Figure 4.18: Decomposing a multiplication into subproblems when necessary
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4.11 Arithmetic constraints

1 min_factor(L1, U1, L2, U2, Min) :−
2         (   L1 cis_geq n(0), L2 cis_gt n(0), finite(U2) −>
3             Min cis div(L1+U2−n(1),U2)
4         ;   L1 cis_gt n(0), U2 cis_lt n(0) −> Min cis div(U1,U2)
5         ;   L1 cis_gt n(0), L2 cis_geq n(0) −> Min = n(1)
6         ;   L1 cis_gt n(0) −> Min cis −U1
7         ;   U1 cis_lt n(0), U2 cis_leq n(0) −>
8             (   finite(L2) −> Min cis div(U1+L2+n(1),L2)
9             ;   Min = n(1)
10             )
11         ;   U1 cis_lt n(0), L2 cis_geq n(0) −> Min cis div(L1,L2)
12         ;   U1 cis_lt n(0) −> Min = L1
13         ;   L2 cis_leq n(0), U2 cis_geq n(0) −> Min = inf
14         ;   Min cis min(min(div(L1,L2),div(L1,U2)),
15                         min(div(U1,L2),div(U1,U2)))
16         ).
17

18 max_factor(L1, U1, L2, U2, Max) :−
19         (   L1 cis_geq n(0), L2 cis_geq n(0) −> Max cis div(U1,L2)
20         ;   L1 cis_gt n(0), U2 cis_leq n(0) −>
21             (   finite(L2) −> Max cis div(L1−L2−n(1),L2)
22             ;   Max = n(−1)
23             )
24         ;   L1 cis_gt n(0) −> Max = U1
25         ;   U1 cis_lt n(0), U2 cis_lt n(0) −> Max cis div(L1,U2)
26         ;   U1 cis_lt n(0), L2 cis_geq n(0) −>
27             (   finite(U2) −> Max cis div(U1−U2+n(1),U2)
28             ;   Max = n(−1)
29             )
30         ;   U1 cis_lt n(0) −> Max cis −L1
31         ;   L2 cis_leq n(0), U2 cis_geq n(0) −> Max = sup
32         ;   Max cis max(max(div(L1,L2),div(L1,U2)),
33                         max(div(U1,L2),div(U1,U2)))
34         ).
35

36 finite(n(_)).

Figure 4.19: Domain boundary calculations for factors of a multiplication
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4.12 Reification

4.12 Reification

All arithmetic constraints that are shown in Table 4.3, as well as the con-
straint in/2, can be reified, which means reflecting their truth values into
Boolean values represented by the integers 0 and 1 denoting false and true,
respectively. If P and Q denote reifiable constraints or Boolean variables,
then they can be subjected to the constraints shown in Table 4.8, which are
themselves also reifiable.

constraint meaning

#\ P true iff P is false
P #∨ Q true iff either P or Q
P #∧ Q true iff both P and Q
P #==> Q true iff P implies Q
P #<== Q true iff Q implies P
P #<==> Q true iff P and Q are equivalent

Table 4.8: Constraint reification

When implementing constraint reification, it is tempting to proceed as
follows: For concreteness, consider reified equality (#=/2) of two arithmetic
expressions E1 and E2. We could introduce two finite domain variables, say
T1 and T2, and post the constraints T1 #= E1 and T2 #= E2, thus using
the constraint solver itself to decompose the (possibly compound) expres-
sions E1 and E2, and reducing reified equality of two expressions to equality
of two finite domain variables (or integers), which is easier to implement.
Unfortunately, this strategy yields wrong results in general. Consider for
example the constraint:

(X? / 0 #= Y? / 0) #<==> B?

It is clear that the relation X? / 0 #= Y? / 0 cannot hold, since a di-
visor can never be 0. A valid, declaratively equivalent answer to the above
constraint is thus for example (note that X and Y must be constrained to
integers for the relation to hold):

B = 0, X in inf..sup, Y in inf..sup

However, if we decompose the equality X? / 0 #= Y? / 0 into two aux-
iliary constraints T1 #= X? / 0 and T2 #= Y? / 0 and post them, then
(with strong enough propagation of division) both auxiliary constraints fail,
and thus the whole query incorrectly fails. While devising a DSL for reifica-
tion, we found one commercial Prolog system and one freely available system
that indeed incorrectly failed in this case. After we reported the issue, the
problem was immediately fixed.
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4.12 Reification

To reflect the intended relational semantics, it is thus necessary to im-
plement definedness correctly when reifying constraints. See also [FS09],
where our constraint system, in contrast to others that were tested, cor-
rectly handles all reification test cases, which we attribute in part to the
DSL presented in this section. Once any subexpression of a relation be-
comes undefined, the relation cannot hold and its associated truth value
must be 0. Undefinedness can occur when Y = 0 in the expressions X/Y ,
X mod Y , and X rem Y . Parsing an arithmetic expression that occurs as
an argument of a constraint that is being reified is thus at least a ternary
relation, involving the expression itself, its arithmetic result, and its Boolean
definedness.

There is a fourth desirable component in addition to those just men-
tioned: It is useful to keep track of auxiliary variables that are introduced
when decomposing subexpressions of a constraint that is being reified. The
reason for this is that the truth value of a reified constraint may turn out to
be irrelevant, for instance the implication 0 #==> C holds for both possible
truth values of the constraint C, thus auxiliary variables that were intro-
duced to hold the results of subexpressions while parsing C can be elimi-
nated. However, we need to be careful: A constraint propagator may alias
user-specified variables with auxiliary variables. For example, in abs(X?)

#= T?, X #>= 0, a constraint system may deduce X = T. Thus, if T was pre-
viously introduced as an auxiliary variable, and X was user-specified, then X

must still retain its status as a constrained variable.
These considerations motivate the following DSL for parsing arithmetic

expressions in reified constraints, which we believe can be useful in other con-
straint systems as well: A reification rule is a term M => As. A matcher M

has the same syntax and semantics as a matcher in decomposition rules (see
Section 4.11.1). The list As consists of actions that are described in Ta-
ble 4.9. The predicate parse reified/4, shown in Figure 4.20, contains
our full declarative specification for parsing arithmetic expressions in rei-
fied constraints, relating an arithmetic expression E to its result R, Boolean
definedness D, and auxiliary variables according to the given rules.

The rules are applied in the order specified, committing to the first rule
whose head matches. This specification is translated to Prolog code at
compile-time and used in other predicates.

The deletion of auxiliary variables and constraints when they are no
longer necessary is useful when introducing constraint programming to be-
ginners, and often also for efficiency reasons. As an example, consider the
query and its result:

?- X? #= 3 #\/ Y? #= 4 #<==> B?, Y = 4.

Y = 4,

B = 1,

X in inf..sup.
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4.12 Reification

g(G) Call the Prolog goal G.
d(D) D is 1 if and only if all subexpressions of E are

defined.
p(P) Add the constraint propagator P to the con-

straint store.
a(A) A is an auxiliary variable that was introduced

while parsing the given compound expression E.
a(X,A) A is an auxiliary variable, unless A==X.
a(X,Y,A) A is an auxiliary variable, unless A==X or A==Y.

skeleton(X,Y,D,Z,P) A “skeleton” propagator is posted. When Y

cannot become 0 any more, it adds the prop-
agator P(X,Y,Z) to the constraint store and
binds D=1. When Y is 0, it binds D=0. When D=1

(i.e., the constraint must hold), it posts Y#\=0.

Table 4.9: Valid actions in a list As of a reification rule M => As

Other constraint systems, such as SICStus, still retain and show an ad-
ditional arithmetic constraint on the variable X in the case above although it
is no longer semantically relevant. Removal of irrelevant constraints can also
significantly improve performance on some benchmarks. As an example of
a benchmark that uses reification extensively, we took a solution to the so-
called “Nonogram”-puzzle that was generously posted to comp.lang.prolog
by Bart Demoen on Jan. 22nd 2009. By dynamically removing constraints
that are no longer semantically relevant, both run-time and inference count
decrease by more than 30% in this case.

The code that is generated from this DSL is a DCG nonterminal called
parse reified clpfd(E, R, D). It relates an arithmetic expression E to
its result R and its Boolean definedness D, and describes a list of auxil-
iary variables and propagators that are introduced when decomposing E.
The propagators that implement reified constraints (like reified and and
reified or, whose implementation we omit) use this list to disable aux-
iliary entities when they are no longer relevant. Fig. 4.21 shows how the
nonterminal is used during constraint reification. reify(E, B, Ps) relates
a reifiable expression E to its Boolean truth value B and a list of auxiliary
propagators and variables Ps that were introduced during the decomposition
of E and its arithmetic expressions.

To the best of our knowledge, our constraint system is the first one to
describe the full declarative semantics of reification in such brevity. While
indexicals can be used to describe reification of individual atomic constraints,
they cannot express when auxiliary constraints and variables that were in-
troduced when decomposing nested expressions are no longer needed, in
contrast to the DSL we propose in this section.
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4.12 Reification

1 parse_reified(E, R, D,
2      [g(cyclic_term(E)) => [g(domain_error(clpfd_expression, E))],
3       g(var(E))     => [g(non_monotonic(E)),
4                         g(constrain_to_integer(E)), g(R = E), g(D=1)],
5       g(integer(E)) => [g(R=E), g(D=1)],
6       ?(E)          => [g(must_be_fd_integer(E)), g(R=E), g(D=1)],
7       m(A+B)        => [d(D), p(pplus(A,B,R)), a(A,B,R)],
8       m(A*B)        => [d(D), p(ptimes(A,B,R)), a(A,B,R)],
9       m(A−B)        => [d(D), p(pplus(R,B,A)), a(A,B,R)],
10       m(−A)         => [d(D), p(ptimes(−1,A,R)), a(R)],
11       m(max(A,B))   => [d(D), p(pgeq(R, A)), p(pgeq(R, B)),
12                         p(pmax(A,B,R)), a(A,B,R)],
13       m(min(A,B))   => [d(D), p(pgeq(A, R)), p(pgeq(B, R)),
14                         p(pmin(A,B,R)), a(A,B,R)],
15       m(abs(A))     => [g(?(R)#>=0), d(D), p(pabs(A, R)), a(A,R)],
16       m(A/B)        => [skeleton(A,B,D,R,pdiv)],
17       m(A mod B)    => [skeleton(A,B,D,R,pmod)],
18       m(A rem B)    => [skeleton(A,B,D,R,prem)],
19       m(A^B)        => [d(D), p(pexp(A,B,R)), a(A,B,R)],
20       g(true)       => [g(domain_error(clpfd_expression, E))]]
21     ).

Figure 4.20: Parsing arithmetic expressions in reified constraints
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4.12 Reification

1 reify(E, B) :− reify(E, B, _).
2

3 reify(Expr, B, Ps) :−
4         (   acyclic_term(Expr), reifiable(Expr) −>
5             phrase(reify(Expr, B), Ps)
6         ;   domain_error(clpfd_reifiable_expression, Expr)
7         ).
8

9 reify(E, B) −−> { B in 0..1 }, reify_(E, B).
10

11 reify_(E, B) −−> { var(E), !, E = B }.
12 reify_(E, B) −−> { integer(E), E = B }.
13 reify_(?(B), B) −−> [].
14 reify_(V in Drep, B) −−>
15         { drep_to_domain(Drep, Dom) },
16         propagator_init_trigger(reified_in(V,Dom,B)),
17         a(B).
18 reify_(#\ Q, B) −−>
19         reify(Q, QR),
20         propagator_init_trigger(reified_not(QR,B)),
21         a(B).
22 reify_(L #>= R, B)   −−> arithmetic(L, R, B, reified_geq).
23 reify_(L #= R, B)    −−> arithmetic(L, R, B, reified_eq).
24 reify_(L #\= R, B)   −−> arithmetic(L, R, B, reified_neq).
25 reify_(L #> R, B)    −−> reify_(L #>= (R+1), B).
26 reify_(L #=< R, B)   −−> reify_(R #>= L, B).
27 reify_(L #< R, B)    −−> reify_(R #>= (L+1), B).
28 reify_(L #==> R, B)  −−> reify_((#\ L) #\/ R, B).
29 reify_(L #<== R, B)  −−> reify_(R #==> L, B).
30 reify_(L #<==> R, B) −−> reify_((L #==> R) #/\ (R #==> L), B).
31 reify_(L #/\ R, B)   −−> boolean(L, R, B, reified_and).
32 reify_(L #\/ R, B)   −−> boolean(L, R, B, reified_or).
33

34 arithmetic(L, R, B, Functor) −−>
35         { phrase((parse_reified_clpfd(L, LR, LD),
36                   parse_reified_clpfd(R, RR, RD)), Ps),
37           Prop =.. [Functor,LD,LR,RD,RR,Ps,B] },
38         list(Ps),
39         propagator_init_trigger([LD,LR,RD,RR,B], Prop),
40         a(B).
41

42 boolean(L, R, B, Functor) −−>
43         { reify(L, LR, Ps1), reify(R, RR, Ps2),
44           Prop =.. [Functor,LR,Ps1,RR,Ps2,B] },
45         list(Ps1), list(Ps2),
46         propagator_init_trigger([LR,RR,B], Prop),
47         a(LR, RR, B).
48

49 a(X,Y,B) −−>
50         (   { nonvar(X) } −> a(Y, B)
51         ;   { nonvar(Y) } −> a(X, B)
52         ;   [a(X,Y,B)]
53         ).
54

55 a(X, B) −−>
56         (   { var(X) } −> [a(X, B)]
57         ;   a(B)
58         ).
59

60 a(B) −−>
61         (   { var(B) } −> [a(B)]
62         ;   []
63         ).
64

65 list([])     −−> [].
66 list([L|Ls]) −−> [L], list(Ls).

Figure 4.21: Implementation of constraint reification. The nonterminal
propagator init trigger(Vs, P) attaches the propagator P to each vari-
able in Vs and triggers it. If Vs is omitted, all variables of P are used.
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4.13 Global constraints

Constraints that define relations between many variables at once are often
called global constraints. There are at least two fundamental techniques for
implementing global constraints in a CLP(FD) system:

(a) We can decompose a global constraint into more elementary constraints
and post them individually.

(b) We can implement a dedicated propagator that applies global reason-
ing on all involved variables.

In this section, we present two important global constraints that illustrate
both techniques:

• cumulative/2 describes a set of tasks with specific properties. It
is implemented by expressing the constraint with a conjunction of
simpler constraints.

• all distinct/1 describes a list of finite domain variables that are
pairwise distinct. It is implemented with a dedicated filtering algo-
rithm that is much stronger than pairwise disequalities.

Further global constraints that are available in our system include:

• automaton/8 is true if a list of finite domain variables is accepted
by a finite automaton that can also be used for counting transitions.
We show the implementation of a special case of this constraint in
Section 6.6.

• circuit/1 is true if a list Vs of finite domain variables induces a
Hamiltonian circuit . The k-th element of Vs denotes the successor of
node k.

• element/3 is similar to nth1/3 with the difference that it performs
deterministic filtering instead of backtracking.

• global cardinality/2 relates a list of finite domain variables to the
number of occurrences of specific elements given as Key-Number pairs.

• lex chain/1 is true if a list of lists of finite domain variables is lexi-
cographically non-decreasing.

• tuples in/2 is true if each tuple is an element of a given relation,
like the fd relation/2 constraint of GNU Prolog that we used in
Section 3.3.3.

These constraints are all implemented in one of the two ways described
above, or with a combination of both methods.
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4.13 Global constraints

Decomposing a constraint into more elementary constraints is attractive
due to its simplicity. However, it typically incurs significant overhead: It
means that more constraints need to be managed at run-time, and global
reasoning cannot be applied because some information is usually lost during
the decomposition.

On the other hand, writing dedicated propagators for global constraints
involves more implementation work, and the risk of introducing mistakes is
higher with complex propagators.

4.13.1 cumulative/2

The cumulative/2 constraint is used as follows:

cumulative(Tasks, Options)

Tasks is a list of tasks of the form task(Si,Di,Ei,Ci,Ti). Si denotes the
start time, Di the positive duration, Ei the end time, Ci the non-negative
resource consumption, and Ti the task identifier of task i. Each of these
arguments must be a finite domain variable with bounded domain, or an
integer. The constraint holds if at any time during the start and end of each
task, the total resource consumption of all tasks running at that time does
not exceed the global resource limit, which is 1 by default.

Options is a list of options. Currently, the only supported option is:

• limit(L)

The integer L is the global resource limit.

Several strong filtering algorithms for cumulative/2 appear in the lit-
erature ([MH08], [Vil09], [SW10]). At the time of this writing, we have not
yet implemented any of these variants. Instead, we express the constraint as
a conjunction of more elementary constraints. This formulation was kindly
suggested to us by Neng-Fa Zhou, the author of B-Prolog. The main idea
is to introduce a Boolean variable Bij for each task i and time-slot j, which
is 1 iff task i is active during time j. The constraint

∑
i Bij · Ci ≤ L must

hold for each time-slot j, where i ranges over all tasks.
Fig. 4.22 shows the complete definition of cumulative/2. Constraint

reification is used in line 37 to establish the connection between a task’s ac-
tivity at time T and a Boolean variable B. A task’s contribution to the cumu-
lative resource consumption at time T is determined by contribution at/4

and depends on Bij and the task’s resource consumption Ci. Line 20 relates
the amount of consumed resources at time T0 to the global resource limit L.

Fig. 4.23 shows an example of a schedule for 8 tasks of various durations,
each consuming one unit of a resource that is limited to 3. There is no way
to schedule these tasks in less than 14 time-slots under this constraint.
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4.13 Global constraints

1 cumulative(Tasks, Options) :−
2         must_be(list(list), [Tasks,Options]),
3         (   memberchk(limit(L), Options) −> must_be(integer, L)
4         ;   L = 1
5         ),
6         (   Tasks = [] −> true
7         ;   maplist(task_bs, Tasks, Bss),
8             maplist(arg(1), Tasks, Starts),
9             maplist(fd_inf, Starts, MinStarts),
10             maplist(arg(3), Tasks, Ends),
11             maplist(fd_sup, Ends, MaxEnds),
12             min_list(MinStarts, Start),
13             max_list(MaxEnds, End),
14             resource_limit(Start, End, Tasks, Bss, L)
15         ).
16

17 resource_limit(T, T, _, _, _) :− !.
18 resource_limit(T0, T, Tasks, Bss, L) :−
19         maplist(contribution_at(T0), Tasks, Bss, Cs),
20         sum(Cs, #=<, L),
21         T1 is T0 + 1,
22         resource_limit(T1, T, Tasks, Bss, L).
23

24 task_bs(Task, InfStart−Bs) :−
25         Task = task(Start,D,End,_,_Id),
26         ?(D) #> 0,
27         ?(End) #= ?(Start) + ?(D),
28         maplist(finite_domain, [End,Start,D]),
29         fd_inf(Start, InfStart),
30         fd_sup(End, SupEnd),
31         L is SupEnd − InfStart,
32         length(Bs, L),
33         task_running(Bs, Start, End, InfStart).
34

35 task_running([], _, _, _).
36 task_running([B|Bs], Start, End, T) :−
37         ((T #>= Start) #/\ (T #< End)) #<==> ?(B),
38         T1 is T + 1,
39         task_running(Bs, Start, End, T1).
40

41 contribution_at(T, Task, Offset−Bs, Contribution) :−
42         Task = task(Start,_,End,C,_),
43         ?(C) #>= 0,
44         fd_inf(Start, InfStart),
45         fd_sup(End, SupEnd),
46         (   T < InfStart −> Contribution = 0
47         ;   T >= SupEnd −> Contribution = 0
48         ;   Index is T − Offset,
49             nth0(Index, Bs, B),
50             ?(Contribution) #= B*C
51         ).

Figure 4.22: Complete definition of cumulative/2

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.23: A schedule for 8 tasks of various durations, L = 3
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4.13.2 all distinct/1

The all distinct/1 constraint is true iff all elements of a list of finite
domain variables are pairwise distinct. We have implemented the algorithm
described by Jean-Charles Régin in [Rég94] for ensuring domain consistency
of all distinct/1.

The filtering algorithm works on the so-called value graph of the variables
that are constrained to be pairwise distinct and whose domains are finite.
The value graph is a bipartite graph with:

• one node nxi
for each finite domain variable xi

• one node nj for each integer j ∈
⋃

D(xi)

• an edge between nxi
and nj iff j ∈ D(xi).

Each assignment of variables to values that satisfies all distinct/1

corresponds to a matching that covers all nodes nxi
in the value graph

and is hence a maximum matching. If there is no matching that covers all
nodes nxi

, the constraint cannot be satisfied. Moreover, using a property due
to Berge, edges that belong to no maximum matching can be detected and
removed from the value graph after reasoning over the strongly connected
components (see Section 4.13.3) of a related graph. For example, the query

?- [X,Y] ins 1..2, Z in 1..3, all_distinct([X,Y,Z]).

yields the value graphs shown in Fig. 4.24 (a) and Fig. 4.24 (b) before
and after all distinct/1 propagation, respectively. This is clearly stronger
than posting pairwise disequalities and also takes more computation time.

X

Y

Z

1

2

3

(a)

X

Y

Z

1

2

3

(b)

Figure 4.24: Value graph (a) before and (b) after all distinct/1

Fig. 4.25 shows how we compute a matching that covers all nodes nxi
, us-

ing the Edmonds-Karp algorithm. We use attributed variables to represent
the value graph, with one variable for each node. Initially, each node nj must
have the attribute free attached, to mark it as a free node on the right-hand
side. The edges of each node are stored as lists in the attribute edges. Each
edge is a term of the form flow to(F, To) or flow from(F, From), where
the variable F is used to store the edge’s associated flow in an attribute
called flow (which is either 0 or 1), and To and From are adjacent nodes.
The parent attribute is used to reconstruct an augmenting path after a free
node was found during breadth-first search.
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4.13 Global constraints

1 maximum_matching([]).
2 maximum_matching([FL|FLs]) :−
3         augmenting_path_to([[FL]], Levels, To),
4         phrase(augmenting_path(FL, To), Path),
5         maplist(maplist(clear_parent), Levels),
6         del_attr(To, free),
7         adjust_alternate_1(Path),
8         maximum_matching(FLs).
9

10 clear_parent(V) :− del_attr(V, parent).
11

12 reachables([]) −−> [].
13 reachables([V|Vs]) −−>
14         { get_attr(V, edges, Es) },
15         reachables_(Es, V),
16         reachables(Vs).
17

18 reachables_([], _) −−> [].
19 reachables_([E|Es], V) −−>
20         edge_reachable(E, V),
21         reachables_(Es, V).
22

23 edge_reachable(flow_to(F,To), V) −−>
24         (   { get_attr(F, flow, 0),
25               \+ get_attr(To, parent, _) } −>
26             { put_attr(To, parent, V−F) },
27             [To]
28         ;   []
29         ).
30 edge_reachable(flow_from(F,From), V) −−>
31         (   { get_attr(F, flow, 1),
32               \+ get_attr(From, parent, _) } −>
33             { put_attr(From, parent, V−F) },
34             [From]
35         ;   []
36         ).
37

38 augmenting_path_to(Levels0, Levels, Right) :−
39         Levels0 = [Vs|_],
40         Levels1 = [Tos|Levels0],
41         phrase(reachables(Vs), Tos),
42         Tos = [_|_],
43         (   member(Right, Tos), get_attr(Right, free, true) −>
44             Levels = Levels1
45         ;   augmenting_path_to(Levels1, Levels, Right)
46         ).
47

48 augmenting_path(S, V) −−>
49         (   { V == S } −> []
50         ;   { get_attr(V, parent, V1−Augment) },
51             [Augment],
52             augmenting_path(S, V1)
53         ).
54

55 adjust_alternate_1([A|Arcs]) :−
56         put_attr(A, flow, 1),
57         adjust_alternate_0(Arcs).
58

59 adjust_alternate_0([]).
60 adjust_alternate_0([A|Arcs]) :−
61         put_attr(A, flow, 0),
62         adjust_alternate_1(Arcs).

Figure 4.25: Computing a matching that covers all variables
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4.13 Global constraints

4.13.3 Tarjan’s strongly connected components algorithm

Many of the global constraints that are implemented in our system require us
to find the so-called strongly connected components (SCCs) of a graph. The
strongly connected components of a directed graph are its maximal strongly
connected subgraphs, which are graphs where there is a path from each ver-
tex to every other vertex. There is a well-known algorithm for determining
SCCs, described by Robert E. Tarjan in [Tar72].

Tarjan’s algorithm for computing SCCs requires a global index and a
global stack. To simulate a global variable in Prolog, we could pass its state
to each predicate via additional arguments, representing its states before and
after modification. Additional arguments typically make the code harder to
follow, especially for predicates that do not even access these arguments
directly, but only thread them through to other predicates that they call.
We therefore use DCG notation to implicitly thread the global state through
predicates that do not need to access it directly. Predicates that need to
read or modify the state can use the convenient DCG nonterminals state//1
and state//2, respectively. These DCG rules are shown in Fig. 4.26. They
use semicontext notation to refer to the state. The use of the nonterminal
state(S) can be read as “the current state is S”. The use of state(S0, S)

can be read as “the current state is S0, and henceforth it is S”.

 state(S), [S] −−> [S].
 

 state(S0, S), [S] −−> [S0].

Figure 4.26: Accessing and modifying the state in DCGs

Our Prolog implementation of Tarjan’s algorithm is shown in Fig. 4.27.
We represent the global state as a term of the form

s(Index, Stack, Succ)

where Index is the current index (an integer), Stack is the list of vertices
in the stack, and Succ is a binary predicate that relates a vertex v to a
list of successors, i.e., vertices that are reachable from v via a directed edge.
To use this algorithm, the predicate scc/2 is called with a list of vertices and
a predicate name for finding successors. Each vertex must be represented
by a logical variable, and the algorithm uses variable attributes to store
information about each vertex. Notably, it uses the attribute in stack to
determine in O(1) time whether a vertex is currently in the stack. After the
algorithm terminates, vertices that belong to the same SCC have the same
integer value stored in their lowlink attribute, starting with 0.

Our implementation is linear in the number of vertices and edges and is
thus an asymptotically optimal implementation of Tarjan’s algorithm.
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4.13 Global constraints

1 scc(Vs, Succ) :− phrase(scc(Vs), [s(0,[],Succ)], _).
2

3 scc([])     −−> [].
4 scc([V|Vs]) −−>
5         (   vindex_defined(V) −> scc(Vs)
6         ;   scc_(V), scc(Vs)
7         ).
8

9 scc_(V) −−>
10         vindex_is_index(V),
11         vlowlink_is_index(V),
12         index_plus_one,
13         s_push(V),
14         successors(V, Tos),
15         each_edge(Tos, V),
16         (   { get_attr(V, index, VI),
17               get_attr(V, lowlink, VI) } −> pop_stack_to(V, VI)
18         ;   []
19         ).
20

21 vindex_defined(V) −−> { get_attr(V, index, _) }.
22

23 vindex_is_index(V) −−>
24         state(s(Index,_,_)),
25         { put_attr(V, index, Index) }.
26

27 vlowlink_is_index(V) −−>
28         state(s(Index,_,_)),
29         { put_attr(V, lowlink, Index) }.
30

31 index_plus_one −−>
32         state(s(I,Stack,Succ), s(I1,Stack,Succ)),
33         { I1 is I+1 }.
34

35 s_push(V)  −−>
36         state(s(I,Stack,Succ), s(I,[V|Stack],Succ)),
37         { put_attr(V, in_stack, true) }.
38

39 vlowlink_min_lowlink(V, VP) −−>
40         { get_attr(V, lowlink, VL),
41           get_attr(VP, lowlink, VPL),
42           VL1 is min(VL, VPL),
43           put_attr(V, lowlink, VL1) }.
44

45 successors(V, Tos) −−> state(s(_,_,Succ)), { call(Succ, V, Tos) }.
46

47 pop_stack_to(V, N) −−>
48         state(s(I,[First|Stack],Succ), s(I,Stack,Succ)),
49         { del_attr(First, in_stack) },
50         (   { First == V } −> []
51         ;   { put_attr(First, lowlink, N) },
52             pop_stack_to(V, N)
53         ).
54

55 each_edge([], _) −−> [].
56 each_edge([VP|VPs], V) −−>
57         (   vindex_defined(VP) −>
58             (   v_in_stack(VP) −>
59                 vlowlink_min_lowlink(V, VP)
60             ;   []
61             )
62         ;   scc_(VP),
63             vlowlink_min_lowlink(V, VP)
64         ),
65         each_edge(VPs, V).
66

67 v_in_stack(V) −−> { get_attr(V, in_stack, true) }.

Figure 4.27: Tarjan’s strongly connected components algorithm in Prolog
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4.14 Properties of labeling/2

As already mentioned in Section 2.5, labeling means systematically trying
out values for variables. Our system provides a predicate called labeling/2

that is used as labeling(Options, Vs) and labels the list of finite domain
variables Vs according to Options. This predicate is largely compatible
with that of SICStus Prolog (see Section 2.6), but there are two important
differences. In our system, labeling/2:

• always terminates

• is always complete.

Both properties are independent of any specified options. We discuss the
advantages of these properties in the following two sections.

The code for labeling/2 is reasonably straight-forward, and interested
readers can study its definition in the source code of our library.

4.14.1 labeling/2 always terminates

A CLP(FD) program can often be decomposed into two distinct parts:

(1) the posting of all relevant constraints

(2) the search for concrete solutions via labeling/2.

It is good practice ([Neu97]) to separate these parts by using a dedicated
predicate for part (1).

When such a program is executed, it is very common that part (1) takes
very little computation time, and part (2) takes a very long time, for example
several weeks or even years in the case of unresolved interesting theoretical
or practical problems. It is thus very desirable to know for certain at every
point in time that a constraint solver is still searching for concrete solutions,
and is not entangled in an infinite propagation chain. In other words, it is
desirable to guarantee the following property: If part (1) terminates, which
can often be easily observed, then the whole program terminates.

In our CLP(FD) system, this property holds because labeling/2 always
terminates. To guarantee this property, it is necessary that constraint propa-
gation always terminates, since labeling triggers constraint propagation. For
example, in CLP(FD) systems that do not guarantee terminating propaga-
tion, the equivalent of the following query correctly produces a conditional
solution for B = 0, and then leads to nontermination on backtracking:

?- (X? #> abs(X?)) #<==> B?, labeling([], [B]).

As in SICStus Prolog, labeling/2 raises an instantiation error when
the domain of any variable in Vs is infinite at the time of the call.
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4.14.2 labeling/2 is always complete

In several CLP(FD) systems, there are optimisation options for labeling/2.
For example, in SICStus Prolog, minimize(E) and maximize(E) can be used
as labeling options to minimize or maximize the value of the arithmetic
expression E.

To the best of our knowledge, all systems that provide such options
commit to the first optimal solution that they find. This makes labeling/2
incomplete in general.

In our system, labeling/2 is always complete. When the optimisation
options min(E) or max(E) are used, then the solutions are given in increasing
and decreasing order with respect to the value of E, respectively.

The incomplete behaviour of other systems can be easily emulated with
our system by simply committing to the first solution. It is much harder
to obtain a complete predicate from an incomplete one. The importance
of completeness is not only theoretical: In many cases, there are several
different optimal solutions, and users may prefer some of them according
to other criteria. Therefore, they may want to see all solutions for specific
optima or within given margins.

Fig. 4.28 shows the Prolog code we use for optimising the value of ex-
pressions given in Whats as explained above, using the variables Vs and op-
tions Options for labeling/2. When the time limit is exceeded, we report
the best solution found so far.

1 optimise(Vars, Options, Whats) :−
2         Whats = [What|WhatsRest],
3         Extremum = extremum(none),
4         (   catch(store_extremum(Vars, Options, What, Extremum),
5                   time_limit_exceeded,
6                   false)
7         ;   Extremum = extremum(n(Val)),
8             arg(1, What, Expr),
9             append(WhatsRest, Options, Options1),
10             (   Expr #= Val,
11                 labeling(Options1, Vars)
12             ;   Expr #\= Val,
13                 optimise(Vars, Options, Whats)
14             )
15         ).
16

17 store_extremum(Vars, Options, What, Extremum) :−
18         catch((labeling(Options, Vars), throw(w(What))), w(What1), true),
19         functor(What, Direction, _),
20         maplist(arg(1), [What,What1], [Expr,Expr1]),
21         optimise(Direction, Options, Vars, Expr1, Expr, Extremum).
22

23 optimise(Direction, Options, Vars, Expr0, Expr, Extremum) :−
24         must_be(ground, Expr0),
25         nb_setarg(1, Extremum, n(Expr0)),
26         catch((tighten(Direction, Expr, Expr0),
27                labeling(Options, Vars),
28                throw(v(Expr))), v(Expr1), true),
29         optimise(Direction, Options, Vars, Expr1, Expr, Extremum).
30

31 tighten(min, E, V) :− E #< V.
32 tighten(max, E, V) :− E #> V.

Figure 4.28: Optimisation
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4.15 Performance

Neng-Fa Zhou, the author of B-Prolog, has kindly integrated our constraint
solver in his benchmarks1, which we reproduce in Table 4.10. The results
show that our solver is on average two orders of magnitude slower on these
benchmarks than the fastest system (B-Prolog itself), and about 30 times
slower than the constraint solver of SICStus Prolog.

In part, this may certainly be attributed to the fact that SWI-Prolog
itself (i.e., the system without the finite domain constraint solver) is al-
ready more than 4 times slower than B-Prolog (and more than 3 times than
SICStus) on average on benchmarks that are deemed to be in some sense
representative of a Prolog system’s performance, and which are also avail-
able on the website. Our library is written in Prolog and is thus heavily
influenced by the speed of the underlying Prolog system itself. We found
that both sets of benchmarks are already faster with YAP ([CRD12]) by
more than a factor of 2 on average.

On the other hand, if large integers are needed, our CLP(FD) solver is
the only option of all tested systems and can not be compared to any others
at all in this case.

While the comparatively slow speed of our constraint solver will certainly
rule out its usage in many industrial settings, it is already being used at sev-
eral universities in France, Germany, Italy, Austria and other countries for
teaching and research purposes and has so far shown more than acceptable
performance for these use cases.

benchmark B-Prolog ECLiPSe GNU Prolog SICStus SWI

alpha 1 8.80 1.21 3.78 92
bridge 1 3.02 0.85 6.06 174
cars 1 4.68 0.93 1.97 125
color 1 8.68 0.97 2.97 114
eq10 1 4.38 3.03 3.94 128
eq20 1 4.27 1.73 2.74 72
magic3 1 6.54 1.09 2.83 134
magic4 1 7.52 1.56 3.87 137
olympic 1 9.43 1.61 2.76 134
queens1 1 13.19 1.18 12.61 264
sendmoney 1 6.20 2.62 5.55 156
sudoku81 1 7.45 1.35 4.52 103
zebra 1 5.96 1.66 7.04 95

mean 1 6.93 1.52 4.66 133

Table 4.10: Performance on different benchmarks

1available from http://www.probp.com/performance.htm

85



5 Testing a CLP(FD) system

5.1 Introduction

Authors of CLP(FD) systems should ask themselves: How can we make
sure that our CLP(FD) system yields the results that we intended? In this
section, we present two basic methods that we used to test our constraint
system:

(1) tests of behaviour

(2) analysis of source code.

Prolog is well-suited for both approaches: First, built-in backtracking
and Prolog’s interactive toplevel let us concisely express and rapidly run
collections of test cases. We consider this one of Prolog’s most intriguing
features, and – more generally – find that a programming language’s prac-
tical usefulness is strongly related to its expressiveness and ease of use in
the area of testing programs written in that language. Second, Prolog is a
homoiconic language (meaning that Prolog source code is naturally repre-
sented as Prolog terms), and its homoiconicity and reflective abilities let us
conveniently inspect and analyse the source code of individual propagators
with the host language itself. Contrast this with a constraint solver written
in a programming language that is not homoiconic, and the difficulty of then
using the same language for analysing the solver’s source code.

Method (1) is also known as black-box testing. Since our system guar-
antees monotonicity and terminating propagation, black-box testing can be
applied more extensively than for other CLP(FD) systems.

Method (2) is related to white-box testing. To the best of our knowl-
edge, we are the first to apply abstract interpretation to the source code of
propagators to establish further guarantees about our system.

5.2 Properties of logical variables

Among the concepts that distinguish Prolog from many other programming
languages is its support for logical variables. A logical variable can actu-
ally be uninstantiated. When testing or analysing a Prolog predicate, we
therefore not only have to take into account concrete possible values of its
variables, but also think about cases in which the predicate is used with any
or all of its arguments uninstantiated, as is the case for most finite domain
constraints and their propagators. This language feature by itself can make
Prolog programs much more general than users of other languages may be
used to. It also significantly increases the number of possible cases we have
to take into account when testing Prolog predicates compared to, say, func-
tions in other languages, where we at least know that each variable at all
times stands for some concrete value and will never be uninstantiated.
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5.3 Systematic test cases for a CLP(FD) system

Moreover, two variables may both be uninstantiated, but aliased by
constraints that unify them. So in addition to taking into account unin-
stantiated variables, we also have to consider the possibility of syntactically
distinct variables that are semantically the same.

These issues provide a rich source of potential mistakes when writing
propagators, since human authors typically cannot think of all possible cases
at the same time and may forget to handle cases that arise in rare contrived
cases as well as in practical applications.

5.3 Systematic test cases for a CLP(FD) system

It is very hard to verify the semantics of individual propagators. For ex-
ample: Does the propagator for multiplication, which is shown in Fig. 4.16,
really establish bounds consistency, or have we maybe forgotten to handle a
case in Fig. 4.19? Verifying whether a CLP(FD) system actually establishes
bounds consistency in a given example essentially requires us to emulate the
filtering that the system is supposed to do. Basically, this would require
us to write or use another CLP(FD) system to test a given system, which
would raise the same questions.

However, we can test other guaranteed properties of a CLP(FD) system
without reasoning about the semantics of individual propagators. For ex-
ample, to the best of our knowledge, our CLP(FD) system is the first widely
available system that guarantees monotonicity, and hence this property can
be tested via black-box tests: For two monotonic constraints A and B, the
goals (A, B) and (B, A) must yield semantically equivalent results. In par-
ticular, it must never be the case that one of them succeeds unconditionally,
and the other one fails. It is for example admissible that one of them suc-
ceeds, and the other one raises an exception. Notice that unification is also
monotonic, and hence we can use unification for syntactic substitutions of
terms. This makes formulating black-box tests easier than in systems that
do not allow such dynamic substitutions (see also Section 4.3). Other sys-
tems guarantee this property only to a limited extent, and we can therefore
test them only in limited ways with this approach. Still, as we will see, the
general method is useful throughout all available CLP(FD) systems.

In general, the black-box tests we use for testing our system only termi-
nate when they find a mistake. Otherwise, they generate increasingly com-
plex expressions and compare the results of goals that must be semantically
equivalent. This testing methodology may seem unusual at first. However,
it is well-justified since – as we have seen in Section 3.3.3 – mistakes can
surface also after weeks of computation time.

When posting various constraints in different ways, it is very useful to
know that constraint propagation always terminates in our system (see Sec-
tion 4.6). Hence, the system will never be entangled in an infinite propaga-
tion chain, regardless of the order we use for posting constraints.
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5.3 Systematic test cases for a CLP(FD) system

Fig. 5.1 shows an example of systematic black-box tests that we use to
test our system. These tests are applicable to other systems as well since
they do not generate large integers and only require very limited support
for dynamic syntactic substitutions. The predicate run/0 systematically
generates reifiable constraints C of increasing depth. Finite domain variables
that appear in arithmetic expressions are constrained to integers between −3
and 3 in this example. Each generated constraint C and its variables Vs are
then used in three declaratively equivalent ways:

• C is posted, then Vs are labeled

• ?(X) #==> C and X #= 1 are posted, then Vs are labeled

• \# \# C is posted, then Vs are labeled

The three lists of corresponding solutions are then compared, and an
error is raised if they are not the same. In line 35, we ensure that the
implication 0 #==> C succeeds, which must always hold.

1 d_c(D, A #> B)         :− d_exp(D, A), d_exp(D, B).
2 d_c(D, A #< B)         :− d_exp(D, A), d_exp(D, B).
3 d_c(D, A #= B)         :− d_exp(D, A), d_exp(D, B).
4 d_c(D, A #=< B)        :− d_exp(D, A), d_exp(D, B).
5 d_c(D, A #>= B)        :− d_exp(D, A), d_exp(D, B).
6 d_c([_|D], A #/\ B)    :− d_c(D, A), d_c(D, B).
7 d_c([_|D], A #\/ B)    :− d_c(D, A), d_c(D, B).
8 d_c([_|D], A #==> B)   :− d_c(D, A), d_c(D, B).
9 d_c([_|D], A #<==> B)  :− d_c(D, A), d_c(D, B).
10

11 d_exp(_, X)            :− X in −3..3.
12 d_exp(_, N)            :− N in −3..3, indomain(N).
13 d_exp(_, X)            :− X in −3..3, between(−3, 3, N), X #\= N.
14 d_exp([_|D], A+B)      :− d_exp(D, A), d_exp(D, B).
15 d_exp([_|D], A−B)      :− d_exp(D, A), d_exp(D, B).
16 d_exp([_|D], A*B)      :− d_exp(D, A), d_exp(D, B).
17 d_exp([_|D], A/B)      :− d_exp(D, A), d_exp(D, B).
18 d_exp([_|D], abs(A))   :− d_exp(D, A).
19 d_exp([_|D], min(A,B)) :− d_exp(D, A), d_exp(D, B).
20 d_exp([_|D], max(A,B)) :− d_exp(D, A), d_exp(D, B).
21 d_exp([_|D], A mod B)  :− d_exp(D, A), d_exp(D, B).
22 d_exp([_|D], A rem B)  :− d_exp(D, A), d_exp(D, B).
23

24 run :−
25         length(D, L),
26         portray_clause(L),
27         d_c(D, C),
28         term_variables(C, Vs),
29         findall(Vs, (C,label(Vs)), Sols1),
30         findall(Vs, (?(X)#==>C,X#=1,label(Vs)), Sols2),
31         findall(Vs, (#\ #\ C, label(Vs)), Sols3),
32         (   Sols1 == Sols2, Sols1 == Sols3 −> true
33         ;   throw(C)
34         ),
35         (   0 #==> C, label(Vs) −> true
36         ;   throw(0#==>C)
37         ),
38         false.

Figure 5.1: Testing reification of arithmetic constraints
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5.4 Advantages of black-box testing

Black-box testing is attractive because it is easy to formulate test cases based
on algebraic properties, and Prolog’s built-in backtracking and all-solutions
predicates make it convenient to generate increasingly complex cases and
to compare their results. When expressions are generated exhaustively, one
can even derive some guarantees about the system’s behaviour after it suc-
cessfully passes each level of black-box tests.

Black-box tests can also be applied to other CLP(FD) systems, and
can be used to test propagators that are comparatively difficult to anal-
yse in other ways. For instance, we cannot tell from the outside whether
all distinct/1 internally computes a maximum matching and the SCCs
of a graph. However, desirable properties of the constraint’s observable
behaviour are easy to test. For example, when Vs is a list of variables
with finite domains, we require that (all distinct(Vs), label(Vs)) and
(label(Vs), all distinct(Vs)) yield exactly the same solutions. Fig. 5.2
shows how this property can be systematically tested for increasingly longer
lists Vs and systematic variations of domains. This property may seem self-
evident at first glance. However, it makes sense to test global constraints
in this way: When all arguments are ground, as they are after labeling,
the propagator is reduced to a simple checker and usually works correctly.
Hence it can be used as a reference. It is the actual filtering, which may
involve complex computations on a CSP’s value graph, that is more likely
to contain programming mistakes. Similar tests can be applied to other
propagators as well.

1 neqs([], _)     −−> [].
2 neqs([N|Ns], X) −−> neqs(Ns, X), ( [] ; [X #\= N] ).
3

4 disequalities([], _)      −−> [].
5 disequalities([V|Vs], Ns) −−> disequalities(Vs, Ns), neqs(Ns, V).
6

7 run :−
8         length(Vs, LVs), portray_clause(LVs),
9         numlist(1, LVs, Ns), phrase(disequalities(Vs,Ns), Cs),
10         Vs ins 1..LVs, maplist(call, Cs),
11         findall(Vs, (label(Vs),all_distinct(Vs)), L1),
12         findall(Vs, (all_distinct(Vs),label(Vs)), L2),
13         (   L1 == L2 −> true
14         ;   throw((maplist(call, [Vs ins 1..LVs|Cs])))
15         ),
16         false.

Figure 5.2: Testing all distinct/1

5.5 Limitations of black-box testing

The interaction between propagators can be quite complex in a constraint
system, and black-box tests are unlikely to find all mistakes since they can
only ever cover a finite subset of an infinite search space. For example, recall
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5.5 Limitations of black-box testing

from Section 4.4 that we use two kinds of queues for scheduling the invoca-
tion of propagators in our system: one queue for fast propagators, and one
for slower propagators. For some constraints that require complex filtering
algorithms, it is advantageous to use two propagators: one simple and fast
propagator that is inserted into the former queue, and one more complex
and slower propagator, scheduled in the latter queue. We actually use this
strategy in the implementation of the global cardinality/2 constraint in
our system (see Section 4.13): gcc check/1 is a propagator that performs
rudimentary and fast filtering, and gcc global/1 is a complex and slower
propagator that reasons about a specific graph. Importantly, gcc global/1

relies on gcc check/1 to remove all variables that have become instantiated
from internal lists, so that gcc global/1 only needs to reason about vari-
ables. Consider now how these propagators interact with the tuples in/2

constraint in the following query:

?- tuples_in([[A,C,B]], [[3,1,3],[4,2,4]]),

global_cardinality([A,B,D], [3-1,4-2]),

A = 4.

The unification A = 4 causes gcc check/1 and gcc global/1 to be
queued in the fast and slow queue, respectively. The propagator corre-
sponding to tuples in/2 is also queued in the fast queue. Then, con-
straint propagation starts. First, gcc check/1 is invoked and cannot per-
form any filtering. Next, the propagator corresponding to tuples in/2 is
invoked and detects that the only fitting binding is [A,C,B] = [4,2,4]. It
thus simultaneously instantiates C and B (to 2 and 4, respectively). Crit-
ically, tuples in/2 is thus capable of instantiating two or more variables
at once while propagators are scheduled in the queues. Instantiation of C
causes a do queue (see Section 4.11.4) in attr unify hook/2. Notice that
gcc check/1 is not (yet) queued again because C does not participate in
the global cardinality/2 constraint. However, do queue next invokes
the gcc global/1 propagator that is still in the queue. Since gcc check/1

has not yet had a chance to run due to the unification mechanism’s first
handling the constraints C is involved in, gcc global/1 must take into ac-
count that some of the variables it reasons about have become instantiated
but gcc check/1 was not invoked.

Therefore, gcc check/1 must always be called also in gcc global/1.
However, a single call of gcc check/1 is not enough, as can be shown with an
analogous test case. It is also necessary to re-invoke the fixpoint computation
via do queue to really remove all remaining integers from the list of variables.

Black-box tests cannot be used to guarantee such properties, since the
absence of a counterexample in a finite subset of an infinite search space
does not imply that none at all exists. It is therefore desirable to formulate
relevant properties of our code and verify them in other ways, as we will do
in the next section.
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5.6 Automated analysis of individual propagators

We now analyse the source code of propagators to give stronger guarantees.
The source code is finite and can be analysed in its entirety. However, source
code can also be quite complex and use many different language features,
which also makes its analysis complex.

Our goal in this section is to present a self-contained example of an
analyser that ensures the following properties of the propagators for addition
and multiplication (shown in Fig. 4.15 and Fig. 4.16, respectively):

(1) Domain operations (domain shift/3, domain expand/3 etc.) are al-
ways used with the correct argument types. For example, a goal like
domain contains(D, n(0)) must not occur in a propagator because
the second argument is not an integer. Note how easy it is to acciden-
tally write such a goal instead of the intended domain contains(D, 0)

when writing a propagator, because the wrapper n/1 must be used
for numbers that occur in a cis/2 expression. See Section 4.9 for
more information about compactified arithmetic with cis/2, and Sec-
tion 4.10.3 for predicates over domains. In the following, we assume
that these predicates are correctly implemented.

(2) Explicit unifications (using =/2) always unify terms of the same kind.
By this we mean for example that a finite domain variable may only be
unified with another finite domain variable or integer. Note how easy
it is to accidentally write a goal like Z = n(Y) instead of the intended
Z = Y when writing a propagator because the n/1 wrapper must be
used in cis/2 expressions. Consider also that the propagator code for
multiplication (Fig. 4.16) contains unifications that involve Y as well
as n(Y), which further increases the likelihood of such mistakes.

A unification that succeeds syntactically may of course still fail seman-
tically due to other constraints that are not part of the propagator code
itself. For example, the unification X = 0 that appears in the code of
a propagator fails if 0 6∈ D(X).

(3) The last argument of domain shift/3, domain expand/3 and other
relations between domains is always a variable at run-time before the
goal is called. As a necessary but not sufficient condition, it must of
course also be a Prolog variable in the source code of the propagator.

It is easy to accidentally reuse a source-level variable when comput-
ing new domains. For example, the following must not occur in a
propagator, because YD1 is accidentally reused:

( fd_get(Y, YD1, YPs) ->

O is -X,

domain_shift(ZD1, O, YD1)
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After this is corrected by replacing YD1 with the fresh variable YD2,
this snippet actually occurs in the propagator for addition. As a con-
sequence, accidentally reusing YD1 is a mistake that can easily occur
at that place.

(4) Similarly, the first argument of fd put/3 is always a variable at run-
time when the predicate is called. This must be so because if the built-
in predicate put attr/3 is accidentally called with an instantiated
first argument, a so-called uninstantiation error is raised because an
uninstantiated variable is expected for attaching attributes. Note that
a previously successful call of fd get/3 does not in general guarantee
that a variable is still uninstantiated, because constraint propagation
may be invoked due to goals between the two calls.

Properties (3) and (4) are very similar, but there is an important differ-
ence between them: Property (3) can be reduced to a simple static analysis
of the propagator by ensuring that the last argument of the mentioned re-
lations is always a fresh variable in the source code. As a consequence, it is
always a variable at run-time. Property (4) requires a more elaborate anal-
ysis, because the first argument of fd put/3 is typically a variable that is
involved in several constraints and may, as mentioned, become instantiated
because certain goals can trigger further propagators.

Properties (1) and (2) can also be guaranteed by type systems for Pro-
log, while properties (3) and (4) require reasoning about instantiations and
would require a mode system that can detect unexpected instantiations.
Note that any constrained variable that a propagator reasons about may or
may not become instantiated by fd put/3 and subsequent constraint prop-
agation. Even the powerful assertion language of Ciao ([HBC+12]) cannot
express this non-local effect. In addition, and as we will now demonstrate,
all of the above properties can be ensured by providing enough information
about the predicates that are directly used in the propagator code, whereas
type and mode systems typically require more information or analysis of
indirectly used predicates as well and thus may make it harder to establish
relevant properties of selected propagators in isolation.

At first glance, writing a program that checks all the above properties
may seem a daunting task. After all, the control flow inside propagators
can get quite complicated due to several nested conditions, and all branches
of the computation need to be checked while keeping track of which con-
ditions are satisfied in each branch. Luckily though, we need not do this
explicitly. Instead, we use Prolog’s built-in backtracking and unification to
walk through the source code while implicitly keeping track of the conditions
and bindings that hold in each branch.

We use abstract interpretation ([CC92]) on propagators to check all prop-
erties. This means that instead of running the code with concrete instantia-
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tions of variables, we use abstract elements to denote the kind of terms that
each variable stands for. We use the following atoms as abstract elements:

• b represents a domain boundary

• d represents a domain

• i represents an integer

When unifications are to be performed, we can use these abstract ele-
ments to describe many possible concrete terms at once.

As already mentioned, the source code of each propagator is naturally
represented as a Prolog term. Variables that occur in the propagator code
are also variables in the term representation and can hence be used for unifi-
cations with abstract elements. All we have to do is to declaratively describe
what each language construct means in terms of this abstract domain of
types. Fig. 5.4 gives the complete source code that describes each language
element that occurs in the propagators of addition and multiplication (see
Fig. 4.15 and Fig. 4.16). A DCG is used to transparently thread an implicit
argument through the code: It is necessary to keep track of all arguments
of the propagator that is being processed, because each of these arguments
may be instantiated to a concrete integer every time further propagators are
triggered. This can happen for example in fd put/3 and update bounds/7.
If a language construct is encountered that cannot be handled or any of the
properties (1)–(4) is violated, the program raises an exception.

Fig. 5.5 shows necessary additional definitions. Notably, var or int/1

is a nondeterministic predicate, which succeeds if its argument is a variable,
and binds it to i on backtracking, corresponding to the fact that a variable
may or may not become instantiated during constraint propagation.

The built-in clause/2 predicate allows us to obtain the Prolog term
representation of a specific clause. We now use this predicate to analyse
the clause body of the pplus propagator, which implements addition. The
clause body of this propagator can be obtained as Body via:

clause(clpfd:run propagator(pplus(X, Y,Z), ), Body)

Since the shown analyser can only handle the unexpanded source code,
we must set the Prolog flag clpfd goal expansion to false before load-
ing the library. Otherwise, the finite domain constraints that are used in
propagators are expanded via goal expansion/2, and the analyser has to
be extended to handle further language elements like integer/1 and var/1.

When the propagator is invoked during actual constraint propagation,
each of its arguments is initially either a variable or integer. We therefore
use var or int/1 to simulate each possibility. With the following query, we
try to find a counterexample to correctness, i.e., a case where any of the
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properties (1)–(4) is violated and the program therefore raises an exception.
Forced backtracking via false leads us through each possible branch of the
propagator:

?- Vars = [X,Y,Z],

P =.. [pplus|Vars],

clause(clpfd:run_propagator(P, _), Body),

maplist(var_or_int, Vars),

phrase(walk(Body), [Vars], _),

false.

yielding:

false.

Since this query fails, we can conclude that, if the analyser is correct and
the variables are not aliased, properties (1)–(4) hold for the propagator that
implements addition. An analogous query can be used to establish these
properties for ptimes and also for the case of any aliasing between the three
variables for both propagators. With suitable additional definitions, we have
verified these properties for all arithmetic propagators that are implemented
in our system.

Fig. 5.3 shows an intermediate state that arises when abstractly inter-
preting the propagator for addition. In this concrete case, the first argument
is instantiated to an abstract integer, and several variables are already in-
stantiated to abstract domains, which are indicated by the atom d.

1 run_propagator(pplus(i, Y, Z), MState) :−
2 (   nonvar(i) −>
3             (   i =:= 0 −> kill(MState), Y = Z
4     ;   Y == Z −> kill(MState), i =:= 0
5     ;   nonvar(Y) −> kill(MState), Z is i + Y
6     ;   nonvar(Z) −> kill(MState), Y is Z − i
7     ;   fd_get(Z, d, ZPs),
8 fd_get(Y, d, _),
9 domain_shift(d, i, d),

10 domains_intersection(d, d, d),
11 fd_put(Z, d, ZPs),
12 (   fd_get(Y, d, YPs) −>
13                     i is −i,
14     domain_shift(d, i, d),
15     domains_intersection(d, d, d),
16     fd_put(Y, d, YPs)
17 ;   true
18 )
19                 ...

Figure 5.3: Abstract interpretation of the pplus propagator

To the best of our knowledge, this is the first time that abstract interpre-
tation is applied to individual propagators of a CLP(FD) system to verify
the properties we have formulated above. Abstract interpretation is easily
applicable for our system since it is written in Prolog.
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1 walk((If −> Then ; Else)) −−> !,
2         (   walk(If), walk(Then)
3         ;   walk(\+ If), walk(Else)
4         ).
5 walk(Either ; Or)         −−> !, ( walk(Either) ; walk(Or) ).
6 walk(\+ (Either ; Or))    −−> !, walk(\+ Either), walk(\+ Or).
7 walk(X = Y)               −−> !,
8         { (   ( var(X) ; var(Y) )−> X = Y
9           ;   X == i −> i(Y)
10           ;   throw(unif−(X=Y))
11           ) }.
12 walk(Rel)             −−>
13         { functor(Rel, F, 2), memberchk(F, [==,=:=,=\=,>=,<,>]) }, !.
14 walk(\+ Rel)          −−>
15         { functor(Rel, F, 2), memberchk(F, [==,=:=,=\=,>=,<,>]) }, !.
16 walk( _ in _), [Vars] −−> !, [Vars], { maplist(var_or_int, Vars) }.
17 walk(i is _)          −−> !.
18 walk(_ #= _)          −−> !.
19 walk((A,B))           −−> !, walk(A), walk(B).
20 walk(\+ (A,B))        −−> !, ( walk(\+ A) ; walk(A), walk(\+ B) ).
21 walk(fd_get(X, XD, _)) −−> !, { fresh(d, XD), var(X) }.
22 walk(\+ fd_get(i, _, _)) −−> !.
23 walk(fd_get(X, XD, XL, XU, _)) −−> !,
24      walk(fd_get(X, XD, _)), { maplist(fresh(b), [XL,XU]) }.
25 walk(\+ fd_get(i, _, _, _, _)) −−> !.
26 walk(fd_put(X, _, _))          −−> !, fd_put(X).
27 walk(nonvar(i))                −−> !.
28 walk(\+ nonvar(X))             −−> !, { var(X) }.
29 walk(kill(_))                  −−> !.
30 walk(true)                     −−> !.
31 walk(run_propagator(_, _))     −−> !.
32 walk(even(I))                  −−> !, { i(I) }.
33 walk(domain_shift(D,I,D1))     −−> !, { d(D), i(I), fresh(d, D1) }.
34 walk(domain_expand(D,I,D1))    −−> !, { d(D), i(I), fresh(d, D1) }.
35 walk(domain_negate(D, D1))     −−> !, { d(D), fresh(d, D1) }.
36 walk(domain_contract(D,I,D1))  −−> !, { d(D), i(I), fresh(d, D1) }.
37 walk(domain_contains(D,I))     −−> !, { d(D), i(I) }.
38 walk(\+ domain_contains(_,_))  −−> !.
39 walk(domains_intersection(D1,D2,D)) −−> !,
40         { d(D1), d(D2), fresh(d, D) }.
41 walk(Cis) −−>
42         { Cis =.. [F,A,B,C],
43           memberchk(F, [cis_minus,cis_plus,cis_times,
44                         cis_max,cis_min]), !,
45           b(A), b(B), fresh(b, C) }.
46 walk(cis_geq(A,B))             −−> !, { b(A), b(B) }.
47 walk(\+ cis_geq(_,_))          −−> !.
48 walk(update_bounds(X,_,_,XL,XU,NXL,NXU)) −−> !,
49         { maplist(b, [XL,XU,NXL,NXU]) },
50         fd_put(X).
51 walk(integer_kth_root(I, K, R)) −−> !, { i(I), i(K), fresh(i, R) }.
52 walk(neq_num(_, N)) −−> !, { i(N) }.
53 walk(min_max_factor(L1,U1,L2,U2,L3,U3,Min,Max)) −−> !,
54         { maplist(b, [L1,U1,L2,U2,L3,U3]),
55           maplist(fresh(b), [Min,Max]) }.
56 walk(min_product(XL,XU,YL,YU,Min)) −−> !,
57         { maplist(b, [XL,XU,YL,YU]), fresh(b, Min) }.
58 walk(max_product(XL,XU,YL,YU,Max)) −−> !,
59         { maplist(b, [XL,XU,YL,YU]), fresh(b, Max) }.
60 walk(Code) −−> [Vars], { throw(unknown−Code−Vars) }.

Figure 5.4: Abstract interpretation of a propagator’s clause body
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5.6 Automated analysis of individual propagators

1 fd_put(X), [Vars] −−> [Vars],
2         { must_be(var, X),
3           maplist(var_or_int, Vars) }.
4

5 var_or_int(X) :− var(X).
6 var_or_int(i).
7

8 b(B) :−
9         must_be(nonvar, B),
10         (   B == b −> true
11         ;   B = n(I) −> i(I)
12         ;   B == inf −> true
13         ;   B == sup −> true
14         ;   throw(nonboundary−B)
15         ).
16

17 d(D) :−
18         must_be(nonvar, D),
19         (   D == d −> true
20         ;   D = from_to(B1,B2) −> b(B1), b(B2)
21         ;   D = split(S,X,Y) −> i(S), d(X), d(Y)
22         ;   throw(nondomain−D)
23         ).
24

25 fresh(What, N) :−
26         (   What == b, nonvar(N), N = n(X) −> must_be(var, X), X = i
27         ;   must_be(var, N), N = What
28         ).
29

30 i(I) :− ( I == i −> true ; integer(I) −> true ; throw(nonint−I) ).

Figure 5.5: Additional definitions for analysing propagator code
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6 Application: Rotating workforce scheduling

The measure and purpose of every constraint system is its ability to solve
problems of practical relevance. While the main subject of this thesis are
correctness considerations in CLP(FD) systems, we feel it would be incom-
plete without presenting a concrete use case of our solver. As one of many
possible examples, we present a new software application for rotating work-
force scheduling that we are implementing at our institute.

As we have seen in Section 4.15, we cannot directly compete in the area
of performance with our CLP(FD) system. However, as we outline in the
following sections, we benefit from the use and implementation of our system
in the following ways, which likely apply to other situations as well:

• First, we use our system for prototyping. Since our system is freely
available and supports many important constraints that are also avail-
able in other CLP(FD) systems, it can be readily used to experiment
with different constraint formulations and to get a preliminary impres-
sion about which formulations are promising. The very convenient de-
velopment tools that are available in SWI-Prolog, such as its graphical
tracer, make/0 facility and execution profiler, make this phase espe-
cially productive. Once a suitable model is found, we can run the
formulation in other and faster Prolog systems with little effort.

• Second, our CLP(FD) system is implemented entirely in Prolog. This
allows us to port the formulation of several constraints to systems that
do not support them yet. We show an example of this in Section 6.6,
where we use our formulation of the automaton/3 constraint to make
it available in B-Prolog and GNU Prolog with negligible effort.

• Third, as we saw in Section 4.4, the architecture of our CLP(FD)
system is so simple that mistakes are less likely than in other sys-
tems, which need to take into account the subtle interactions of several
mechanisms that improve performance (see for example Section 3.3.3).
Moreover, due to the properties we guarantee in our system and since
it is written in Prolog, we can test it more extensively (see Chapter 5)
and can be more confident about its correctness. Hence, we use our
own CLP(FD) system as a reference to check answers of other systems.

• Fourth, and as we will demonstrate, our system’s strong filtering for
several global constraints allows us to even solve some problems more
efficiently than other CLP(FD) systems, which have chosen not to
implement such strong filtering.

This combination of available CLP(FD) systems yields very competitive
results, which we have published as: Markus Triska and Nysret Musliu,
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6.1 Introduction

A Constraint Programming Application for Rotating Workforce Scheduling,
EA/AIE 2011, Studies in Computational Intelligence 363 (2011), pp. 83–88,
on which this chapter is based.

6.1 Introduction

Computerized workforce scheduling has interested researchers for more than
30 years. To solve rotating workforce scheduling problems, different ap-
proaches have been used in the literature, including exhaustive enumera-
tion ([NHS73], [But78]), constraint (logic) programming, genetic algorithms
([MM04]) and local search methods.

In this chapter, we describe CP-Rota, a new constraint application for
rotating workforce scheduling that is currently being developed at our insti-
tute to solve real-life problems from industry. It is intended to complement
FCS, a previously developed application that is currently commercially used
in many companies in Europe. CP-Rota builds upon, contributes to and im-
proves previous constraint programming approaches to rotating workforce
scheduling in the following ways:

• CP-Rota is written in portable Prolog and will eventually be released
under a permissive licence to benefit both researchers and practition-
ers. Much of its code is already available on request at the time of
publication.

• CP-Rota implements new allocation strategies (available as options for
users to choose) that we discovered and discuss in this chapter, which
yield significantly improved performance on some real-life instances.

• Our benchmarks on real-life instances underline the potential of con-
straint programming in rotating workforce scheduling, also and es-
pecially due to using different language implementations where they
excel.

6.2 Related work

Many different approaches for solving rotating workforce instances are docu-
mented in the literature. Balakrishnan and Wong [BW90] solved a problem
of rotating workforce scheduling by modeling it as a network flow problem.
Laporte [Lap99] considered developing the rotating workforce schedules by
hand and showed how the constraints can be relaxed to get acceptable sched-
ules. Musliu et al. [MGS02] proposed and implemented a method for the
generation of rotating workforce schedules, which is based on pruning the
search space by involving the decision maker during the generation of par-
tial solutions. The algorithms have been included in a commercial product
called First Class Scheduler (FCS) [GMS01], which is used by many com-
panies in Europe. In [Mus06], Musliu applied a min-conflicts heuristic in
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6.3 The rotating workforce scheduling problem

combination with tabu search. Although this yields good performance on
many instances, the resulting search method is incomplete and its results
are therefore not directly comparable with FCS. This paper also introduced
20 real-life problems collected from different areas in industry and the liter-
ature.2

The use of constraint logic programming for rotating workforce schedul-
ing was first shown by Chan in [WGC01]. Laporte and Pesant [LP04] have
also proposed a constraint programming algorithm for solving rotating work-
force scheduling problems, implemented in ILOG and requiring custom ex-
tensions.

6.3 The rotating workforce scheduling problem

With CP-Rota, we focus on a specific variant of a general workforce schedul-
ing problem, which we formally define in this section. The following defini-
tion is from [MGS02] and proved to be able to satisfactorily handle a broad
range of real-life scheduling instances in commercial settings. A rotating
workforce scheduling instance as discussed in the present section consists of:

• n: Number of employees.

• A: Set of m shifts (activities) : a1, a2, . . . , am.

• w: Length of the schedule. A typical value is w = 7, to assign one shift
type for each day of the week to each employee. The total length of
a planning period is n×w due to the schedule’s cyclicity as discussed
below.

• R: Temporal requirements matrix, an m × w-matrix where each el-
ement Ri,j shows the required number of employees that need to be
assigned shift type i during day j. The number oj of day-off “shifts”
for a specific day j is implicit in the requirements and can be computed
as oj = n−

∑n
i=1

Ri,j.

• Sequences of shifts not permitted to be assigned to employees. For
example, one such sequence might be ND (Night Day): after working
in the night shift, it is not allowed to work the next day in the day shift.
A typical rotating workforce instance forbids several shift sequences,
often due to legal reasons and safety concerns.

• MINs and MAXs: Each element of these vectors shows, respectively,
the required minimal and permitted maximal length of periods of con-
secutive shifts of the same type.

2These examples with three additional other examples previously proposed in the lit-
erature are available from http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/
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6.3 The rotating workforce scheduling problem

• MINw and MAXw: Minimal and maximal length of blocks of consecu-
tive work shifts. A work block is a sequence consisting only of working
shifts (without days-off in between). This constraint limits the number
of consecutive days on which the employees can work without having
a day off.

The task in rotating workforce scheduling is to construct a cyclic sched-
ule, which we represent as an n × w matrix Sn,w ∈ A ∪ {day-off}. Each
element Si,j denotes the shift that employee i is assigned during day j, or
whether the employee has time off. In a cyclic schedule, the schedule for one
employee consists of a sequence of all rows of the matrix S.

The task is called rotating or cyclic scheduling because the last element of
each row is adjacent to the first element of the next row, and the last element
of the matrix is adjacent to its first element. Intuitively, this means that
employee i (i < n) assumes the place (and thus the schedule) of employee i+1
after each week, and employee n assumes the place of employee 1. This
cyclicity must be taken into account for the last three constraints above.

Figure 6.1 shows an example of a rotating workforce instance as specified
by our customers and a possible solution.

1 #Length of the schedule
2 7
3

4 #Number of Employees
5 9
6

7 ##Number of Shifts
8 3
9

10 # Temporal Requirements Matrix
11 2 2 2 2 2 2 2
12 2 2 2 3 3 3 2
13 2 2 2 2 2 2 2
14

15 #ShiftName, Start, Length, Min/Max−Length
16 D  360 480 2 7
17 A  840 480 2 6
18 N  1320 480 2 4
19

20 # Min/Max−Length of days−off blocks 
21 2 4
22

23 # Min/Max−Length of work blocks
24 4 7
25

26 # Number of not allowed shift sequences of
27 # length 2 and 3, respectively
28 3 0
29

30 # Not allowed shift sequences 
31 N D
32 N A
33 A D
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Figure 6.1: (a) A rotating workforce instance and (b) a valid schedule

In the literature and in practice, different variants of workforce schedul-
ing problems also appear. Such problems include for example nurse schedul-
ing, where soft constraints like individual preferences of employees are of
high importance.
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6.4 A new system for rotating workforce scheduling

Note that in [MGS02], finding as many non-isomorphic cyclic schedules
as possible that satisfy all constraints, and are optimal in terms of weekends
without scheduled work shifts (weekends off), are required. In the present
section, we consider the generation of a single schedule that satisfies all the
hard constraints given in the problem definition. Fulfilling all these con-
straints is usually sufficient in practice. The same constraints that we use in
this section are used in the commercial software FCS for generating rotating
workforce schedules. This system has been used since 2000 in practice for
many companies in Europe and the scheduling variant we discuss in this
section proved to be sufficient for a broad range of uses.

6.4 A new system for rotating workforce scheduling

FCS has been in commercial use since 2000 in several companies and proved
to be a good solution for many applications in practice. However, the fol-
lowing reasons have motivated us to investigate other approaches as well:

• The code base of FCS has gotten quite large and hard to maintain.
This makes user modifications difficult and error-prone.

• FCS is implemented in Visual Basic and thus depends on essentially
a single supported language implementation, which is in addition also
not freely available. This complicates the sharing of code with other re-
searchers and practitioners for joint development and turns every mis-
take in the language implementation into a potentially show-stopping
problem.

• From [Mus06], it is known that local search approaches – although
incomplete and thus not applicable in some use cases – can significantly
outperform FCS on some instances. We thus aimed to improve the
running times of FCS to more closely match competing approaches
while retaining the completeness of the search.

When we started to work on a different approach for the above reasons,
we initially looked into constraint programming in the hope to significantly
reduce the size of the code base. The promise of constraint programming
was to just state the necessary requirements with high-level constraints and
to then use built-in enumeration methods to search for solutions.

In addition, many available constraint logic platforms already support
the same types of constraints and other built-in predicates. There was thus
hope that we could free the new system from its dependence on a single
language implementation. We thus implemented our application using the
portable constraint programming model described in Section 6.5. The re-
sulting new system performs competitively (see Section 6.9) and even out-
performs FCS on several instances, making constraint logic programming a
promising approach for this problem. We call the new system CP-Rota.
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6.5 A CLP(FD) model for rotating workforce scheduling

6.5 A CLP(FD) model for rotating workforce scheduling

We chose Prolog (with finite domain extension) as a suitable implementation
language for CP-Rota. Having the goal of portability in mind to free CP-
Rota from a single language implementation, we tried to use commonly
available constraints wherever possible.

Our initial development environment was SWI-Prolog, which we chose
due to its convenient libraries, tools and workflow, and also because it is
freely available. We then ported the model to GNU Prolog due to its much
better performance, and because it is also freely available. This required
only comparatively simple changes, with the exception of the automaton/3
constraint that we used, and whose implementation in GNU Prolog we de-
scribe in Section 6.6.

When experimenting with custom allocation strategies (Section 6.8),
GNU Prolog’s lack of garbage collection hindered testing with larger in-
stances, and we therefore ported the model also to B-Prolog, which is also
a very efficient Prolog implementation and available free of charge for per-
sonal use. In all these systems, we model the rotating workforce problem as
follows:

• The schedule is represented as a list of lists, and each element is a
finite domain variable that denotes the shift type scheduled for this
position.

• The temporal requirements are enforced via global cardinality/2

constraints on the columns of the schedule. In GNU Prolog, the built-
in fd exactly/3 constraint is used instead.

• The minimal/maximal-length constraints on consecutive shifts of the
same type are enforced via automaton/3.

• Reified constraints are used to map shifts of all types to either “work”
or “day-off”, and a second automaton/3 constraint is used on these
reified variables to limit the number of consecutive work and day-off
shifts.

• Reified constraints are also used to express forbidden patterns. For
example, if “0 4 3” is forbidden, the constraint is:

Xk #= 0 #∧ Xk+1 #= 4 #==> Xk+2 #\= 3

for all variables Xk, also taking into account the schedule’s cyclicity.
In B-Prolog, notin/2 (negated extensional) constraints are used for
better performance.

It only took a few days to implement this basic model (700 LOC, in-
cluding a 50 LOC parser for instance specification files and 50 LOC for
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6.6 The automaton/3 constraint

visualisations) and to get it to run on all of the above Prolog implemen-
tations. Only built-in constraints are used in all systems. In contrast, the
development of FCS took several months.

6.6 The automaton/3 constraint

The automaton/3 constraint (sometimes also called regular), first intro-
duced in [Pes04], constrains a list of finite domain variables to be a member
of a regular language described by a finite automaton. It is a built-in con-
straint in (among others) SICStus Prolog and described in its manual. For
GNU Prolog, we used the code shown in Figure 6.2. We simply ported our
implementation from SWI-Prolog to express the constraint in terms of the
fd relation/2 constraint, a built-in constraint in GNU Prolog. We omit
the definition of the auxiliary predicates maplist/3 and include/3, which
are defined as in SWI-Prolog. We used the same implementation in B-Prolog
with minor modifications.

1 automaton(Sigs, Ns, As) :−
2         memberchk(source(Source), Ns),
3         include(sink, Ns, Sinks0), maplist(arg(1), Sinks0, Sinks),
4         phrase((arcs_relation(As, Relation),
5                 nodes_nums(Sinks, SinkNums0),
6                 node_num(Source, Start)), [[]−0], _),
7         phrase(transitions(Sigs, Start, End), Tuples),
8         maplist(fd_relation(Relation), Tuples),
9         fd_domain(End, SinkNums0).
10

11 transitions([], S, S) −−> [].
12 transitions([Sig|Sigs], S0, S) −−> [[S0,Sig,S1]],
13         transitions(Sigs, S1, S).
14

15 nodes_nums([], []) −−> [].
16 nodes_nums([Node|Nodes], [Num|Nums]) −−> node_num(Node, Num),
17         nodes_nums(Nodes, Nums).
18

19 arcs_relation([], []) −−> [].
20 arcs_relation([arc(S0,L,S1)|As], [[From,L,To]|Rs]) −−>
21         node_num(S0, From), node_num(S1, To),
22         arcs_relation(As, Rs).
23

24 node_num(Node, Num), [Nodes−C] −−> [Nodes0−C0],
25         { (   member(N−I, Nodes0), N == Node −> Num = I, C = C0,
26               Nodes = Nodes0
27           ;   Num = C0, C is C0 + 1, Nodes = [Node−C0|Nodes0]
28           ) }.
29

30 sink(sink(_)).

Figure 6.2: An implementation of automaton/3 for GNU Prolog

6.7 Visualising the search

Analogous to Section 2.7, we show the PostScript code (Fig. 6.3) that we
used to visualise the constraint solving process, tailored for the specific case
of rotating workforce scheduling. Fig. 6.4 shows an example of its usage and
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6.8 Labeling and allocation strategies

the resulting picture. In this case, we simply emit PostScript instructions
every time a concrete shift is assigned to a specific position in the schedule.
On backtracking, the position is cleared. Fig. 6.5 shows the Prolog for
emitting PostScript instructions.

Again, observing the constraint solving process in real-time can give
valuable hints about which other strategies might be worth trying.

1 /init { /NRows exch def /NCols exch def 5 5 translate 
2     600 NCols NRows max div dup scale 0 setlinewidth 
3     0 1 NCols { dup 0 moveto NRows lineto stroke } for 
4     0 1 NRows { dup 0 exch moveto NCols exch lineto stroke } for 
5     /Palatino−Roman .75 selectfont −1 0 translate } bind def 
6 /s { gsave NRows exch sub translate .5 .25 moveto names exch get 
7     dup stringwidth pop −2 div 0 rmoveto show grestore } bind def 
8 /c { NRows exch sub 1 1 4 copy 1 setgray rectfill 
9     0 setgray rectstroke } bind def

Figure 6.3: Rudimentary PostScript definitions for visualising the search

1 7 3 init
2 /names [(−) (D) (A) (N) ] def
3 0 1 1 s    1 1 c
4 0 2 1 s    1 5 1 s
5 2 5 2 s    2 6 2 s    3 7 3 s

(a)

- - D

A A

N

(b)

Figure 6.4: (a) PostScript instructions and (b) the resulting picture

1 animate_rows([], _).
2 animate_rows([Row|Rows], NumRow0) :−
3         animate_cols(Row, NumRow0, 1),
4         NumRow1 #= NumRow0 + 1,
5         animate_rows(Rows, NumRow1).
6

7 animate_cols([], _, _).
8 animate_cols([V|Vs], NumRow, NumCol0) :−
9         freeze(V, show_shift(NumRow,NumCol0,V)),
10         NumCol1 #= NumCol0 + 1,
11         animate_cols(Vs, NumRow, NumCol1).
12

13 show_shift(Row, Col, V) :− format("~w ~w ~w s\n", [V,Col,Row]).
14 show_shift(Row, Col, _) :− format("~w ~w c\n", [Col,Row]), false.

Figure 6.5: Emitting PostScript instructions for each assigned shift type

6.8 Labeling and allocation strategies

The default strategy in CP-Rota is to first label the (reified) work/“day-off”
Boolean variables. Then, all original variables of the schedule are labeled
with the “first-fail” option. We call this strategy S1. When S1 did not
yield a solution within 1000 seconds, we used Strategy S2, which is to label
all schedule variables from left to right, trying their values from lowest to
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6.9 Comparison with the commercial system FCS

highest. If this does not yield a solution within 1000 seconds, S3 is used:
Reified constraints are used to compute, for each column, the number of still
missing shifts of each type. Processing the columns in order, we then choose
the shift type that misses the least number of elements in that column, and
assign it to a feasible variable with smallest domain. When S3 also fails to
find a solution within 1000 seconds, S4 is used: It is similar to S3, except
the columns are not processed from left to right, but in descending order of
their number of still missing shifts of any type.

6.9 Comparison with the commercial system FCS

To the best of our knowledge, FCS is a state-of-the-art commercial system
for generating rotating workforce schedules. To make the performance of
CP-Rota directly comparable to the numbers that are published in [Mus06]
and other papers which refer to these numbers, we tested all instances on a
Pentium 4, 1.8 GHZ, 512 MB RAM.

Table 6.1 compares the performance of CP-Rota with that of FCS on
20 real-life instances that appear in [Mus06]. We used the latest versions
of GNU Prolog and SWI-Prolog when we performed these benchmarks in
January 2011 for our publication. Our experiments show that these tim-
ings are also valid for more recent versions. Except where stated otherwise,
timing results are from GNU Prolog. Note that while GNU Prolog is typi-
cally much faster than SWI-Prolog, instances 9 and 17 are solved faster with
SWI-Prolog due to its much stronger filtering for the global cardinality/2

constraint. We could not port this constraint to GNU Prolog so far because
our implementation of this constraint uses SWI-Prolog’s attributed vari-
ables for its filtering algorithm. Once attributed variables become available
in GNU Prolog, it is trivial to port this constraint to GNU Prolog as well.
This will likely further improve these running times. As already mentioned,
we used our own system to check answers that are emitted by GNU Prolog.

The table shows that CP-Rota performs competitively and complements
FCS so that 3 more instances can now be solved. On 7 instances, CP-Rota
outperforms FCS already with its default strategy S1, the converse holds
for 6 instances. Faster times are shown in bold. Note that every time one
of the systems is faster, it outperforms the other by several factors.

We cannot compare our results with the solver developed by Pesant
and Laporte [LP04] which was used for solving similar rotating workforce
scheduling problems. According to private communication with the authors,
their solver can as of yet only be used for a limited number of the problems
we solve in this section due to their slightly different formulation.

It would be interesting to perform a more detailed comparison with up-
coming SMT formulations ([EM13]) for this task, and to perform and publish
future benchmarks for all available systems on more recent hardware. The
large relative differences will likely be reproducible with any hardware.
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6.9 Comparison with the commercial system FCS

Ex. n FCS (time in sec) CP-Rota (sec) Strategy

1 9 0.9 0.02 S1

2 9 0.4 0.02 S1

3 17 1.9 0.24 S1

4 13 1.7 0.03 S1

5 11 3.5 0.98 S1

6 7 2 0.02 S1

7 29 16.1 0.07 S2

8 16 124 964 S1

9 47 >1000s 19 SWI, S4

10 27 9.5 >1000s –

11 30 367 >1000s –

12 20 >1000s >1000 –

13 24 >1000s 114 S1

14 13 0.54 940 S1

15 64 >1000s >1000s –

16 29 2.44 216 S1

17 33 >1000s 18 SWI, S3

18 53 2.57 >1000s –

19 120 >1000s >1000s –

20 163 >1000s >1000s –

Table 6.1: Comparison between FCS and CP-Rota
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7 Conclusion and future work

We have presented common limitations and mistakes of several widely used
constraint systems to raise awareness of these issues among authors and
users of these systems. These limitations may often be due to conscious
decision, eventually sacrificing correctness for performance.

Among authors of common constraint systems, there is a tendency to
compete in the area of performance instead of correctness. With the material
presented in this thesis, we hope to shift the balance towards giving more
consideration to questions that should in our opinion enjoy high priority:

• What are the limitations of our systems, and should we strive to re-
move them?

• What do we guarantee in our systems?

• How can we more extensively test our systems?

In particular, we encourage authors of constraint systems to guarantee al-
gebraic properties like commutativity and monotonicity, since they simplify
reasoning about programs and are hence useful for declarative debugging
and automated tests.

As we have shown in this thesis, allowing arbitrarily large integers in
finite domain constraints is also very useful and yields new application op-
portunities for constraint solvers. In particular, uniform integer arithmetic
via finite domain constraints allows us to omit the explanation of lower-
level arithmetic predicates in introductory Prolog courses and leads to more
general and easier to understand programs.

Guaranteeing terminating propagation is important for black-box tests,
to prevent the entanglement in an infinite propagation chain when con-
straints are posted. As we have seen in Section 4.14.1, it is also necessary
for guaranteeing that labeling always terminates.

Based on these considerations, we have presented a new CLP(FD) system
that gives several strong guarantees:

• It reasons over arbitrarily large integers.

• Constraint propagation always terminates.

• The system is monotonic if the flag clpfd monotonic is true.

To the best of our knowledge, ours is the first widely available CLP(FD)
system that gives any of these guarantees.

With new domain-specific languages for reification, compactified arith-
metic, parsing arithmetic expressions and propagator selection, we have
declaratively expressed parts of our system whose implementation would
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otherwise be difficult and error-prone. Large portions of our system are
generated from these specifications. If there is any mistake in the expansion
phase, it is likely to affect several parts of our system at once and is thus
easier to find. These languages may be useful in other constraint systems
as well and may improve their correctness and efficiency.

Systematic test cases that we have presented are useful for testing other
constraint systems as well, and automated analysis of individual propagators
has helped to verify several important properties.

Applying our system to rotating workforce scheduling instances further
underlines the usefulness of constraint programming for this task. Since our
system is entirely implemented in Prolog, we could easily port its relevant
parts to other Prolog systems and benefit from their higher performance,
while using our system as a reference that is more likely correct due to its
simple design and due to the testing methodologies we described in Chap-
ter 5. In addition, we could even solve some instances faster than with
other implementations due to the strong filtering for several global con-
straints that are implemented in our system. These filtering algorithms can
be easily ported to other systems as well as soon as they provide an interface
to attributed variables.

Before we give an outlook of what users can expect from our constraint
system in the future, we briefly look back on the development history of our
system, which started in 2007, in the hope that authors of other systems
can learn from the mistakes we have already made. First of all: Yes, also
the CLP(FD) system we present in this thesis had several mistakes in early
versions. Most of them could have been avoided if we had developed the
methods we describe in Chapter 5 earlier, since each of these mistakes either
led to the violation of an algebraic property like monotonicity or commuta-
tivity, or was caused by violating one of the properties we formulated and
verified for individual propagators. Unfortunately, we had for several years
not noticed how easily abstract interpretation can be applied to individual
propagators to establish several important properties.

Also, we had been delaying the implementation of several global con-
straints like all distinct/1 because they seemed not amenable to readable
and efficient Prolog implementations. Two important observations allowed
us to efficiently implement these filtering algorithms in our system: First,
as explained in Section 4.13.2, graphs can be represented via attributed
variables, which makes many important operations on them efficiently com-
putable. Second, DCGs can be used to implicitly thread rarely used argu-
ments through several predicates (see Section 4.13.3). This makes the code
more readable and allows for easy and virtually verbatim transcriptions of al-
gorithms that are specified imperatively, as they often are in the literature.
Black-box tests as described in Section 5.3 significantly helped us to find
mistakes in the implementations of these algorithms during development.

108



In February 2010, Salvador Fandiño Garćıa found the most recently re-
ported mistake in our CLP(FD) system. The mistake was that aliased vari-
ables were not handled correctly in the global cardinality/2 constraint.
Since then, no mistake was reported by users, while at the same time –
judging from searches on the Internet – the usage of our system among aca-
demic users and hobbyists alike has been increasing. Of course, we have fur-
ther improved our system since then and implemented for example stronger
filtering for several arithmetic constraints after feedback from users.

In future work, we will generalise and extend the ideas that we have
presented throughout this thesis in the following ways:

1. We will devise new DSLs and use them to describe remaining parts
of our system in more declarative ways. This concerns in particular
the implementation of individual propagators for arithmetic opera-
tions like addition and multiplication. The language we envision for
this task will not describe the actions a propagator has to perform
to filter inconsistent domain elements. Instead, we will axiomatically
describe the arithmetic properties of these operations. Appropriate
filtering actions for each argument shall then be automatically derived
from these descriptions, and the propagator code we show for exam-
ple in Fig. 4.15 and Fig. 4.16 shall be generated. Generating more
code automatically will make any mistakes of the generation phase
less isolated and thus easier to find. The language of set theory is one
declarative way to express these operations and will serve as a useful
starting point for this approach.

2. We will formulate and establish – for example via abstract interpreta-
tion – further invariants that hold in our system. Going beyond the
analysis of individual propagators (Section 5.6), we will verify proper-
ties regarding the interaction of different propagators. We have seen
an example of such an invariant in Section 5.5: gcc check/1 must
always be called before gcc global/1.

3. We will make our system faster while retaining its declarative proper-
ties and portability to other Prolog systems. In several benchmarks,
our system currently does a lot of work that turns out to be unnec-
essary. For example, propagators are sometimes scheduled and then
deactivated while they are still in the queue, and hence the overhead
for managing propagators can even outweigh the time spent on prop-
agation itself. Deactivating unnecessary propagators is similar to re-
moving auxiliary variables and constraints in reified expressions (see
Section 4.12) and can be described in an analogous way.

In addition, we will implement and test more global constraints and
apply our system on further tasks of practical relevance.
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