Prolog Programming Contest: 2 October 2005, Sitges

Prologue

There are 6 problems. The name of the file that contains your submitted solution must
be the same as given in the header of the problem - this file must be readable for the
organisers. So, for the first problem, you make a file named xmas.pl.

The input to your program will be in the form of Prolog facts, or as one or more
arguments to the predicate you must write. Please do not include such Prolog facts in
your submission.

Each correct submission (at most one for each problem) earns you one point.
Efficiency of your programs is not important (except in the Turing problem), but if
your program fails to finish in a reasonable time, it will be considered incorrect. You
can earn a bonus for the problem named The Efficient Turing Machine: in case of
a tie otherwise, the speed of your solution will break it.

Do not start predicate names with iclp05 - do not use the dynamic database!



(1) The Christmas Tree. (xmas.pl)

Christmas trees come in different sizes. Below you see a size 1, a size 2 and a size 3
Christmas tree:

/\ /\ /\
/ \ / \ / \
/ \ / \ / \
o====== 0 o-/ \-o o-/ \-o
| | / \ / \
/ \ / \
o-—————-- 0 o-/ \-o
| | / \
| | / \
o—————————- 0

You guessed it: you must write a predicate xmas/1, which when called with a positive
integer N, draws a xmas tree of size V.



(2) The Maximal Non-commutative Subset. (maxnoncom.pl)
In group theory, the problem of characterising the subsets whose elements commute (or
do not commute) is quite well researched. Erdés proved that every group contains a
commuting subset of size at least ...sorry, this was not supposed to be a group theory
class. Here is your assignment: write a predicate maxnoncom/1 which when called with a
free argument unifies it with a list of group elements that is mazimal (i.e. you can’t add
another element without violating the next constraints) and whose elements pairwise
do not commute. The internal group operation is specified as a set of internal/3 facts,
whose arguments are atomic. For the integers with addition, internal(5,3,8) would
mean 5+3=8. Here is an example and a query:

internal(a,a,a).
internal(a,c,c).
internal(b,a,b).
internal(b,c,a).
internal(c,a,c).
internal(c,c,b).
internal(d,a,d).
internal(d,c,d).

internal(a,b,b).
internal(a,d,d).
internal(b,b,a).
internal(b,d,d).
internal(c,b,a).
internal(c,d,a).
internal(d,b,c).
internal(d,d,b).

?- maxnoncom(MNC) .
MNC = [b,d]

You may rely on the internal/3 facts really specifying a group. The order in the answer
to maxnoncom/1 is not important. You might think that for some groups there is more
than one possible answer ... well, whatever you think, any correct answer suffices!
You might not remember all the details about groups ... a group is a set with an
internal operation, often denoted by *. A group has an identity, every element has
an inverse and the operation is associative. The fact internal(c,b,a) denotes the
identity: ¢ b = a. Two elements a and b commute iff a x b = b * a.



(3) The Efficient Turing Machine. (turing.pl)

When specifying his machine, Alan used Occam’s razor to such an extent that his
machine is easy to implement in any programming language ...oh well, you pompous
sod, we meant in any Turing complete language of course, and thus a (universal) Turing
machine simulator in Prolog is possible. But Alan also cared about efficiency. So we
want you to implement as efficiently as you can a Turing machine simulator and you
must name it alan/0. As input you get facts rule/5 which denote the program rules
of a TM. Here is one such fact:

rule( q0 , 1, ql , x, right ).

The arguments are: current state, current symbol under the reading head, next state,
symbol to be written, direction of movement of the head. The directions can be right,
left and stay - with obvious meaning. The start state is always qO, the final state
always qf. The blanc symbol is represented by b. You can represent the tape whichever
way you want, but when the machine has finished a computation, we want you to write
out the symbol on every square of the tape the execution has visited and in the order
from leftmost to rightmost. Ah, the input on the tape ... you get it as one intape/1
fact whose argument is a list of symbols: the head of the Turing machine is initially
reading the first element of that list and the other elements are the symbols to the right
of the head. Here is a complete example:

rule(q0, 1, q0, b, right).
rule(q0, b, qf, 1, stay).

intape([1,1,1,1,1]).

?- alan.
bbbbb1

Correctness is most important of course, but in case of a tie, (time) efficiency will be
measured and can decide about the winner for this contest.
You are free to use to your advantage the linear speedup theorem :-)



(4) Who did it? (didit.pl)

There are a number of people involved in an event of an unspecified nature - it would
distract you if we told you the details, so we don’t - and the investigation related to this
event are meant to identify who-did-it. The abstract form of the investigation consists
of Prolog facts for the predicate says/3: they represent what the different participants
in the event say. The first argument is the name of a person (a Prolog atom). The
second argument is an identifier of this particular utterance: it can be used in other
utterances. It is also atomic. The third argument is the utterance itself. Because of
the abstraction and the filtering capabilities of the investigators, the utterances are of
the following kind only

e true(ut_id): this means that the statement says that ut_id is a true statement
e false(ut_id): this means that the statement says that ut_id is a false statement

e didit(person): this means that the statement says that person did it

We also know that one of the persons saying something did it. And we assume that
every statement is either true or false.
Here is an example:

says(bart,1,true(3)).
says(bart,2,didit (john)) .
says(john,3,false(2)).

Clearly, not all three statements can be true, because john says that 2 is false. That
is typical for an investigation: people contradict each other; sometimes they contradict
themselves. So it is not always easy to find out who did it. Fortunately, experience has
shown that the truth can be discovered by assuming that the least number of people
said something untrue while still being able to pinpoint one person. Let’s analyse the
above example: it is impossible that bart and john always spoke the truth, because 2
and 3 cannot both be true. So there is at least one person who lies (but perhaps not
all the time): if john tells the truth, then 2 is false, and we can conclude that bart did
it. No other assumption that exactly person lies leads to an identification of who did
it: it is indeed impossible that john lies and bart always tells the truth.
Unfortunately, the minimality assumption might still not lead to an unambiguous iden-
tification of who did it. See later for an example.

You must be very close to guessing what we want you to do: write a predicate didit/1
which unifies its argument with a list of names of everybody who could have done it,
under the assumption that a minimal number of people have told a lie.



An example in which there are two potential answers for who did it:

says(bart,1,didit(john)) .
says(john,2,didit(bart)) .

?7- didit(L).
L = [bart, john]

Both bart and john can’t be speaking the truth - so either of them lies. So either of
them has done it.

The order in the answer to the query is unimportant.

Three more examples:

says(bart,1,didit(bart)).
says(bart,2,false(1)).

says(bart,1,didit(bart)).
says(bart,2,false(1)).

says(bart,1,didit(will)).
says(bart,2,didit(john)).

| |

| |
says(john,3,false(1)). | says(john,3,false(1)). | says(john,3,true(3)).

| says(will,4,true(3)). | says(will,4,true(4)).
?7- didit(L). | |
L = [jonh] | 7- didit(L). | 7- didit(L).

| L = [bart] | L = [bart,john,will]

The first example shows that even though nobody said that john did it, john in fact
must have done it, because obviously bart lies (his two statements are contradictory),
so if john does not lie, then bart lies when saying that he did it himself. This leaves
only john as the the one who did it.

The second example shows the entanglement of the lies: if will speaks the truth, then
bart didn’t do it, and one can’t decide whether john or will did it. So the assumption
that we must be able to single out one do-er leads to the conclusion that all three lie,
and then only bart can have done it.

The third example might surprise you: clearly bart lies at least once. Assuming only
his first statement is false, results in the unambiguous identification of john. Assuming
only his second statement is false, results in the unambiguous identification of will.
Assuming both barts statements are false, results in the unambiguous identification of
bart. Every time, there was only one lier ... with different lies.



(5) A Pebble Graph Game. (pebble.pl)

A pebble graph game consists in a graph with an initial configuration of pebbles on the
nodes and rules on how pebbles can be moved from one node to another, and added
to or removed from the graph. Such games have been the topic of study by famous
algorithmists like R. Tarjan in the 70-ties. Here is the variant that concerns us: there
are two kinds of pebbles; one kind is made of ordinary matter, the other kind is made of
anti-matter. We will name them pro-pebbles and anti-pebbles. The graphs we consider
are similar to transport networks: directed, acyclic, with one source and one sink, and
not necessarily simple. All edges have the same length. All pebbles move at the same
constant speed. Pro-pebbles can only move in the graph by following the direction of
the edges; anti-pebbles go only against the edge direction. In the initial configuration,
there are N pro-pebbles in the source, and N anti-pebbles in the sink. And then the
clock starts ticking ... At each tick of the clock, all pebbles must make a move - except
of course the surviving pebbles: a pro-pebble that arrives in the sink, or an anti-pebble
that arrives in the source.

No two pro-pebbles can move along the same edge at the same moment. No two anti-
pebbles can move along the same edge at the same moment.

This means that when there are say 7 pro-pebbles in a node with out-degree 5, there
are 2 of these pebbles that can’t move: they are taken away from the graph. Note that
you can’t take 3 pebbles away!

When a pro-pebble meets an anti-pebble, obviously they annihilate and release an
enormous amount of energy. Such meeting can happen in the middle of an edge: the
released energy blows away the edge. Or such meeting can happen at a node: nodes
are much stronger than edges, so it’s just the two involved pebbles that disappear. To
be more precise: if I pro-pebbles and .J anti-pebbles arrive at the same node X and if
I > J, then only I — J pro-pebbles remain on X ...

Now you know the setting, here is the problem ... for a given N, a given graph is an
N-pebble eater if it is possible that starting with N pro-pebbles in the source and N
anti-pebbles in the sink, it is possible for the pebbles to move in such a way that they
all disappear - because they get annihilated or removed from the graph.



Not every graph is an N-pebble eater for every N: have a look at Figure 1(a).
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(a) Not a 2-pebble eater (b) A 2-pebble eater

Figure 1: Two pebble graphs.

The pro-pebbles are the black dots, the anti-pebbles the circles. One pro-pebble cer-
tainly survives: the graph in Figure 1(a) is not a 2-pebble eater. The graph in Figure
1(b) is. It is an N-pebble eater for every N in fact.

Write a predicate pebble_eater/1 which is called with a positive integer N and which
succeeds iff the given graph is an N-pebble eater.

The graph itself is given as a set of edge/2 facts of as for instance for the graph in
Figure 1(a):

edge (source,a) .
edge (source,b) .
edge(a,c).
edge(b,c).
edge(c,sink) .

Here are some queries for this graph:

7- pebble_eater(1).
Yes

7- pebble_eater(2).
No

7- pebble_eater(3).
No

The name of the source node is always source and the name of the sink node is always
sink.



(6) Conjunctive Grammars. (cong.pl)

Alexander Okhotin invented them, and since Prolog and grammars are two hands on
one belly !, you’ll program them!

In a conjunctive grammar the rules have the form:

A=>T1&T2%& ... &Tn

where each T is a sequence of terminals and non-terminals.

As a recognising device, this rule specifies that a sentence is recognised by the grammar
as an A if it is recognised as a T1 AND asa T2 ... AND as a Tn.

As an example (we use capital letters for non-terminals here, but this is not necessarily
true in the input for your program later):

S ==> AB & DC

A ==> alA C ==> cC
A ==> C ==>

B ==> bBc D ==> aDb
B ==> D ==>

recognises the set {a"b"c"|n > 0}: AB recognises {a'b’c¢’} and DC recognises {a’b'c’}.
Conjunctive grammars resemble CFGs, but as the example shows, they describe also
some non-context-free languages.

Of course one can use a conjunctive grammar as a generating device, i.e. to generate
words in the language recognised by the grammar.

Your task is to write a predicate cong/2 whose first argument is a positive number
N and which unifies its second argument (by backtracking) with every string accepted
by the given grammar with a derivation that uses N or less times a grammar rule.
Duplicates are allowed (there is no guarantee that the given grammar is unambiguous),
but looping is not allowed.

The grammar is given as one grammar/1 fact. For the above grammar it could be:

grammar ([start ==> ( (nA, nB) & (nD, nC) ),
nA ==> (a, nA),
nA,
nB ==> (b, nB, c),
nB,
nC ==> (c, nC),
nC,
nD ==> (a, nD, b),
nD]) .

All terminals and non-terminals are atomic.
And here is an example query with answers for this grammar:

IFlemish expression



?7- cong(17,L).

L = [a,a,a,b,b,b,c,c,c]
[a,a,b,b,c,c]
[a,b,c]

= [

L
L
L

The order of answers is not important.

The notion of using a rule ... the analogy with logical inference is so strong that you
as Prolog experts shouldn’t need further clarification, but if you are off by one, that’s
fine.

You might want to define : —op(1050, x fx, &), op(900, x fxr,==>). The start symbol is
always named start. A symbol in the left hand side of a rule is a non-terminal.
Alternatives are expressed by having more than one rule for a non-terminal; the usual
symbol for denoting alternatives in a grammar is |, but is not used in our rules.
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