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Kurzfassung

Der Sequentkalkül, eingeführt von Gerhard Gentzen, ist ein wohlstudiertes
Modell des mathematischen Beweises. Die Benutzung von Lemmata ent-
spricht dem Einsatz der Schnittregel im Sequentkalkül. Schon Gentzen be-
wies dass, falls ein Theorem mittels der Schnittregel bewiesen werden kann,
dies auch ohne ihre Verwendung möglich ist. Dieses metamathematische
Resultat wird Schnitteliminationssatz genannt. Die ursprüngliche Motiva-
tion für dieses Resultat war es, die Konsistenz des Sequentkalküls zu zeigen:
Es ist leicht zu sehen, dass ein Widerspruch nur mittels der Schnittregel
hergeleitet werden kann. Wenn nun so ein Widerspruch existieren würde,
hätte er — nach Gentzens Resultat — auch eine Herleitung ohne Schnit-
tregel, was unmöglich ist. Die ursprüngliche Verwendung des Schnittelimi-
nationssatzes betraf also einen hypothetischen Beweis.

Seitdem wurde die Formalisierung der Mathematik in Form von Bewei-
sen in logischen Systemen durch den Computer ermöglicht. Es wurde also
möglich (Implementationen von) Schnitteliminationssätze auf (Formalisier-
ungen von) mathematische Beweise anzuwenden. Das Resultat ist dann
ein neuer, schnittfreier Beweis, von dem interessante Information abgelesen
werden kann. Informell gesprochen ist der Beweis direkt: er enthält keine
Umwege in der Form von Lemmata.

Das Thema dieser Dissertation ist die Erweiterung der wohlbekannten
Schnitteliminationsmethode CERES (cut-elimination by resolution) von der
Logik erster Stufe auf die Logik höherer Stufe. Sowohl theoretisch als auch
praktisch wurde der Wert der Methode (in der Logik erster Stufe) nachgewie-
sen. Aber die Logik erster Stufe hat Einschränkungen, die ihre Verwendung
für die Formalisierung von Mathematik behindern: oft kann die intuitive
Beschreibung mathematischer Objekte nicht direkt formalisiert werden, son-
dern die Objekte müssen kodiert werden.

In der Logik höherer Stufe gelten gewisse grundlegenden syntaktischen
Eigenschaften von Beweisen, die für die Definition von CERES verwendet
werden, nicht. Deshalb wird ein flexibler Sequentkalkül für die Verwen-
dung mit CERES entwickelt und seine Eigenschaften untersucht. Ausserdem
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wird ein Resolutionskalkül definiert und formal mit dem Standardresolutions-
kalkül von Peter B. Andrews verbunden. Auf diesen Systemen aufbauend
wird die Schnitteliminationsmethode CERESω definiert. Sie wird mittels
Übersetzungen, die direkt implementiert werden können, mit den Standard-
systemen verbunden.
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Abstract

A well-studied logical model of mathematical proofs is the sequent calculus
introduced by Gerhard Gentzen. In the sequent calculus, the use of lemmas
corresponds to the application of the cut rule. Already Gentzen proved that
if a theorem can be proved using the cut rule, it can also be proved without
using it. This metamathematical result is called cut-elimination theorem.
The original motivation for obtaining it was to establish the consistency of
the sequent calculus: It is easy to observe that a contradiction can only be
derived by use of the cut rule. But if such a derivation of a contradiction
would exist, by Gentzen’s result there would also be a derivation of it without
the use of cut, which is impossible. Hence the original application of the cut-
elimination theorem was to a hypothetical proof.

Since then, the formalization of mathematics in the form of proofs in log-
ical systems has been made possible by the computer. Hence it has become
possible to apply (implementations of) cut-elimination theorems to (formal-
izations of) mathematical proofs. The result is a new, cut-free proof, from
which interesting information can be extracted. Informally, the proof will be
direct: it will not contain detours in the form of lemmas.

The subject of this thesis is to extend a well-known method of cut-
elimination, CERES (cut-elimination by resolution), from first-order logic
to higher-order logic. In first-order logic, both theoretical and practical re-
sults have established the value of the method. But first-order logic has some
limitations which restrict its usefulness for the formalization of mathematics:
often, the intuitive description of mathematical objects cannot be formalized
in a straightforward way, but rather needs to be encoded.

In higher-order logic, some of the basic syntactical properties of proofs
in first-order logic on which CERES depends fail to hold. Hence a more
flexible sequent calculus, suitable for CERES, is defined in the thesis, and
its properties investigated. Furthermore, a resolution calculus is defined and
formally linked to the standard higher-order resolution calculus of Peter B.
Andrews. Building on the defined systems, the cut-elimination by resolution
method for higher-order logic, CERESω, is defined.
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Chapter 1

Introduction

One of the main objectives of the working mathematician is to demonstrate
the validity of sentences. Therefore, it is not surprising that there exists a
subfield of mathematical logic, proof theory, devoted to the study of proofs as
mathematical objects. An important aspect in the beginnings of proof theory
was to establish the consistency of logical theories using purely “finitistic”
methods. As proofs can be regarded as finite objects (i.e. finite strings of
symbols), it seemed reasonable to use proof-theoretic methods to attain this
goal. Unfortunately, by the seminal results of Gödel, it became clear that it
is not possible to prove the consistency of interesting mathematical theories
using purely finitistic means. Still, partial success has been obtained: For
example, Gentzen in [25] and Gödel in [29] proved the consistency of arith-
metic in a rather “finitistic” way, isolating the need for stronger assumptions
(induction up to ε0 in the former, normalization of functional terms in the
latter case).

Towards this aim, Gentzen invented the sequent calculus in [23, 24]. This
formalism has turned out to have a great variety of uses, and in particular
the cut-elimination theorem, which by itself establishes the consistency of
pure logic, has a variety of applications. One of those uses is in the rela-
tively new field of applied proof theory or proof mining. The idea is to use
proof-theoretic methods to extract information from formal proofs, in par-
ticular as an application to formalized proofs from “real-world” mathemat-
ics. Examples of proof mining include the extraction of algorithms, bounds,
and new proofs from existing proofs. Some concrete studies can be found
in [54, 53, 50, 39, 41, 4, 5, 6, 33].

There exist different methods to prove the cut-elimination theorem (and
hence different ways of doing cut-elimination-based proof mining). The orig-
inal idea by Gentzen can be regarded as a rewrite system on proofs that is
applied according to a specific strategy, hence it has been called reductive
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cut-elimination. The point is to go from complex cuts to less complex ones,
maybe creating new cuts in the process, but in such a way that the procedure
must eventually terminate and produce a cut-free proof. Methods based on
this rewrite system (by supplying a particular strategy) are called reductive
methods.

An alternative method is cut-elimination by resolution, which was intro-
duced in [9]. The technique is novel because it relies on the resolution method
from automated-theorem proving (introduced in [51]). It was shown in [3, 9]
that in first-order logic, CERES outperforms reductive methods in the sense
that CERES simulates them up to an exponential, and that there exists
a non-elementary speed-up of CERES over the reductive methods. Apart
from this theoretical advantage, the application of CERES in practice dif-
fers essentially from applying reductive methods: The kernel of CERES is
a certain set of clauses that is extracted from a proof with cuts. The main
point in the cut-elimination process is the refutation of this set of clauses via
resolution, which can be performed semi-automatically using a resolution
theorem prover. Contrast this with the situation of applying reductive cut-
elimination, where the process is guided solely by fixing a particular strategy
of applying the reduction rules.

1.1 Moving CERES to higher-order logic

The CERES method was originally defined as a cut-elimination method for
first-order logic. In this framework, it is not clear how to best handle induc-
tion (which is essential to many mathematical proofs): It is represented by an
axiom scheme, and standard first-order logic does not have any object-level
tools to handle schemes. In second-order logic, induction can be represented
by a single axiom, which can be handled during proof search using standard
tools like higher-order unification. In particular, the second-order theory of
arithmetic ACA0 (see [55]) is interesting because a good portion of mathe-
matics is formalizable in it, but it is much weaker than (say) full second-order
arithmetic.

The main objective of this thesis is therefore the extension of the CERES
method to (suitable subsets of) higher-order logic. A first attempt is pre-
sented in Chapter 3, where a CERES method for the class of QFC-proofs
(roughly second-order logic with quantifier-free comprehension) is presented.
Here, one of the main tools used in the first-order CERES method can still
be applied successfully: proof Skolemization. Still, the class of QFC-proofs
can be considered too weak for our purposes: for one, it does not contain
ACA0.
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Hence in Chapter 4, the CERESω method for full (intensional) higher-
order logic is defined. There are several problems that need to be solved
to this end, resulting in significant technical effort. To give the reader an
overview, we will now explain which features are essential in the first-order
CERES method, and how they make the extension to higher-order logic non-
trivial.

1.2 Proof Skolemization

In first-order logic, the CERES method is restricted to work on Skolemized
proofs, i.e. proofs of theorems which do not contain strong quantifiers (that
is, ∀ in a positive or ∃ in a negative context). This is not problematic: It
is well-known that for every formula F there exists such a formula F ′, its
Skolemization, such that F and F ′ are validity-equivalent. Moreover, for
every LK-proof π of a sequent S, there exists a proof ψ of the Skolemization
of S whose size is polynomial in π (see [7, 8]). Reversing this transformation
is possible too: Given a proof ψ of the Skolemization of S, there exists a
proof π of S such that the size of π is bounded by an elementary function
(of comparatively low complexity) in the size of ψ.

Skolemized proofs have the nice property that they do not contain strong
quantifier inferences operating on end-sequent ancestors. The strong quanti-
fier rules are the only rules of LK which impose restrictions on the context
of the rule. Their absence gives more flexibility in defining proof transforma-
tions, because these restrictions then do not have to be taken into account.

This is exactly the property exploited by the CERES method: Roughly,
so-called proof projections are constructed by leaving out inferences operating
on ancestors of cuts. If there where strong quantifier inferences operating on
end-sequent ancestors, their eigenvariable conditions may be violated and the
extracted trees fail to be proofs. For example, consider the following proof:

P (α) ` P (α) ∀l
(∀x)P (x) ` P (α) ∀r

(∀x)P (x) ` (∀x)P (x)

P (β) ` P (β) ∀l
(∀x)P (x) ` P (β) ∀r

(∀x)P (x) ` (∀x)P (x)
cut

(∀x)P (x) ` (∀x)P (x)

Its Skolemization is
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P (α) ` P (α) ∀l
(∀x)P (x) ` P (α) ∀r

(∀x)P (x) ` (∀x)P (x)

P (c) ` P (c) ∀l
(∀x)P (x) ` P (c)

cut
(∀x)P (x) ` P (c)

From this, CERES extracts the proof-projection

P (c) ` P (c)

by collecting the inferences operating on ancestors of P (c) in the end-sequent
(which are none except the axiom). On the other hand, CERES would extract
the tree

P (β) ` P (β) ∀r
P (β) ` (∀x)P (x)

from the un-Skolemized proof, and this proof-projection is not a proof be-
cause the eigenvariable condition is violated.

In higher-order logic, the usual notion of a Skolemized proof (a proof of
a Skolemized sequent) does not provide this crucial property. Consider the
proof π:

P (α) ` P (α) ∀l
(∀x)P (x) ` P (α) ∀r

(∀x)P (x) ` (∀x)P (x)

P (β) ` P (β) ∀l
(∀x)P (x) ` P (β) ∀r

(∀x)P (x) ` (∀x)P (x)
cut

(∀x)P (x) ` (∀x)P (x) ∃r
(∀x)P (x) ` (∃Z)Z

π is a Skolemized proof in this sense, but contains strong quantifier inferences
operating on end-sequent ancestors (here, the ∃r inference is a second-order
quantifier inference introducing a 0-ary predicate variable).

An idea which is immediate is to also Skolemize the auxiliary formulas
of higher-order quantifier inferences. Strictly syntactically speaking, this is
not always possible — a characterization of when it is possible is given in
Section 3.1.2. An intermediary solution is to restrict attention to proofs
using only quantifier-free comprehension. As mentioned above, a CERES
method for this class of proofs — the class of QFC-proofs — is defined in
Section 3.2.2.

A first approach towards a complete solution, initiated by Stefan Hetzl
in [31], was to analyse how the eigenvariable violations where introduced by
CERES. As the above example indicates, such violations are introduced in
the construction of the proof projections. In CERES, these projections are
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combined using atomic cuts to form a proof of the original end-sequent, and
the occurrences causing the eigenvariable violations are such that they will
be cut-ancestors in this proof. This lead to the idea of allowing eigenvariable
violations only in cut-ancestors, and using a particular strategy of eliminat-
ing atomic cuts reductively to obtain a cut-free proof — which would be, by
definition, without eigenvariable violations. Unfortunately, a counterexam-
ple (already in first-order logic) to this approach was found by the author
of this thesis, showing that in the assembled proof with atomic cuts, eigen-
variable violations caused by end-sequent ancestors can in fact occur because
projections are combined using cut and substitution.

The failure of this approach led to the development of LKsk: A cut-free
sequent calculus introducing quantifiers from Skolem terms. The idea of
introducing quantifiers from Skolem terms is not new; it has been used to
define the Skolem expansion trees of [43, 44], in higher-order resolution [1, 35,
13], in the ENAR calculus [21], and in tableaux systems [16, 30]. In LKsk,
this approach is applied to the sequent calculus, and properties specific to
sequent calculi are investigated:

1. The violation of eigenterm conditions,

2. two notions of regularity and

3. the permutability of inferences.

The development and analysis of this calculus is the content of Section 4.1.
In particular, we show soundness by giving a concrete transformation from
LKsk to LK.

1.3 Resolution

The second aspect of CERES which exhibits crucial differences between first-
and higher-order logic is the resolution calculus. In first-order logic, resolu-
tion essentially consists of substitution (via unification), contraction, and
atomic cut, applied to clauses. In higher-order logic, the notion of clause is
not closed under substitution, and hence “logical rules” have to be added
to the calculus, which perform the transformation of arbitrary sequents to
clauses.

In first-order logic, CERES exploits the fact that, when applying the
global substitution σ of a resolution refutation γ of a set of clauses C to γ, one
obtains an LK-refutation of Cσ which uses only atomic cut and contraction.
The desired proof of the original end-sequent is then obtained by combining
the proof-projections with this refutation.
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In higher-order logic, the correspondence between the rules of the resolu-
tion calculus and the rules of LK is not so easy anymore. To be able to cope
with the interplay between quantifier rules in LKsk and quantifier rules in the
resolution calculus, we use labels in both LKsk and our resolution calculus
Ral. Labels such as these are often used to add (syntactic) information to
formulas (see [22]). They have been used in a setting very similar to ours
in [21].

1.4 Cut-elimination by resolution

Using this machinery, we are able to define the CERES method for higher-
order logic in Section 4.3: Starting with an LK-proof π, we transform π
into an LKskc-proof ψ (LKskc is obtained by combining the rules of LK and
LKsk). Next, we extract a set P(ψ) of so-called CERES-projections (which
are LKsk-trees) and a set of labelled sequents CS(ψ), the characteristic se-
quent set. We modify the LKsk-trees from P(ψ) according to aRal-refutation
of CS(π), resulting in an LKsk-proof of the original end-sequent. By applica-
tion of the results from the previous sections, we obtain a cut-free LK-proof
of the original end-sequent, and have thereby reproved cut-elimination in
higher-order logic, not by reduction, but by resolution.

1.5 Methods of cut-elimination

Apart from cut-elimination by resolution and the reductive methods men-
tioned above, there still exist other ways to prove cut-elimination. The fol-
lowing methods are similar to the aforementioned reductive methods: the
core of the arguments is to show normalization (strong or weak) of a rewrite
system. In the context of intutionistic logic, cut-elimination (or rather, nor-
malization of proof terms) has been proved using a notion of computability
predicate [57, 42]. Using a similar technique due to [26], in the context of
classical second-order logic cut-elimination has been proved in [47] (via nor-
malization of terms in the λµ-calculus).

A different approach is to use semantics to establish cut-free completeness,
and thereby cut-elimination. Again in intuitionistic logic, cut-elimination
can be shown via the definition of algebraic semantics as in [14, 2]. Another
approach via non-standard semantics is the use of phase semantics due to [27].
In [46] this approach is applied to a range of systems. Last but not least, cut-
elimination in classical higher-order logic (also known as Takeuti’s conjecture)
was originally proved independently in [58] and [49], the latter being based
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on [52].
We can now state informally how cut-elimination by resolution is related

to these approaches: the problem of finding a cut-free proof of S is reduced
to finding a resolution refutation of CS(π), where CS(π) is constructed from
a proof π of S which contains cuts. Hence CS(π) contains information from
π, and refuting CS(π) is in general easier than proving S from scratch in a
cut-free way. Completeness for a resolution system is usually proved using
semantic methods. Hence cut-elimination by resolution can be seen as a
strengthening of the latter constructions, allowing information from cuts to
be used in cut-free proof search.
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Chapter 2

Preliminaries

2.1 Types, language and Skolem terms

We now introduce the higher-order language we will use. It is a version
of Church’s simple theory of types [18]. We define the set of base types
BT = {ι, o} where the intended interpretation of ι, o is the type of individuals
and booleans, respectively.

Definition 2.1.1 (Types). We define the set T of types along with their
order o inductively

1. BT ⊆ T . For all t ∈ BT , o(t) = 1.

2. If t1, t2 ∈ T then t = t1 → t2 ∈ T , and o(t) = max(o(t1), o(t2) + 1).

Notationally → associates to the right (i.e. t1 → t2 → t3 is t1 → (t2 →
t3)). We assume given, for each type α, denumerable pairwise disjoint sets
of variable symbols Vα and constant symbols Cα, and a function τ such that
for all x ∈ Vα and c ∈ Cα: τ(x) = τ(c) = α. We assume that the constant
symbols ∨, ¬, ∀α (the logical constants) with τ(∨) = o → o → o, τ(¬) =
o → o and τ(∀α) = (α → o) → o for all types α are included in the given
symbols. Hence our language can be considered as a higher-order logic, as
universal and existential quantification over all finite types can be expressed,
as well as all propositional connectives (as will be done below). We will drop
the subscript α in ∀α if the type is clear from the context. A quantifier ∀
occurring positively is called a strong quantifier, one occurring negatively is
called a weak quantifier.

Definition 2.1.2 (Expressions). We define the set E of expressions induc-
tively and extend τ to expressions:

9



1. Constant symbols and variable symbols s are expressions: s ∈ E .

2. If f ∈ E and τ(f) = α1 → α2 and τ(t) = α1, then ft is an expression
of type α2.

3. If x is a variable symbol, τ(x) = t1, and e ∈ E , τ(e) = t2, then λx.e is
an expression of type t1 → t2.

If e ∈ E , we set o(e) = o(τ(e)).

Notationally, application associates to the left (i.e. ft1t2 is (ft1)t2). Ex-
pressions of type o are called formulas. If the uppermost symbol of a formula
F is not one of ∀α, ∨ or ¬, then F is called atomic. We will henceforth
refer to variable and constant symbols as variables and constants, respec-
tively. As metavariables for expressions we use T,S,R, . . ., for variables we
use X,Y,Z, . . ., for formulas we use F,G,H, . . ., for sequences of formulas
we use Γ,Π,Λ, . . . (possibly with subscripts).

For convenience, we write F∨G for ∨FG and define some logical operators
by settings

(∀X)F = ∀α(λX.F)
(∃X)F = ¬(∀X)¬F
F ∧G = ¬((¬F) ∨ (¬G))
F→ G = (¬F) ∨G

for all types α. We will drop parentheses inside expressions when they are
redundant with respect to the usual strongness-of-binding order on the logical
connectives.

Definition 2.1.3 (Subexpression relation). Define the relation <1⊂ E × E
by induction on E ∈ E :

1. If E = fT, then T <1 E and f <1 E.

2. If E = λX.F, then F <1 E.

Define ≤ as the reflexive and transitive closure of <1, and define < as the
transitive closure of <1.

Proposition 2.1.4. The subexpression relation ≤ is a partial order.

Proof. ≤ is transitive and reflexive by definition. It is antisymmetric: As-
sume E ≤ F, F ≤ E and F 6= E. Then there exist E′,F′ such that
E <1 E′ ≤ F and F <1 F′ ≤ E and therefore E < F < E, but < is
irreflexive!
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If E ≤ F we say that F contains E, if E < F we say that F properly
contains E.

Definition 2.1.5 (Free variables). Let T ∈ E . We define the set of free
variables FV(T) by induction on T:

1. T = X. Then FV(T) = {X}.
2. T = C a constant. Then FV(T) = ∅.
3. T = RS. Then FV(T) = FV(R) ∪ FV(S).

4. T = λX.R. Then FV(T) = FV(R) \ {X}.
In the following, if we do not explicitly state otherwise, equality between

expressions is taken to be α-equality, i.e. equality modulo renaming of bound
variables. Another important basic notion is the notion of replacement. Due
to our convention of regarding expressions modulo α-equality, we assume
in the following definition that no bound variable of R is an element of
FV(S) ∪ FV(T).

Definition 2.1.6 (Replacement). If S,T ∈ E and τ(S) = τ(T), then σ =
[S← T] is a replacement. If S is a variable, then σ is a called a substitution.
Let R ∈ E , and σ = [S← T] be a replacement. Then define Rσ inductively:

1. If R = S then Rσ = T.

2. If R 6= S is a constant or variable then Rσ = R.

3. If R = UV then Rσ = UσVσ.

4. If R = (λX.G) then Rσ = (λX.Gσ).

As usual, we define a notion of reduction on expressions.

Definition 2.1.7 (β-reduction). Let T = (λX.R)S be an expression such
that S is free for R. Then T→β R [X← S]. The relation�β is the transitive
and reflexive closure of the compatible closure of the relation of β-reduction.
The relation =β is the symmetric closure of �β.

It is well known that β-reduction in the simple theory of types is strongly
normalizing and confluent:

Proposition 2.1.8. Let E be an expression. Then there exists a unique
expression E such that E �β E and E is irreducible. Furthermore, there
does not exist an infinite �β-chain starting at E.
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If E is an expression, E is called the β-normal form of E. Our expres-
sions will contain Skolem terms. To obtain sound proof systems, we will
need to restrict the expressions that can be used: we follow the approach of
Miller [44]:

Definition 2.1.9 (Skolem symbols). Let α, β1, . . . , βn be types. Then the
list σ = β1, . . . , βn, α is called a signature (for a Skolem symbol). For each
signature σ, let σT = β1 → . . .→ βn → α, and let Kσ ⊆ CσT be a denumer-
able set of constant symbols of type σT such that if σ1 and σ2 are different
signatures then Kσ1 and Kσ2 are disjoint. C ∈ Kσ is called a Skolem symbol
of signature σ with arity n. Then define the Herbrand Universe as the set of
all T ∈ E such that whenever a Skolem symbol of arity n has an occurrence
in T, it is applied to at least n arguments. Furthermore, if a variable has a
free occurrence in any of these arguments, that occurrence is also free in T.

From now on, by E we denote the Herbrand Universe (i.e. we only consider
expressions contained in the Herbrand Universe).

2.2 The sequent calculus LK

The starting point of our investigations will be the following formulation
of a sequent calculus LK. A sequent is a pair of lists of formulas, written
Γ ` ∆. While we define sequents as lists to be able to define occurrences in
sequents and proofs, we will treat them as multisets most of the time. Hence
we do not explicitly include exchange or permutation rules in our calculi.
For simplicity, we restrict ourselves to prooftrees in which all formulas are
in β-normal form. Hence we note that the quantifier rules below include an
implicit β-reduction.

Definition 2.2.1 (LK rules and proofs). The following figures are the rules
of inference of LK:
Propositional rules:

Γ ` ∆,F

¬F,Γ ` ∆
¬: l

F,Γ ` ∆

Γ ` ∆,¬F
¬: r

F,Γ ` ∆ G,Π ` Λ

F ∨G,Γ,Π ` ∆,Λ
∨: l

Γ ` ∆,F

Γ ` ∆,F ∨G ∨: r1
Γ ` ∆,G

Γ ` ∆,F ∨G ∨: r2

Structural rules:

Γ ` ∆,F,F

Γ ` ∆,F
contr: r

F,F,Γ ` ∆

F,Γ ` ∆
contr: l

12



Γ ` ∆
F,Γ ` ∆

weak: l
Γ ` ∆

Γ ` ∆,F
weak: r

Γ ` ∆,F F,Π ` Λ

Γ,Π ` ∆,Λ
cut

Quantifier rules:

RT,Γ ` ∆

∀R,Γ ` ∆
∀: l Γ ` ∆,RX

Γ ` ∆,∀R ∀: r

In ∀: r, X must not occur free in Γ,∆,R. X is called the eigenvariable of
this rule. In ∀: l, T is called the substitution term of the rule.

An LK-proof is a tree formed according to the rules of LK such that all
leafs are of the form F ` F. The formulas in Γ,∆,Π,Λ are called context
formulas. The formulas in the upper sequents which are not context formulas
are called auxiliary formulas, those in the lower sequents are called main
formulas. If π is an LK-proof, by |π| we denote the number of sequent
occurrences in π.

If S is a set of sequents, then an LK-refutation of S is an LK-tree π
where the end-sequent of π is the empty sequent, and the leaves of π are
either axioms F ` F or sequents in S.

A formula occurrence in a sequent or prooftree is a formula together with
its position in the sequent or prooftree. Formula occurrences in prooftrees
come equipped with an ancestor and descendant relation which is defined
in the usual way. An inference ρ in a prooftree is said to operate on an
occurrence ω if ω is the auxiliary or main formula of ρ. An LK-proof π is
called regular if for all ∀: r inferences ρ with eigenvariable X in π, X only
occurs in the subproof ending in ρ. It is well-known that every LK-proof
of a closed sequent S can be transformed into a regular LK-proof of S by
renaming eigenvariables.

Example 2.2.2. We prove the first-order theorem

(∃y)(∀x)P (x, y) ` (∀x)(∃y)P (x, y),

where τ(y) = τ(x) = ι and τ(P ) = ι → ι → o. Expanding the definitions,
this is the sequent

¬∀ιλy.¬∀ιλx.P (x, y) ` ∀ιλx.¬∀ιλy.¬P (x, y)

The following is a cut-free LK proof of this theorem:
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P (u, v) ` P (u, v) ¬: l¬P (u, v), P (u, v) ` ∀: l∀λy.¬P (u, y), P (u, v) ` ¬: r
P (u, v) ` ¬∀λy.¬P (u, y) ∀: l∀λx.P (x, v) ` ¬∀λy.¬P (u, y) ¬: r` ¬∀λy.¬P (u, y),¬∀λx.P (x, v) ∀: r` ¬∀λy.¬P (u, y),∀λy.¬∀λx.P (x, y) ¬: l¬∀λy.¬∀λx.P (x, y) ` ¬∀λy.¬P (u, y) ∀: r¬∀λy.¬∀λx.P (x, y) ` ∀λx.¬∀λy.¬P (x, y)

Note that, as usual, one can define the rules ∃: l, ∃: r,→: r,→: l, ∧: r and
∧: l from the rules of LK. For example, the rule

Γ ` ∆,F [X← T]

Γ ` ∆, (∃X)F
∃: r

can be defined as
Γ ` ∆,F [X← T]

¬F [X← T] ,Γ ` ∆
¬: l

(∀X)¬F,Γ ` ∆
∀: l

Γ ` ∆,¬(∀X)¬F
¬: r

Recall the system T introduced in [18] and used in [1]. T is a Hilbert-type
system for higher-order logic. Using the well-known transformations from
sequent calculi to Hilbert-type systems (see [24, 60]), we can prove a relative
soundness result. If S = Γ ` ∆ is a sequent, then F (S) =

∨¬Γ
∨

∆. If S is
a set of sequents, then F (S) = {F (S) | S ∈ S}.
Proposition 2.2.3. If there exists an LK-refutation of S, then there exists
a T -refutation of F (S).

Finally we introduce the following useful sequent-merge notation:

Definition 2.2.4. Let S1 = Γ1 ` ∆1, S2 = Γ2 ` ∆2. Then we define
S1 ◦ S2 = Γ1,Γ2 ` ∆1,∆2. Let C = {C1, . . . , Cm}, D = {D1, . . . , Dn} be sets
of sequents, then C × D = {Ci ◦Dj | i ≤ m, j ≤ n}.

2.3 The higher-order resolution calculus R
We follow Benzmüller’s presentation in [12] of Andrews’ resolution calculus
R originally introduced in [1]. We consider Andrews’ calculus instead of
more recent calculi such as [35, 13, 11, 40, 48, 38] since Andrews’ calculus
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can be regarded as the most simple formulation of a resolution calculus for
higher-order logic. Note that in particular, we do not consider unification
(see [36, 56, 20, 37]) but that in principle, calculi which use more advanced
features during proof search can be used provided that their deductions can
be transformed into deductions in our format.

As in the previous Section, we assume that all formulas occuring in R-
deductions are in β-normal form, so the substitution and quantifier rules will
include an implicit β-reduction step. In contrast to Benzmüller, we present
clauses as atomic sequents (and pre-clauses as sequents).

Definition 2.3.1 (R rules and deductions). The rules of R are:

Γ ` ∆,¬A

A,Γ ` ∆ ¬T ¬A,Γ ` ∆

Γ ` ∆,A ¬F Γ ` ∆,A ∨B

Γ ` ∆,A,B ∨T

A ∨B,Γ ` ∆

A,Γ ` ∆
∨Fl

A ∨B,Γ ` ∆

B,Γ ` ∆
∨Fr

Γ ` ∆,∀A
Γ ` ∆,AX ∀T

∀A,Γ ` ∆

A(fX1 . . .Xn),Γ ` ∆
∀F S

S [X← T]
Sub

A,A,Γ ` ∆

A,Γ ` ∆ SimF
Γ ` ∆,A,A

Γ ` ∆,A SimT
Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ
Cut

where in ∀F , X1, . . . ,Xn are all the free variables occuring in A, and if
τ(Xi) = ti for 1 ≤ i ≤ n and τ(A) = t→ o, then f ∈ Kt1,...,tn,t.

Let C be a set of sequents. Then a sequence of sequents S1, . . . , Sm is an
R-deduction of Sm from C if for all 1 ≤ i ≤ m, either

1. Si ∈ C, or

2. Si is derived from Sj (and Sk) by a rule of R, where j, k < i. If Si
is derived by ∀F , then the Skolem symbol introduced by the inference
must not occur in any S` with ` < i, and must not occur in C. If Si
is derived by ∀T , then the same must hold for the variable X that is
introduced.

An R-deduction of the empty sequent from C is called an R-refutation of C.
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Chapter 3

CERES for QFC-proofs

3.1 Towards CERES in higher-order logic

We intend to extend the first-order cut-elimination method CERES intro-
duced in [9] to higher-order logic. As we have noted in Section 1.2, the
method of proof Skolemization is a crucial aspect in the definition of the
CERES method: it allows to reduce the problem of cut-elimination on arbi-
trary LK-proofs to the problem of cut-elimination on LK-proofs of sequents
without strong quantifiers.

In first-order logic, cut-free proofs of sequents without strong quantifiers
do not contain strong quantifier inferences, and hence there are no eigen-
variable conditions to observe. It is exactly this aspect which is exploited in
the definition of the proof projections in the CERES method: from a proof
with cuts, cut-free proofs are extracted by “leaving out” inferences — in the
general setting, such a construction would be unsound due to eigenvariable
violations.

Unfortunatly, in higher-order logic cut-free proofs of sequents without
strong quantifiers may still contain strong quantifier inferences due to com-
prehension.

Example 3.1.1. The following LK-proof proves a sequent that does not
contain strong quantifiers, but the proof contains a strong quantifier infer-
ence:
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P (β, a) ` P (β, a) ∀: l
(∀x)P (x, a) ` P (β, a) ∀: r

(∀x)P (x, a) ` (∀z)P (z, a)

P (c, b) ` P (c, b) ∀: l
(∀z)P (z, b) ` P (c, b) →: l

(∀x)P (x, a), (∀z)P (z, a)→ (∀z)P (z, b) ` P (c, b) ∀: l λx.(∀z)P (z, x)
(∀x)P (x, a), (∀X)(X(a)→ X(b)) ` P (c, b) →: r

(∀X)(X(a)→ X(b)) ` (∀x)P (x, a)→ P (c, b)

3.1.1 Structural Skolemization in higher-order logic

A first attempt to solve this problem would be to Skolemize the auxiliary
formulas of the weak quantifier inferences. First, we introduce a useful normal
form for expressions and proofs, which makes quantified variables explicit.
This normal form will be useful for defining Skolemization of formulas later
on.

Definition 3.1.2. An expression E is in qη-normal form if all its subexpres-
sions of the form ∀G are such that G = λX.F for some X,F. We say that
a sequent is in qη-normal form if all its formulas are in qη-normal form, and
an LK-proof π of S is qη-normal if

1. all formulas in S are in qη-normal form and

2. for all ∀: l applications in π, their substitution terms are in qη-normal
form.

It is easy to see that every expression can be converted into qη-normal
form by some η-expansion steps and that furthermore, every LK-proof of a
sequent S can be converted into an LK-proof π of a qη-normal form of S
thus obtained such that π is in qη-normal form. Hence for the rest of this
chapter, we will only treat qη-normal proofs.

Example 3.1.3. The proof

∀P ` ∀P
(∀X)X ` ∀P ∀: l ∀P

is not in qη-normal form, but the proof

(∀x)P (x) ` (∀x)P (x)

(∀X)X ` (∀x)P (x)
∀: l (∀x)P (x)

is.

Proposition 3.1.4. If π is a qη-normal LK-proof, then all formula occur-
rences in π are in qη-normal form
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Proof. By induction on the length of π.

Now we are ready to extend the definition of structural Skolemization to
the higher-order setting:

Definition 3.1.5. We define the Skolemization operator sk. Let F be a
closed formula in qη-normal form containing strong quantifiers. Let ∀αG be
a subformula of F occurring positively. Let ∀β1(λX1.H1), . . . ,∀βn(λXn.Hn)
be the weak quantifier occurrences dominating ∀α. Then let sk0(F) be F
where the subformula corresponding to ∀αG is replaced by G(fX1 . . .Xn),
where f ∈ Kβ1,...,βn,α is a new Skolem symbol. Then we define

sk(F) =

{
F if F does not contain strong quantifiers
sk(sk0(F)) otherwise

Let S be a closed sequent F1, . . . ,Fn ` G1, . . . ,Gm, and let F = (F1 ∧
. . .∧Fn)→ (G1 ∨ . . .∨Gm). If sk(F) = (F′1 ∧ . . .∧F′n)→ (G′1 ∨ . . .∨G′m),
then sk(S) = F′1, . . . ,F

′
n ` G′1, . . . ,G

′
m.

Example 3.1.6. Let

F = ¬(∀X(X(0) ∧ ∀n(X(n)→ X(s(n)))→ ∀nX(n))).

Then

sk(F) = ¬(∀X(X(0) ∧ (X(f(X))→ X(s(f(X)))))→ ∀nX(n)).

where f ∈ Kι→o,o.
Proposition 3.1.7. Let F be a formula. Then sk(F) does not contain strong
quantifiers.

We make the notion of Skolemization of auxiliary formulas of weak quan-
tifier inferences precise:

Definition 3.1.8. Let ρ be

AF,Γ ` ∆ ∀: l∀A,Γ ` ∆

where ∀A is in qη-normal form, and let A∗ be the formula obtained from AF
by Skolemizing the strong quantifiers introduced by F. ρ is called Skolemiz-
able if there exists a formula F∗ such that

AF∗,Γ ` ∆ ∀: l∀A,Γ ` ∆
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is a valid inference.

Definition 3.1.9. An LK-proof ψ is called Skolemizable if all weak quan-
tifier inferences occurring in ψ that operate on end-sequent ancestors are
Skolemizable.

It is easy to see that not all LK-proofs are Skolemizable; in fact the
proof exhibited in Example 3.1.1 is not Skolemizable. Skolemzation of the
∀: l inference would yield A∗ = P (s, a) → (∀z)P (z, b) with s ∈ Kι. Clearly
there is no F∗ such that (λX.X(a)→ X(b))F∗ = A∗.

3.1.2 Skolemizable proofs

We will now give a syntactic characterization of the Skolemizable inferences.
For this, we need some definitions.

Definition 3.1.10. Let F be a formula in qη-normal form. We say that X
is linear in F if the number of occurrences of X in F is < 2. Let X be linear
in F, then we call X restricted in F if

1. no weak quantifier dominates X or

2. exactly one weak quantifier (∀Y) dominates X and X occurs as XY.

Definition 3.1.11. Let (∀X)F be a formula. The occurrence of (∀X) is
called non-dummy if F contains X.

For the replacement of a subexpression at position λ by C in A we write
A[C]λ.

Proposition 3.1.12. Let ρ be

A [X← F],Γ ` ∆ ∀: l
(∀X)A,Γ ` ∆

such that (∀X)A is in qη-normal form and in β-normal form, and F is in
β-normal form. Then ρ is Skolemizable if and only if either

1. X is linear in A and if F contains non-dummy strong quantifiers w.r.t.
A [X← F] then X is restricted in A or

2. X occurs only positively (negatively) in A and all non-dummy quantifier
occurrences in F are weak (strong) quantifiers or

3. F does not contain non-dummy quantifiers.
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Proof. First, we will show that the given criteria imply Skolemizability of ρ.
We will define the formula F∗ that will be used for the inference

A [X← F∗],Γ ` ∆ ∀: l
(∀X)A,Γ ` ∆

where A∗ = A [X← F∗] is the result of Skolemizing the strong quantifiers
introduced by F in A [X← F]. Either:

1. X is linear in A and if F contains non-dummy strong quantifiers w.r.t.
A [X← F] then X is restricted in A. If X does not occur in A, then
there is nothing to show, so assume X occurs at position ξ in A. Then
A [X← F] = A[F]ξ and A∗ = A[F′]ξ where F′ is the Skolemization of

F in A [X← F]. If F does not contain non-dummy strong quantifiers
w.r.t. A [X← F], then F′ is just F after dropping some quantifiers,
and we can use F∗ = F′. Otherwise, distinguish the cases

(a) X does not occur as Xt for some t. Then, as (∀X)A is in β-
normal form, also A [X← F] is in β-normal form, and so we may
again take F∗ = F′.

(b) X occurs as Xt for some t. Distinguish further:

i. No weak quantifier dominates X. Then F′t only contains
variables that occur in Ft, so F′t does not contain any variable
that is bound in A, therefore we may use F∗ = F′.

ii. Exactly one weak quantifier (∀Y) dominates X and t = Y.
If F′ = λZ.G, then set F∗ = λZ.G [Y ← Z], otherwise set
F∗ = λZ.F′ [Y ← Z] Z. Then A [X← F∗] = A[F∗]ξ = A[F′]ξ
and again F∗ does not contain any variable that is bound in
A.

2. X occurs only positively in A and all non-dummy quantifiers in F are
weak. Then the Skolemization of F in AF, call it F′, is just F after
dropping some dummy strong quantifiers and we may use F∗ = F′.

3. X occurs only negatively in A and all non-dummy quantifiers in F are
strong. Analogous to the previous case.

4. F only contains dummy quantifiers. Analogous to the previous cases.

For the other direction, we show that if the given criteria are not fulfilled,
then ρ is not Skolemizable. We proceed with a proof by contradiction. We
may assume that F contains non-dummy quantifiers. We distinguish the
cases

21



1. X is not linear in A. To simplify the argument, we assume that there
are occurrences of X in A of the form Xt1, Xt2 at position η1, η2 —
the argument for the other type of occurrence is analogous. Then at
positions η1, η2 in A [X← F] we have subformula occurrences of Ft1,
Ft2. There are the following subcases:

(a) X occurs positively in A and F contains non-dummy strong quan-
tifiers. Then the occurrences of Ft1, Ft2 are positive. F contains
non-dummy strong quantifiers, so at the same relative positions
in the Skolemizations of Ft1, Ft2 we have Skolem terms with dif-
ferent head symbols, say f1, f2. F∗ cannot contain two terms with
different heads at the same position, so they must be introduced
in A∗ by β-reduction when applying F∗ to t1, t2. But t1, t2 can-
not contain f1, f2, because they are fresh symbols, and we arrive
at a contradiction.

(b) X occurs negatively in A and F contains non-dummy weak quan-
tifiers. Analogous to the previous case.

(c) F contains non-dummy strong and weak quantifiers. As X occurs
in A, it does so either positively or negatively, so one of the above
cases applies.

(d) X occurs positively and negatively in A. As F contains non-
dummy quantifiers, it either contains strong or weak ones, so one
of the above cases applies.

2. F contains non-dummy strong quantifiers w.r.t. A [X← F] and there
are weak quantifiers dominating X in A and either

(a) more than one weak quantifier dominates X or

(b) exactly one quantifier (∀Y) dominates X and X does not occur
as XY in A.

Regarding (2a): Assume X occurs at position η as Xt (the argument
for the other type of occurrence is analogous) in A. Then at position η
in A [X← F] we have the formula Ft that is dominated by more than
one weak quantifier, say among them are (∀X1), (∀X2). F contains
strongly quantified variables, so its Skolemization will contain a Skolem
term f(. . . ,X1, . . . ,X2, . . .). F∗ must not contain variables that are
quantified in A, so X1,X2 must be introduced in f by β-reduction
when reducing A [X← F∗]. But f is a new function symbol, so t cannot
contain f , so if t contains both X1 and X2, then it has at the head some

22



function symbol g, but the function symbol in the Skolemization of F
that is directly above X1,X2 is f , so we arrive at a contradiction.

Regarding (2b): We may assume that exactly one weak quantifier dom-
inates X. Let X occur as XT with T 6= Y (the argument for the other
type of occurrence is analogous) at position η in A. F contains non-
dummy strong quantifiers w.r.t. AF, so in the Skolemization of F in
AF, there will be a Skolem term f(. . . ,Y, . . .). In A, Y is bound, so
Y must be introduced in f by β-reduction when reducing A [X← F∗].
But T 6= Y, so if T contains Y, it will be below some function symbol
g, but Y is directly below f , so we again have a contradiction.

3.2 QFC-CERES

In this section, we study a formulation of CERES for a (trivially) Skolemiz-
able class of proofs in second-order logic called QFC. For this purpose we
will, throughout this section, restrict our attention to a subset E ′ of our set
of expressions E : E ′ is the largest subset of E fulfilling:

1. if T ∈ E ′ and X occurs in T then either τ(X) = ι or τ(X) = ι → o,
and

2. if T ∈ E ′ and ∀α occurs in T, then α = ι or α = ι→ o.

Hence, this class is slightly more liberal than the one originally treated in [34]
and [32]. It can be seen as “first-order logic with monadic predicate variables
and arbitrary higher-order constants”. We now turn to the definition of
QFC-proofs (proofs using quantifier-free comprehension):

Definition 3.2.1. An instance of the ∀: l rule

FT,Γ ` ∆ ∀: l∀F,Γ ` ∆

is called quantifier-free if T does not contain any quantifiers. We call an
LK-proof π a QFC-proof if all ∀: l applications in π are quantifier-free.

The following is a trivial consequence of the definition:

Proposition 3.2.2. Let π be a QFC-proof. Then π is Skolemizable.

Proposition 3.2.3. Let π be a QFC-proof of S such that S does not contain
strong quantifiers. Then π does not contain strong quantifiers inferences
operating on end-sequent ancestors.

Proof. By structural induction on π.
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3.2.1 QFC-R-deductions

To define CERES on QFC-proofs, we restrict the resolution calculus R anal-
ogously to the restriction of LK to QFC:

Definition 3.2.4. Let γ be an R-deduction of S from C. γ is a QFC-R-
deduction if

1. For all Sub applications in γ, the substitution term T is quantifier-free
and

2. for all C ∈ C, C is quantifier-free.

Proposition 3.2.5. Let γ be a QFC-R-deduction of S from C. Then S is
quantifier-free.

Proof. By induction on the length of γ.

Corollary 3.2.6. Let γ be a QFC-R-deduction. Then γ contains neither
∀T nor ∀F inferences.

Definition 3.2.7. We define the application of a quantifier-free substitution
σ to a set of clauses C = {C1, . . . , Cn}, denoted S(C, σ), as the clause form
of the set of quantifier-free sequents {C1σ, . . . , Cnσ}. Note that this includes
transformation to CNF, therefore |S(C, σ)| ≥ |C|.

Next we state two lemmas that show that QFC-R-deductions can be
transformed into QFC-proofs.

Lemma 3.2.8. Let C be a clause and σ be a quantifier-free substitution.
Then we can construct a cut-free QFC-proof of Cσ from S({C}, σ).

Proof. By the definition of S, S({C}, σ) is the clause form of Cσ and there-
fore, as σ is quantifier-free, propositionally equivalent to Cσ. By complete-
ness and the decidability of propositional logic, the desired QFC-proof can
be constructed.

Lemma 3.2.9. Let R be a QFC-R-deduction of Γ ` ∆ from a set of clauses
C. Then there exists a QFC-proof ψ of Γ ` ∆ from D containing quantifier-
free cuts only, where D = S(C, σ) for some quantifier-free σ.

Proof. We proceed by induction on the size of R, letting C = {C1, . . . , Cn}.
In addition to what is stated in the theorem, the proofs we construct will
have the property of containing neither ∀: l nor ∀: r inferences.

1. |R| = 0. Then R = Ci for some 1 ≤ i ≤ n. Take ψ as the sequent Ci.

24



2. |R| = m+ 1. Distinguish the last inference in R:

(a) R is

Γ ` ∆,¬A ¬TA,Γ ` ∆

By (IH) we have a QFC-proof ψ of Γ ` ∆,¬A. Take as the
desired QFC-proof

ψ

Γ ` ∆,¬A
A ` A ¬: l¬A,A `

cut
A,Γ ` ∆

By Proposition 3.2.5, the cut is quantifier-free.

(b) R is

¬A,Γ ` ∆ ¬FΓ ` ∆,A

Symmetric to the previous case.

(c) R is

Γ ` ∆,A ∨B ∨TΓ ` ∆,A,B

By (IH) we have a QFC-proof of Γ ` ∆,A ∨ B. Take as the
desired QFC-proof

ψ

Γ ` ∆,A ∨B
A ` A B ` B ∨: l

A ∨B ` A,B
cut

Γ ` ∆,A,B

By Proposition 3.2.5, the cut is quantifier-free.

(d) R is

A ∨B,Γ ` ∆ ∨FlA,Γ ` ∆

By (IH) we have a QFC-proof of A ∨ B,Γ ` ∆. Take as the
desired QFC-proof
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A ` A ∨: r1
A ` A ∨B

ψ

A ∨B,Γ ` ∆
cut

A,Γ ` ∆

By Proposition 3.2.5, the cut is quantifier-free.

(e) R is

A ∨B,Γ ` ∆ ∨FrB,Γ ` ∆

Analogous to the previous case.

(f) R is

A,A,Γ ` ∆
SimF

A,Γ ` ∆

By (IH) we have a QFC-proof of A,A,Γ ` ∆. Take as the desired
QFC-proof

A,A,Γ ` ∆
contr: l

A,Γ ` ∆

(g) R is

Γ ` ∆,A,A
SimT

Γ ` ∆,A

Symmetric to the previous case.

(h) R is

Γ ` ∆,A A,Π ` Λ
Cut

Γ,Π ` ∆,Λ

By (IH) we have QFC-proofs of Γ ` ∆,A and A,Π ` Λ. By
Proposition 3.2.5, we may use quantifier-free cut to combine the
two QFC-proofs to obtain the desired one.

(i) R is

S
Sub

S [X← T]

By (IH) we have a QFC-proof ψ of S from D = S(C, µ), for some
quantifier-free µ, not containing any ∀: l or ∀: r inferences. By
applying σ = [X← T] to ψ, we obtain a QFC-proof of S [X← T]
where every leaf is either of the form Aσ ` Aσ or Dσ for D ∈ D.
Applying Lemma 3.2.8 to the latter leafs, we obtain the desired
QFC-proof from S(D, σ).
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3.2.2 CERES on QFC-proofs

This section will describe a version of the CERES method for QFC-proofs,
called QFC-CERES. We will first prove a lemma that shows that strong
quantifiers can be removed from a sequent in a QFC-proof by dropping
quantifiers and introducing Skolem terms.

Lemma 3.2.10. Let ψ be a QFC-proof of a sequent S, then we can construct
an QFC-proof of sk(S).

Proof. This proof is based on the proof of the proposition for first-order logic
in [8]. Let S = Γ ` ∆ and assume S contains a positive occurrence of
(∀X)A, where τ(X) = α. Then this quantifier has been introduced in one of
the following ways in ψ:

(a)
Π ` Λ,B ∨: r1

Π ` Λ,B ∨C

s.t. (∀X)A occurs as a subformula of C. Let ρ[B ∨ C] be the path
connecting Π ` Λ,B∨C with S. Let A(fX1 . . .Xn) be the subformula
in sk(S) corresponding to (∀X)A in S (i.e. its Skolemization). Then
define C′ = C[A(fX1 . . .Xn)]ξ, where ξ is the position of (∀X)A in C
and replace ρ[B ∨C] by ρ[B ∨C′].

(b)
Π ` Λ,C ∨: r2

Π ` Λ,B ∨C

s.t. (∀X)A occurs as a subformula of B. Analogous to (a).

(c) Π ` Λ
weak: r

Π ` Λ,B

s.t. (∀X)A occurs as a subformula of B. Analogous to (a).

(d) Π ` Λ
weak: l

B,Π ` Λ

s.t. (∀X)A occurs as a subformula of B. Analogous to (a).

(e)

ϕ(Y)

Π ` Λ,AY ∀: r
Π ` Λ, (∀X)A
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Let ρ[(∀X)A] be the path connecting Π ` Λ, (∀X)A with S. Let
t1, . . . , tn be the substitution terms of the ∀: l inferences on ρ[(∀X)A]
whose quantifiers dominate the occurrence of (∀X)A. Let the main for-
mulas of these inferences be (∀Xi)Ai, and let τ(Xi) = βi and τ(X) = α.
We choose a fresh f ∈ Kβ1,...,βn,α and replace ϕ(Y) by ϕ(f(t1 . . . tn)).
By the eigenvariable condition on Y, this yields an LK-proof of Π `
Λ,Af(t1 . . . tn) (note that t1, . . . , tn cannot contain eigenvariables from
the proof ϕ(Y), as they cannot be present in Π ` Λ, (∀X) by the eigen-
variable condition and t1, . . . , tn occur below this sequent). We remove
the ∀: l inference and replace ρ[(∀X)A] by ρ[Af(t1 . . . tn)], modifying
the substitution terms of the ∀: l inferences appropriatly. By construc-
tion, the terms t1, . . . , tn will be eliminated one-by-one by the ∀: l in-
ferences on ρ[Af(t1 . . . tn)], and the occurrence of (∀X)A in S will thus
become Af(X1 . . .Xn), which is exactly the corresponding occurrence
in sk(S).

In all cases, we have to take contractions into consideration: If there are two
predecessors of the form D = C[(∀X)A] of the occurrence of (∀X)A in S
s.t. there is a contraction

F[D], F [D]Λ ` Π
c : l

F[D],Λ ` Π

we have to introduce the same Skolem symbol for both predecessors (as
otherwise the contraction can not be applied anymore).

Definition 3.2.11. Let ψ be an LK-proof. If all strong quantifier inferences
in ψ operate on cut-ancestors, then ψ is said to be in Skolem form.

The following proposition shows that from a QFC-proof, we can indeed
obtain a proof in Skolem form. As mentioned before, such proofs allow the
definition of proof projections by leaving out inferences from the proof, as no
eigenvariable violations can occur by doing so. The proof projections used
for QFC-CERES are described in Definition 3.2.13.

Proposition 3.2.12. For every QFC-proof ψ of S there exists a QFC-proof
ψ′ of sk(S) in Skolem form.

Proof. From Lemma 3.2.10 we obtain a proof ϕ of sk(S). By Proposi-
tions 3.2.3 and 3.1.7, ϕ is in Skolem form.

We can now define the main parts of the QFC-CERES-method: the char-
acteristic clause set and the set of proof projections of a proof π. The former
will be always unsatisfiable and give rise to a quantifier-free R-refutation,
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while the latter will allow the quantifier-free R-refutation to be transformed
into a proof of the end-sequent of π.

Definition 3.2.13. Let π be a QFC-proof in Skolem form. For each infer-
ence ρ in π, we define a set of cut-free QFC-proofs, the set of projections
Pρ(π) of π, and a set of clauses, the characteristic clause set CSρ(π) of π, at
the position ρ.

• If ρ is a leaf, let Γ1 ` ∆1 be the part of it which consists of ancestors
of cut formulas, let Γ2 ` ∆2 be the part which consists of ancestors of
the end-sequent of π and define

Pρ(π) = {Γ1,Γ2 ` ∆2,∆1}
CSρ(π) = {Γ1 ` ∆1}.

• If ρ is a unary inference with immediate predecessor ρ′ with Pρ′(π) =
{ψ1, . . . , ψn}, distinguish:

(a) The active formulas of ρ are ancestors of cut formulas. Then

Pρ(π) = Pρ′(π)

(b) The active formulas of ρ are ancestors of the end-sequent. Then

Pρ(π) = {ρ(ψ1), . . . , ρ(ψn)}
where ρ(ψ) is the proof that is obtained from ψ by applying ρ
to its end-sequent. Note that by assumption, all strong quantifier
inferences go into cuts, so ρ cannot be a strong quantifier inference,
so no eigenvariable violation can occur here.

In any case, CSρ(π) = CSρ′(π).

• Let ρ be a binary inference with immediate predecessors ρ1 and ρ2.

(a) If the active formulas of ρ are ancestors of cut-formulas, let Γi ` ∆i

be the ancestors of the end-sequent in the conclusion sequent of
ρi and define

Pρ(π) = Pρ1(π)Γ2`∆2 ∪ Pρ2(π)Γ1`∆1

where P Γ`∆ = {ψΓ`∆ | ψ ∈ P} and ψΓ`∆ is ψ followed by weak-
enings adding Γ ` ∆. For the characteristic clause set, define

CSρ(π) = CSρ1(π) ∪ CSρ2(π)
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(b) If the active formulas of ρ are ancestors of the end-sequent, then

Pρ(π) = Pρ1(π)× Pρ2(π).

where
P ×Q = {ρ(ψ, χ) | ψ ∈ P, χ ∈ Q}

and ρ(ψ, χ) is the proof that is obtained from the proofs ψ and χ
by applying the binary inference ρ. For the characteristic clause
set, define

CSρ(π) = CSρ1(π)× CSρ2(π).

The set of projections of π, P(π) is defined as Pρ0(π), and the characteristic
clause set of π, CS(π) is defined as CSρ0(π), where ρ0 is the last inference of
π.

Note that for the soundness of this definition, we need the assumption
that π is in Skolem form: if this were not the case, violations of eigenvariable
conditions could appear in the projections.

Example 3.2.14. Consider the proof ψ:

Θ(a) ` Θ(a)
¬: r

` Θ(a),¬Θ(a)

Θ(b) ` Θ(b)
¬: l¬Θ(b),Θ(b) `
→: l

Θ(b),¬Θ(a)→ ¬Θ(b) ` Θ(a)
∀: l

Θ(b), (∀X)(X(a)→ X(b)) ` Θ(a)
→: r

(∀X)(X(a)→ X(b)) ` Θ(b)→ Θ(a)
∀: r

(∀X)(X(a)→ X(b)) ` (∀X)(X(b)→ X(a))

P (b) ` P (b) P (a) ` P (a)
→: l

P (b)→ P (a), P (b) ` P (a)
→: r

P (b)→ P (a) ` P (b)→ P (a)
∀: l

(∀X)(X(b)→ X(a)) ` P (b)→ P (a)
cut

(∀X)(X(a)→ X(b)) ` P (b)→ P (a)

where X,Θ are variables of type ι→ o, a, b are constants of type ι, and P is
a constant of type ι→ o. Then

CS(ψ) = ({` Θ(a)} × {Θ(b) `}) ∪ {` P (b)} ∪ {P (a) `}
= {Θ(b) ` Θ(a); ` P (b); P (a) `}

and P(ψ) consists of the proofs

Θ(a) ` Θ(a) ¬: r` Θ(a),¬Θ(a)

Θ(b) ` Θ(b) ¬: l¬Θ(b),Θ(b) ` →: l
Θ(b),¬Θ(a)→ ¬Θ(b) ` Θ(a) ∀: l

Θ(b), (∀X)(X(a)→ X(b)) ` Θ(a)
weak: r

Θ(b), (∀X)(X(a)→ X(b)) ` P (b)→ P (a),Θ(a)
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and

P (a) ` P (a)
weak: l

P (b), P (a) ` P (a) →: r
P (a) ` P (b)→ P (a)

weak: l
P (a), (∀X)(X(a)→ X(b)) ` P (b)→ P (a)

and

P (b) ` P (b)
weak: r

P (b) ` P (b), P (a) →: r` P (b)→ P (a), P (b)
weak: l

(∀X)(X(a)→ X(b)) ` P (b)→ P (a), P (b)

We will want to combine the QFC-proofs from P(π) with the QFC-proof
constructed in Lemma 3.2.9 from the QFC-R-refutation of CS(π). For this
purpose, we will need to instantiate the projections; the following Lemma
shows how this can be achieved.

Lemma 3.2.15. Let C = Γ ` ∆ be a clause, D be a set of clauses, ψ be a
QFC-proof of Γ,Π ` Λ,∆ from D with only quantifier-free cuts, let σ be a
quantifier-free substitution whose domain contains no variable which occurs
free in Π ∪ Λ and let Γ∗ ` ∆∗ ∈ S({C}, σ). Then we can construct a QFC-
proof ψ∗ of Γ∗,Π ` Λ,∆∗ from S(D, σ) with only quantifier-free cuts and
with |ψ∗| ≤ |ψ| + ρ(|Γσ ` ∆σ|), where ρ is exponential if σ substitutes for a
predicate variable in D, and polynomial otherwise.

Proof. The proof ψ∗ has the following form:

(ψ′σ)
Γσ,Π ` Λ,∆σ.... (a)

Π ` Λ,
∧

Γσ → ∨
∆σ

.... (b)
Π ` Λ,NNF(

∧
Γσ → ∨

∆σ)
.... (c)

Γ∗,Π ` Λ,∆∗

First, we obtain ψ′σ from ψ: Let D = {C1, . . . , Cn}, then when we apply σ
to ψ, this yields a proof of Γσ,Π ` Λ,∆σ where every leaf is either of the
form Aσ ` Aσ, or Ciσ for some 1 ≤ i ≤ n. We replace the two kinds of leafs
by QFC-proofs to obtain the proof ψ′σ from S(D, σ):
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1. We replace leafs of the form Aσ ` Aσ by their respective proofs from
atomic leafs and

2. apply Lemma 3.2.8 to leafs of the form Ciσ to obtain proofs of Ciσ
from S({Ci}, σ). We replace the leafs by the respective proofs.

This yields the desired proof ψ′σ from S(D, σ). We will now describe the
steps (a-c) in detail:

(a) By a series of ∧: l- and ∨: r-, followed by an →: r-inference.

(b) For any formula F there is a proof χF of F ` NNF(F) based on the
well-known rewrite rules of (i) replacing implication by negation and
disjunction, (ii) the de Morgan-laws and (iii) double negation elimina-
tion. Phase (b) consists of a single cut against such a proof.

(c) For every negation normal form F and clause Γ∗ ` ∆∗ ∈ CNF(F), there
exists a proof χΓ∗`∆∗

F of F,Γ∗ ` ∆∗. χΓ∗`∆∗
F is constructed as follows:

If F = G∧H, then Γ∗ ` ∆∗ ∈ CNF(G) or Γ∗ ` ∆∗ ∈ CNF(H). Define

χΓ∗`∆∗

G∧H :=
(χΓ∗`∆∗

G )
G,Γ∗ ` ∆∗

G ∧H,Γ∗ ` ∆∗
∧: l1

in the first case and use ∧: l2 analogously in the second case. If F =
G ∨H, then Γ∗ = Γ∗1 ∪ Γ∗2 and ∆∗ = ∆∗1 ∪∆∗2 s.t. Γ∗1 ` ∆∗1 ∈ CNF(G)
and Γ∗2 ` ∆∗2 ∈ CNF(H). Define

χΓ∗`∆∗

G∨H :=
(χ

Γ∗1`∆∗1
G )

G,Γ∗1 ` ∆∗1

(χ
Γ∗2`∆∗2
H )

H,Γ∗2 ` ∆∗2
G ∨H,Γ∗ ` ∆∗

∨: l

If F = ¬G, then G is an atom, Γ∗ = {G}, ∆∗ = ∅ and define

χG`
¬G :=

G ` G
¬G,G ` ¬: l

If F is an atom, then Γ∗ = ∅, ∆∗ = {F} and therefore F,Γ∗ `
∆∗ is already an axiom. Phase (c) consists of a single cut against
χΓ∗`∆∗

NNF(
V

Γσ→
W

∆σ).

The total size of ψ∗ is |ψσ| = |ψ| plus O(|Γσ ` ∆σ|) for each of the three
phases, plus a number exponential in the size of σ in case we have to apply
Lemma 3.2.8.
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We will now prove the main properties of QFC-CERES. The following
lemmas are used to establish that for QFC-proofs π in Skolem form, we can
always find a QFC-R-refutation of CS(π).

Lemma 3.2.16. Let C be a set of clauses, π be a regular QFC-proof of `
from C. Then there exists a QFC-proof ψ of ` from a set of clauses S(C, σ)
for some quantifier-free σ such that ψ consists of atomic cuts, contractions
and permutations.

Proof. As we know from e.g. [19], reductive cut-elimination in second-order
logic terminates, so we can apply it to π to eliminate all non-atomic cuts and
obtain a proof π′ of `. First, note that π′ consists of atomic cut, contraction
and permutation: weakening is automatically eliminated by cut-elimination.
Denote the set of leafs of a proof ϕ by init(ϕ). We will show that π′ can be
transformed into a proof ψ s.t. init(ψ) consists of quantifier-free instances
of clauses in C. We can then take D as init(ψ). We proceed by induction
on the cut-elimination of π to obtain π′. As induction invariant, we take the
following: π′ can be transformed into a QFC-proof ψ s.t. init(ψ) consists of
quantifier-free instances of clauses in C.

For the base case, we take ψ = π, so as init(π) = init(ψ) and π uses
quantifier free comprehension, the invariant holds.

1. The cut-eliminiation performs a rank reduction on π. Then the leafs
of π and π′ coincide, except when performing rank reduction over a
contraction: Here, we perform adequate renamings of eigenvariables
in π′ to keep regularity and take ψ = π′. Clearly, init(ψ) consists of
init(π) together with some renamed variants of clauses in init(π), and
the substitution terms of the ∀: l applications are not changed, so the
proposition holds.

2. The cut-elimination performs a grade reduction on ϕ. Distinguish:

(a) Grade reduction is performed on propositional inferences. Then
init(π) and init(π′) coincide and we take ψ = π′, still the substi-
tution terms of the ∀: l applications are not changed.

(b) Grade reduction is performed on ∀α inferences. Let X be the
eigenvariable of the ∀: r inference, and let F be the substitution
term of the ∀: l inference. Then σ = [X← F] is the substitution
that is applied by the cut-elimination. By (IH), σ is quantifier-
free. Let init(π) = {Γ1 ` ∆1, . . . ,Γn ` ∆n}. Then

init(π′) = {(Γ1 ` ∆1)σ, . . . , (Γn ` ∆n)σ}.
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By Lemma 3.2.8, for every 1 ≤ i ≤ n, we have a proof of (Γi `
∆i)σ from S({Γi ` ∆i}, σ). Take ψ to be π′ where those leafs are
replaced by the respective proofs, then

init(ψ) = S({Γ1 ` ∆1}, σ) ∪ . . . ∪ S({Γn ` ∆n}, σ)

and the first part of the proposition holds. For the second part,
note that as σ is quantifier-free and no new ∀β applications are
introduced in this step, all ∀: l applications are still quantifier-free.

Lemma 3.2.17. Let π be a QFC-proof in Skolem form. Then there exists
a QFC-R-refutation of CS(π).

Proof. Analogous to the proof of unsatisfiability of CS(π) for first-order logic
in [9] by removing all inferences of π except the ancestors of the cuts, and
removing all formula occurrences in π except the ancestors of cuts, we con-
struct a QFC-proof ψ of ` from CS(π). We apply Lemma 3.2.16 to obtain a
QFC-proof γ of ` from quantifier-free instances of CS(π) using atomic cut,
contraction and permutation only. γ readily gives rise to an R-refutation
of CS(π): First, derive the necessary instances used in γ from CS(π) us-
ing the CNF-rules (as we only need quantifier-free instances, the restrictions
of QFC-R-deductions are met). Then, whenever atomic cuts are used in γ,
apply Cut, and whenever contractions are used in γ, apply SimT or SimF .

We are now ready to define the QFC-CERES method and state our
central result.

Definition 3.2.18. Let π be a QFC-proof of S. Then the QFC-CERES
method is the following algorithm:

1. Compute a QFC-proof πsk of sk(S).

2. Compute CS(πsk), P(πsk).

3. Compute a quantifier-free R-refutation γ of CS(πsk).

4. Convert γ into an LK-proof γ′ of ` from CS(πsk).

5. Plug instances of the proofs in P(πsk) into the leaves of γ′ to obtain a
proof ψ of sk(S) containing quantifier-free cuts only.

6. Perform quantifier-free cut-elimination on ψ to obtain a proof ϕ of
sk(S) containing no non-atomic cuts.
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Let us remark here that in step 6, any method for cut-elimination for
quantifier-free cuts can be used (e.g. reductive methods, “zero-th order”
CERES). Furthermore, considering that the instantiations of quantifiers are
the core information in a proof, one can even leave out this step as the
instantiations in ϕ and ψ coincide.

Theorem 3.2.19. Let π be a QFC-proof of S. Then the QFC-CERES
method transforms π into an LK-proof ϕ of sk(S) such that ϕ is in atomic-
cut normal form.

Proof. Using Proposition 3.2.12, we convert π to πsk. By Lemma 3.2.17, we
can construct a quantifier-free R-refutation γ of CS(πsk). By Lemma 3.2.9,
from γ we can construct an LK-refutation γ′ of CS(πsk). Every leaf of γ′

is either a sequent A ` A or an instance C∗ of some C ∈ CS(πsk) under a
substitution σ. Let C = Π ` Λ and sk(S) = Γ ` ∆, then by Definition 3.2.13
we have a cut-free QFC-proof ψC of Γ,Π ` Λ,∆. Let C∗ = Π∗ ` Λ∗, then by
Lemma 3.2.15, we can construct LK-proofs ψC∗ of Γ,Π∗ ` Λ∗,∆ that contain
quantifier-free cuts only. By plugging these proofs onto the leaves of γ′ and
adding contractions at the end, we obtain an LK-proof of Γ ` ∆ containing
quantifier-free cuts only. By applying cut-elimination to this proof, we obtain
the desired proof ϕ.
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Chapter 4

CERES for higher-order logic:
CERESω

In this chapter, we will generalize the CERES method to full higher-order
logic. As we have seen in Section 3.1.2, it seems that the proof transformation
Skolemization cannot be generalized to yield LK-proofs not containing strong
quantifiers inferences operating on end-sequent ancestors. For this reason,
we now introduce a sequent calculus without eigenvariables.

4.1 The calculus LKsk

Definition 4.1.1 (Labelled sequents). A label is a finite multiset of terms. A
labelled sequent is a sequent F1, . . . ,Fn ` Fn+1, . . . ,Fm together with labels
`i for 1 ≤ i ≤ m; we write 〈F1〉`1 , . . . , 〈Fn〉`n ` 〈Fn+1〉`n+1 , . . . , 〈Fm〉`m . We
identify labelled formulas with empty labels with the respective unlabelled
formulas. If S is a labelled sequent, then the reduct of S is S where all
labels are empty. If C is a set of labelled sequents, then the reduct of C is
{S | S a reduct of some S ′ ∈ C}.

We extend substitutions to labelled sequents: Let σ be a substitution and
S = 〈F1〉`1 , . . . , 〈Fn〉`n ` 〈Fn+1〉`n+1 , . . . , 〈Fm〉`m , then

Sσ = 〈F1σ〉`1σ , . . . , 〈Fnσ〉`nσ ` 〈Fn+1σ〉`n+1σ , . . . , 〈Fmσ〉`mσ .

Labels such as ours are often used to add (syntactic) information to for-
mulas, see [22]. They have been used in a setting very similar to ours in [21].

The purpose of the labels will be twofold: first, they will track quantifier
instantiation information throughout prooftrees (as expressed in Proposi-
tion 4.1.5). Second, they will enable us to combine resolution refutations
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and sequent calculus proofs in a certain way — this will be one of the main
constructions of the CERESω method; see Lemma 4.3.19.

From now on, we will only consider labelled sequents, and therefore we
will call them only sequents. Analogously, we will refer to labelled formula
occurrences as formula occurrences. We will denote the union of labels `1

and `2 by `1, `2. Let T be a term and ` a label, then we denote by `,T the
union ` ∪ {T}.
Definition 4.1.2 (LKsk rules). The following figures are the rules of LKsk:
Labelled quantifier rules (or ∀sk rules):

Γ ` ∆, 〈F(fS1 . . .Sn)〉` ∀sk: r
Γ ` ∆, 〈∀αF〉`

where ` = S1, . . . ,Sn and, if τ(Si) = αi for 1 ≤ i ≤ n, then f ∈ Kα1,...,αn,α

is a Skolem symbol. An application of this rule is called source inference of
fS1 . . .Sm, and fS1 . . .Sm is called the Skolem term of this inference. Note
that we do not impose an eigenvariable or eigenterm restriction on this rule.

〈FT〉`,T ,Γ ` ∆ ∀sk: l〈∀αF〉` ,Γ ` ∆

T is called the substitution term of this inference. The other rules of LK are
transferred directly to LKsk:
Propositional rules:

〈F〉` ,Γ ` ∆ 〈G〉` ,Π ` Λ

〈F ∨G〉` ,Γ,Π ` ∆,Λ
∨: l

Γ ` ∆, 〈F〉`
Γ ` ∆, 〈F ∨G〉` ∨: r1

The rest of the propositional rules of LK are adapted analogously.
Structural rules:

Γ ` ∆, 〈F〉` , 〈F〉`
Γ ` ∆, 〈F〉` contr: r

Γ ` ∆

Γ ` ∆, 〈F〉` weak: r

and analogously for contr: l and weak: l.

Γ ` ∆, 〈F〉`1 〈F〉`2 ,Π ` Λ

Γ,Π ` ∆,Λ
cut

Note that the labels `1, `2 are arbitrary.
In this section, we will restrict our attention to the cut-free fragment of

the rules of LKsk. An LKsk-tree is a tree formed according to the rules of
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LKsk except cut, such that all leaves are of the form 〈F〉`1 ` 〈F〉`2 for some
formula F and some labels `1, `2. The axiom partner of 〈F〉`1 is defined to be
〈F〉`2 , and vice-versa. Let π be an LKsk-tree with end-sequent S. If S does
not contain Skolem terms or free variables, and all labels in S are empty,
then S is called proper. If the end-sequent of π is proper, we say that π is
proper.

Example 4.1.3. The following figure shows a proper LKsk-tree of a valid
sequent:

〈S(f(λx.¬S(x)))〉λx.¬S(x) ` 〈S(f(λx.¬S(x)))〉λx.¬S(x)

¬: l〈¬S(f(λx.¬S(x)))〉λx.¬S(x) , 〈S(f(λx.¬S(x)))〉λx.¬S(x) ` ¬: r
〈S(f(λx.¬S(x)))〉λx.¬S(x) ` 〈¬¬S(f(λx.¬S(x)))〉λx.¬S(x)

→: r
` 〈S(f(λx.¬S(x)))→ ¬¬S(f(λx.¬S(x)))〉λx.¬S(x)

∀sk: r` 〈(∀z)(S(z)→ ¬¬S(z))〉λx.¬S(x)

∃sk: r` 〈(∃Y )(∀z)(S(z)→ ¬Y (z))〉 ∀sk: r` 〈(∀X)(∃Y )(∀z)(X(z)→ ¬Y (z))〉
where S ∈ Kι→o, f ∈ Kι→o,ι, and the substitution term of the ∃sk: r is
λx.¬S(x). Note that although the labels in the axiom coincide, this is not
required in general.

When writing down LKsk-trees, we will often leave out the labels to
increase readability. So far, we have not called the trees built up using the
rules of LKsk proofs. The reason is that without further restrictions, LKsk-
trees are unsound:

Example 4.1.4. Consider the following LKsk-tree of (∃x)P (x) ` (∀x)P (x):

P (s) ` P (s) ¬ : r` P (s),¬P (s) ∀sk: r` P (s), (∀x)¬P (x) ¬ : l¬(∀x)¬P (x) ` P (s) ∀sk: r¬(∀x)¬P (x) ` (∀x)P (x)

where s ∈ Kι. The source of unsoundness in this example stems from the fact
that in LKsk-trees, it is possible to use the same Skolem term for distinct
and “unrelated” ∀sk: r applications.

Towards introducing our global soundness condition, which will be more
general than the eigenvariable condition of LK, we introduce some definitions
and facts about occurrences in LKsk-trees.
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Proposition 4.1.5. Let ω be a formula occurrence in a proper LKsk-tree π
with label {T1, . . . ,Tn}. Then T1, . . . ,Tn are exactly the substitution terms
of the ∀sk: l inferences operating on descendants of ω.

Proof. By induction on the number of sequents between ω and the end-
sequent of π. If ω occurs in the end-sequent, then it has no descendants and,
as π is proper, ω has the empty label.

Assume ω occurs in the premise of an inference. Denote the direct de-
scendant of ω by ω′. If ω occurs in the context, then ω has the same label as
ω′, the ∀sk: l inferences operating on descendants of ω are the same as those
operating on descendants of ω′, so we conclude with the induction hypothe-
sis. If ω is the auxiliary formula of a propositional inference, a contraction
inference, or a ∀sk: r inference, the argument is analogous. Finally, assume
ω is the auxiliary formula of a ∀sk: l inference ρ with substitution term T,
and that the label of ω is T1, . . . ,Tn,T. Then the label of ω′ is T1, . . . ,Tn,
and by (IH) these are exactly the substitution terms of the ∀sk: l inferences
ρ1, . . . , ρn operating on descendants of ω′. Then the ∀sk: l inferences oper-
ating on descendants of ω are ρ1, . . . , ρn, ρ, and hence the label of ω is as
desired.

Definition 4.1.6 (Paths). Let µ = µ1, . . . , µn be a sequence of formula
occurrences in an LKsk-tree. If for all 1 ≤ i < n, µi is an immediate ancestor
(immediate descendant) of µi+1, then µ is called a downwards (upwards)
path. If µ is a downwards (upwards) path ending in an occurrence in the
end-sequent (a leaf), then µ is called maximal.

Definition 4.1.7 (Homomorphic paths). If ω is a formula occurrence, then
denote by F (ω) the formula at ω. If µ is a sequence of formula occurrences,
we define F (µ) as µ where every formula occurrence ω is replaced by F (ω),
and repetitions are ommited. Two sequences of formula occurrences µ, ν are
called homomorphic if F (µ) = F (ν).

Example 4.1.8. Consider the LKsk-tree π:

〈R(a, f(a))〉a ` 〈R(a, f(a))〉a ¬: r` 〈R(a, f(a))〉a , 〈¬R(a, f(a))〉a ∨: r2

` 〈R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ∨: r1

` 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a
contr: r` 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ∀sk: r` 〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a ∃sk: r` (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))
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π contains two maximal paths µ1, µ2:

µ1 = 〈R(a, f(a))〉a , 〈¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈R(a, f(a)) ∨ ¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a , (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

µ2 = 〈R(a, f(a))〉a , 〈R(a, f(a))〉a , 〈R(a, f(a))〉a ,
〈R(a, f(a)) ∨ ¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a , (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

F (µ1) = 〈R(a, f(a))〉a , 〈¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a , (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

F (µ2) = 〈R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a , (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

Proposition 4.1.9. Let π be a proper LKsk-tree, let ρ be a ∀sk: r inference
in π with Skolem term S and auxiliary formula α, and let µ be a maximal
downwards path starting at α. Then FV(S) = FV(µ).

Proof. As π is proper, its end-sequent does not contain free variables. Hence
all free variables in µ are contained in substitution terms of ∀sk: l inferences,
and they are exactly the free variables of S by Proposition 4.1.5.

Proposition 4.1.10. Let α1, α2 be formula occurrences. If there exists a
downwards path from α1 to α2, then it is unique.

Proof. Every formula occurrence has at most one direct descendant.

Corollary 4.1.11. If α is a formula occurrence, then there exists a unique
maximal downwards path starting at α.

Our investigation of paths allows us to define a relation between inferences
in a tree that, through paths, are connected in a strong sense.

Definition 4.1.12 (Homomorphic inferences). Let α1, α2 be formula occur-
rences in an LKsk-tree π. Let c be a contraction inference below both α1, α2

with auxiliary occurrences γ1, γ2. Then α1, α2 are homomorphic in c if the
downwards paths α1, . . . , γ1 and α2, . . . , γ2 exist and are homomorphic. α1, α2

are called homomorphic if there exists a c such that they are homomorphic
in c.

Let ρ1, ρ2 be inferences of the same type with auxiliary formula occur-
rences α1

1 (α2
1) and α1

2 (α2
2). ρ1, ρ2 are called homomorphic if there exists a
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contraction inference c such that α1
1 and α1

2 are homomorphic in c and α2
1

and α2
2 are homomorphic in c. Call this contraction inference the uniting

contraction of ρ1, ρ2.

Example 4.1.13. Consider the following LKsk-tree π:

〈P (s)〉s ` P (s) ∀sk: l
(∀x)P (x) ` P (s) ∀sk: r (1)

(∀x)P (x) ` (∀x)P (x)

〈P (s)〉s ` P (s) ∀sk: r (3)〈P (s)〉s ` (∀x)P (x) ∀sk: l
(∀x)P (x) ` (∀x)P (x) ∨: l

(∀x)P (x) ∨ (∀x)P (x) ` (∀x)P (x), (∀x)P (x)
contr: r (2)

(∀x)P (x) ∨ (∀x)P (x) ` (∀x)P (x)

The inferences (1), (3) in π are homomorphic, and (2) is their uniting con-
traction. More concretely, let µ be the path from the auxiliary formula of (1)
to the auxiliary formula of (2). Let ν be the path from the auxiliary formula
of (3) to the auxiliary formula of (2). Then F (µ) = P (s), (∀x)P (x) = F (ν).

On the other hand, consider π′:

〈P (s1)〉s1 ` P (s1) ∀sk: l
(∀x)P (x) ` P (s1) ∀sk: r (1)

(∀x)P (x) ` (∀x)P (x)

〈P (s2)〉s2 ` P (s2) ∀sk: r (3)〈P (s2)〉s2 ` (∀x)P (x) ∀sk: l
(∀x)P (x) ` (∀x)P (x) ∨: l

(∀x)P (x) ∨ (∀x)P (x) ` (∀x)P (x), (∀x)P (x)
contr: r (2)

(∀x)P (x) ∨ (∀x)P (x) ` (∀x)P (x)

In π′, there are no homomorphic inferences because the auxiliary formu-
las of the ∀sk: r applications differ: Define µ, ν as above, then F (µ) =
P (s1), (∀x)P (x) 6= P (s2), (∀x)P (x) = F (ν).

The previous example motivates the following statement about homomor-
phic quantifier inferences.

Proposition 4.1.14. If two ∀sk: r inferences are homomorphic, they have
identical Skolem terms.

Proof. Denote the ∀sk: r applications by ρ1, ρ2. Then there exist homomor-
phic paths p1, p2 starting at the auxiliary formulas of ρ1, ρ2 respectively.
The second elements of p1, p2 are the main formula occurrences of ρ1, ρ2

respectively. As p1, p2 are homomorphic the formula lists induced by them
are equal, therefore ρ1, ρ2 have the same auxiliary and main formulas and
therefore their Skolem terms are identical.
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Proposition 4.1.15. The homomorphism relation on inferences is a partial
equivalence relation.

Proof. The homomorphism relation on inferences is symmetric because the
homomorphism relation on sequences of formula occurrences is. It is tran-
sitive: Assume ρ1, ρ2 are homomorphic, and ρ2, ρ3 are homomorphic. We
assume that ρ1, ρ2, ρ3 are unary inferences, the binary case is analogous. Des-
ignate the respective auxiliary formulas by α1, α2, α3. Then there is a con-
traction c on formula occurrences γ1, γ2 s.t. the downwards paths α1, . . . , γ1

and α2, . . . , γ2 exist and are homomorphic, and there is a contraction c′ on
formula occurrences γ′2, γ3 s.t. the paths α2, . . . , γ

′
2 and α3, . . . , γ3 exist and

are homomorphic. From the existence of these paths, it follows that c, c′

cannot be parallel. W.l.o.g. assume that c is above c′, then

α2, . . . , γ
′
2 = α2, . . . , γ2, γ

∗
2 , . . . , γ

′
2

by Proposition 4.1.10, and there exists a path

α1, . . . , γ1, γ
∗
2 , . . . , γ

′
2.

For i ∈ {1, 2}, let ωi be the first formula occurrence from the right in αi, . . . , γi
such that F (ωi) 6= F (γi), ρ1, ρ3 are homomorphic by the following chain of
equalities:

F (α1, . . . , γ1, γ
∗
2 , . . . , γ

′
2) =

F (α1, . . . , ω1), F (γ∗2 , . . . , γ
′
2) =

F (α2, . . . , ω2), F (γ∗2 , . . . , γ
′
2) =

F (α2, . . . , γ2, . . . , γ
′
2) =

F (α3, . . . , γ3)

We can now define the notion of an LKsk-proof, for which we will require
the converse of the Proposition 4.1.14 to hold.

Definition 4.1.16 (Weak regularity and LKsk-proofs). Let π be an LKsk-
tree with end-sequent S. π is weakly regular if for all distinct ∀sk: r inferences
ρ1, ρ2 in π: If ρ1, ρ2 have identical Skolem terms, then ρ1, ρ2 are homomor-
phic. We say that π is an LKsk-proof if it is weakly regular and proper.

In ordinary LK, it follows directly from the definition of regularity that
all ∀: r inferences in a regular LK-tree π fulfill the eigenvariable condition,
and thus are LK-proofs. Hence the name “weak regularity”: inferences are
allowed to use the same eigenterm, provided they are homomorphic.
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Example 4.1.17. The LKsk-tree from Example 4.1.3 is (trivially) an LKsk-
proof. Also the first LKsk-tree from Example 4.1.13 is an LKsk-proof: the
only two ∀sk: r applications in the tree are homomorphic.

Finally, consider the following example:

〈R(s, f(s))〉s ` 〈R(s, f(s))〉f(s)

∃sk: l〈(∃y)R(s, y)〉s ` 〈R(s, f(s))〉f(s)

〈R(s, f(s))〉s ` 〈R(s, f(s))〉f(s)

∃sk: l〈(∃y)R(s, y)〉s ` 〈R(s, f(s))〉f(s)

¬: l〈(∃y)R(s, y)〉s , 〈¬R(s, f(s))〉f(s) ` →: l〈(∃y)R(s, y)〉s , 〈(∃y)R(s, y)〉s , 〈R(s, f(s))→ ¬R(s, f(s))〉f(s) `
∀sk: l

(∀x)(∃y)R(x, y), 〈(∃y)R(s, y)〉s , 〈R(s, f(s))→ ¬R(s, f(s))〉f(s) `
∀sk: l

(∀x)(∃y)R(x, y), (∀x)(∃y)R(x, y), 〈R(s, f(s))→ ¬R(s, f(s))〉f(s) `
contr: l

(∀x)(∃y)R(x, y), 〈R(s, f(s))→ ¬R(s, f(s))〉f(s) `
∀sk: l(∀x)(∃y)R(x, y), (∀y)(R(s, y)→ ¬R(s, y)) `
∃sk: l(∀x)(∃y)R(x, y), (∃x)(∀y)(R(x, y)→ ¬R(x, y)) ` ¬: r

(∀x)(∃y)R(x, y),` ¬(∃x)(∀y)(R(x, y)→ ¬R(x, y))

where f ∈ Kι,ι and s ∈ Kι.
Denote the upper-left ∃sk: l application by ρ1, the upper-right ∃sk: l ap-

plication by ρ2, and the bottommost ∃sk: l application by ρ3. ρ3 is the only
∃sk: l application with Skolem term s, so there is nothing to check. On the
other hand, ρ1 and ρ2 have the same Skolem term f(s). They are indeed
homomorphic: the contr: l application is their uniting contraction, and the
homomorphic paths are

µ(ρ1) = 〈R(s, f(s))〉s , 〈(∃y)R(s, y)〉s ,
〈(∃y)R(s, y)〉s , (∀x)(∃y)R(s, y),
(∀x)(∃y)R(s, y)

µ(ρ2) = 〈R(s, f(s))〉s , 〈(∃y)R(s, y)〉s ,
〈(∃y)R(s, y)〉s , 〈(∃y)R(s, y)〉s ,
〈(∃y)R(s, y)〉s , (∀x)(∃y)R(s, y)

because F (µ(ρ1)) = F (µ(ρ2)) = 〈R(s, f(s))〉s , 〈(∃y)R(s, y)〉s.
The rest of this section will be devoted to proving that weak regularity

still suffices for soundness of LKsk-proofs.

Definition 4.1.18. Let π be an LKsk-tree, and ρ an inference in π. Define
the height of ρ, height(ρ), as the maximal number of sequents between ρ and
an axiom in π.
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Lemma 4.1.19. Let T be a Skolem term and π be a LKsk-tree of S such that
π does not contain a source inference of T. Let X be a variable not occurring
in π, then there exists an LKsk-tree π [T← X] of S [T← X]. Furthermore,
if π is weakly regular (proper) then π [T← X] is weakly regular (proper).

Proof. Let σ = [T← X], and let ρ be an inference in π with conclusion S.
By induction on height(ρ), we construct LKsk-trees πρ of Sσ.

1. ρ is an axiom 〈A〉`1 ` 〈A〉`2 . Take for πρ the axiom 〈Aσ〉`1σ ` 〈Aσ〉`2σ.

2. ρ is a ∀sk: r inference

Γ ` ∆, 〈FR〉` ∀sk: r
Γ ` ∆, 〈∀F〉`

where R is the Skolem term of ρ. By (IH) we have a LKsk-tree ψ of
Γσ ` ∆σ, 〈FRσ〉lσ. Note that FRσ =β FσRσ. Hence we may take for
πρ

(ψ)

Γσ ` ∆σ, 〈FσRσ〉`σ ∀sk: r
Γσ ` ∆σ, 〈∀Fσ〉`σ

3. ρ is a ∀sk: l inference

〈FR〉`,R ,Γ ` ∆ ∀sk: l〈∀F〉` ,Γ ` ∆

By (IH) we have an LKsk-tree ψ of 〈FRσ〉`σ,Rσ ,Γσ ` ∆σ. By the
soundness assumption for Skolem terms from [44], T does not contain
variables bound in F, hence FRσ =β FσRσ. Therefore we may take
as πρ:

(ψ)

〈FσRσ〉`σ,Rσ ,Γσ ` ∆σ ∀sk: l〈∀Fσ〉`σ ,Γσ ` ∆σ

4. ρ is a structural or propositional inference. As in the previous cases, we
simply apply the rule to the tree(s) obtained by hypothesis to obtain
πρ.

45



Let ρ be the last inference in π; then we set πσ = πρ. It remains to show that
weak regularity is preserved. As we apply σ on the whole tree, every path
µ in πσ induces a path ν in π such that µ = νσ. Hence homomorphisms of
downwards paths are preserved.

Example 4.1.20. Consider the following LKsk-tree π, where s ∈ Kι and
f ∈ Kι,ι:

〈R(s, f(s), s)〉f(s) ` 〈R(s, f(s), s)〉s ∀sk: r〈R(s, f(s), s)〉f(s) ` 〈(∀x)R(s, x, s)〉s ∃sk: r〈R(s, f(s), s)〉f(s) ` (∃y)(∀x)R(s, x, y) ∀sk: l
(∀y)R(s, y, s) ` (∃y)(∀x)R(s, x, y)

Then π [s← z]:

〈R(z, f(z), z)〉f(z) ` 〈R(s, f(z), z)〉z ∀sk: r〈R(z, f(z), z)〉f(z) ` 〈(∀x)R(z, x, z)〉z ∃sk: r〈R(z, f(z), z)〉f(z) ` (∃y)(∀x)R(z, x, y) ∀sk: l
(∀y)R(z, y, z) ` (∃y)(∀x)R(z, x, y)

is an LKsk-tree.

Lemma 4.1.21. Let ρ, ρ′ be homomorphic inferences, and c their uniting
contraction. Let ρ1, . . . , ρn and ρ′1, . . . , ρ

′
m be the logical inferences operating

on descendants of the auxiliary formulas of ρ, ρ′ above c. Then n = m and
for all 1 ≤ i ≤ n, ρi and ρ′i are homomorphic.

Proof. By induction on n. n = 0 is trivial. For the induction step, let µ, µ′

be the homomorphic downwards paths from ρ, ρ′ respectively to c. Consider
ρ1. As it is a logical inference, its auxiliary formula is different from its main
formula. As F (µ) = F (µ′), there exists the logical inference ρ′1 of the same
type (and even with the same substitution or Skolem term, if applicable), and
the downwards paths from ρ1, ρ

′
1 respectively to c exist and are homomor-

phic. Hence ρ1, ρ
′
1 are homomorphic and we may conclude with the induction

hypothesis.

4.1.1 Sequential Pruning

To show soundness of LKsk, we will transform LKsk-proofs into LK-proofs.
Roughly, this will be accomplished by permuting inferences and substituting
eigenvariables for Skolem terms. In LKsk-proofs, a certain kind of redun-
dancy may be present: namely, it may be the case that two ∀sk: r inferences
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on a common branch use the same Skolem term. This will prevent an eigen-
term condition from holding, and hence in this situation we cannot substitute
an eigenvariable for the Skolem term. This subsection is devoted to showing
how to eliminate this redundancy.

Definition 4.1.22 (Sequential pruning). Let π be an LKsk-tree and ρ, ρ′

inferences in π. Then ρ, ρ′ are called sequential if they are on a common
branch in π. We define the set of sequential homomorphic pairs as

SHP(π) = {〈ρ, ρ′〉 | ρ, ρ′ homomorphic in π and ρ, ρ′ sequential}.
We say that π is sequentially pruned if SHP(π) = ∅.

Towards pruning sequential homomorphic pairs, we analyze the permu-
tation of contraction inferences over independent inferences:

Definition 4.1.23. Let ρ be an inference above an inference σ. Then ρ and
σ are independent if the auxiliary formula of σ is not a descendent of the
main formula of ρ.

Definition 4.1.24 (Permuting contractions down). We will now define the
rewrite relation .c for LKsk-trees π, π′, where we assume the inferences
contr: ∗ and σ to be independent:

1. If π is

Π,Π,Γ ` ∆,Λ,Λ
contr: ∗

Π,Γ ` ∆,Λ
σ

Π,Γ′ ` ∆′,Λ

and π′ is

Π,Π,Γ ` ∆,Λ,Λ
σ

Π,Π,Γ′ ` ∆′,Λ,Λ
contr: ∗

Π,Γ′ ` ∆′,Λ

then π .1
c π
′.

2. If π is

Π,Π,Γ ` ∆,Λ,Λ
contr: ∗

Π,Γ ` ∆,Λ Σ ` Θ
σ

Π,Γ′ ` ∆′,Λ
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and π′ is

Π,Π,Γ ` ∆,Λ,Λ Σ ` Θ
σ

Π,Π,Γ′ ` ∆′,Λ,Λ
contr: ∗

Π,Γ′ ` ∆′,Λ

then π .1
c π
′.

3. If π is

Σ ` Θ

Π,Π,Γ ` ∆,Λ,Λ
contr: ∗

Π,Γ ` ∆,Λ
σ

Π,Γ′ ` ∆′,Λ

and π′ is

Σ ` Θ Π,Π,Γ ` ∆,Λ,Λ
σ

Π,Π,Γ′ ` ∆′,Λ,Λ
contr: ∗

Π,Γ′ ` ∆′,Λ

then π .1
c π
′.

The .c relation is then defined as the transitive and reflexive closure of the
compatible closure of the .1

c relation.

Lemma 4.1.25. Let π be a weakly regular LKsk-tree of S. If π .c ψ then ψ
is a weakly regular LKsk-tree of S.

Proof. By induction on the length of the .c-rewrite sequence. The case of
π = ψ is trivial, so assume there exists a subtree ϕ of π such that ϕ.1

c ϕ
′ and

ψ is obtained from π by replacing ϕ by ϕ′. Then the end-sequent of ψ is the
same as that of π. Also weak regularity is preserved: The paths in ψ and π
are the same modulo some repetitions.

Lemma 4.1.26. Let π be a LKsk-tree with end-sequent S such that π is not
sequentially pruned. Then there exists a LKsk-tree π′ with end-sequent S
such that

|SHP(π′)| < |SHP(π)|
Furthermore, if π is weakly regular, so is π′.
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Proof. Consider a sequential homomorphic pair in π with uniting contraction
c. By Lemma 4.1.21, there exists a sequential homomorphic pair ρ, ρ′ with
uniting contraction c such that no logical inference operates on descendants
of the auxiliary formulas of ρ, ρ′ above c (ρ, ρ′ are the lowermost ρi, ρ

′
j of

Lemma 4.1.21, respectively). W.l.o.g. assume that ρ is above ρ′. As no
logical inference operates on descendants ω of the auxiliary formula of ρ on
the path to c, we can permute all contraction inferences operating on such ω
below ρ′ using .c. By Lemma 4.1.25 the resulting tree is weakly regular and
its end-sequent is S. Clearly the number of sequential homomorphic pairs
stays the same.

For example, if there are two such contractions inferences between ρ and
ρ′, the situation is

ρ
...

contr: l
...

contr: l
...

ρ′

which is transformed to
ρ

...
ρ′

contr: l
contr: l

Hence we may assume that no inference operates on descendants of the aux-
iliary formula of ρ between ρ, ρ′. Now distinguish the cases

1. ρ is a unary inference. W.l.o.g. assume that the auxiliary and main
formulas of ρ occur on the right. Then the situation is:

Γ ` ∆, 〈F〉`1
ρ

Γ ` ∆, 〈G〉`2
...

Γ′ ` ∆′, 〈F〉`1 , 〈G〉`2
ρ′

Γ′ ` ∆′, 〈G〉`2 , 〈G〉`2
...

Γ∗ ` ∆∗, 〈G〉`2 , 〈G〉`2
c

Γ∗ ` ∆∗, 〈G〉`2
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We replace this subtree by

Γ ` ∆, 〈F〉`1
...

Γ′ ` ∆′, 〈F〉`1 , 〈F〉`1
c

Γ′ ` ∆′, 〈F〉`1
ρ′

Γ′ ` ∆′, 〈G〉`2
...

Γ∗ ` ∆∗, 〈G〉`2

2. ρ is a ∨: l inference. W.l.o.g. the situation is

〈F〉` ,Γ ` ∆ 〈G〉` ,Π ` Λ
ρ

〈F ∨G〉` ,Γ,Π ` ∆,Λ

...

〈F〉` , 〈F ∨G〉` ,Γ∗ ` ∆∗ 〈G〉` ,Π∗ ` Λ∗
ρ′〈F ∨G〉` , 〈F ∨G〉` ,Γ∗,Π∗ ` ∆∗,Λ∗

...

〈F ∨G〉` , 〈F ∨G〉` ,Γ+ ` ∆+

c
〈F ∨G〉` ,Γ+ ` ∆+

This is transformed to

〈F〉` ,Γ ` ∆
weak: ∗〈F〉` ,Γ,Π ` ∆,Λ

...

〈F〉` , 〈F〉` ,Γ∗ ` ∆∗
c

〈F〉` ,Γ∗ ` ∆∗ 〈G〉` ,Π∗ ` Λ∗
ρ′〈F ∨G〉` ,Γ∗,Π∗ ` ∆∗,Λ∗

...

〈F ∨G〉` ,Γ+ ` ∆+
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As we only permute contractions and delete inferences, weak regularity is
preserved by this transformation. Furthermore, consider a sequential ho-
momorphic pair 〈σ, σ′〉 in π′ (w.l.o.g. we consider the case that ρ is ∨: l).
Clearly σ, σ′ also exist in π and 〈σ, σ′〉 is a homomorphic pair in π (if its
uniting contraction in π′ is c in the second figure, then the c in the first fig-
ure is its uniting contraction in π). It is sequential since we have not changed
the branching structure of the tree (except for deleting a subtree from π to
obtain π′).

Hence the number of sequentially homomorphic pairs is reduced, which
was to show.

Lemma 4.1.27 (Sequential Pruning). Let π be a LKsk-tree of S, then there
exists LKsk-tree π′ of S s.t. π′ is sequentially pruned. Furthermore, if π is
weakly regular, so is π′.

Proof. Repeated application of Lemma 4.1.26 does the job.

Example 4.1.28. Consider the LKsk-tree π:

P (s1) ` P (s1) P (s1) ` P (s1)
∨: l

P (s1) ∨ P (s1) ` P (s1), P (s1)
∀sk: r

P (s1) ∨ P (s1) ` P (s1), (∀x)P (x)
∀sk: r

P (s1) ∨ P (s1) ` (∀x)P (x), (∀x)P (x)

Q(t1) ` Q(t1)
∀sk: l

(∀x)Q(x) ` Q(t1)
→: l

P (s1) ∨ P (s1), (∀x)P (x)→ (∀x)Q(x) ` (∀x)P (x), Q(t1)

Q(t2) ` Q(t2)
∀sk: l

(∀x)Q(x) ` Q(t2)
→: l

P (s1) ∨ P (s1), (∀x)P (x)→ (∀x)Q(x), (∀x)P (x)→ (∀x)Q(x) ` Q(t1), Q(t2)
contr: l

P (s1) ∨ P (s1), (∀x)P (x)→ (∀x)Q(x) ` Q(t1), Q(t2)

where s1, s2 ∈ Kι.
Denote the upper-left ∀sk: r application by ρ1, the ∀sk: r application di-

rectly below ρ1 by ρ2, the upper →: l application by η1 and the lower →: l
application by η2. Then

SHP(π) = {{ρ1, ρ2}, {η1, η2}}
and the contr: l application is the uniting contraction of both pairs. We apply
Lemma 4.1.26, removing {η1, η2} and obtaining π′:

P (s1) ` P (s1) P (s1) ` P (s1) ∨: l
P (s1) ∨ P (s1) ` P (s1), P (s1)

∀sk: r
P (s1) ∨ P (s1) ` P (s1), (∀x)P (x)

∀sk: r
P (s1) ∨ P (s1) ` (∀x)P (x), (∀x)P (x)

weak: r
P (s1) ∨ P (s1) ` (∀x)P (x), (∀x)P (x), Q(t1)

contr: r
P (s1) ∨ P (s1) ` (∀x)P (x), Q(t1)

Q(t2) ` Q(t2)
∀sk: l(∀x)Q(x) ` Q(t2) →: l

P (s1) ∨ P (s1), (∀x)P (x)→ (∀x)Q(x) ` Q(t1), Q(t2)
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such that

SHP(π′) = {{ρ1, ρ2}}
We apply Lemma 4.1.26 again, removing {ρ1, ρ2} and obtaining the sequen-
tially pruned π′′:

P (s1) ` P (s1) P (s1) ` P (s1) ∨: l
P (s1) ∨ P (s1) ` P (s1), P (s1)

contr: r
P (s1) ∨ P (s1) ` P (s1) ∀sk: r

P (s1) ∨ P (s1) ` (∀x)P (x)
weak: r

P (s1) ∨ P (s1) ` (∀x)P (x), Q(t1)

Q(t2) ` Q(t2) ∀sk: l
(∀x)Q(x) ` Q(t2) →: l

P (s1) ∨ P (s1), (∀x)P (x)→ (∀x)Q(x) ` Q(t1), Q(t2)

4.1.2 Soundness of LKsk

The main result of this subsection will be to show that LKsk-proofs can be
translated into LK-proofs. The proof will be effective, and will be based
on permuting inferences and pruning. To this end, we will analyze the per-
mutation of inferences in LKsk-trees. Such an analysis is often useful, see
for example [60] for the case of a first-order sequent calculus. In LKsk, we
have more freedom in the permutation of inferences since we do not have to
consider an eigenvariable condition, although we will want to preserve weak
regularity.

To ease the following case distinctions, we introduce the following nota-
tion:

Γ, A1 = Γ, A
Γ, A0 = Γ

and let i, i1, . . . , i4 ∈ {0, 1}, x̄ = |x − 1|. In the following transformations,
we do not display the labels of the labelled formula occurrences since we
always leave them unchanged (what this means exactly will be clear from
the context).

Definition 4.1.29 (The relation .u). This definition shows how to permute
down a unary logical inference ρ over an inference σ, assuming that ρ and
σ are independent. In case 1, σ is a unary logical inference, in case 2 σ is a
weakening inference, in case 3 σ is a contraction inference, and in cases 4–5
σ is an ∨: l inference. We define a relation .1

u between LKsk-trees π and π′:

1. If π is
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Fi1 ,Gi2 ,Γ ` ∆,Gī2 ,Fī1
ρ

Mi3 ,Gi2 ,Γ ` ∆,Gī2 ,Mī3

σ
Mi3 ,Ni4 ,Γ ` ∆,Nī4 ,Mī3

and π′ is

Fi1 ,Gi2 ,Γ ` ∆,Gī2 ,Fī1

σ
Fi1 ,Ni4 ,Γ ` ∆,Nī4 ,Fī1

ρ
Mi1 ,Ni2 ,Γ ` ∆,Nī2 ,Mī1

then π .1
u π
′.

2. If π is

Fi1 ,Γ ` ∆,Fī1
ρ

Mi2 ,Γ ` ∆,Mī2

σ (weak: ∗)
Ni3 ,Mi2 ,Γ ` ∆,Mī2 ,Nī3

and π′ is

Fi1 ,Γ ` ∆,Fī1

σ (weak: ∗)
Ni3 ,Fi1 ,Γ ` ∆,Fī1 ,Nī3

ρ
Ni3 ,Mi2 ,Γ ` ∆,Mī2 ,Nī3

then π .1
u π
′.

3. If π is

Fi1 ,Gi2 ,Gi2 ,Γ ` ∆,Gī2 ,Gī2 ,Fī1
ρ

Mi3 ,Gi2 ,Gi2 ,Γ ` ∆,Gī2 ,Gī2 ,Mī3

σ (contr: ∗)
Mi3 ,Gi2 ,Γ ` ∆,Gī2 ,Mī3

and π′ is

Fi1 ,Gi2 ,Gi2 ,Γ ` ∆,Gī2 ,Gī2 ,Fī1

σ (contr: ∗)
Fi1 ,Gi2 ,Γ ` ∆,Gī2 ,Fī1

ρ
Mi3 ,Gi2 ,Γ ` ∆,Gī2 ,Mī3

then π .1
u π
′.
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4. If π is

Fi1 ,G1,Γ ` ∆,Fī1
ρ

Mi2 ,G1,Γ ` ∆,Mī2 G2,Π ` Λ
σ

G1 ∨G2,M
i2 ,Γ,Π ` ∆,Λ,Mī2

and π′ is

Fi1 ,G1,Γ ` ∆,Fī1 G2,Π ` Λ
σ

G1 ∨G2,F
i1 ,Γ,Π ` ∆,Λ,Fī1

ρ
G1 ∨G2,M

i2 ,Γ,Π ` ∆,Λ,Mī2

then π .1
u π
′.

5. If π is

G1,Γ ` ∆

Fi1 ,G2,Π ` Λ,Fī1
ρ

Mi2 ,G2,Π ` Λ,Mī2

σ
G1 ∨G2,M

i2 ,Γ,Π ` ∆,Λ,Mī2

and π′ is

G1,Γ ` ∆ Fi1 ,G2,Π ` Λ,Fī1

σ
G1 ∨G2,F

i1 ,Γ,Π ` ∆,Λ,Fī1
ρ

G1 ∨G2,M
i2 ,Γ,Π ` ∆,Λ,Mī2

then π .1
u π
′.

Finally, we define the .u relation as the transitive and reflexive closure of the
compatible closure of the .1

u relation.

Lemma 4.1.30. Let π be a weakly regular LKsk-tree of S. If π .u ψ then ψ
is a weakly regular LKsk-tree of S.
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Proof. By induction on the length of the .u-rewrite sequence. The case of
π = ψ is trivial, so assume there exists a subtree ϕ of π such that ϕ .1

u ϕ
′

and ψ is obtained from π by replacing ϕ by ϕ′. Then the end-sequent of ψ
is the same as that of π. Also weak regularity is preserved since the paths in
ψ and π are the same modulo some repetitions.

Definition 4.1.31 (Permuting binary inferences downwards). This defini-
tion shows how to permute down a ∨: l inference ρ (the only binary inference
in LKsk), together with some contractions the auxiliary formulas of which
come from both permises of ρ. In the prooftrees, the indicated occurrences
of F1 and F2 will be the auxiliary occurrences of ρ. We will now define the
rewrite relation .b on LKsk-trees, where we assume ρ and σ to be indepen-
dent. Cases 1–3 treat the case of σ being a unary logical inference, in case 4
σ is a weakening inference, in cases 5–6 σ is a contraction inference, and in
cases 7–9 σ is ∨: l.

1. If π is

F1,Π,Γ1,G
i1 ` ∆1,G

ī1 ,Λ F2,Π,Γ2 ` ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G

i1 ` ∆1,G
ī1 ,∆2,Λ,Λ

contr: ∗
Gi1 ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī1

σ
Mi2 ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,M

ī2

and π′ is

Gi1 ,F1,Π,Γ1 ` ∆1,Λ,G
ī1

σ
Mi2 ,F1,Π,Γ1 ` ∆1,Λ,F1,M

ī2 F2,Π,Γ2 ` ∆2,Λ ρ
F1 ∨ F2,M

i2 ,Π,Π,Γ1,Γ2 ` ∆1,∆2,Λ,Λ,M
ī2

contr: ∗
F1 ∨ F2,M

i2 ,Π,Γ1,Γ2 ` ∆1,∆2,Λ,M
ī2

then π .1
b π
′.

2. If π is

F1,Π,Γ1 ` ∆1,Λ F2,Π,Γ2,G
i1 ` ∆2,Λ,G

ī1
ρ

F1 ∨ F2,Π,Π,Γ1,Γ2,G
i1 ` ∆1,∆2,Λ,Λ,G

ī1

contr: ∗
Gi1 ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī1

σ
Mi2 ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,M

ī2
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and π′ is

F1,Π,Γ1 ` ∆1,Λ

Gi1 ,F2,Π,Γ2 ` ∆2,Λ,G
ī1

σ
Mi2 ,F2,Π,Γ2 ` ∆2,Λ,M

ī2
ρ

F1 ∨ F2,M
i2 ,Π,Π,Γ1,Γ2 ` ∆1,∆2,Λ,Λ,M

ī2

contr: ∗
F1 ∨ F2,M

i2 ,Π,Γ1,Γ2 ` ∆1,∆2,Λ,M
ī2

then π .1
b π
′.

3. If π is

F1,Π,G
i1 ,Γ1 ` ∆1,Λ,G

ī1 F2,Π,G
i1 ,Γ2 ` ∆2,Λ,G

ī1
ρ

F1 ∨ F2,Π,G
i1 ,Π,Gi1 ,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī1 ,Λ,Gī1

contr: ∗
Gi1 ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī1

σ
Mi2 ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,M

ī2

and π′ is

Gi1 ,F1,Π,Γ1 ` ∆1,Λ,G
ī1

σ
Mi2 ,F1,Π,Γ1 ` ∆1,Λ,M

ī2

Gi1 ,F2,Π,Γ2 ` ∆2,Λ,G
ī1

σ
Mi2 ,F2,Π,Γ2 ` ∆2,Λ,M

ī2
ρ

F1 ∨ F2,Π,M
i2 ,Π,Mi2 ,Γ1,Γ2 ` ∆1,∆2,Λ,M

ī2 ,Λ,Mī2

contr: ∗
F1 ∨ F2,Π,M

i2 ,Γ1,Γ2 ` ∆1,∆2,Λ,M
ī2

then π .1
b π
′.

4. If π is

F1,Π,Γ1 ` ∆1,Λ F2,Π,Γ2 ` ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,Γ2 ` ∆1,∆2,Λ,Λ

contr: ∗
F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ

weak: ∗
Mi,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,M

ī

and π′ is

F1,Π,Γ1 ` ∆1,Λ
weak: ∗

Mi,F1,Π,Γ1 ` ∆1,Λ,M
ī F2,Π,Γ2 ` ∆2,Λ ρ

F1 ∨ F2,M
i,Π,Π,Γ1,Γ2 ` ∆1,∆2,Λ,Λ,M

ī

contr: ∗
F1 ∨ F2,M

i,Π,Γ1,Γ2 ` ∆1,∆2,Λ,M
ī
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then π .1
b π
′.

5. If π is

F1,Π,Γ1,G
i,Gi ` ∆1,Λ,G

ī,Gī F2,Π,Γ2 ` ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G

i,Gi ` ∆1,∆2,Λ,Λ,G
ī,Gī

contr: ∗
Gi,Gi,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī,Gī

σ
Gi,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī

then π′ is

F1,Π,Γ1,G
i,Gi ` ∆1,Λ,G

ī,Gī

σ
F1,Π,Γ1,G

i ` ∆1,Λ,G
ī F2,Π,Γ2 ` ∆2,Λ ρ

F1 ∨ F2,Π,Π,Γ1,Γ2,G
i ` ∆1,∆2,Λ,Λ,G

ī

contr: ∗
Gi,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī

6. If π is

F1,Π,Γ1 ` ∆1,Λ F2,Π,Γ2,G
i,Gi ` ∆2,Λ,G

ī,Gī

ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G

i,Gi ` ∆1,∆2,Λ,Λ,G
ī,Gī

contr: ∗
Gi,Gi,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī,Gī

σ
Gi,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī

then π′ is

F1,Π,Γ1 ` ∆1,Λ

F2,Π,Γ2,G
i,Gi ` ∆2,Λ,G

ī,Gī

σ
F2,Π,Γ2,G

i ` ∆2,Λ,G
ī

ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G

i ` ∆1,∆2,Λ,Λ,G
ī

contr: ∗
Gi,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ,G

ī

7. If π is

F1,Π,Γ1,G1 ` ∆1,Λ F2,Π,Γ2 ` ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,G1,Γ2 ` ∆1,∆2,Λ,Λ

contr: ∗
G1,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ G2,Σ ` Θ

σ
G1 ∨G2,F1 ∨ F2,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ
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and π′ is

G1,F1,Π,Γ1 ` ∆1,Λ G2,Σ ` Θ
σ

G1 ∨G2,F1,Π,Γ1,Σ ` Θ,∆1,Λ F2,Π,Γ2 ` ∆2,Λ ρ
F1 ∨ F2,G1 ∨G2,Π,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ,Λ

contr: ∗
F1 ∨ F2,G1 ∨G2,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ

then π .1
b π
′.

8. If π is

F1,Π,Γ1 ` ∆1,Λ F2,Π,Γ2,G1 ` ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G1 ` ∆1,∆2,Λ,Λ

contr: ∗
G1,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ G2,Σ ` Θ

σ
G1 ∨G2,F1 ∨ F2,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ

and π′ is

F1,Π,Γ1 ` ∆1,Λ

G1,F2,Π,Γ2 ` ∆2,Λ G2,Σ ` Θ
σ

G1 ∨G2,F2,Π,Γ2,Σ ` Θ,∆2,Λ ρ
F1 ∨ F2,G1 ∨G2,Π,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ,Λ

contr: ∗
F1 ∨ F2,G1 ∨G2,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ

then π .1
b π
′.

9. If π is

F1,Π,G1,Γ1 ` ∆1,Λ F2,Π,G1,Γ2 ` ∆2,Λ ρ
F1 ∨ F2,Π,G1,Π,G1,Γ1,Γ2 ` ∆1,∆2,Λ,Λ contr: ∗F1 ∨ F2,Π,G1,Γ1,Γ2 ` ∆1,∆2,Λ G2,Σ ` Θ

σ
G1 ∨G2,F1 ∨ F2,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ

and π′ is

G1,F1,Π,Γ1 ` ∆1,Λ G2,Σ ` Θ
σ

G1 ∨G2,F1,Π,Γ1,Σ ` Θ,∆1,Λ (ψ)
ρ

F1 ∨ F2,Π,G1 ∨G2,Π,G1 ∨G2,Γ1,Γ2,Σ,Σ ` Θ,Θ,∆1,∆2,Λ,Λ contr: ∗F1 ∨ F2,G1 ∨G2,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ
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where ψ is

G1,F2,Π,Γ2 ` ∆2,Λ G2,Σ ` Θ
σ

G1 ∨G2,F2,Π,Γ2,Σ ` Θ,∆2,Λ

then π .1
b π
′.

Finally, we define the .b relation as the transitive and reflexive closure of the
compatible closure of the .1

b relation.

Lemma 4.1.32. Let π be a weakly regular LKsk-tree of S. If π .b ψ then ψ
is a weakly regular LKsk-tree of S.

Proof. By induction on the length of the .b-rewrite sequence. The case of
π = ψ is trivial, so assume there exists a subtree ϕ of π such that ϕ.1

b ϕ
′ and

ψ is obtained from π by replacing ϕ by ϕ′. Then the end-sequent of ψ is the
same as that of π. Also weak regularity is preserved:

1. In cases 1, 2 and 4–8 of Definition 4.1.31, the paths in ψ and π are the
same modulo some repetitions.

2. In case 3, the paths in ψ and π are the same modulo some repeti-
tions, but a new copy of σ is introduced. Note that the two copies are
homomorphic, so we may conclude by Proposition 4.1.15.

3. In case 9, σ is duplicated together with the subtree ending in Σ `
Θ. Observe that all the descendants of the two copies of Σ ` Θ are
contracted, and hence all the duplicated inferences are homomorphic.
Therefore we may again conclude by Proposition 4.1.15.

Summarizing, we obtain

Lemma 4.1.33. Let π be a weakly regular LKsk-tree of S. If π .b ψ, π .u ψ,
or π .c ψ, then ψ is a weakly regular LKsk-tree of S.

Proof. By Lemmas 4.1.32, 4.1.30, and 4.1.25.

The following definitions will be used in the algorithm translating LKsk-
proofs into such LKsk-proofs which fulfil an eigenterm condition.

Definition 4.1.34. Let π be a LKsk-tree, and let ξ be a branch in π. Let σ, ρ
be inferences on ξ and w.l.o.g. let σ be above ρ. Let ξ1, . . . , ξn be the binary
inferences between σ and ρ. For 1 ≤ i ≤ n, let λi be the subproofs ending in
a premise sequent of ξi such that λi do not contain σ. Then λ1, . . . , λn are
called the parallel trees between σ and ρ.
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Definition 4.1.35. Let σ be a ∀sk: r inference in π with Skolem term S, and
ρ be a ∀sk: l inference in π with substitution term T. We say that ρ blocks
σ if ρ is below σ and T contains S. We call σ correctly placed if no ∀sk: l
inference in π blocks σ.

Example 4.1.36. Consider the LKsk-proof π:

〈P (c)〉c ` P (c) ∀sk: r〈P (c)〉c ` (∀x)P (x) ∀sk: l
(∀x)P (x) ` (∀x)P (x)

Here, the ∀sk: l inference blocks the ∀sk: r inference.

As indicated before, we will rearrange the quantifier inferences in an
LKsk-proof π in such a way that there are no eigenterm violations: this
will allow us to convert the LKsk-proof into an LK proof. During this rear-
ranging, we may have to permute binary inferences, causing duplication of
subproofs. This is bad for showing termination of the rearranging algorithm
because our termination measure will be based on the number of inferences
in π. As Example 4.1.28 shows, sequential pruning may severly reduce the
number of inferences in an LKsk-proof (especially when pruning binary in-
ferences). In fact, this pruning will be sufficient to show termination of the
rearranging procedure in the subsequent lemma. For the termination argu-
ment, we will use the notion of lexicographic order:

Definition 4.1.37 (Lexicographic order). Let X1, . . . , Xn be sets and for
i ≤ n let ≤i be a partial order on Xi. Then the lexicographic order on
X1 × . . .×Xn: <LEX is defined by

(x1, . . . , xn) <LEX (x′1, . . . , x
′
n) ⇐⇒ (∃m)(∀i < m)(xi = x′i) ∧ (xm <m x′m)

Lemma 4.1.38. Let π be an LKsk-proof of S. Then there exists a LKsk-
proof π′ of S such that all ∀sk: r inferences in π′ are correctly placed.

Proof. We introduce some notations that will be useful. Let π be an LKsk-
tree, ρ be a ∀sk: r inference in π with Skolem term S. Define Qρ as the
number of inferences blocking ρ. Then define BLOCKπ(S) =

∑
σQσ where

σ ranges over the ∀sk: r inferences in π with Skolem term S.
Define SKπ as the set of Skolem terms occurring in π. Let |SKπ| = n, then

denote the elements of SKπ by S1, . . . ,Sn s.t. for all 1 ≤ i ≤ n and all j < i:
either Sj > Si or Sj, Si are incomparable w.r.t. the subexpression ordering.
Then define the n-tupel απ = 〈BLOCKπ(S1), . . . ,BLOCKπ(Sn)〉.
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We show that there exists an LKsk-proof π′ of S with the property that
απ′ = 〈0, . . . , 0〉, which implies that there are no blocking inferences in π′.

We may assume that some member of απ is not 0. We will transform π
into an LKsk-proof π′ of S such that απ′ <LEX απ — existence of the desired
LKsk-proof then follows by induction. Let k be the least integer such that
BLOCKπ(Sk) > 0. Then there exists a lowermost ∀sk: r inference ρ with
Skolem term Sk such that there is a ∀sk: l inference σ blocking ρ. Observe
that σ does not operate on a descendant of the main formula of ρ: Assume it
does, then by Proposition 4.1.5, Sk properly contains the substitution term
of σ and, by the definition of blocking, therefore properly contains itself!

Define RR(π, ξ, σ) =
∑

µQµ where µ ranges over the inferences homo-
morphic to ρ in the parallel trees between ξ and σ. Define BR(π, ξ, σ) =
BLOCKπ(Sk)−RR(π, ξ, σ). The intuitive idea is: When we permute down
inferences, new subtrees can be created which contain inferences homomor-
phic to ρ. RR(π, ξ, σ) counts the number of “blockings” created by these
inferences. The point then is that these inferences will eventually be deleted,
and then BR(π, ξ, σ) = BLOCKπ(Sk) and therefore BLOCKπ(Sk) will
properly decrease by permuting ρ below σ.

Formally, let Rn, . . . , R1 be the inferences between ρ and σ (exluding ρ
and σ) operating on descendants of the main formula of ρ, i.e.:

... ρ
Γ ` ∆

... RnΓn ` ∆n

...

... R1Γ1 ` ∆1

... σ
Π ` Λ

We construct by induction LKsk-proofs π1, . . . , πl where one of the inferences
is permuted down below σ. The induction invariant is:

∀j < k(BLOCKπl+1
(Sj) = 0) ∧ BR(πl, ρ, σ) ≥ BR(πl+1, ρ, σ).

Assume l inferences have been shifted, that is
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... ρ
Γ ` ∆

... RnΓn ` ∆n

...

... Rl+1Γl+1 ` ∆l+1

... σ
Π′ ` Λ′

... RlΓ′l ` ∆′l

...

... R1Π ` Λ

Depending on whether Rl+1 is a unary, binary, or contraction inference, we
use .u, .b, or .c respectively to permute it below σ, obtaining πl+1. By
Lemma 4.1.33, πl+1 is an LKsk-proof of S. We verify the induction invariant
by distinguishing what kind of inference Rl+1 is:

1. Rl+1 is a ∀sk: r inference. Permuting down a ∀sk: r inference cannot
create any blocking inferences and does not change the number of ho-
momorphic inferences in the parallel trees, so the invariant holds. For
example, we permute Rl+1 below a ∀sk: l inference:

(ψ)

〈GT〉`1,T ,Γ ` ∆, 〈FS〉`2
Rl+1〈GT〉`1,T ,Γ ` ∆, 〈∀F〉`2 ∀sk: l〈∀G〉`1 ,Γ ` ∆, 〈∀F〉`2

is transformed into

(ψ)

〈GT〉`1,T ,Γ ` ∆, 〈FS〉`2 ∀sk: l〈∀G〉`1 ,Γ ` ∆, 〈FS〉`2
Rl+1〈∀G〉`1 ,Γ ` ∆, 〈∀F〉`2
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2. Rl+1 is a ∀sk: l inference with substitution term T. As Rl+1 operates
on a descendant of ρ, by Proposition 4.1.5, Sk > T. Therefore Sk
properly contains any Skolem term R contained in T, so R = Sj for
some j > k. Therefore BLOCKπl

(Sp) ≥ BLOCKπl+1
(Sp) for all

p ≤ k. The parallel trees are untouched, so the invariant holds.

3. Rl+1 is a unary propositional inference. The invariant trivially holds.

4. Rl+1 is an ∨: l inference. To verify the induction invariant, we perform
a case distinction depending on the inference below Rl+1. We only
consider the interesting cases:

(a) Rl+1 is permuted over a ∀sk: l inference ξ. At most one copy ξ′ of
ξ is created in πl+1, and there is no branch containing both ξ and
ξ′. So for all ∀sk: r inferences above Rl+1, there is still at most one
of ξ, ξ′ below them, so BLOCKπl+1

(Si) ≤ BLOCKπl
(Si) for all

i ∈ {1, . . . , k}.
For example, consider the case

(ψ)

F1,Π, 〈GT〉`,T ,Γ1 ` ∆1,Λ

(ψ′)

F2,Π, 〈GT〉`,T ,Γ2 ` ∆2,Λ
Rl+1

F1 ∨ F2,Π, 〈GT〉`,T ,Π, 〈GT〉`,T ,Γ1,Γ2 ` ∆1,∆2,Λ,Λ
contr: ∗〈GT〉`,T ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ

ξ
〈∀G〉` ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ

which is transformed to

(ψ)

〈GT〉`,T ,F1,Π,Γ1 ` ∆1,Λ
ξ

〈∀G〉` ,F1,Π,Γ1 ` ∆1,Λ

(ψ′)

〈GT〉`,T ,F2,Π,Γ2 ` ∆2,Λ
ξ′〈∀G〉` ,F2,Π,Γ2 ` ∆2,Λ
Rl+1

F1 ∨ F2,Π, 〈∀G〉` ,Π, 〈∀G〉` ,Γ1,Γ2 ` ∆1,∆2,Λ,Λ
contr: ∗〈∀G〉` ,F1 ∨ F2,Π,Γ1,Γ2 ` ∆1,∆2,Λ

So for all ∀sk: r inferences in ψ, ψ′ there is still only one copy of ξ
below them, and hence BLOCKπl+1

(Si) ≤ BLOCKπl
(Si).

(b) Rl+1 is permuted over a ∀sk: r inference ξ with Skolem term Sp. If
p < k, then BLOCKπl

(Sp) = 0 and therefore duplicating ξ still
gives BLOCKπl+1

(Sp) = 0. p = k does not hold, as we chose a
lowermost blocked ∀sk: r inference ρ.
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(c) Rl+1 is permuted over a binary inference ξ such that one of the
auxiliary formulas of ξ is contracted; then the situation in πl is

F1,Π,G1,Γ1 ` ∆1,Λ F2,Π,G1,Γ2 ` ∆2,Λ Rl+1F1 ∨ F2,Π,G1,Π,G1,Γ1,Γ2 ` ∆1,∆2,Λ,Λ contr: ∗F1 ∨ F2,Π,G1,Γ1,Γ2 ` ∆1,∆2,Λ
(ϕ)

G2,Σ ` Θ
ξ

G1 ∨G2,F1 ∨ F2,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ

which, in πl+1, is transformed to

G1,F1,Π,Γ1 ` ∆1,Λ
(ϕ)

G2,Σ ` Θ
ξ

G1 ∨G2,F1,Π,Γ1,Σ ` Θ,∆1,Λ (ψ)
Rl+1F1 ∨ F2,Π,G1 ∨G2,Π,G1 ∨G2,Γ1,Γ2,Σ,Σ ` Θ,Θ,∆1,∆2,Λ,Λ contr: ∗F1 ∨ F2,G1 ∨G2,Π,Γ1,Γ2,Σ ` Θ,∆1,∆2,Λ

where ψ is

G1,F2,Π,Γ2 ` ∆2,Λ

(ϕ)

G2,Σ ` Θ
ξ

G1 ∨G2,F2,Π,Γ2,Σ ` Θ,∆2,Λ

As BLOCKπl
(Sp) = 0 for p < k, BLOCKπl+1

(Sp) = 0 even
when duplicating a subtree. Hence we only have to consider
Sk. Assume BLOCKπl+1

(Sk) > BLOCKπl
(Sk), then there ex-

ists a ∀sk: r inference ρ′ in the duplicated tree ϕ with Skolem
term Sk. As ρ′ was created by copying a inference ρ∗ that was,
by weak regularity, homomorphic to ρ, also ρ′ will be homo-
morphic to ρ due to the applications of contractions contr: ∗ on
Σ,Θ,G1∨G2. Therefore the inferences blocking ρ′ in the copy of ϕ
are counted in RR(πl+1, ρ, σ). Let z be the number of inferences
blocking inferences ρ′ copied in this way, then RR(πl+1, ρ, σ) =
RR(πl, ρ, σ) + z and BLOCKπl+1

(Sp) = BLOCKπl
(Sp) + z and

hence BR(πl+1, ρ, σ) ≤ BR(πl, ρ, σ).

This completes the case distinction. Let ω be the inference directly above
ρ, then RR(πm, ρ, σ) = RR(πm, ω, σ). Permute ρ down over σ in the same
way as above and apply Lemma 4.1.27 to the resulting proof. This yields
a proof π′m such that RR(π′m, ω, σ) = 0 and, because ρ is now below σ,
BLOCKπ′m(Sk) < BLOCKπ(Sk).
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Example 4.1.39. In this and the following example, we apply the above
Lemma. Note that for reasons of clarity, in this example the relevant in-
stances of RR(π, ξ, σ) are always 0. The example after this one will exhibit
an LKsk-proof where this is not the case.

So consider the following LKsk-proof π:

P (s) ` P (s) ∃sk: l ρ1(∃x)P (x) ` P (s)

P (s) ` P (s) ∀sk: l σ1(∀x)P (x) ` P (s) ∨: l ξ1
(∃x)P (x) ∨ (∀x)P (x) ` P (s), P (s)

contr: r
(∃x)P (x) ∨ (∀x)P (x) ` P (s) (ψ) →: l ξ2
(∃x)P (x) ∨ (∀x)P (x), P (s)→ (∃sx)Q(x) ` Q(f(s)) ∀sk: l σ2(∃x)P (x) ∨ (∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` Q(f(s)) ∃sk: r σ3(∃x)P (x) ∨ (∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)

where ψ is

Q(f(s)) ` Q(f(s)) ∃sk: l ρ2(∃sx)Q(x) ` Q(f(s))

where the inference labels indicate the denotations of the inferences. The
proof contains no homomorphic pairs. σ3 blocks ρ1 and ρ2, and σ2 blocks ρ1,
hence

SKπ = {s, f(s)},
S1 = f(s),S2 = s,

and
Qρ1 = 2, Qρ2 = 1,
BLOCKπ(s) = 2, BLOCKπ(f(s)) = 1,
απ = 〈2, 1〉 ,
ρ = ρ2, σ = σ3,
l = 2, R1 = ξ2, R2 = σ2

We start by permuting R2 below σ, obtaining π2:

P (s) ` P (s) ∃sk: l ρ1(∃x)P (x) ` P (s)

P (s) ` P (s) ∀sk: l σ1(∀x)P (x) ` P (s) ∨: l ξ1
(∃x)P (x) ∨ (∀x)P (x) ` P (s), P (s)

contr: r
(∃x)P (x) ∨ (∀x)P (x) ` P (s) (ψ) →: l ξ2
(∃x)P (x) ∨ (∀x)P (x), P (s)→ (∃sx)Q(x) ` Q(f(s)) ∃sk: r σ3(∃x)P (x) ∨ (∀x)P (x), P (s)→ (∃x)Q(x) ` (∃x)Q(x) ∀sk: l σ2(∃x)P (x) ∨ (∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)
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yielding
Qρ1 = 2, Qρ2 = 1,
BLOCKπ(s) = 2, BLOCKπ(f(s)) = 1,
απ = 〈2, 1〉 ,
ρ = ρ2, σ = σ3,
l = 1, R1 = ξ2

Now we permute R1 below σ, obtaining π3:

P (s) ` P (s) ∃sk: l ρ1(∃x)P (x) ` P (s)

P (s) ` P (s) ∀sk: l σ1(∀x)P (x) ` P (s) ∨: l ξ1
(∃x)P (x) ∨ (∀x)P (x) ` P (s), P (s)

contr: r
(∃x)P (x) ∨ (∀x)P (x) ` P (s) (ψ3) →: l ξ2
(∃x)P (x) ∨ (∀x)P (x), P (s)→ (∃sx)Q(x) ` (∃x)Q(x) ∀sk: l σ2(∃x)P (x) ∨ (∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)

where ψ3 is

Q(f(s)) ` Q(f(s)) ∃sk: l ρ2(∃sx)Q(x) ` Q(f(s)) ∃sk: r σ3(∃sx)Q(x) ` (∃x)Q(x)

and
Qρ1 = Qρ2 = 1,
BLOCKπ3(s) = BLOCKπ2(f(s)) = 1,
απ3 = 〈1, 1〉 ,
ρ = ρ2, σ = σ3,
l = 0

Finally, we permute ρ below σ, obtaining π4, which is π3 where ψ3 is replaced
by

Q(f(s)) ` Q(f(s)) ∃sk: r σ3Q(f(s)) ` (∃x)Q(x) ∃sk: l ρ2(∃sx)Q(x) ` (∃x)Q(x)

We have
Qρ1 = 1,
Qρ2 = 0,
BLOCKπ4(s) = 1,
BLOCKπ4(f(s)) = 0,
απ4 = 〈0, 1〉 ,
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We move on to S2 = s. Now we have

ρ = ρ1, σ = σ2

l = 1, R1 = ξ1,

and we start by permuting down ξ1 over ξ2. This yields π5:

P (s) ` P (s) ∃sk: l ρ1(∃x)P (x) ` P (s)

Q(f(s)) ` Q(f(s)) ∃sk: r σ3Q(f(s)) ` (∃x)Q(x) ∃sk: l ρ2(∃sx)Q(x) ` (∃x)Q(x) →: l ξ2
(∃x)P (x), P (s)→ (∃sx)Q(x) ` (∃x)Q(x) (ψ5) ∨: l ξ1

(∃x)P (x) ∨ (∀x)P (x), F, F ` (∃x)Q(x), (∃x)Q(x)
contr: ∗

(∃x)P (x) ∨ (∀x)P (x), P (s)→ (∃sx)Q(x) ` (∃x)Q(x) ∀sk: l σ2(∃x)P (x) ∨ (∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)

where F = P (s)→ (∃sx)Q(x) and ψ5 is

P (s) ` P (s) ∀sk: l σ1(∀x)P (x) ` P (s)

Q(f(s)) ` Q(f(s)) ∃sk: r σ′3Q(f(s)) ` (∃x)Q(x) ∃sk: l ρ′2(∃sx)Q(x) ` (∃x)Q(x) →: l ξ′2(∀x)P (x), P (s)→ (∃sx)Q(x) ` (∃x)Q(x)

Note that {σ3, σ
′
3}, {ρ2, ρ

′
2}, and {ξ2, ξ

′
2} are all homomorphic pairs. We have

Qρ1 = 1,
Qρ2 = Qρ′2

= 0,
BLOCKπ5(s) = 1,
BLOCKπ5(f(s)) = 0,
απ5 = 〈0, 1〉 ,
l = 1

We have to permute ξ1 further down, below σ, yielding π6:

P (s) ` P (s) ∃sk: l ρ1(∃x)P (x) ` P (s)

Q(f(s)) ` Q(f(s)) ∃sk: r σ3Q(f(s)) ` (∃x)Q(x) ∃sk: l ρ2(∃sx)Q(x) ` (∃x)Q(x) →: l ξ2
(∃x)P (x), P (s)→ (∃sx)Q(x) ` (∃x)Q(x) ∀sk: l σ2(∃x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x) (ψ6) ∨: l ξ1

(∃x)P (x) ∨ (∀x)P (x), G,G ` (∃x)Q(x), (∃x)Q(x)
contr: ∗

(∃x)P (x) ∨ (∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)
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where G = (∀x)(P (x)→ (∃x)Q(x)) and ψ6 is

P (s) ` P (s) ∀sk: l σ1(∀x)P (x) ` P (s)

Q(f(s)) ` Q(f(s)) ∃sk: r σ′3Q(f(s)) ` (∃x)Q(x) ∃sk: l ρ′2(∃sx)Q(x) ` (∃x)Q(x) →: l ξ′2(∀x)P (x), P (s)→ (∃sx)Q(x) ` (∃x)Q(x) ∀sk: l σ′2(∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)

with
Qρ1 = 1,
Qρ2 = Qρ′2

= 0,
BLOCKπ6(s) = 1,
BLOCKπ6(f(s)) = 0,
απ6 = 〈0, 1〉 ,
l = 0

Finally we permute ρ1 below σ2 to obtain π7:

P (s) ` P (s)

Q(f(s)) ` Q(f(s)) ∃sk: r σ3Q(f(s)) ` (∃x)Q(x) ∃sk: l ρ2(∃sx)Q(x) ` (∃x)Q(x) →: l ξ2
P (s), P (s)→ (∃sx)Q(x) ` (∃x)Q(x) ∀sk: l σ2P (s), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x) ∃sk: l ρ1(∃x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x) (ψ6) ∨: l ξ1

(∃x)P (x) ∨ (∀x)P (x), G,G ` (∃x)Q(x), (∃x)Q(x)
contr: ∗

(∃x)P (x) ∨ (∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)

such that
Qρ1 = 0,
Qρ2 = Qρ′2

= 0,
BLOCKπ6(s) = 0,
BLOCKπ6(f(s)) = 0,
απ6 = 〈0, 0〉 ,

and hence all inferences are correctly placed.

Example 4.1.40. The following example will highlight the need for sequen-
tial pruning. Consider the LKsk-proof π:
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(ψ)

P (s) ` P (s) ∃sk: l
(∃x)P (x) ` P (s) A ` A ∨: l

(∃x)P (x) ∨ A ` P (s), A ∧: r
(∃x)P (x) ∨ A,P (s)→ A, (∃x)P (x) ∨ A ` A,A ∧ P (s)

contr: l
(∃x)P (x) ∨ A,P (s)→ A ` A,A ∧ P (s) ¬: l¬(A ∧ P (s)), (∃x)P (x) ∨ A,P (s)→ A ` A ∧: l

(∃x)P (x) ∨ A, (P (s)→ A) ∧ ¬(A ∧ P (s)) ` A ∀sk: l
(∃x)P (x) ∨ A, (∀x)((P (x)→ A) ∧ ¬(A ∧ P (x))) ` A

where ψ is

P (s) ` P (s) ∃sk: l
(∃x)P (x) ` P (s) A ` A ∨: l

(∃x)P (x) ∨ A ` P (s), A A ` A →: l
(∃x)P (x) ∨ A,P (s)→ A ` A,A

contr: r
(∃x)P (x) ∨ A,P (s)→ A ` A

Here the ∀sk: l application blocks both ∃sk: l applications, hence we have
BLOCKπ(s) = 2. We may choose which ∃sk: l application we want to per-
mute down first, let us take the one in ψ and denote it ρ. Denote the ∀sk: l
application by σ. Note that now it is indeed the case that RR(π, ρ, σ) = 1
(and hence BR(π, ρ, σ) = 1) due to the second ∃sk: l application. l = 1 and
R1 is the ∨: l application which we permute down and obtain π1, which is π
where ψ is replaced by

P (s) ` P (s) ∃sk: l
(∃x)P (x) ` P (s) A ` A →: l

(∃x)P (x), P (s)→ A ` A A ` A ∨: l
(∃x)P (x) ∨ A,P (s)→ A ` A,A

contr: r
(∃x)P (x) ∨ A,P (s)→ A ` A

We permute the ∨: l application further down together with the contr: r appli-
cation — now we have to duplicate a subproof containing an ∃sk: l application
that is homomorphic to ρ, obtaining π2:
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(ψ1) (ψ2) ∧: r
(∃x)P (x), P (s)→ A, (∃x)P (x) ∨ A ` A ∧ P (s), A (ψ3) ∨: l

F, P (s)→ A,F, F ` A ∧ P (s), A,A ∧ P (s), A
contr: ∗

(∃x)P (x) ∨ A,P (s)→ A ` A ∧ P (s), A ¬: l¬(A ∧ P (s)), (∃x)P (x) ∨ A,P (s)→ A ` A ∧: l
(P (s)→ A) ∧ ¬(A ∧ P (s)), (∃x)P (x) ∨ A ` A ∀sk: l

(∀x)((P (x)→ A) ∧ ¬(A ∧ P (x))), (∃x)P (x) ∨ A ` A
where F = (∃x)P (x) ∨ A and ψ1 is

P (s) ` P (s) ∃sk: l
(∃x)P (x) ` P (s) A ` A →: l

(∃x)P (x), P (s)→ A ` A
and ψ2 is

P (s) ` P (s) ∃sk: l
(∃x)P (x) ` P (s) A ` A ∨: l

(∃x)P (x) ∨ A ` P (s), A

and ψ3 is

A ` A

P (s) ` P (s) ∃sk: l
(∃x)P (x) ` P (s) A ` A ∨: l

(∃x)P (x) ∨ A ` P (s), A ∧: r
A, (∃x)P (x) ∨ A ` A,A ∧ P (s)

Now we indeed have
RR(π2, ρ, σ) = 2,
BLOCKπ2(s) = 3,
BR(π2, ρ, σ) = 1

We finish by permuting the ∨: l application below σ, obtaining π3:

(ψ1) (ψ2) ∧: r
(∃x)P (x), P (s)→ A,F ` A ∧ P (s), A ¬: l¬(A ∧ P (s)), (∃x)P (x), P (s)→ A,F ` A ∧: l¬(A ∧ P (s)) ∧ (P (s)→ A), (∃x)P (x), F ` A ∀sk: l

G, (∃x)P (x), F ` A (ψ4) ∨: l
F,G,G, F, F ` A,A

contr: ∗
(∃x)P (x) ∨ A, (∀x)(¬(A ∧ P (x)) ∧ (P (x)→ A)) ` A
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where G = (∀x)(¬(A ∧ P (x)) ∧ (P (x)→ A)) and ψ4 is

A ` A

P (s) ` P (s) ∃sk: l
(∃x)P (x) ` P (s) A ` A ∨: l

(∃x)P (x) ∨ A ` P (s), A ∧: r
A, (∃x)P (x) ∨ A ` A,A ∧ P (s) ¬: l¬(A ∧ P (s)), A, (∃x)P (x) ∨ A ` A

weak: l
P (s)→ A,¬(A ∧ P (s)), A, (∃x)P (x) ∨ A ` A ∧: l¬(A ∧ P (s)) ∧ P (s)→ A,A, (∃x)P (x) ∨ A ` A ∀sk: l

(∀x)(¬(A ∧ P (x)) ∧ P (x)→ A), A, (∃x)P (x) ∨ A ` A
Now, we can finally permute ρ below σ, obtaining π4:

P (s) ` P (s) A ` A →: l
P (s), P (s)→ A ` A (ψ2) ∧: r
P (s), P (s)→ A,F ` A ∧ P (s), A ¬: l¬(A ∧ P (s)), P (s), P (s)→ A,F ` A ∧: l¬(A ∧ P (s)) ∧ (P (s)→ A), P (s), F ` A ∀sk: l

G, P (s), F ` A ∃sk: l
(∃x)P (x), G, F ` A (ψ4) ∨: l

F,G,G, F, F ` A,A
contr: ∗

(∃x)P (x) ∨ A, (∀x)(¬(A ∧ P (x)) ∧ (P (x)→ A)) ` A
Note that SHP(π4) 6= ∅. Applying sequential pruning yields π5:

P (s) ` P (s) A ` A →: l
P (s), P (s)→ A ` A

P (s) ` P (s)
weak: r

P (s) ` P (s), A ∧: r
P (s), P (s), P (s)→ A ` A ∧ P (s), A ¬: l¬(A ∧ P (s)), P (s), P (s), P (s)→ A ` A ∧: l¬(A ∧ P (s)) ∧ (P (s)→ A), P (s), P (s) ` A ∀sk: l

G, P (s), P (s) ` A
contr: l

G, P (s) ` A ∃sk: l
(∃x)P (x), G ` A (ψ4) ∨: l

F,G,G, F ` A,A
contr: ∗

(∃x)P (x) ∨ A, (∀x)(¬(A ∧ P (x)) ∧ (P (x)→ A)) ` A
where indeed BLOCKπ5(s) = 1 < 2 = BLOCKπ(s) (the remaining block-
ing is in ψ2).
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Theorem 4.1.41 (Soundness). Let π be a LKsk-proof of S. Then there
exists a cut-free LK-proof of S.

Proof. We apply Lemma 4.1.27 and Lemma 4.1.38 to obtain a sequentially
pruned LKsk-proof π′ of S where all inferences are correctly placed.

For the rest of this proof, we allow ∀: r inferences in LKsk-proofs (with
the usual eigenvariable condition). By induction on the number of ∀sk: r
inferences in π′, we construct sequentially pruned LKsk-proofs π′′ where all
inferences are correctly placed, containing strictly less ∀sk: r inferences than
π′.

Let ρ

(ψ)

Γ ` ∆,
〈
FS
〉`
∀sk: r

Γ ` ∆, 〈∀αF〉`
be a ∀sk: r inference in π′ such that S is a >-maximal Skolem term in π′.

Assume that S occurs in Γ ∪∆ ∪ `. As π′ is an LKsk-proof, S does not
contain Skolem symbols and so a descendant of S must be eliminated by a
∀sk inference σ below ρ. Distinguish:

1. σ is a ∀sk: r inference. As π′ is sequentially pruned and weakly regular,
the Skolem term T of σ fulfills S 6= T. Therefore S < T, which
contradicts the assumption of >-maximality of S!

2. σ is a ∀sk: l inference. Then ρ is not correctly placed!

Hence S does not occur in Γ ∪ ∆ ∪ `. Applying Lemma 4.1.19, we obtain
ψ [S← Y]. We replace ρ in π′ by

(ψ [S← Y])

Γ ` ∆,
〈
FY

〉`
∀: r

Γ ` ∆, 〈∀αF〉`
We perform this procedure on all source inferences of S at once. As π′ is
sequentially pruned, all such inferences are parallel and the substitutions do
not interfere with each other. As Y is new, it does not cause eigenvariable
violations in ψ [S← Y]. As we apply the same replacement on the homo-
morphic paths, weak regularity is preserved.

Finally, we obtain a tree consisting of LKsk inferences, except ∀sk: r, and
∀: r inferences obeying the eigenvariable condition. We replace the LKsk

inferences by the respective LK inferences to obtain the desired LK-proof.
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Example 4.1.42. Recall the LKsk-proof π7 from Example 4.1.39. In it, there
are indeed no eigenterm violations. Hence we may apply the replacements
[f(s)← α] and [s← β] (α, β being fresh variables of type ι) to obtain the
LK-proof π:

P (β) ` P (β)

Q(α) ` Q(α) ∃ι: r
Q(α) ` (∃x)Q(x) ∃ι: l

(∃x)Q(x) ` (∃x)Q(x) →: l
P (β), P (β)→ (∃x)Q(x) ` (∃x)Q(x) ∀ι: l

P (β), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x) ∃ι: l
(∃x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x) (ψ) ∨: l

(∃x)P (x) ∨ (∀x)P (x), G,G ` (∃x)Q(x), (∃x)Q(x)
contr: ∗

(∃x)P (x) ∨ (∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)

where G = (∀x)(P (x)→ (∃x)Q(x)) and ψ is

P (β) ` P (β) ∀ι: l
(∀x)P (x) ` P (β)

Q(α) ` Q(α) ∃ι: r
Q(α) ` (∃x)Q(x) ∃ι: l

(∃x)Q(x) ` (∃x)Q(x) →: l
(∀x)P (x), P (β)→ (∃x)Q(x) ` (∃x)Q(x) ∀ι: l

(∀x)P (x), (∀x)(P (x)→ (∃x)Q(x)) ` (∃x)Q(x)

4.1.3 Another notion of regularity

In this section, we study an even more liberal soundness condition for LKsk-
trees. The material presented here is not needed for the CERESω method,
so the reader only interested in this part of the present thesis may skip this
subsection.

First, we endow the β-reduction relation with some additional structure:

Definition 4.1.43 (β-successors). Consider an occurrence of T = (λX.R)S.
Then T →β R [X← S]. Let ω be an occurrence of an expression U in
R. Then the corresponding occurrence of U [X← S] in R is called a β-
successor of ω. Let ω be an occurrence of an expression U in S. Then the
corresponding occurrences of U in R [X← S] are β-successors of ω. The
notion of β-successor is extended in the obvious way to the �β relation.

Example 4.1.44. Let t = (λx.f(x, x))y be an expression. Let ω1 be the
occurrence of f(x, x), and let ω2 be the occurrence of y. Then t �β f(y, y)
and the occurrence of f(y, y) is a β-successor of ω1, and both occurrences of
y are β-successors of ω2.
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In the last subsection, we were able to handle different ∀sk: r applications
with the same Skolem term — provided they were homomorphic, expressed
through the notion of weak regularity. In this section, we relax the notion of
weak regularity a bit and show that LKsk-trees that are regular in this relaxed
sense can be transformed into LKsk-proofs. In contrast to homomorphic
inferences (which are intuitively “very similar”), we introduce disconnected
inferences, which are intuitively “unrelated”. Towards this end, we introduce
a relation that connects occurrences of expressions in LKsk-trees. This is
similar to the logical flow graphs of [15, 17]. The difference is that logical
flow graphs consider the logical structure of a proof, while we are interested
also in the “term” level. Furthermore, logical flow graphs are directed, while
the relation we are interested in here is symmetric.

For a fixed tree π, we denote the set of all expression occurrences in π by
O.

Definition 4.1.45. Let π be an LKsk-tree, let η1, η2, η3 ∈ O. We define the
relation η1 !1 η2:

1. η1, η2 occur in an axiom F[t]p ` F[t]p. If η1 is the indicated occurrence
of t at p in the antecedent, and η2 is the indicated occurrence of t at p
in the consequent, then η1 !1 η2.

2. η1 occurs in an active formula of a ∀sk: l inference.

(FT[t]p)
l,T[t]pΓ ` ∆

∀sk: l
(∀αF)l,Γ ` ∆

If η1, η2 are distinct β-successors of the indicated occurrence of t in T
in the auxiliary formula, then η1 !1 η2. If η1 is a β-successor of the
indicated occurrence of t in T in the auxiliary formula, and η2 is the
indicated occurrence of t in T in the label, then η1 !1 η2.

(F[t]pT)l,T,Γ ` ∆
∀sk: l

(∀αF[t]p)
l,Γ ` ∆

If η1 is the indicated occurrence of t in the lower sequent, and η2 is a
β-successor of the indicated occurrence of t in the upper sequent, then
η1 !1 η2.

3. η1, η2 occur in the active formulas of a ∀sk: r inference.
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Γ ` ∆, (FS[t]p)
T1,...,Tn

∀sk: r
Γ ` ∆, (∀αF)T1,...,Tn

where S = fS1 . . .Sm. If η1, η2 are distinct β-successors of the indicated
occurrence of t in S, then η1 !1 η2. For all i ≤ n, j ≤ m, if Ti = Sj
and in

Γ ` ∆, (F(fS1 . . .Sj[t]p . . .Sm))T1,...,Ti[t]p,...Tn

∀sk: r
Γ ` ∆, (∀αF)T1,...,Ti[t]p,...Tn

η1 is a β-successor of the indicated occurrence of t in the auxiliary
formula and η2 is the indicated occurrence of t in the upper label, and
η3 is the indicated occurrence of t in the lower label, then η1 !1 η2

and η1 !1 η3.

4. η1, η2 occur in the auxiliary and main formula, respectively, of a ∨: r1

inference

Γ ` ∆,F[t]p ∨: r1

Γ ` ∆,F[t]p ∨G

Let η1 be the indicated occurrence of t at p in the auxiliary formula,
and let η2 be the indicated occurrence of t at p in the main formula.
Then η1 !1 η2.

5. η1, η2 occur in the active formulas of other propositional inferences:
defined analogously to the previous case.

6. η1, η2 occur in the auxiliary formulas, and η3 in the main formula of a
contr: r inference

Γ ` ∆, 〈F[t]p〉l , 〈F[t]p〉l
contr: r

Γ ` ∆, 〈F[t]p〉l

Let η1 be the indicated occurrence of t at p in the left auxiliary formula,
let η2 be the indicated occurrence of t at p in the right auxiliary formula,
and let η3 be the indicated occurrence of t at p in the main formula.
Then η1 !1 η3, η2 !1 η3.

Γ ` ∆, 〈F〉l[t]p , 〈F〉l[t]p

contr: r
Γ ` ∆, 〈F〉l[t]p
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Let η1, η2 be the indicated occurrences in the upper labels and let η3

be the indicated occurrence in the lower label. Then η1 !1 η3 and
η2 !1 η3.

7. η1, η2 occur in the auxiliary formulas, and η3 in the main formula of a
contr: l inference: defined analogously to the previous case.

8. η1, η2 occur in context formulas of a binary inference:

Γ,F[t]p ` ∆ Π ` Λ

Γ′,F[t]p ` ∆′

Let η1 be the indicated occurrence of t at p in the premise, and let η2 be
the indicated occurrence of t at p in the conclusion. Then η1 !1 η2.

The definition is made analogously for η1, η2 occuring in the consequent,
and for η1 occuring in the left premise.

9. η1, η2 occur in the context formulas of a unary inference: defined anal-
ogously to the previous case.

10. η1, η2 occur in the context labels of a inference: defined analogously to
the previous case.

The relation! is then defined as the symmetric closure of the!1 relation.
By !∗ we denote the reflexive and transitive closure of !. For η ∈ O we
denote the equivalence class of η modulo !∗ by [η]c.

Let η ∈ O, then by t(η) we denote the expression at η. By definition we
have

Lemma 4.1.46. For all η1, η2 ∈ O, if η1 ! η2 then t(η1) = t(η2).

Definition 4.1.47. Let η1, . . . , ηn ∈ O be pairwise different. If for all 1 ≤
i < n, ηi ! ηi+1, then (η1, . . . , ηn) is called a dependency path (from η1 to
ηn).

Lemma 4.1.48. There exists a dependency path from η1 to ηn iff η1 !∗ ηn.

Proof. One direction is trivial. The other direction follows from the fact that
we may remove loops from a witness of η1 !∗ ηn.

Definition 4.1.49. Let ρ1, ρ2 be ∀sk: r applications with the same Skolem
symbol. Let η1 be a β-successor of the Skolem symbol occurrence of ρ1,
and let η2 be a β-successor of the Skolem symbol occurrence of ρ2. Then a
dependency path from η1 to η2 is called a connection from ρ1 to ρ2.
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Proposition 4.1.50. Let ρ1, ρ2 be ∀sk: r applications with the same Skolem
symbol. Then there exists a connection from ρ1 to ρ2 iff there exists a con-
nection from ρ2 to ρ1.

Proof. By the symmetry of !∗ and Lemma 4.1.48.

If a connection from ρ1 to ρ2 exists, we say that ρ1 and ρ2 are connected.
If no connection exists, then we say that they are disconnected.

Example 4.1.51. Consider the proper LKsk-tree π:

P (f(λz.(∃x)P (x))) ` P (f(λz.(∃x)P (x)))

〈(∃x)P (x)〉λz.(∃x)P (x) ` P (f(λz.(∃x)P (x)))
∃sk:l

(∀X)X(s) ` P (f(λz.(∃x)P (x)))
∀sk:l

(∃x)(∀X)X(x) ` P (f(λz.(∃x)P (x)))
∃sk:l

P (f(λz.(∃x)P (x))) ` P (f(λz.(∃x)P (x)))

〈(∃x)P (x)〉λz.(∃x)P (x) ` P (f(λz.(∃x)P (x)))
∃sk:l

(∀X)X(s) ` P (f(λz.(∃x)P (x)))
∀sk:l

(∃x)(∀X)X(x) ` P (f(λz.(∃x)P (x)))
∃sk:l

(∃x)(∀X)X(x), (∃x)(∀X)X(x) ` P (f(λz.(∃x)P (x))) ∧ P (f(λz.(∃x)P (x)))
∧:r

(∃x)(∀X)X(x) ` P (f(λz.(∃x)P (x))) ∧ P (f(λz.(∃x)P (x)))
contr:l

(∃x)(∀X)X(x) ` (∃x)(P (x) ∧ P (x))
∃sk:r

For reasons of readability, some labels and their !-relations have been
omitted from the figure. The connection between the two upper ∃sk: l infer-
ences has been indicated. Observe that the two ∃sk: l inferences with Skolem
term s are disconnected.

We can now state our relaxed regularity condition:

Definition 4.1.52. An LKsk-tree π is called weakly+ regular if for every two
distinct ∀sk: r applications ρ1, ρ2 in π

1. if ρ1, ρ2 have identical Skolem terms then either

(a) ρ1, ρ2 are homomorphic, or

(b) ρ1, ρ2 are disconnected,

2. and if ρ2 operates on a descendent of the main formula of ρ1, then ρ1

and ρ2 have different Skolem symbols.

Observe that due to the second condition, weak regularity does not imply
weak+ regularity.

Example 4.1.53. Let π be as in Example 4.1.51. Let ρ1, ρ2 be the ∃sk: l
inferences with Skolem term f(λz.(∃x)P (x)), and let σ1, σ2 be the ∃sk: l in-
ferences with Skolem term s. Then ρ1, ρ2 are disconnected, and σ1, σ2 are
homomorphic, so π is weakly+ regular.
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Lemma 4.1.54. Let ω1, ω2 ∈ O such that ω2 is a descendent of ω1. Then
ω1 !∗ ω2.

Proof. By induction on the number of inferences between ω1 and ω2.

Now follows the main lemma of this section. It shows that we can
separate disconnected ∀sk: r inferences modulo homomorphism equivalence
classes. This is the main technical tool to convert weakly+ regular, proper
LKsk-trees to LKsk-proofs. In the light of Proposition 4.1.15 we make the
following definition:

Definition 4.1.55. Let ρ be an inference in an LKsk-tree. By [ρ]h we denote
the equivalence class of ρ induced by inference homomorphisms.

Lemma 4.1.56. Let π be a proper LKsk-tree of E. Let ρ be a ∀sk: r appli-
cation with Skolem symbol f in π. Let g be a Skolem symbol not occuring
in π such that f and g have the same signature. Let S be the set of the
β-successors of the Skolem symbol occurrences of the inferences in [ρ]h. Let
[S]c =

⋃
µ∈S[µ]c. Then the result π′ of simultaneously replacing in π, for ev-

ery ω ∈ [S]c, f at ω by g, is an LKsk-tree of S. Furthermore, if π is weakly+
regular, then so is π′.

Proof. First, we show that substituting f for g at ω ∈ [S]c really produces
an LKsk-tree of S. By Lemma 4.1.46 indeed t(ω) = f . We proceed by case
distinction on the definition of !:

1. ω occurs in an axiom F[f ]p ` F[f ]p. After substitution, it is still an
axiom F[g]p ` F[g]p.

2. ω occurs in active formulas of a ∀sk: l inference. If it occurs in the
β-successors of its substitution term T

(FT[f ]p)
l,T[f ]pΓ ` ∆

∀sk: l
(∀αF)l,Γ ` ∆

in which case the inference becomes

(FT[g]p)
l,T[g]pΓ ` ∆

∀sk: l
(∀αF)l,Γ ` ∆

as for all β-successors λ of the indicated occurrence of f in the auxiliary
formula, ω! λ, and also for the indicated occurrence σ in the label,
ω! σ.

Otherwise if ω occurs as a β successor of a term in F
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(F[f ]pT)l,T,Γ ` ∆
∀sk: l

(∀αF[f ]p)
l,Γ ` ∆

the inference becomes

(F[g]pT)l,T,Γ ` ∆
∀sk: l

(∀αF[g]p)
l,Γ ` ∆

3. ω occurs in active formulas of a ∀sk: r inference. If it occurs in the
β-successor of its Skolem term S = hS1 . . .Sm,

Γ ` ∆, (FS[f ]p)
T1,...,Tn

∀sk: r
Γ ` ∆, (∀αF)T1,...,Tn

distinguish:

(a) ω is a β-successor of the Skolem symbol h of the inference. Then
the inference becomes

Γ ` ∆, (F(gS1 . . .Sm))T1,...,Tn

∀sk: r
Γ ` ∆, (∀αF)T1,...,Tn

which is correct as g is a Skolem symbol.

(b) ω is not a β-successor of the Skolem symbol. Then it is a β-
successor of an occurrence in some Si,

Γ ` ∆, (F(hS1 . . .Si[f ]p . . .Sm))T1,...,Tn

∀sk: r
Γ ` ∆, (∀αF)T1,...,Tn

and hence the inference becomes

Γ ` ∆, (F(hS1 . . .Si[g]p . . .Sm))T
′
1,...,T

′
n

∀sk: r
Γ ` ∆, (∀αF)T

′
1,...,T

′
n

where T′j = Tj if Si 6= Tj and T′j = Si[g]p otherwise. Clearly
{T′1, . . . ,T′n} ⊆ {S1, . . . ,Si[g]p, . . . ,Sm}.

4. ω occurs in the auxiliary or main formula of a ∨: r1 inference

Γ ` ∆,F[f ]p ∨: r1

Γ ` ∆,F[f ]p ∨G

This inference becomes
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Γ ` ∆,F[g]p ∨: r1

Γ ` ∆,F[g]p ∨G

5. ω occurs in the active formulas of other propositional inferences: anal-
ogous to the previous case. For example, consider

F[f ]p,Γ ` ∆ G,Π ` Λ

F[f ]p ∨G,Γ,Π ` ∆,Λ

This inference becomes

F[g]p,Γ ` ∆ G,Π ` Λ

F[g]p ∨G,Γ,Π ` ∆,Λ

6. ω occurs in the active formulas of a contr: r inference

Γ ` ∆,F[f ]p,F[f ]p
contr: r

Γ ` ∆,F[f ]p

This inference becomes

Γ ` ∆,F[g]p,F[g]p
contr: r

Γ ` ∆,F[g]p

7. ω occurs in the active formulas of a contr: l inference: analogous to the
previous case.

8. ω occurs in context formulas of a binary inference:

Γ,F[f ]p ` ∆ Π ` Λ

Γ′,F[f ]p ` ∆′

This inference becomes

Γ,F[g]p ` ∆ Π ` Λ

Γ′,F[g]p ` ∆′

The arguments for ω occuring at other positions is analogous.
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9. ω occurs in the context formulas of a unary inference: analogous to the
previous case.

As E does not contain Skolem symbols, π′ is a LKsk-tree of E. This completes
the first part of the proof.

Now we show that if π is weakly+ regular, then so is π′. Consider two
∀sk: r applications ρ, σ in π, and their copies ρ′, σ′ in π′. It is clear that
substituting a new Skolem symbol for another one cannot make occurrences
of different Skolem symbols in π become occurrences of the same Skolem
symbol in π′, so the second condition is fulfilled.

For the first condition, we show that

(1) If ρ and σ are homomorphic and ρ′, σ′ have the same Skolem term,
then ρ′ and σ′ are homomorphic, and

(2) If ρ and σ are disconnected then so are ρ′ and σ′.

(2) is trivial, as a connection in π′ gives rise to a connection in π. It remains
to show (1).

For contradiction, assume that ρ′ and σ′ are not homomorphic. As ρ and
σ are homomorphic, there exist homomorphic paths µρ and µσ in π such
that F (µρ) = F (µσ). Consider their copies µ′ρ and µ′σ in π′. As ρ′ and σ′ are
not homomorphic, there must be some occurrence ωρ of f on µρ such that
ωρ ∈ [S]c, but for the corresponding occurrence ωσ on µσ, ωσ /∈ [S]c. As E
does not contain Skolem symbols, there exists a ∀ inference ξ that eliminates
a descendent ω∗ of ωρ. Distinguish:

1. ξ is below the uniting contraction of ρ, σ. But then a descendent of ωρ
is present in the uniting contraction

Γ ` ∆,F[f ],F[f ]
contr: r

Γ ` ∆,F[f ]

and is therefore !∗-connected to a descendent of ωσ. Lemma 4.1.54
therefore yields ωρ!∗ ωσ and hence ωσ ∈ [S]c, a contradiction.

2. ξ is above the uniting contraction of ρ, σ. Further distinguish:

(a) ξ is a ∀sk: l application

(FT[f ]p)
l,T[f ]p ,Γ ` ∆

∀sk: l
(∀αF)l,Γ ` ∆
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where ω∗ is the indicated occurrence of f in the auxiliary formula.
Then by Lemma 4.1.54, ωρ is !∗-connected to the indicated oc-
currence of f in the label.

This occurrence, in turn, has an ancestor in (and is therefore!∗-
connected to) the label of the main formula of ρ, and hence is
!∗-connected to an occurrence in a β-successor of the Skolem
term of ρ. Hence if the Skolem term of ρ is t[f ]q, the Skolem term
of ρ′ is t′[g]q. We claim that t′[g]q is not the Skolem term of σ′:
Assume it is. Let λ be any occurrence of a β-successor of f at q
in the Skolem term t[f ]q of σ, then λ ∈ [S]c.

Now consider ωσ. As ρ and σ are homomorphic, there exists a ξ′

with the same auxiliary formula as ξ which removes the descendent
of ωσ and therefore, just like above, ωσ is !∗-connected to the
label of the main formula of σ, and hence to an occurrence in a
β-successor of f at q in the Skolem term t[f ]q of σ. But then,
ωσ ∈ [S]c, a contradiction! Hence ρ′ and σ′ have different Skolem
terms, and we have shown (1).

(b) ξ is a ∀sk: r application

Γ ` ∆, (FS[f ]p)
l

∀sk: r
Γ ` ∆, (∀αF)l

If the indicated occurrence of f occurs in a proper subterm of S,
then it occurs in l and, because π is proper, there exists a ∀sk: l
application removing a descendent of the label occurrence, and we
may apply the argument from the previous case. So we consider
the case that p is the head position, and ξ is

Γ ` ∆, (F(fS1 . . .Sm))l ∀sk: r
Γ ` ∆, (∀αF)l

But ξ operates on a descendent of the main formula of ρ and has
the same Skolem symbol, which implies that π is not weakly+
regular, and hence contradiction!

By applying the previous lemma repeatedly, we can rename Skolem terms
of disconnected inference in such a way that weak regularity is attained:

Theorem 4.1.57. Let π be a weakly+ regular, proper LKsk-tree of S. Then
there exists an LKsk-proof of S.
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Proof. Let r(π) be the number of pairs of ∀sk: r inferences ρ, σ with identical
Skolem terms in π such that ρ and σ are not homomorphic. We proceed by
induction: If r(π) = 0, then all such inferences are homomorphic and π is
weakly regular. Otherwise, we construct a weakly+ regular, proper LKsk-
tree π′ of S such that r(π′) < r(π): Let ρ, σ be ∀sk: r inferences in π with
identical Skolem terms which are not homomorphic. We apply Lemma 4.1.56
to ρ to replace its Skolem symbol f by a new one g to obtain π′. We claim that
the Skolem symbol of σ is unchanged: assume it is not, then σ is connected
to some ν ∈ [ρ]h. As σ and ν have the same Skolem term, ν must be
homomorphic to σ, but then ρ is homomorphic to σ, a contradiction. So the
copies σ′, ρ′ of σ, ρ in π′ now have different Skolem terms. To show that
r(π′) < r(π), it now suffices to show for pairs (ξ′, λ′) of ∀sk: r inferences in
π′ and their copies ξ, λ in π that if ξ′, λ′ have the same Skolem term and
are not homomorphic, then ξ, λ have the same Skolem term, and are not
homomorphic. As g is a new Skolem term, ξ and λ have the same Skolem
term if ξ′, λ′ do. The second part follows directly from (1) in the proof of
Lemma 4.1.56.

Example 4.1.58. Consider the following proper LKsk-tree π:

R(t, s) ` R(t, s)
(∃x)R(x, s) ` R(t, s)

∃sk:l

(∀X)X(s) ` R(t, s)
∀sk:l

P (s) ` P (s)
P (s) ` (∀x)P (x)

∀sk:r

(∀X)X(s) ∨ P (s) ` R(t, s), (∀x)P (x)
∨:l

(∀x)((∀X)X(x) ∨ P (x)) ` R(t, s), (∀x)P (x)
∀sk:l

R(t, s) ` R(t, s)
(∃x)R(x, s) ` R(t, s)

∃sk:l

(∀X)X(s) ` R(t, s)
∀sk:l

P (s) ` P (s)
P (s) ` (∀x)P (x)

∀sk:r

(∀X)X(s) ∨ P (s) ` R(t, s), (∀x)P (x)
∨:l

(∀x)((∀X)X(x) ∨ P (x)) ` R(t, s), (∀x)P (x)
∀sk:l

(∀x)((∀X)X(x) ∨ P (x)), (∀x)((∀X)X(x) ∨ P (x)) ` R(t, s) ∧R(t, s), (∀x)P (x), (∀x)P (x)
∧:r

(∀x)((∀X)X(x) ∨ P (x)) ` R(t, s) ∧R(t, s), (∀x)P (x), (∀x)P (x)
contr:l

(∀x)((∀X)X(x) ∨ P (x)) ` (∃u)(∃v)(∃w)(∃x)(R(u, v) ∧R(w, x)), (∀x)P (x), (∀x)P (x)
∃sk:r×4

where T = λz.(∃x)R(x, z), t = f(T, s), and s ∈ Kι, f ∈ Kι→o,ι,ι, and
sequent labels have been left out for readability. The two ∃sk: l inferences are
homomorphic, and the two ∀sk: r inferences are disconnected, so π is weakly+
regular. Hence we may apply Theorem 4.1.57. The two ∀sk: r inferences
are the only pair of inferences with identical Skolem term which are not
homomorphic, so we replace s by a new r ∈ Kι according to Lemma 4.1.56.
One of the two relevant paths is indicated in the figure; the other goes through
the sequent labels into an occurrence of t. The result of the replacement is

R(t′, r) ` R(t′, r)
(∃x)R(x, r) ` R(t′, r)

∃skι :l

(∀X)X(r) ` R(t′, r)
∀skι→o:l

P (r) ` P (r)
P (r) ` (∀x)P (x)

∀skι :r

(∀X)X(r) ∨ P (r) ` R(t′, r), (∀x)P (x)
∨:l

(∀x)((∀X)X(x) ∨ P (x)) ` R(t′, r), (∀x)P (x)
∀skι :l

R(t, s) ` R(t, s)
(∃x)R(x, s) ` R(t, s)

∃skι :l

(∀X)X(s) ` R(t, s)
∀skι→o:l

P (s) ` P (s)
P (s) ` (∀x)P (x)

∀skι :r

(∀X)X(s) ∨ P (s) ` R(t, s), (∀x)P (x)
∨:l

(∀x)((∀X)X(x) ∨ P (x)) ` R(t, s), (∀x)P (x)
∀skι :l

(∀x)((∀X)X(x) ∨ P (x)), (∀x)((∀X)X(x) ∨ P (x)) ` R(t′, r) ∧R(t, s), (∀x)P (x), (∀x)P (x)
∧:r

(∀x)((∀X)X(x) ∨ P (x)) ` R(t′, r) ∧R(t, s), (∀x)P (x), (∀x)P (x)
contr:l

(∀x)((∀X)X(x) ∨ P (x)) ` (∃u)(∃v)(∃w)(∃x)(R(u, v) ∧R(w, x)), (∀x)P (x), (∀x)P (x)
∃skι :r×4

where t′ = f(T, r). Now all ∀sk: r and ∃sk: l inferences have pairwise
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different Skolem terms, and hence this is an LKsk-proof.

Theorem 4.1.59 (Soundness). Let π be a weakly+ regular, proper LKsk-tree
of S. Then there exists a cut-free LK-proof of S.

Proof. By Theorems 4.1.57 and 4.1.41.

4.2 The resolution calculus Ral

In this section, we introduce the resolution calculus Ral we will use to define
the CERESω method in the next section. As in LKsk, we deal with labelled
sequents. Note that R will include rules for CNF transformation: this is
standard in higher-order resolution, as the notion of clause is not closed
under substitution. It is also done in the ENAR calculus from [21] for a
similar reason.

Definition 4.2.1 (Ral rules, deductions and refutations).

Γ ` ∆, 〈¬A〉`
〈A〉` ,Γ ` ∆

¬T 〈¬A〉` ,Γ ` ∆

Γ ` ∆, 〈A〉` ¬
F

Γ ` ∆, 〈A ∨B〉`
Γ ` ∆, 〈A〉` , 〈B〉` ∨

T
〈A ∨B〉` ,Γ ` ∆

〈A〉` ,Γ ` ∆
∨Fl

〈A ∨B〉` ,Γ ` ∆

〈B〉` ,Γ ` ∆
∨Fr

Γ ` ∆, 〈∀αA〉`
Γ ` ∆, 〈AX〉`,X ∀

T
〈∀αA〉` ,Γ ` ∆

〈A(fS1 . . .Sn)〉` ,Γ ` ∆
∀F S

S [X← T]
Sub

Γ ` ∆, 〈A〉`1 , . . . , 〈A〉`n 〈A〉`n+1 , . . . , 〈A〉`m ,Π ` Λ

Γ,Π ` ∆,Λ
Cut

In Cut, A is atomic. In ∀T , X is a variable of appropriate type which does
not occur in Γ,∆,A. In ∀F , ` = S1, . . . ,Sn and if τ(Si) = αi for 1 ≤ i ≤ n
then f ∈ Kα1,...,αn,α is a Skolem symbol. An application of this rule is called
source inference of fS1 . . .Sm, and fS1 . . .Sm is called the Skolem term of this
inference.

Let C be a set of sequents. A sequence of sequents S1, . . . , Sn is an Ral-
deduction of Sn from C if for all 1 ≤ i ≤ n either

1. Si ∈ C or

2. Si is derived from Sj (and Sk) by an Ral rule, where j, k < i.

In addition, we require that all ∀F inferences used have pairwise distinct
Skolem symbols. An Ral-deduction of the empty sequent from C is called an
Ral-refutation of C.
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The calculus Ral is quite close to Andrews’ resolution calculus R pre-
sented in Section 2.3. Just like in R, Ral-deductions are defined in a linear
fashion (in contrast to LK-proofs and LKsk-trees). The two main differences
to R are (1) the use of labels to control the arguments of the Skolem terms
introduced by the ∀F rule, and (2) the incorporation of Andrews’ rules of
Simplification and Cut into the Cut rule of Ral. Regarding the latter, note
that this restriction is not as serious as it may appear at first glance: For
example, the sentence F = ∀xP (x)→ (P (a)∧P (b)) cannot be proved in LK,
restricted to atomic cut, without using non-atomic contraction. Still, ¬F can
be refuted in Ral. Relative completeness of Ral is still an open problem:

Conjecture 4.2.2. Let S be a set of labelled sequents. If there exists an
R-refutation of the reduct of S, then there exists an Ral-refutation of S.

This conjecture will imply completeness of the CERESω method, in con-
junction with the following result from [1] (which still holds in the presence
of Miller’s restriction):

Theorem 4.2.3. Let S be a set of sentences. If there exists a T -refutation
of S then there exists an R-refutation of S.

Note that the above formulation of the conjecture is not the only way
to attain this goal: completeness with respect to an appropriate intensional
model class (see [10, 45]) for higher-order logic would also suffice (together
with a soundness theorem for that class for LK). The formulation above
has the advantage that an effective proof of it would give an algorithm to
transform R-refutations into Ral-refutations, allowing proof search to be
done in practice in the more convenient R calculus.

The following subsection will present results which indicate that the con-
jecture can indeed be resolved positively by studying whether the R calculus
can be sufficiently restricted.

4.2.1 Restricting R (towards Ral)

In this section, we will consider the following calculus:

Definition 4.2.4 (Resolution calculus Ra). We define the calculus Ra anal-
ogously to the calculus R (see Definition 2.3.1); it consists of the rules:

Γ ` ∆,¬A

A,Γ ` ∆ ¬T ¬A,Γ ` ∆

Γ ` ∆,A ¬F Γ ` ∆,A ∨B

Γ ` ∆,A,B ∨T

A ∨B,Γ ` ∆

A,Γ ` ∆
∨Fl

A ∨B,Γ ` ∆

B,Γ ` ∆
∨Fr
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Γ ` ∆,∀A
Γ ` ∆,AX ∀T

∀A,Γ ` ∆

A(fX1 . . .Xn),Γ ` ∆
∀F S

S [X← T]
Sub

Γ ` ∆,A, . . . ,A A, . . . ,A,Π ` Λ

Γ,Π ` ∆,Λ
mCut

where in ∀F , X1, . . . ,Xn are all the free variables occuring in A, and if
τ(Xi) = ti for 1 ≤ i ≤ n and τ(A) = t→ o, then f ∈ Kt1,...,tn,t. In mCut, A
is atomic.

Note that Ra is “in-between” R and Ral: it does not have the SimT ,
SimF rules of R, but the ∀F and ∀T rules work as they do in R. In this
section, we are interested in the question whether Ra is still complete (with
respect to R). The answer will be positive for a fragment of R:

Definition 4.2.5. Let γ be an R-deduction such that all Skolem terms of
∀F inferences in γ are constants. Then γ is called an Rc-deduction.

Let γ be an R-deduction, and ρ1, ρ2 inferences in γ. Then we say that
ρ1 is direct ancestor of ρ2 if the conclusion of ρ1 is a premise of ρ2. ρ2

is a direct descendant of ρ1 if ρ1 is a direct ancestor of ρ2. Similarily, if
S1, S2 are sequent occurrences in γ then S1 is a direct ancestor of S2 if there
exists an inference with premise S1 and conclusion S2 in γ, and then S2 is
a direct descendant of S1. The proper ancestor (descendant) relations are
the transitive closures of the direct ancestor (direct descendant) relations.
The ancestor (descendant) relations are the reflexive closures of the proper
ancestor (descendant) relations. If S1 is a descendant of S2 then we also say
that S1 depends on S2. Furthermore, we say that an inference ρ operates on
a formula occurrence ω if ω is an auxiliary or main formula of ρ (note that
the Sub rule does not operate on any formula occurrences).

For notational convenience we will refer to SimT and SimF inferences
simply as Sim inferences.

Definition 4.2.6. We say that a Sim inference ρ is locked if all the direct
descendants of ρ operate on the main formula of ρ. Let ω be a formula
occurrence in γ. Then a sequence of sequents S1, . . . , Sn is a path starting at
ω if S1 contains ω and for all 1 ≤ i < n, Si is a direct ancestor of Si+1. A
path p starting at ω is called uninterrupted if no inference on p operates on
a descendant of ω.

Proposition 4.2.7. Let ω be the occurrence of F in the sequent Γ ` ∆,F
(F,Γ ` ∆) in an R-deduction γ, and let p be an uninterrupted path starting
at ω. Then all sequents in p are of the form Π ` Λ,Fσ (Fσ,Π ` Λ) for some
Π,Λ and substitution σ.
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Proof. By induction on the length of p. σ is determined by the Sub inferences
on p.

Proposition 4.2.8. Let γ be an R-refutation of C. Then there exists an
R-refutation ψ of C such that all Sim inferences in ψ are locked and such
that the Skolem terms occuring in γ are exactly those occuring in ψ.

Proof. We may assume that there exists a Sim inference ρ in γ that is not
locked. W.l.o.g. assume that ρ is a SimT inference. We construct an R-
refutation γ′ of C such that γ′ contains strictly less non-locked Sim inferences
than γ, and conclude by induction.

Let γ = S1, . . . , Sk. As γ is an R-refutation, Sk does not contain formula
occurrences and hence (1) every formula occurrence ω has a descendant which
is an auxiliary formula. Let ω be the main formula of ρ, let Si = Γ `
∆,A,A be the premise of ρ (where the A’s are the auxiliary formulas of
ρ), and let Sj = Γ ` ∆,A be the conclusion of ρ. As ρ is not locked
and by (1), there exist non-trivial uninterrupted paths p1, . . . , pn from ω
to some auxiliary formulas occurring in sequents Ti (1 ≤ i ≤ n). Define
ψ = Σ1, . . . ,Σj−1,Σj+1,Σk where

(1) if Sl occurs on some pi then by Proposition 4.2.7, Sl is of the form
Π ` Λ,Aσ and we define Σl = Π ` Λ,Aσ,Aσ,

(2) if Sl is inferred from some Tj then Σl = Tj, Sl,

(3) otherwise Σl = Sl.

ψ is an R-refutation of C: W.l.o.g. we treat the case of Sl being inferred in
ψ by a unary inference. In case (1) if Sl is inferred from Sj in γ then we can
infer Σl from Σi = Si in ψ. Otherwise it is inferred from some Sm for which
also case (1) holds, and we can infer Σl from Σm. In case (2), we can infer
Tj from Σj by SimT and Sl from Tj as in γ. In case (3) if Sl was inferred
from Sm in γ then Σm ends in Sm and we can infer Sl from Σm just as Sl
was inferred from Sm in γ.

Note that we have only introduced locked Sim inferences, and have re-
moved one non-locked Sim inference. Hence ψ contains strictly less non-
locked Sim inferences than γ, which concludes the proof.
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Example 4.2.9. Consider the R-deduction γ:

1 Px ∨Qx, Px ∨Qx ` ∀yRy
2 Px ∨Qx ` ∀yRy SimF : 1
3 Px ∨Qx ` Rz ∀F : 2
4 Pz ∨Qz ` Rz Sub : 3
5 Pz ` Rz ∨Fl : 4
6 Pc ∨Qc ` Rc Sub : 4
7 Qc ` Rc ∨Fr : 6

Applying Proposition 4.2.8 to γ yields the R-deduction

1 Px ∨Qx, Px ∨Qx ` ∀yRy
2 Px ∨Qx, Px ∨Qx ` Rz ∀F : 1
3 Pz ∨Qz, Pz ∨Qz ` Rz Sub : 2
4 Pz ∨Qz ` Rz SimF : 3
5 Pz ` Rz ∨Fl : 4
6 Pc ∨Qc, Pc ∨Qc ` Rc Sub : 3
7 Pc ∨Qc ` Rc SimF : 6
8 Qc ` Rc ∨Fr : 7

Hence from now on we will focus on the following set of rules:

Definition 4.2.10 (Rules forR′a).
Γ ` ∆,¬A, . . . ,¬A

A,Γ ` ∆ ¬T ¬A, . . . ,¬A,Γ ` ∆

Γ ` ∆,A ¬F

A ∨B, . . . ,A ∨B,Γ ` ∆

A,Γ ` ∆
∨Fl

A ∨B, . . . ,A ∨B,Γ ` ∆

B,Γ ` ∆
∨Fr

Γ ` ∆,A ∨B, . . . ,A ∨B

Γ ` ∆,A,B ∨T Γ ` ∆
(Γ ` ∆) [X← T]

Sub

Γ ` ∆,∀A, . . . ,∀A
Γ ` ∆,AX ∀T ∀A, . . . ,∀A,Γ ` ∆

A(fX1 . . .Xn),Γ ` ∆
∀F

Γ ` ∆,A, . . . ,A A, . . . ,A,Π ` Λ

Γ,Π ` ∆,Λ
mCut

with conditions on mCut, ∀F as in Definition 4.2.4 (rules ofRa). An inference
is called restricted if it has at most one auxiliary formula.

Hence the following follows immediately from Proposition 4.2.8:

Proposition 4.2.11. Let γ be an R-refutation of C. Then there exists an
R′a-refutation ψ of C such that the Skolem terms occuring in γ are exactly
those occuring in ψ.
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Note that an R′a-deduction γ is an Ra-deduction iff all inferences in γ
except mCut are restricted. We introduce some notions regarding the status
of inferences in R′a deductions:

Definition 4.2.12. An inference is called relevant if it is not an mCut or ∀F
inference. Let ρ be an ∀F inference. ρ is called unfinished if there exists an
inference µ operating on a proper ancestor of an auxiliary formula of ρ such
that µ is not restricted. Otherwise ρ is called prefinished. ρ is called finished
if it is prefinished and restricted.

Example 4.2.13. Consider the R′a-deduction

1 A ∨ ∀xPx,A ∨ ∀xPx `
2 ∀xPx ` ∨Fr : 1
3 Ps ` ∀F : 2

Then inference 3 is unfinished since inference 2 operates on a proper ancestor
of the auxiliary formula of 3, and 2 is not restricted. Now consider

1 A ∨ ∀xPx,A ∨ ∀xPx `
2 A ∨ ∀xPx,∀xPx ` ∨Fr : 1
3 ∀xPx, ∀xPx ` ∨Fr : 2
4 Ps ` ∀F : 3

Here, inference 4 is prefinished but not finished since it is not restricted.

Definition 4.2.14. Let S = F1, . . . ,Fn ` G1, . . . ,Gm be a sequent. If there
exist k1, . . . , kn, `1, . . . , `m ∈ N such that

S ′ = k1 × F1, . . . , kn × Fn ` `1 ×G1, . . . , `m ×Gm,

then S ′ is a multiple of S, where the notation ki ×Fi means “ki occurrences
of Fi”. Abusing notation, we write F1, . . . ,Fn `m G1, . . . ,Gm for S ′ if S ′ is
a multiple of S.

If all relevant inferences in an R′a-deduction γ are restricted, then we say
that γ is restricted. We define NF(γ) to be the number of ∀F inferences in γ
which are not finished (i.e. unfinished or not restricted).

Proposition 4.2.15. Let γ be an R′a-deduction of ` Γ from C. Then there
exists an R′a-deduction ψ of `m Γ from C such that ψ is restricted.

Furthermore, the Skolem terms occuring in ψ are the same as those oc-
curing in γ, and NF(γ) = NF(ψ).
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Proof. Assume γ is not restricted. Let γ = S1, . . . , Sn, and let i be the least
such that Si is inferred by a relevant inference ρ such that ρ is not restricted.
We will construct an R′a-deduction ψ = S1, . . . , Si−1,Σ, S

′
i+1, . . . , S

′
n from C

such that (1) if µ is an inference in ψ with conclusion in S1, . . . , Si−1,Σ,
then µ is restricted and furthermore, (2) a sequent in ψ is inferred by an ∀F
inference µ iff its corresponding sequent in γ is inferred by an ∀F inference
µ′, and µ is not finished iff µ′ is. We may then conclude by induction on
n− i, where i is defined as above.

S1, . . . , Si−1 are inferred in ψ as they were in γ. By assumption, all these
inferences are restricted if they are relevant. Σ is defined as follows: We
treat the case of ρ being an ∨T inference. The other cases are analogous.
Let Γ ` ∆,A ∨ B, . . . ,A ∨ B be the premise of ρ, and let Γ ` ∆,A,B
be the conclusion. Then Σ is the sequence of sequents starting with Γ `
∆,A∨B, . . . ,A∨B,A,B and ending with Γ ` ∆,A,B, . . . ,A,B, such that
every sequent in Σ is inferred from the previous one by the restricted version
of ρ. The first sequent in Σ can be inferred from the same Sj, j < i, as it was
in γ, using the restricted version of ρ. By construction, (1) holds. For (2),
note that by assumption ρ cannot be ∀F , as ρ is relevant. All other inferences
are as they were in γ, so (2) holds for this part of ψ.

Now, define S ′j for i < j ≤ n. Let ω be the main formula of ρ, and
let Sj = Γ,∆ where ∆ are all the descendants of ω in Sj in γ. Define
S ′j = Γ,∆, . . . ,∆ if there exists an uninterrupted path starting at ω and
ending at Sj in γ (for some suitable number of copies of ∆), and S ′j = Sj
otherwise. S ′j can be derived in ψ:

1. If Sj was derived in γ from Sk with k < i, then ∆ is empty and we can
derive S ′j = Sj from Sk.

2. If Sj was derived from Si in γ, we can derive S ′j from the last element
of Σ.

3. If Sj was derived from Sk, with k > i, in γ then again we can derive S ′j
from S ′k in ψ. If the inference with conclusion Sj is the first inference
operating on a descendant of ω in γ, we have to increase the number
of auxiliary formulas to derive the correct sequent in ψ. For example,
if Sk = Γ ` ∆,A ∨ B and Sj = Γ ` ∆,A,B is derived by ∨T , then
S ′k = Γ ` ∆,A ∨ B, . . . ,A ∨ B and we derive S ′j = Sj from S ′k by ∨T
in ψ.

For (2), it is clear by construction that S ′j is inferred by ∀F iff Sj is. Note that
inferences from γ are changed iff they operate on descendants of ω, in which
case they are unfinished if they are instances of ∀F in both γ and ψ.
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The second R′a-deduction in Example 4.2.13 is obtained from the first by
applying Proposition 4.2.15.

Proposition 4.2.16. Let ρ1, ρ2 be ∀F inferences in an R′a-deduction such
that ρ1 operates on an ancestor of the main formula of ρ2. Then if ρ1 is not
finished, ρ2 is not finished.

Proof. As ρ1 is not finished, an inference operating on an ancestor of the
main formula ω of ρ1 is not restricted. By assumption ω is an ancestor of
the main formula of ρ2, so ρ2 is unfinished and hence not finished.

For the final results, we will allow the rule of weakening in R′a-deductions
to ease the presentation of the proofs:

Γ ` ∆
Γ,Π ` ∆,Λ

weak

Proposition 4.2.17. Let γ be an R′a-refutation of C using weakening. Then
there exists an R′a-refutation ψ of C without weakening such that NF(ψ) ≤
NF(γ).

Proof. By deleting formula occurrences, sequents and inferences.

Proposition 4.2.18. Let γ be an R′a-refutation of C such that all Skolem
terms of ∀F inferences in γ are constants. Then there exists an Ra-refutation
of C.

Proof. Note that if γ is restricted and NF(γ) = 0, γ is the desired R-
refutation.

By Proposition 4.2.15, we may assume that γ is restricted. We proceed
by induction on NF(γ), showing that if γ is a restricted R′a-deduction of
S from C, then there exists a restricted R′a-deduction ψ of S from C with
NF(ψ) = 0.

If NF(γ) = 0, we may take ψ = γ. Hence assume as inductive hypothesis
that for all R′a-deductions λ of S from C with NF(λ) < NF(γ), there exists
an R′a-deduction λ′ of S from C with NF(λ′) = 0.

We say that an ∀F inference ρ is uppermost if no unfinished ∀F inference
operates on a proper ancestor of the auxiliary formula of ρ. By assumption,
there exists an ∀F inference in γ that is not finished. Then there exists
an uppermost ∀F inference ρ in γ that is not finished. Observe that ρ is
prefinished and not restricted, as it is uppermost and all relevant inferences
are restricted.

Let γ = S1, . . . , Sn, and let the premise of ρ be Si = ∀A, . . . ,∀A,Γ ` ∆
(containing k+ 1 ≥ 2 auxiliary formulas), the conclusion be Sj = Ac,Γ ` ∆,

91



and denote the main formula of ρ by ω. Note that Sn is the empty sequent
since γ is an R′a-refutation. If Sn does not depend on Sj, then clearly we
can simply remove Sj and the sequents that depend on it from γ to obtain
a restricted R′a-deduction of Sn from C containing strictly less ∀F inferences
which are not finished, and we may conclude by the inductive hypothesis.
Hence assume Sn depends on Sj. Note that A does not contain free variables
since c is a constant. Let c1, . . . , ck be fresh Skolem constants.

For 1 ≤ q ≤ k, we will construct restricted R′a-deductions

1. ψ0 of (Γ ` ∆) ◦ (Ac1, . . . ,Ack `m) from C, and

2. ψq of (Γ ` ∆) ◦ (Acq+1, . . . ,Ack `m) from

C ∪ {(Γ ` ∆) ◦ (Acq, . . . ,Ack `m)}.

such that for 0 ≤ p ≤ k, NF(ψp) < NF(γ). We may then apply the inductive
hypothesis to ψp to obtain restricted R′a-deductions ψ′p with NF(ψ′p) = 0.
Hence all inferences except mCut are restricted in ψ′p. We may then rename
the Skolem symbols of the ψ′p such that their sets of Skolem symbols are
pairwise disjoint. Then clearly ψ = ψ′0, . . . , ψ

′
k has NF(ψ) = 0 and is therefore

the desired R′a-refutation.

We start by defining ψ0. For j + 1 ≤ r ≤ n, if Sr does not depend on
Sj then S ′r = Sr, and otherwise S ′r = Sr ◦ (Ac1, . . . ,Ack `m). Note that
S ′n = Ac1, . . . ,Ack `m. So let

ψ0 = S1, . . . , Sj−1,Σ, S
′
j+1, . . . , S

′
n, (Γ ` ∆) ◦ (Ac1, . . . ,Ack `m),

where Σ is a sequence of sequents deriving Ac,Ac1, . . . ,Ack,Γ ` ∆ from Si
using only restricted ∀F . Clearly S1, . . . , Sj−1 can be derived from C as they
were in γ. Since ρ is prefinished, all the ∀F inferences introduced in deriving
Σ are finished. Letting S ′j be the last sequent in Σ, we show that S ′r can be
derived in ψ0 for j < r ≤ n. Distinguish:

1. If Sr does not depend on Sj, then neither do its premise(s) Sp (Sq).
Hence S ′r = Sr and S ′p = Sp (and S ′q = Sq) and S ′r can be inferred from
S ′p (S ′q) just as it was in γ.

2. If Sr depends on Sj and was inferred by a unary inference µ from
Sp, then p ≥ j and hence we can infer S ′r from S ′p by the same unary
inference. If µ is Sub, remember that A is closed and hence not affected
by the substitution.
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3. If Sr depends on Sj and was inferred by mCut from Sp and St, then
at least one of the premises depends on Sj. Hence we may infer S ′r
from S ′p and S ′t by mCut. Note that if both premises depend on Sj, the
multiplicities of the Acq increase.

Note that S ′n = (Ac1, . . . ,Ack `m), so the last sequent of ψ0 can be derived
from S ′n by weakening. By construction, for every ∀F inference in ψ0 that is
not finished there exists a unique ∀F inference in γ that is not finished, hence
NF(ψ0) < NF(γ) (because ρ induces only finished inferences in ψ0). Since
all relevant inferences in γ are restricted, this is also the case for ψ0. Hence
ψ0 is as desired.

We turn to the construction of ψq for 1 ≤ q ≤ k. Let

ψ′q = (Γ ` ∆) ◦ (Acq, . . . ,Ack `m), S1,q, . . . , Sj−1,q, Sj+1,q, . . . , Sn,q

where Sr,q is defined in the following way:

1. If Sr does not depend on Sj, then Sr,q = Sr [c← cq].

2. If Sr depends on Sj, denote the inference whose conclusion Sr is by ρ.
Distinguish:

(a) If no inference in γ on the path from ω to Sr operates on a
descendant of ω, then Sr is of the form Ac,Π ` Λ. Then let
Sr,q = (Π ` Λ) ◦ (Acq, . . . ,Ack `m).

(b) ρ is the first inference operating on a descendant of ω. We treat
the case where ρ is ∨T , the other cases are similar. So if Sr =
Π ` Λ,B,C is inferred from S` = Π ` Λ,B ∨C then S`,q = (Π `
Λ,B ∨C, . . . ,B ∨C) ◦ (Acq+1, . . . ,Ack `m) by the previous case
(note that by assumption Acq = B ∨ C). Then let Sr,q = (Π `
Λ,B,C) ◦ (Acq+1, . . . ,Ack `m).

(c) Otherwise, Sr,q = Sr ◦ (Acq+1, . . . ,Ack `m).

For r ∈ {1, . . . , j − 1, j + 1, . . . , n}, we show that Sr,q can be derived in ψ′q
by distinguishing how Sr is derived in γ:

1. Sr ∈ C. Then Sr does not contain c and does not depend on Sj, hence
Sr,q ∈ C.

2. If Sr is inferred by Sub with [X← T] from Sp, then we may use Sub
with [X← T [c← cq]] to derive Sr,q from Sp,q, again noting that A is
closed.
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3. Sr is derived from Sp by a CNF inference. We may use the same
inference to infer Sr,q from Sp,q (In case Sr,q is constructed in case 2(b)
above, the number of auxiliary formulas of the inference increases).

4. Sr is derived from Sp and St by an mCut. We may derive Sr,q from Sp,q
and St,q using mCut. Again if Sr,q is constructed in case 2(b) above,
the number of auxiliary formulas of the inference increases. Also, note
again that if both premises depend on Sj, then the multiplicities of the
Ac` increase.

By construction, for every ∀F inference in ψ′q that is not finished there exists a
unique ∀F inference in γ that is not finished, hence NF(ψ′q) < NF(γ) (because
ρ does not induce an ∀F inference in ψ′q). Note that due to 2(b), also the
∀F inferences operating on descendants of Acq are not finished, but their
corresponding inferences in γ operate on descendants of ω and are hence not
finished, too.

Set ψ′′q = ψ′q, (Γ ` ∆) ◦ (Acq+1, . . . ,Ack `m) Note that the last sequent
of ψ′q is Sn,q = Acq+1, . . . ,Ack `m, hence the last sequent of ψ′′q can again
be derived by weakening. Finally, we may apply Proposition 4.2.15 to ψ′′q
to obtain a restricted ψq such that NF(ψq) = NF(ψ′′q ) = NF(ψ′q) < NF(γ).
Hence ψq is as desired. Finally, we apply Proposition 4.2.17 to ψ, which
completes the proof.

Example 4.2.19. Consider the R′a-refutation of {∀x(Px ∨ ¬Px), ∀x(Px ∨
¬Px) `}:

1 ∀x(Px ∨ ¬Px),∀x(Px ∨ ¬Px) `
2 Ps ∨ ¬Ps ` ∀F : 1
3 Ps ` ∨Fl : 2
4 ¬Ps ` ∨Fr : 2
5 ` Ps ¬F : 4
6 ` mCut : 5, 3

In the proof of Proposition 4.2.18 we obtain ψ0

1 ∀x(Px ∨ ¬Px),∀x(Px ∨ ¬Px) `
2 ∀x(Px ∨ ¬Px), Ps ∨ ¬Ps ` ∀F : 1
3 Ps1 ∨ ¬Ps1, Ps ∨ ¬Ps ` ∀F : 2
4 Ps1 ∨ ¬Ps1, Ps ` ∨Fl : 3
5 Ps1 ∨ ¬Ps1,¬Ps ` ∨Fr : 3
6 Ps1 ∨ ¬Ps1,` Ps ¬F : 5
7 Ps1 ∨ ¬Ps1, Ps1 ∨ ¬Ps1 ` mCut : 6, 4
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and ψ′1
8 Ps1 ∨ ¬Ps1, Ps1 ∨ ¬Ps1 `
9 Ps1 ` ∨Fl : 8
10 ¬Ps1 ` ∨Fr : 8
11 ` Ps1 ¬F : 10
12 ` mCut : 9, 11

ψ′1 is not restricted, but after application of Proposition 4.2.15 we obtain the
restricted ψ1

8 Ps1 ∨ ¬Ps1, Ps1 ∨ ¬Ps1 `
9 Ps1 ∨ ¬Ps1, Ps1 ` ∨Fl : 8
10 Ps1, Ps1 ` ∨Fl : 9
11 Ps1 ∨ ¬Ps1,¬Ps1 ` ∨Fr : 8
12 ¬Ps1,¬Ps1 ` ∨Fr : 11
13 ¬Ps1 ` Ps1 ¬F : 12
14 ` Ps1, Ps1 ¬F : 13
15 ` mCut : 10, 14

Clearly ψ = ψ0, ψ1 is the desired Ra-refutation of {∀x(Px ∨ ¬Px), ∀x(Px ∨
¬Px) `}.

We can now state the main result of this section, showing that a restricted
class of R-refutations can indeed be translated into Ra:

Theorem 4.2.20. Let γ be an Rc-refutation of C. Then there exists an
Ra-refutation of C.

Proof. By Propositions 4.2.11 and 4.2.18.

4.3 Cut-elimination by resolution

So far, we have investigated the cut-free fragment of LKsk. To deal with the
problem of cut-elimination, we first connect ordinary LK with the rules of
LKsk. The following definition will provide the analogue to the normal form
provided by proof Skolemization in first-order logic, but in higher-order logic:

Definition 4.3.1 (LKskc-trees). An LKskc-tree is a tree formed according to
the rules of LKsk and LK such that

1. rules of LK operate only on cut-ancestors, and

2. rules of LKsk operate only on end-sequent ancestors.
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We extend the notions of paths, homomorphic inferences, and weak reg-
ularity to LKskc-trees. Let π be an LKskc-tree with end-sequent S. We say
that π is an LKskc-proof if it is weakly regular and proper.

Definition 4.3.2. Let π be an LKskc-tree. π is called regular if

1. each ∀sk: r inference has a unique Skolem symbol and

2. the eigenvariable of each ∀: r inference ρ only occurs above ρ in π.

Proposition 4.3.3. Let π be an LKskc-tree. If π is regular, then π is weakly
regular.

Lemma 4.3.4 (Skolemization). Let π be a regular LK-proof of S. Then
there exists a regular LKskc-proof ψ of S.

Proof. Let ρ be a inference in π with conclusion F1, . . . ,Fn ` Fn+1, . . . ,Fm.
By induction on the height of ρ, we define a regular LKskc-tree πρ with

conclusion 〈F1〉`1 , . . . , 〈Fn〉`n ` 〈Fn+1〉`n+1 , . . . , 〈Fm〉`m such that for all 1 ≤
i ≤ m, `i is the sequence of substitution terms of ∀: l inferences operating
on descendants of Fi in π, and such that πρ fulfills an eigenterm condition,
i.e. every Skolem symbol occurs only above its source inference.1

1. ρ is an axiom A ` A. Let `1 be the sequence of substitution terms of
the ∀: l inferences operating on the descendants of the left occurrence of
A, and let `2 be the sequence of substitution terms of the ∀: l inferences
operating on descendants of the right occurrence of A. Then take as
πρ the axiom 〈A〉`1 ` 〈A〉`2 .

2. ρ is a ∀: l inference operating on an end-sequent ancestor:

(ϕ)

FT,Γ ` ∆ ∀: l∀αF,Γ ` ∆

By (IH) we obtain a regular LKskc-tree ϕ′ of
〈
FT
〉`,T

,Γ′ ` ∆′ where
Γ′,∆′ are Γ,∆ with the respective labels. We take for πρ

(ϕ′)〈
FT
〉l,T

,Γ′ ` ∆′

∀sk: l〈∀αF〉l ,Γ′ ` ∆′

1It is possible to assign arbitrary labels to cut-ancestors in LKskc-trees. To avoid a case
distinction, cut-ancestors are assigned labels in the same way as end-sequent ancestors in
this proof.
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3. ρ is a ∀: l inference operating on a cut-ancestor. Then we simply take
the regular LKskc-tree obtained by (IH) and apply ρ to it.

4. ρ is a ∀: r inference operating on an end-sequent ancestor:

(ϕ)

Γ ` ∆,FX ∀: r
Γ ` ∆,∀αF

By (IH) we obtain a regular LKskc-tree ϕ′ of Γ′ ` ∆′,
〈
FX
〉T1,...,Tn

, with
Γ′,∆′ as above. Let f ∈ Kα1,...,αn,α, where for 1 ≤ i ≤ n τ(Ti) = αi,
be a new Skolem symbol, and let S = f(T1 . . .Tn). Let σ be the
substitution [X← S]. By regularity, X is not an eigenvariable in ϕ′,
and does not occur in T1, . . . ,Tn. Hence ϕ′σ is a regular LKskc-tree of

Γ′ ` ∆′,
〈
FS
〉T1,...,Tn

. Take for πρ

(ϕ′σ)

Γ′ ` ∆′,
〈
FS
〉T1,...,Tn

∀sk: r
Γ′ ` ∆′, 〈∀αF〉T1,...,Tn

5. ρ is a ∀: r inference operating on a cut ancestor. Again we take the
regular LKskc-tree obtained by (IH) and apply ρ to it.

6. ρ is a cut inference

(ϕ)

Γ ` ∆,F

(λ)

F,Π ` Λ
cut

Γ,Π ` ∆,Λ

By (IH) we obtain regular LKskc-trees ϕ′, λ′ of Γ′ ` ∆′, 〈F〉`1 and
〈F〉`2 ,Π′ ` Λ′, respectively. If the intersection of the Skolem sym-
bols of ϕ′, λ′ is non-empty, by the eigenterm condition we can rename
Skolem symbols to achieve this. Hence the LKskc-tree πρ

(ϕ′)

Γ′ ` ∆′, 〈F〉`1
(λ′)

〈F〉`2 ,Π′ ` Λ′
cut

Γ′,Π′ ` ∆′,Λ′
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is regular.

7. ρ is a contr: r inference

(ϕ)

Γ ` ∆,F,F
contr: r

Γ ` ∆,F

By (IH) we obtain a regular LKskc-tree ϕ′ of Γ′ ` ∆′, 〈F〉`1 , 〈F〉`2 . Note
that the inferences operating on descendants of the occurrences of F
coincide, so `1 = `2 and we may take for πρ

(ϕ′)

Γ′ ` ∆′, 〈F〉`1 , 〈F〉`1
contr: r

Γ′ ` ∆′, 〈F〉`1

8. ρ is a contr: l inference: symmetric.

9. ρ is a propositional inference or weakening: analogous to the previous
cases.

Let ρ be the last inference in π, then ψ = πρ is the desired regular LKskc-
proof.

We will now set up some notation for the main definitions of CERESω.
Let π be an LKskc-tree, and let S be a sequent in π. Then by cutanc(S)
we denote the sub-sequent of S consisting of the cut-ancestors of S, and
by esanc(S) we denote the sub-sequent of S consisting of the end-sequent
ancestors of S. Note that for any sequent S = cutanc(S) ◦ esanc(S). Let
ρ be a unary inference, σ a binary inference, ψ, χ LKsk-trees, then ρ(ψ) is
the LKsk-tree obtained by applying ρ to the end-sequent of ψ, and σ(ψ, χ)
is the LKsk-tree obtained from the LKsk-trees ψ and χ by applying σ. Note
that while this notation is ambigous, it will always be clear from the context
what the auxiliary formulas of the ρ(ψ) and σ(ψ, χ) are. Let P,Q be sets
of LKsk-trees. Then P Γ`∆ = {ψΓ`∆ | ψ ∈ P}, where ψΓ`∆ is ψ followed by
weakenings adding Γ ` ∆, and P ×σ Q = {σ(ψ, χ) | ψ ∈ P, χ ∈ Q}.
Definition 4.3.5 (Characteristic sequent set and proof projections). Let
π be a regular LKskc-proof. For each inference ρ in π, we define a set of
LKsk-trees, the set of projections Pρ(π), and a set of labelled sequents, the
characteristic sequent set CSρ(π).
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• If ρ is an axiom with conclusion S = 〈A〉`1 ` 〈A〉`2 , distinguish:

– cutanc(S) = S. Then CSρ(π) = Pρ(π) = ∅.
– cutanc(S) 6= S. Distinguish:

(a) If cutanc(S) = ` 〈A〉`2 then CSρ(π) = {` 〈A〉`1} and Pρ(π) =

{〈A〉`1 ` 〈A〉`1},
(b) if cutanc(S) = 〈A〉`1 ` then CSρ(π) = {〈A〉`2 `} and Pρ(π) =

{〈A〉`2 ` 〈A〉`2},
(c) if cutanc(S) = ` then CSρ(π) = {`} and Pρ(π) = {S}.

• If ρ is a unary inference with immediate predecessor ρ′ with Pρ′(π) =
{ψ1, . . . , ψn}, distinguish:

(a) ρ operates on ancestors of cut formulas. Then

Pρ(π) = Pρ′(π)

(b) ρ operates on ancestors of the end-sequent. Then

Pρ(π) = {ρ(ψ1), . . . , ρ(ψn)}

In any case, CSρ(π) = CSρ′(π).

• Let ρ be a binary inference with immediate predecessors ρ1 and ρ2.

(a) If ρ operates on ancestors of cut-formulas, let Γi ` ∆i be the
ancestors of the end-sequent in the conclusion sequent of ρi and
define

Pρ(π) = Pρ1(π)Γ2`∆2 ∪ Pρ2(π)Γ1`∆1

For the characteristic sequent set, define

CSρ(π) = CSρ1(π) ∪ CSρ2(π)

(b) If ρ operates on ancestors of the end-sequent, then

Pρ(π) = Pρ1(π)×ρ Pρ2(π).

For the characteristic sequent set, define

CSρ(π) = CSρ1(π)× CSρ2(π)

The set of projections of π, P(π) is defined as Pρ0(π), and the characteristic
sequent set of π, CS(π) is defined as CSρ0(π), where ρ0 is the last inference
of π.
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Note that for LKskc-proofs π containing only atomic axioms, CS(π) con-
sists of sequents containing only atomic formulas. This is not required,
though.

Proposition 4.3.6. Let π be a regular LKskc-proof. Then there exists an
LK-refutation of the reduct of CS(π).

Proof. We inductively define, for each inference ρ with conclusion S in π, an
LK-tree γρ of the reduct of cutanc(S) from the reduct of CSρ(π).

• If ρ is an axiom 〈A〉`1 ` 〈A〉`2 , distinguish:

– cutanc(S) = S. Take the axiom ρ for γρ.

– cutanc(S) 6= S. Then CSρ(π) = {S ′} and we may take the reduct
of S ′.

• If ρ is a unary inference with immediate predecessor ρ′, let S ′ be the
conclusion of ρ′ and distinguish:

– ρ operates on ancestors of cut formulas. By (IH) we have an
LK-tree γρ′ of cutanc(S ′) from CSρ′(π). Apply ρ to γρ′ to ob-
tain γρ. Note that as cutanc(S ′) is a sub-sequent of S ′, if ρ′ is a
strong quantifier inference, its eigenvariable condition is fulfilled.
As CSρ(π) = CSρ′(π) by definition, γρ is the desired LK-tree of
cutanc(S).

– ρ operates on ancestors of the end-sequent. Then cutanc(S) =
cutanc(S ′) and CSρ(π) = CSρ′(π) and hence we may take for γρ
the LK-tree obtained by (IH).

• If ρ is a binary inference with immediate predecessors ρ1, ρ2, let γρ1 , γρ2
be the LK-trees obtained by (IH) and distinguish:

– ρ operates on ancestors of cut-formulas. Then obtain γρ by apply-
ing ρ to γρ1 , γρ2 : As CSρ(π) = CSρ1(π) ∪ CSρ1(π) it is the desired
LK-tree.

– ρ operates on ancestors of the end-sequent. Then CSρ(π) =
CSρ1(π) × CSρ2(π). We may assume that the eigenvariables of
γρ1 are distinct from the variables occurring in γρ2 and vice-versa,
otherwise we perform renamings. Let S1, S2 be the conclusions
of ρ1, ρ2 respectively. For every C ∈ CSρ1(π), construct an LK-
tree γC of cutanc(S2) ◦ C from CSρ2(π) × {C} by taking γρ2 and
adding C to every sequent, and appending contractions on C at
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the end. As the eigenvariables of γρ2 are distinct from the vari-
ables of C by the consideration above, γC is really an LK-tree.
Now, construct γρ by taking γρ1 and appending, at every leaf
of the form C ∈ CSρ1(π), the LK-tree γC , and adding contrac-
tions on cutanc(S2) at the end. Again, no eigenvariable conditions
are violated by the above consideration and γC is an LK-tree of
cutanc(S1) ◦ cutanc(S2) from CSρ(π), as required.

Let ρ be the last inference in π, then γρ is the desired LK-refutation.

We will now address a central problem of CERESω: how to combine an
Ral-refutation of CS(π) with the LKsk-trees from P(π) into an LKsk-proof
of the end-sequent of π. The following definitions set up the main properties
of the LKsk-trees in P(π):

Definition 4.3.7 (Restrictedness). Let S be a set of formula occurrences
in an LKskc-tree π. We say that π is S-linear if no inferences operate on
ancestors of occurrences in S. We say that π is S-restricted if no inferences
except contraction operate on ancestors of occurrences in S.

If S is the set of occurrences of cut-formulas of π and π is S-restricted,
we say that π is restricted.

Example 4.3.8. Consider the LKskc-tree π

P (a) ` P (a) Y (b) ` Y (b)

P (a) ∨ Y (b) ` P (a), Y (b)
∨: l

Y (b) ` 〈Y (b)〉T (b) ` 〈Y (b)〉T
Y (b), Y (b) ` 〈Y (b) ∧ Y (b)〉T ∧: r

Y (b) ` 〈Y (b) ∧ Y (b)〉T contr: l

Y (b) ` (∃X)X(b)
∃sk: r

P (a) ∨ Y (b) ` (∃X)X(b), P (a)
cut

where T = λx.Y (x) ∧ Y (x). Let S be the ancestors of P (a) in the end-
sequent, and let C be the ancestors of cut-formulas in π. Then π is S-linear
and C-restricted, and thus restricted.

In principle, labels of linear occurrences in LKskc-trees may be deleted:

Proposition 4.3.9. Let π be an LKskc-tree, and S a set of formula occur-
rences in π that is closed under descendants, and let π be S-linear. If π′ is
obtained from π by replacing all labels of ancestors of occurrences in S by the
empty label, then π′ is an LKskc-tree.

Proof. As π is S-linear, no inferences operate on the respective occurrences.
As no inference has restrictions on labels of context formulas (except that
direct descendants have the same labels as their direct ancestors), and also
axioms pose no restrictions on labels, the proposition holds.
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Definition 4.3.10 (Skolem parallel). Let ρ1, ρ2 be a ∀sk: r inferences in
LKskc-trees π1, π2 with Skolem terms S1, S2 respectively. ρ1, ρ2 are called
Skolem parallel if for all substitutions σ1, σ2, if S1σ1 = S2σ2 then µ1σ1, µ2σ2

are homomorphic, where µ1, µ2 are the maximal downwards paths starting at
S1,S2 respectively. π1, π2 are called Skolem parallel if for all ∀sk: r inferences
ρ1, ρ2 in π1, π2 respectively, ρ1, ρ2 are Skolem parallel.

Example 4.3.11. Consider the LKskc-trees π

Θ(f(Θ)) ` 〈Θ(f(Θ))〉Θ
Θ(f(Θ)) ` 〈(∀y)Θ(y)〉Θ ∀

sk: r

Θ(f(Θ)) ` (∃X)(∀y)X(y)
∃sk: r

and ψ

P (f(T )) ` 〈P (f(T ))〉T Q(α) ` 〈Q(α)〉T
P (f(T )) ∨Q(α) ` 〈P (f(T ))〉T , 〈Q(α)〉T ∨: l

P (f(T )) ∨Q(α) ` 〈P (f(T )) ∨Q(α)〉T ∨: r

P (f(T )) ∨Q(α) ` 〈(∀y)(P (y) ∨Q(α))〉T ∀
sk: r

P (f(T )) ∨Q(α) ` (∃X)(∀y)X(y)
∃sk: r

where T = λx.P (x) ∨ Q(α) and f ∈ Kι→o,ι. Then π and ψ are Skolem
parallel.

Proposition 4.3.12. Let π1, π2 be LKskc-trees and σ a substitution. If π1, π2

are Skolem parallel, then π1σ, π2 are.

Proof. Consider Skolem terms S1,S2 occurring as auxiliary formulas of ∀sk: r
inferences ρ1, ρ2 in π1σ, π2 respectively. Then by construction of π1σ, S1 =
S′1σ for some Skolem term S′1 occurring as auxiliary formula of a ∀sk: r in-
ference ρ′1 in π1. Let µ′1 be the maximal downwards path starting at S′1,
and µ2 the maximal downwards path in π2 starting at S2. Let σ1, σ2 be
substitutions such that S2σ2 = S1σ1 = S′1σσ1. As ρ′1, ρ2 are Skolem paral-
lel, F (µ′1σσ1) = F (µ2σ2). But by construction of π1σ, µ′1σ is the maximal
downwards path starting at S1 in π1σ, so ρ1, ρ2 are Skolem parallel.

Definition 4.3.13 (Axiom labels). Let π be an LKskc-tree, let ω be a formula
occurrence in π, and let µ be an ancestor of ω that occurs in an axiom A.
Then A is called a source axiom for ω. Let S be a set of formula occurrences in
π. We say that π has suitable axiom labels with respect to S if for all formula
occurrences ω in S, the source axioms of ω are of the form 〈F〉` ` 〈F〉`.
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Example 4.3.14. Consider the LKskc-tree π

〈Y (b)〉T ` 〈Y (b)〉T Y (b) ` 〈Y (b)〉T
〈Y (b)〉T , Y (b) ` 〈Y (b) ∧ Y (b)〉T ∧: r

〈Y (b)〉T , Y (b) ` (∃X)X(b)
∃sk: r

where T = λx.Y (x) ∧ Y (x). Let ω be the occurrence of 〈Y (b)〉T in the end-
sequent. Then π has suitable axiom labels with respect to {ω}. Note that π
does not have suitable axiom labels with respect to the occurrence of Y (b)
in the end-sequent.

Definition 4.3.15 (Balancedness). Let π be an LKskc-tree, and let S be
a set of formula occurrences in π. We call π S-balanced if for every axiom
〈F〉`1 ` 〈F〉`2 in π, at least one occurrence of F is an ancestor of a formula
occurrence in S.

Example 4.3.16. Consider the LKskc-tree π from Example 4.3.8. Let ω1

be the occurrence of P (a) ∨ Θ(b) in the end-sequent of π, and let ω2 be the
occurrence of (∃X)X(b) in the end-sequent of π. Then π is neither {ω1}-
balanced nor {ω2}-balanced, but π is {ω1, ω2}-balanced.

Definition 4.3.17 (CERES-projections). Let S be a proper sequent, and C
be a sequent. Then an LKskc-tree π is called a CERES-projection for (S,C)
if the end-sequent of π is S ◦C and π is weakly regular, C-linear, S-balanced,
restricted, and has suitable axiom labels with respect to C, where S resp. C
is the set of formula occurrences of S resp. C in the end-sequent of π.

Let C be a set of sequents. A set of LKskc-trees P is called a set of
CERES-projections for (S, C) if for all C ∈ C there exists a π(C) ∈ P such
that π(C) is a CERES-projection for (S,C) and moreover, for all π1, π2 ∈ P ,
π1 and π2 are Skolem parallel.

Lemma 4.3.18. Let π be a regular LKskc-proof of S. Then P(π) is a set of
CERES-projections for (S,CS(π)). Furthermore, for all ψ ∈ P(π), |ψ| ≤ |π|.
Proof. By inspecting Definition 4.3.5. Let ρ be an inference in π with conclu-
sion R. By induction on height(ρ), it is easy to see that for every C ∈ CSρ(π),
Pρ(π) contains an LKsk-tree of esanc(R)◦C. Hence P(π) contains an LKsk-
tree π(C) of S◦C for every C ∈ CS(π). It remains to verify that (1) π(C) is a
CERES-projection for (S,C) and (2) every π(C1), π(C2) ∈ P(π) are Skolem
parallel.

Regarding (1): π(C) is regular, which follows from the fact that π is
regular, and that in constructing π(C) from π, every inference in π induces
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at most one copy of it in π(C). Hence π(C) is also weakly regular. S-
balancedness, C-linearity and suitable axiom labels follow immediately from
the definition. As π(C) is cut-free, it is trivially restricted.

Regarding (2): Consider µ1, µ2,S1,S2, σ1, σ2 as in Definition 4.3.10. By
construction, if an inference ρ of π is applied in both π(C1) and π(C2), also all
inferences operating on descendants of the main formula of ρ are applied in
both π(C1) and π(C2). Therefore by regularity of π, µ1 = µ2. µ1 = µ2 implies
S1 = S2, hence S1σ1 = S1σ2 and therefore σ1 � FV(S1) = σ2 � FV(S2).
Therefore µ1σ1 = µ2σ2 by Proposition 4.1.9.

Lemma 4.3.19. Let S be a proper sequent. Let C be a set of sequents, and P
a set of CERES-projections for (S, C). Then, if there exists an R-refutation
of C, there exists a restricted, weakly regular, balanced LKskc-tree of S.

Proof. Let γ : S1, . . . , Sn be an R-refutation of C (hence Sn = `). Let
S = Γ ` ∆. By induction on 0 ≤ i ≤ n, we construct sets of LKskc-trees
Pi ⊇ P such that Pi is a set of CERES-projections for (S, C ∪ {S1, . . . , Si})
and such that Pi contains only Skolem symbols from P and S1, . . . , Si. Then
Pn contains a CERES-projection for (S,`) which is the desired LKskc-tree
of S. We set P0 = P .

For i > 0, distinguish how Si is inferred in γ:

1. Si ∈ C. Then we may take Pi = Pi−1 by P ⊆ Pi−1 and (IH).

2. Si is derived from Sj (and Sk). Then by (IH) we obtain a set of CERES-
projections Pi−1 for (S, C ∪ {S1, . . . , Si−1). By definition there exist
CERES-projections πj ∈ Pi−1 for (S, Sj) (and πk ∈ Pi−1 for (S, Sk)).
We set Pi = Pi−1 ∪ {πi}, where πi is an LKskc-tree defined by distin-
guishing how Si is inferred in γ:

(a) Si = 〈A〉` ,Π ` Λ is derived from Sj = Π ` Λ, 〈¬A〉` by ¬T .

Then the end-sequent of πj is S ◦ Sj = Γ,Π ` Λ,∆, 〈¬A〉`. By

Sj-linearity of πj, the maximal upwards path µ starting at 〈¬A〉`
is unique. Let µ end in 〈¬A〉` ` 〈¬A〉` (the labels are identical
because πj has suitable axiom labels with respect to Sj). By S-
balancedness, we may replace this axiom in πj by

〈A〉` ` 〈A〉`
〈A〉` , 〈¬A〉` ` ¬: l

to obtain πi of 〈A〉` ,Γ,Π ` Λ,∆ = S ◦ Si. The desired properties
of πi and Pi follow trivially from the fact that they hold for πj
and Pi−1 respectively.
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(b) Si is derived from Sj by either ¬F , ∨T , ∨Fl , ∨Fr : analogously to
the previous case, there exists a unique axiom introducing the
auxiliary formula of the inference in πj. Depending on the rule
applied, we perform one of the following replacements to obtain
πi:

¬F : 〈¬A〉` ` 〈¬A〉`  
〈A〉` ` 〈A〉`
` 〈¬A〉` , 〈A〉`

¬: r

∨T : 〈A ∨B〉` ` 〈A ∨B〉`  
〈A〉` ` 〈A〉` 〈B〉` ` 〈B〉`
〈A ∨B〉` ` 〈A〉` , 〈B〉` ∨: l

∨Fl : 〈A ∨B〉` ` 〈A ∨B〉`  
〈A〉` ` 〈A〉`
〈A〉` ` 〈A ∨B〉` ∨: r1

∨Fr : 〈A ∨B〉` ` 〈A ∨B〉`  
〈B〉` ` 〈B〉`
〈B〉` ` 〈A ∨B〉` ∨: r2

As in the previous case, the desired properties of πi and Pi follow
from those of πj and Pi−1.

(c) Si = 〈AS〉` ,Π ` Λ is derived from Sj = 〈∀A〉` ,Π ` Λ by ∀F .

Then the end-sequent of πj is 〈∀A〉` ,Π,Γ ` ∆,Λ. By Sj-linearity

and suitable axiom labels there exists a unique axiom 〈∀A〉` `
〈∀A〉` introducing the ancestor of 〈∀A〉`. By S-balancedness, we
may replace it by

〈AS〉` ` 〈AS〉`
〈AS〉` ` 〈∀A〉` ∀

sk: r

to obtain πi of 〈AS〉` ,Π,Γ ` ∆,Λ. As πj is weakly regular, so is πi
(note that the Skolem symbol of this inference does not occur in πj
by assumption and the fact that it is fresh in γ). As πj is Skolem
parallel to the LKskc-trees in Pi−1, so is πi as the downwards paths
of auxiliary formulas of ∀sk: r inferences are unchanged, except for
the new inference which has a fresh symbol. Restrictedness, S-
balancedness and suitable axiom labels carry over from πj.

(d) Si = Π ` Λ, 〈AX〉`,X is derived from Sj = Π ` Λ, 〈∀A〉` by ∀T .

By (IH) we have an LKskc-tree πj of Π,Γ ` ∆,Λ, 〈∀A〉`. By Sj-

linearity there exists a unique axiom 〈∀A〉` ` 〈∀A〉` introducing
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the ancestor of 〈∀A〉`. By S-balancedness, we may replace it by

〈AX〉`,X ` 〈AX〉`,X
〈∀A〉` ` 〈AX〉`,X ∀sk: l

to obtain πi of Π,Γ ` ∆,Λ, 〈AX〉`,X. Again the desired properties
carry over from πj.

(e) Si is inferred from Sj by Sub with substitution σ. As S is proper,
πi = πjσ is an LKskc-tree of Sjσ◦S which is restricted, S-balanced,
weakly regular, and Skolem parallel to the LKskc-trees in Pi−1 by
Proposition 4.3.12 and (IH).

(f) Si = Γj,Γk ` ∆j,∆k is derived from Sj = Γj ` ∆j, 〈A〉`1 , . . . , 〈A〉`n
and Sk = 〈A〉`n+1 , . . . , 〈A〉`m ,Γk ` ∆k by Cut. By Proposi-
tion 4.3.9, we may delete labels from the ancestors of occurrences
of A from πj, πk respectively, denote these trees by π′j, π

′
k. Take

for πi

(π′j)
Γ,Γj ` ∆,∆j,A, . . . ,A

Γ,Γj ` ∆,∆j,A
contr: r

(π′k)
A, . . . ,A,Γk,Γ ` ∆k,∆

A,Γk,Γ ` ∆k,∆
contr: l

Γ,Γ,Γj,Γk ` ∆,∆,∆j,∆k
cut

Γ,Γj,Γk ` ∆,∆j,∆k
contr: ∗

As πj, πk are Skolem parallel and weakly regular, and we contract
on Γ,∆, πi is weakly regular. As the downwards paths of ancestors
of S only change by some repetitions, πi and the LKskc-trees in
Pi−1 are Skolem parallel. πi is restricted because πj, πk are Sj-
linear and Sk-linear, respectively. Si-linearity follows from Sj-
linearity and Sk-linearity. As πj, πk are S-balanced, also πi is. As
πj, πk have suitable axiom labels, also πi has: going from πj to π′j,
we only delete labels of occurrences that are cut-ancestors in πi
(analogously for πk). The suitable axiom labels hence remain by
S-balancedness.

Lemma 4.3.20. Let π be a restricted LKskc-proof of S. Then there exists a
LKsk-proof of S.

Proof. We proceed by induction on the number of Cut inferences in π. Con-
sider a subtree ϕ of π that ends in an uppermost Cut ρ. Let the end-sequent

106



of ϕ be S1 ◦ S2, where S1 are the end-sequent ancestors and S2 are the
cut-ancestors (in π)). We will transform ϕ into an LKsk-tree ϕ′ such that
replacing ϕ by ϕ′ in π results in a restricted LKskc-proof of S (in particular
ϕ′ will be S2-restricted). We proceed by induction on the height of ρ.

1. ρ occurs directly below axioms. Then ρ is

〈A〉`1 ` 〈A〉`2 〈A〉`3 ` 〈A〉`4
〈A〉`1 ` 〈A〉`4 Cut

and we replace it by 〈A〉`1 ` 〈A〉`4 .
2. ρ does not occur directly below axioms. Then we permute ρ up. The

only interesting case is permuting ρ over a contraction — here, the Cut
is duplicated and the context contracted. By this contraction, weak
regularity is preserved. Since the heights of both cuts is decreased, we
may apply the induction hypothesis twice to obtain the desired LKskc-
proof.

Theorem 4.3.21. Let π be a regular, proper LKskc-proof of S such that there
exists an Ral-refutation of CS(π). Then there exists a cut-free LK-proof of
S.

Proof. By Lemma 4.3.18 and Lemma 4.3.19, there exists a restricted LKskc-
proof of S. By Lemma 4.3.20, there exists an LKsk-proof of S. By Theo-
rem 4.1.41, there exists a cut-free LK-proof of S.

Conjecture 4.2.2 implies completeness of the cut-elimination method:

Theorem 4.3.22. Assume Conjecture 4.2.2. Let π be an LK-proof of a
proper sequent S. Then there exists a cut-free LK-proof of S.

Proof. π can be transformed into a regular LK-proof of S. By Lemma 4.3.4,
there exists a regular LKskc-proof of S. Let CSR(π) be the reduct of CS(π).
By Proposition 4.3.6, Proposition 2.2.3, and Theorem 4.2.3, there exists an
R′a-refutation γ of F (CSR(π)). By deleting some ∨T and ¬T inferences from
γ, we obtain an R′a-refutation of CSR(π). By Conjecture 4.2.2, we may apply
Theorem 4.3.21.

Of course, cut-elimination implies consistency. Hence by the seminal
result of Gödel from [28] and by the fact that through relativization (see [59])
it can be shown that cut-elimination for LK implies the consistency of higher-
order arithmetic, at some point in the proof of the theorem above we must
use assumptions which can not be proven in higher-order arithmetic. This
strength is to be found in the proof of Theorem 4.2.3.
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4.3.1 A simple example

In this section, we apply the CERESω method to a simple example for il-
lustration. Let X, Y,X0, Y0 be variables of type ι → o, Z a variable of type
(ι→ o)→ o, x, x0 variables of type ι, and f a constant of type ι→ ι. Since
all our symbols are unary, we will not write superflous parentheses.

Consider the regular LK-proof π

(π1) (π2)

∀Z(ZX0 → ZY0), (∀x(X0x→ X0fx) ` ∀x(Y0x→ Y0ffx)
cut

` ∀Z(ZX0 → ZY0)→ (∀x(X0x→ X0fx)→ ∀x(Y0x→ Y0ffx))
2× →: r

` ∀X(∀Z(ZX → ZY0)→ (∀x(Xx→ Xfx)→ ∀x(Y0x→ Y0ffx)))
∀: r

` ∃Y ∀X(∀Z(ZX → ZY )→ (∀x(Xx→ Xfx)→ ∀x(Y x→ Y ffx)))
∃: r

where π1 is

F ` F G ` G
∀x(X0x→ X0fx)→ ∀x(Y0x→ Y0fx), F ` G →: l

∀Z(ZX0 → ZY0), F ` G ∀: l

where the substitution term of the ∀: l inference is λX0.∀x(X0x → X0fx),
F = (∀x(X0x→ X0fx), G = ∀x(Y0x→ Y0fx), and π2 is

Y0x0 ` Y0x0 Y0fx0 ` Y0fx0 Y0ffx0 ` Y0ffx0

Y0x0, Y0x0 → Y0fx0, Y0fx0 → Y0ffx0 ` Y0ffx0
2× →: l

Y0x0 → Y0fx0, Y0fx0 → Y0ffx0 ` Y0x0 → Y0ffx0
→: r

∀x(Y0x→ Y0fx) ` Y0x0 → Y0ffx0
contr: l, 2× ∀: l

∀x(Y0x→ Y0fx) ` ∀x(Y0x→ Y0ffx)
∀: r

Let h ∈ Kι→o,ι→o, and g ∈ Kι→o,ι. Then application of Lemma 4.3.4 yields
the regular LKskc-proof ϕ:

(ψ1) (ψ2)

〈∀Z(ZhY0 → ZY0)〉Y0 , 〈(∀x(hY0x→ hY0fx)〉Y0 ` 〈∀x(Y0x→ Y0ffx)〉Y0
cut

` 〈∀Z(ZhY0 → ZY0)→ (∀x(hY0x→ hY0fx)→ ∀x(Y0x→ Y0ffx))〉Y0
2× →: r

` 〈∀X(∀Z(ZX → ZY0)→ (∀x(Xx→ Xfx)→ ∀x(Y0x→ Y0ffx)))〉Y0
∀sk: r

` ∃Y ∀X(∀Z(ZX → ZY )→ (∀x(Xx→ Xfx)→ ∀x(Y x→ Y ffx)))
∃sk: r

where ψ1 is

〈F ′〉Y0 ` 〈F ′〉Y0,T 〈G〉Y0,T ` G
〈∀x(hY0x→ hY0fx)→ ∀x(Y0x→ Y0fx)〉Y0,T , 〈F ′〉Y0 ` G →: l

〈∀Z(ZhY0 → ZY0)〉Y0 , 〈F ′〉Y0 ` G ∀sk: l
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where T = λX0.∀x(X0x→ X0fx) and F ′ = (∀x(hY0x→ hY0fx), and ψ2 is

〈Y0gY0〉Y0 ` Y0gY0 Y0fgY0 ` Y0fgY0 Y0ffgY0 ` 〈Y0ffgY0〉Y0

〈Y0gY0〉Y0 , Y0gY0 → Y0fgY0, Y0fgY0 → Y0ffgY0 ` 〈Y0ffgY0〉Y0
2× →: l

Y0gY0 → Y0fgY0, Y0fgY0 → Y0ffgY0 ` 〈Y0gY0 → Y0ffgY0〉Y0
→: r

∀x(Y0x→ Y0fx) ` 〈Y0gY0 → Y0ffgY0〉Y0
contr: l, 2× ∀: l

∀x(Y0x→ Y0fx) ` 〈∀x(Y0x→ Y0ffx)〉Y0
∀sk: r

Then

CS(ϕ) = {` 〈G〉Y0,T} ∪ {` 〈Y0gY0〉Y0} ∪ ∅ ∪ {〈Y0ffgY0〉Y0 `}
=

{ ` 〈∀x(Y0x→ Y0fx)〉Y0,λX0.∀x(X0x→X0fx) ;

` 〈Y0gY0〉Y0 ; 〈Y0ffgY0〉Y0 `
}
.

Proposition 4.3.6 yields the following LK-refutation of the reduct of CS(ϕ):

` ∀x(Y0x→ Y0fx)

` Y0gY0 Y0fgY0 ` Y0fgY0 Y0ffgY0 `
Y0gY0 → Y0fgY0, Y0fgY0 → Y0ffgY0 ` 2× →: l

∀x(Y0x→ Y0fx) ` contr: l, 2× ∀: l
` cut

Let S be the end-sequent of ϕ. Then P(ϕ) consists of the following LKskc-
trees: ψ1 is

〈F ′〉Y0 ` 〈F ′〉Y0,T 〈G〉Y0,T ` 〈G〉Y0,T

〈F ′ → G〉Y0,T , 〈F ′〉Y0 ` 〈G〉Y0,T
→: l

〈∀Z(ZhY0 → ZY0)〉Y0 , 〈F ′〉Y0 ` 〈G〉Y0,T ∀sk: l

〈∀Z(ZhY0 → ZY0)〉Y0 , 〈F ′〉Y0 ` 〈G〉Y0,T , 〈∀x(Y0x→ Y0ffx)〉Y0
weak: r

` 〈G〉Y0,T , 〈∀Z(ZhY0 → ZY0)→ (F ′ → ∀x(Y0x→ Y0ffx))〉Y0
2× →: r

(` 〈G〉Y0,T ) ◦ S ∀sk: r,∃sk: r

ψ2 is

〈Y0gY0〉Y0 ` 〈Y0gY0〉Y0

〈Y0gY0〉Y0 ` 〈Y0gY0〉Y0 , 〈Y0ffgY0〉Y0
weak: r

` 〈Y0gY0〉Y0 , 〈Y0gY0 → Y0ffgY0〉Y0
→: r

` 〈Y0gY0〉Y0 , 〈∀x(Y0x→ Y0ffx)〉Y0
∀sk: r

〈∀Z(ZhY0 → ZY0)〉Y0 , 〈F ′〉Y0 ` 〈Y0gY0〉Y0 , 〈∀x(Y0x→ Y0ffx)〉Y0
2× weak: l

` 〈Y0gY0〉Y0 , 〈∀Z(ZhY0 → ZY0)→ (F ′ → ∀x(Y0x→ Y0ffx))〉Y0
2× →: r

(` 〈Y0gY0〉Y0) ◦ S ∀sk: r,∃sk: r
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and ψ3 is

〈Y0ffgY0〉Y0 ` 〈Y0ffgY0〉Y0

〈Y0gY0〉Y0 , 〈Y0ffgY0〉Y0 ` 〈Y0ffgY0〉Y0
weak: l

〈Y0ffgY0〉Y0 ` 〈Y0gY0 → Y0ffgY0〉Y0
→: r

〈Y0ffgY0〉Y0 ` 〈∀x(Y0x→ Y0ffx)〉Y0
∀sk: r

〈∀Z(ZhY0 → ZY0)〉Y0 , 〈F ′〉Y0 , 〈Y0ffgY0〉Y0 ` 〈∀x(Y0x→ Y0ffx)〉Y0
2× weak: l

〈Y0ffgY0〉Y0 ` 〈∀Z(ZhY0 → ZY0)→ (F ′ → ∀x(Y0x→ Y0ffx))〉Y0
2× →: r

(〈Y0ffgY0〉Y0 `) ◦ S ∀sk: r,∃sk: r

Consider the following R-refutation of CS(ϕ):

1 ` 〈∀x(Y0x→ Y0fx)〉Y0,T CS(ϕ)

2 ` 〈Y0x0 → Y0fx0〉Y0,T,x0 ∀T : 1

3 〈Y0x0〉Y0,T,x0 ` 〈Y0fx0〉Y0,T,x0 →T : 2

4 〈Y0gY0〉Y0,T,gY0 ` 〈Y0fgY0〉Y0,T,gY0 Sub : 3 [x0 ← gY0]

5 ` 〈Y0gY0〉Y0 CS(ϕ)

6 ` 〈Y0fgY0〉Y0,T,gY0 Cut : 4, 5

7 〈Y0fgY0〉Y0,T,fgY0 ` 〈Y0ffgY0〉Y0,T,fgY0 Sub : 3 [x0 ← fgY0]

8 ` 〈Y0ffgY0〉Y0,T,fgY0 Cut : 6, 7

9 〈Y0ffgY0〉Y0 ` CS(ϕ)
10 ` Cut : 8, 9

We sketch the application of Lemma 4.3.19: To improve readability, we sup-
press the labels in the following figures. The ∀T ,→T inferences (steps 2–3)
cause ψ1 to become ψ′1:

F ′ ` F ′
Y0x0 ` Y0x0 Y0fx0 ` Y0fx0

Y0x0, Y0x0 → Y0fx0 ` Y0fx0
→: l

Y0x0, G ` Y0fx0
∀sk: l

Y0x0, F
′ → G,F ′ ` Y0fx0

→: l

Y0x0,∀Z(ZhY0 → ZY0), F ′ ` Y0fx0
∀sk: l

Y0x0,∀Z(ZhY0 → ZY0), F ′ ` Y0fx0, ∀x(Y0x→ Y0ffx)
weak: r

Y0x0 ` Y0fx0,∀Z(ZhY0 → ZY0)→ (F ′ → ∀x(Y0x→ Y0ffx))
2× →: r

(Y0x0 ` Y0fx0) ◦ S ∀sk: r,∃sk: r
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Eventually we obtain the following LKskc-proof ψ:

ψ2 ψ′1 [x0 ← gY0]

S ◦ S ◦ (` Y0fgY0)
cut

ψ′1 [x0 ← fgY0]

S ◦ S ◦ S ◦ (` Y0ffgY0)
cut

ψ3

S ◦ S ◦ S ◦ S cut

S
contr: ∗

Applying Lemma 4.3.20 and Lemma 4.1.27 yields a sequentially pruned
LKsk-proof of S. We summarize the instantiation information of this proof in
the following figure (based on the Skolem expansion tree formalism of [44]).

∀x(Y0x→ Y0fx)∀x(hY0x→ hY0fx)

∀x(hY0x→ hY0fx)→ ∀x(Y0x→ Y0fx)

∀Z(ZhY0 → ZY0)

∀Z(ZhY0 → ZY0)→ (∀x(hY0x→ hY0fx)→ ∀x(Y0x→ Y0ffx))

∀X(∀Z(ZX → ZY0)→ (∀x(Xx→ Xfx)→ ∀x(Y0x→ Y0ffx)))

∃Y ∀X(∀Z(ZX → ZY )→ (∀x(Xx→ Xfx)→ ∀x(Y x→ Y ffx)))

Y0fgY0 → Y0ffgY0Y0gY0 → Y0fgY0

Y0gY0 → Y0ffgY0

∀x(Y0x→ Y0ffx)∀x(hY0x→ hY0fx)

∀x(hY0x→ hY0fx)→ ∀x(Y0x→ Y0ffx)

Observe that this basically corresponds to the proof obtained by applying
reductive cut-elimination (i.e. the reduction rules extracted from Gentzen’s
cut-elimination proof from [23]) to ϕ.

111



Now, let R = λx.X0x ∧ ¬X0x and consider a second R-refutation of
CS(ϕ):

1 ` 〈Y0gY0〉Y0 CS(ϕ)

2 ` 〈X0gR ∧ ¬X0gR〉R Sub : 1 [Y0 ← R]

3 ` 〈X0gR〉R ∧Tl : 2

4 ` 〈¬X0gR〉R ∧Tr : 2

5 〈X0gR〉R ` ¬T : 4
6 ` Cut : 3, 5

Steps 1–3 transform (via Lemma 4.3.19) ψ2 into ψ′2:

〈X0gR〉R ` 〈X0gR〉R
〈RgR〉R ` 〈X0gR〉R

∧: l1

〈RgR〉R ` 〈X0gR〉R , 〈RffgR〉R
weak: r

` 〈X0gR〉R , 〈RgR→ RffgR〉R
→: r

` 〈X0gR〉R , 〈∀x(Rx→ Rffx)〉R ∀
sk: r

〈∀Z(ZhR→ ZR)〉R , 〈F ′〉R ` 〈X0gR〉R , 〈∀x(Rx→ Rffx)〉R 2× weak: l

` 〈X0gR〉R , 〈∀Z(ZhR→ ZR)→ (F ′ → ∀x(Rx→ Rffx))〉R 2× →: r

(` 〈X0gR〉R) ◦ S ∀sk: r,∃sk: r

and steps 1,2,4,5 yield ψ′′2 :

〈X0gR〉R ` 〈X0gR〉R
〈¬X0gR〉R , 〈X0gR〉R `

¬: l

〈RgR〉R , 〈X0gR〉R `
∧: l2

〈RgR〉R , 〈X0gR〉R ` 〈RffgR〉R
weak: r

〈X0gR〉R ` 〈RgR→ RffgR〉R
→: r

〈X0gR〉R ` 〈∀x(Rx→ Rffx)〉R ∀
sk: r

〈∀Z(ZhR→ ZR)〉R , 〈F ′〉R , 〈X0gR〉R ` 〈∀x(Rx→ Rffx)〉R 2× weak: l

〈X0gR〉R ` 〈∀Z(ZhR→ ZR)→ (F ′ → ∀x(Rx→ Rffx))〉R 2× →: r

(〈X0gR〉R `) ◦ S ∀sk: r,∃sk: r

Finally we obtain the LKskc-proof ψ′:

ψ′2 ψ′′2
S ◦ S cut

S
contr: ∗

112



Application of Lemma 4.3.20 yields the LKsk-proof ψ′′:

〈X0gR〉R ` 〈X0gR〉R
〈¬X0gR〉R , 〈X0gR〉R `

¬: l

〈RgR〉R , 〈X0gR〉R `
∧: l2

〈RgR〉R , 〈X0gR〉R ` 〈RffgR〉R
weak: r

〈X0gR〉R ` 〈RgR→ RffgR〉R
→: r

〈X0gR〉R ` 〈∀x(Rx→ Rffx)〉R ∀
sk: r

〈∀Z(ZhR→ ZR)〉R , 〈F ′〉R , 〈X0gR〉R ` 〈∀x(Rx→ Rffx)〉R 2× weak: l

〈X0gR〉R ` 〈∀Z(ZhR→ ZR)→ (F ′ → ∀x(Rx→ Rffx))〉R 2× →: r

(〈X0gR〉R `) ◦ S ∀sk: r,∃sk: r

(〈RgR〉R `) ◦ S ∧: l1

(〈RgR〉R ` 〈RffgR〉R) ◦ S weak: r

(` 〈RgR→ RffgR〉R) ◦ S
→: r

(` 〈∀x(Rx→ Rffx)〉R) ◦ S ∀
sk: r

(〈∀Z(ZhR→ ZR)〉R , 〈F ′〉R ,` 〈∀x(Rx→ Rffx)〉R) ◦ S 2× weak: l

(` 〈∀Z(ZhR→ ZR)→ (F ′ → ∀x(Rx→ Rffx))〉R) ◦ S 2× →: r

S ◦ S ∀sk: r,∃sk: r
S

contr: ∗

Application of Lemma 4.1.27 yields the sequentially pruned LKsk-proof ψ′′′:

〈X0gR〉R ` 〈X0gR〉R
〈X0gR〉R , 〈¬X0gR〉R `

¬: l

〈X0gR〉R , 〈RgR〉R `
∧: l2

〈RgR〉R , 〈RgR〉R ` ∧: l1

〈RgR〉R ` contr: l

〈RgR〉R ` 〈RffgR〉R weak: r

` 〈RgR→ RffgR〉R
→: r

` 〈∀x(Rx→ Rffx)〉R ∀
sk: r

〈∀Z(ZhR→ ZR)〉R , 〈F ′〉R ,` 〈∀x(Rx→ Rffx)〉R 2× weak: l

` 〈∀Z(ZhR→ ZR)→ (F ′ → ∀x(Rx→ Rffx))〉R 2× →: r

` ∃Y ∀X(∀Z(ZX → ZY )→ (∀x(Xx→ Xfx)→ ∀x(Y x→ Y ffx)))
∀sk: r,∃sk: r

Note that in ψ′′′, all ∀sk: r inferences are already correctly placed. Hence
Theorem 4.1.41 yields the following LK-proof, where Θ is a variable of type
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ι→ o and α is a variable of type ι:

〈X0α〉R ` 〈X0α〉R
〈X0α〉R , 〈¬X0α〉R `

¬: l

〈X0α〉R , 〈Rα〉R `
∧: l2

〈Rα〉R , 〈Rα〉R ` ∧: l1

〈Rα〉R ` contr: l

〈Rα〉R ` 〈Rffα〉R weak: r

` 〈Rα→ Rffα〉R
→: r

` 〈∀x(Rx→ Rffx)〉R ∀
sk: r

〈∀Z(ZΘ→ ZR)〉R , 〈∀x(Θx→ Θfx)〉R ,` 〈∀x(Rx→ Rffx)〉R 2× weak: l

` 〈∀Z(ZΘ→ ZR)→ (∀x(Θx→ Θfx)→ ∀x(Rx→ Rffx))〉R 2× →: r

` ∃Y ∀X(∀Z(ZX → ZY )→ (∀x(Xx→ Xfx)→ ∀x(Y x→ Y ffx)))
∀: r,∃: r

Intuitively, this proof shows that one can prove the end-sequent of π by
instantiating Y not by an arbitrary set Y0, but by the empty set (represented
here by the term R). Even though this observation is trivial in itself, observe
that the proof ψ′′′ (or any proof using the empty set as witness for Y ) cannot
be obtained by applying reductive cut-elimination to π! This shows that the
CERESω method can really produce more cut-free proofs than the reductive
methods. Hence, when applied to a more sophisticated proof, the CERESω

method may produce interesting cut-free proofs not obtainable by reductive
methods.

4.3.2 An application of non-standard projections

In Section 4.3, the notion of CERES-projection was defined and the stan-
dard set of CERES-projections P(π) was constructed for use in the CERESω

method. Using the machinery we have developed, together with non-standard
sets of CERES-projections, we can give an easy constructive proof of the fact
that LK is relatively complete to Ral:

Proposition 4.3.23. Let F be a closed formula such that an Ral-refutation
of {F `} exists. Then there exists an LK-proof of ` F.

Proof. Let S =` F, C = {F `} and let π be the LKsk-proof F ` F. It is
easy to check that {π} is a set of CERES-projections for (S, C). The result
then follows from Lemmas 4.3.19 and 4.3.20, and Theorem 4.1.41.
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Chapter 5

Conclusion

In this thesis, we have worked towards a generalization of the cut-elimination
method CERES to higher-order logic. In Chapter 3, we have given a prelim-
inary formulation of CERES for the class of QFC-proofs, which is roughly
the class of proofs in second-order logic using only quantifier-free compre-
hension. We have shown that in this setting, one of the main ingredients
of the first-order CERES method, proof Skolemization, can still be applied
successfully.

In Chapter 4, we formulate the CERESω method, which generalizes the
CERES method to full higher-order logic. To this end, we introduced the
cut-free calculus LKsk in Section 4.1. The point of LKsk was to transfer
the essential properties of proof Skolemization from first-order to the higher-
order logic setting. This was achieved by using Skolem terms in place of the
eigenvariables of LK, and abandoning the eigenvariable condition.

To achieve soundness for LKsk, two notions of regularity (weak regularity
and weak+ regularity) where introduced. Soundness was shown by giving
an algorithm transforming weakly regular LKsk-trees to LK-proofs, and by
reducing soundness of weak+ regularity to soundness of weak regularity.

In Section 4.2, we introduced the resolution calculus Ral. In order to
relate this non-standard calculus to the standard resolution calculus R, we
introduced an intermediary calculusRa and showed a restricted relative com-
pleteness result. We conjectured that Ral is indeed relatively complete to R
and left the proof of this for future work.

Finally, in Section 4.3, we put together the results of this chapter to
define the CERESω method. We first define a calculus with cut, LKskc, by
combining the rules of LKsk and LK. We give a translation from LK-proofs
to LKskc-proofs and state the central definitions of the method, culminating
in the notions of CERES-projection and characteristic sequent sets. Using
these notions we show that we can eliminate the cuts from an LKskc-proof
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by modifying its set of CERES-projections according to a Ral-refutation
of its characteristic sequent set. Our conjecture implies that such a Ral-
refutation always exists, which in turn implies completeness of the method.
We conclude by illustrating the CERESω method by applying it to a simple
example, observing that the method may produce cut-free proofs that cannot
be obtained by traditional reductive cut-elimination methods.

The main motivation of this work was to define a cut-elimination method
that can be successfully used in practice; i.e. to apply cut-elimination to con-
crete mathematical proofs (formalized in LK). This thesis therefore provides
a theoretical basis for such applications, but there is still much to be done:
As mentioned, completeness of the method relies on a conjecture which, al-
though likely to have a positive resolution, still needs to be proven. Also,
the calculus R we consider here is quite basic and does not have some of the
features that modern higher-order resolution calculi have (e.g. integration of
unification, treatment of extensionality). Such calculi should be integrated
into the method in the future. In general, the behaviour of extensionality
with respect to CERESω remains to be investigated — this is such a natural
feature that practical proof analysis will greatly benefit from its incorpora-
tion. Furthermore, since sequent calculus proofs are hard to read, and since
there exist more convenient formats like the Skolem expansion trees of [44],
for practical purposes it will be useful to develop an algorithm transforming
LKsk-proofs to Skolem expansion trees (without the detour via LK).

It remains to note that some parts of this thesis have been implemented
in the context of the GAPT framework1. In particular, the calculi LK, LKsk

and LKskc have been implemented, along with the translation from LK to
LKskc, and the extraction of the characteristic sequent set. It is therefore
already now possible to semi-automatically analyse higher-order proofs using
the CERESω method.

1See http://www.logic.at/ceres and http://code.google.com/p/gapt/
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