
Proof analysis
CERES

Recent developments

CERES: a program for cut-elimination

Daniel Weller

KGRC, Vienna, 5 June 2009

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Proof analysis

Mathematical proofs usually contain more information (bounds,
algorithms, . . .) than theorems

Some information may be implicit in the use of lemmas

The informal use of lemmas corresponds to the use of cuts in sequent
calculus proofs

Goal: Make implicit information explicit by cut-elimination

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Sequent calculus LK

Rules like

A, Γ ` ∆

A ∧ B, Γ ` ∆
∧ : l1

Γ ` ∆,A[x ← t]

Γ ` ∆, (∃x)A,
∃ : r

Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Sequent calculus LK

Rules like

A, Γ ` ∆

A ∧ B, Γ ` ∆
∧ : l1

Γ ` ∆,A[x ← t]

Γ ` ∆, (∃x)A,
∃ : r

Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ
cut

Subformula property of cut-free proofs: If A occurs in a proof, then A
occurs (modulo substitution) in the end-sequent

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Resolution calculus

Clausal calculus (i.e. only atomic sequents)

Based on most general unification and atomic cut

Only three rules:

Γ ` ∆,A A′,Π ` Λ

(Γ,Π ` ∆,Λ)σ
res

A,A′, Γ ` ∆

(A, Γ ` ∆)σ
fact : l

σ is an mgu of {A,A′}.
Popular for automated theorem proving — many implementations
exist.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Methodology

CERES: cut-elimination method for classical first-order logic
(M. Baaz, A. Leitsch 2000)

based on set of clauses CL(π) (the characteristic clause set)
extracted from LK-proof π

resolution refutation of CL(π) serves as skeleton of proof with at
most atomic cuts (ACNF)

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES

Idea: partition LK-proof π into implicit and explicit parts

Implicit part: characteristic clause set CL(π)

Explicit part: proof projections P(π)

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES

Input: Skolemized proof π of S

Compute CL(π)

Compute resolution refutation γ of CL(π)

Apply global substitution to γ to obtain LK refutation γ′

Compute P(π)

Combine instances of proofs in P(π) with γ′ to obtain proof of S
with at most atomic cuts

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - CL(π)

Let ρ be a rule in π, then define CLρ(π):

If ρ is an axiom where Γ1 ` ∆1 are the cut ancestors, define
CLρ(π) = {Γ1 ` ∆1}.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - CL(π)

Let ρ be a rule in π, then define CLρ(π):

If ρ is a unary rule with immediate predecessor ρ′, then
CLρ(π) = CLρ′(π).

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - CL(π)

Let ρ be a rule in π, then define CLρ(π):

If ρ is a binary rule with immediate predecessors ρ1, ρ2, then
I If the active formulas of ρ are cut ancestors, define

CLρ(π) = CLρ1(π) ∪ CLρ2(π), and
I if the active formulas of ρ are end-sequent ancestors, then define

CLρ(π) = CLρ1(π)× CLρ2(π) where
S1 × S2 = {Γ,Π ` ∆,Λ | Γ ` ∆ ∈ S1,Π ` Λ ∈ S2}.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - CL(π)

Let ρ be a rule in π, then define CLρ(π):

If ρ is a binary rule with immediate predecessors ρ1, ρ2, then
I If the active formulas of ρ are cut ancestors, define

CLρ(π) = CLρ1(π) ∪ CLρ2(π), and
I if the active formulas of ρ are end-sequent ancestors, then define

CLρ(π) = CLρ1(π)× CLρ2(π) where
S1 × S2 = {Γ,Π ` ∆,Λ | Γ ` ∆ ∈ S1,Π ` Λ ∈ S2}.

Define CL(π) = CLρ0(π) where ρ0 is the last rule of π.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - CL(π)

Let ρ be a rule in π, then define CLρ(π):

If ρ is a binary rule with immediate predecessors ρ1, ρ2, then
I If the active formulas of ρ are cut ancestors, define

CLρ(π) = CLρ1(π) ∪ CLρ2(π), and
I if the active formulas of ρ are end-sequent ancestors, then define

CLρ(π) = CLρ1(π)× CLρ2(π) where
S1 × S2 = {Γ,Π ` ∆,Λ | Γ ` ∆ ∈ S1,Π ` Λ ∈ S2}.

Define CL(π) = CLρ0(π) where ρ0 is the last rule of π.

One can show that CL(π) is always unsatisfiable.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))
∃ : r ,→: r ,→: l

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))
∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,→: l

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))
∃ : r ,→: r ,→: l

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))
∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,→: l

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))
∃ : r ,→: r ,→: l

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))
∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,→: l

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

ϕ =

ϕ1 ϕ2

` cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))
∃ : r ,→: r ,→: l

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))
∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

ϕ2 =

` P(a) Q(v) `
P(a)→ Q(v) ` →: l

(∃y)(P(a)→ Q(y)) ` ∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` ∀ : l

ϕ =

ϕ1 ϕ2

` cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` Q(u)

` (∃y)(P(u)→ Q(y))
∃ : r ,→: r

` (∃y)(P(u)→ Q(y))

` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

ϕ2 =

` P(a) Q(v) `
P(a)→ Q(v) ` →: l

(∃y)(P(a)→ Q(y)) ` ∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` ∀ : l

ϕ =

ϕ1 ϕ2

` cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

CL(ϕ) = {P(u) ` Q(u); ` P(a); Q(v) `}

refutation:
` P(a) P(u) ` Q(u)

` Q(a)
R

Q(v) `
` R

σ = [u ← a, v ← a]
ground refutation:

` P(a) P(a) ` Q(a)

` Q(a)
R

Q(a) `
` R

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - P(π)

Let ρ be a rule in π, then define Pρ(π):

If ρ is an axiom S , define Pρ(π) = {S}

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - P(π)

Let ρ be a rule in π, then define Pρ(π):

If ρ is a unary rule with immediate predecessor ρ′, distinguish:
I The active formulas of ρ are ancestors of cut formulas. Then define
Pρ(π) = Pρ′(π)

I The active formulas of ρ are ancestors of the end-sequent. Then define
Pρ(π) := {ρ(ψ) | ψ ∈ Pρ′(π)} where ρ(ψ) is the proof that is obtained
from ψ by applying ρ to its end-sequent.
Need assumption: π skolemized!

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - P(π)

Let ρ be a rule in π, then define Pρ(π):

If ρ is a binary rule with immediate predecessors ρ1 and ρ2,
distinguish:

I If the active formulas of ρ are cut ancestors, let Γi ` ∆i be the
end-sequent ancestors in the conclusion sequent of ρi and define

Pρ(π) = Pρ1(π)Γ2`∆2 ∪ Pρ2(π)Γ1`∆1

where PΓ`∆ = {ψΓ`∆ | ψ ∈ P} and ψΓ`∆ is ψ followed by weakenings
adding Γ ` ∆.

I If the active formulas of ρ are end-sequent ancestors, then

Pρ(π) := Pρ1(π)× Pρ2(π).

where P ×Q = {ρ(ψ, χ) | ψ ∈ P, χ ∈ Q} and ρ(ψ, χ) is the proof that
is obtained from the proofs ψ and χ by applying the binary rule ρ.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - P(π)

Let ρ be a rule in π, then define Pρ(π):

Define P(π) = Pρ0(π) where ρ0 is the last rule of π.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES - P(π)

Let ρ be a rule in π, then define Pρ(π):

Define P(π) = Pρ0(π) where ρ0 is the last rule of π.

Let the end-sequent of π be Γ ` ∆. One can show that for every
Π ` Λ ∈ CL(π) there is a ψ ∈ P(π) with end-sequent Γ,Π ` ∆,Λ.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))
∃ : r ,→: r ,→: l

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))
∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,→: l

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u),P(u) ` Q(u)
→: l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)
∀ : l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,→: l

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u),P(u) ` Q(u)
→: l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)
∀ : l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,→: l

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u),P(u) ` Q(u)
→: l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)
∀ : l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)

ϕ2 =

P(a) ` P(a)

` P(a), (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,w : r

` P(a), (∃y)(P(a)→ Q(y))

` P(a), (∃y)(P(a)→ Q(y))

ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u),P(u) ` Q(u)
→: l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)
∀ : l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,→: l

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u)→ Q(u),P(u) ` Q(u)
→: l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)
∀ : l

(∀x)(P(x)→ Q(x)),P(u) ` Q(u)

ϕ2 =

Q(v) ` Q(v)

Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r ,→: r ,w : l

Q(v) ` (∃y)(P(a)→ Q(y))

Q(v) ` (∃y)(P(a)→ Q(y))

ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES example

ϕ(γ) =

ϕ(` P(a))
B ` C ,P(a)

ϕ(P(a) ` Q(a))
P(a),B ` C ,Q(a)

B,B ` C ,C ,Q(a)
cut

ϕ(` Q(a))
Q(a),B ` C

B,B,B ` C ,C ,C
cut

B ` C
contractions

where B = (∀x)(P(x)→ Q(x)), C = (∃y)(P(a)→ Q(y)).

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES vs. Gentzen

Theorem (Baaz, Leitsch 2000)

There exists a sequence of LK-proofs (ψn)n∈N such that

1 The Gentzen method produces proof trees with non-elementarily
many nodes on ψn.

2 CERES constructs a cut-free proof out of ψn in exponentially many
steps.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES vs. Gentzen

Theorem (Baaz, Leitsch 2000)

There exists a sequence of LK-proofs (ψn)n∈N such that

1 The Gentzen method produces proof trees with non-elementarily
many nodes on ψn.

2 CERES constructs a cut-free proof out of ψn in exponentially many
steps.

Theorem (Baaz, Leitsch 2006)

Let ϕ be an LK-proof and ψ be an ACNF of ϕ under Gentzen’s or Tait’s
method. Then there exists an ACNF χ of ϕ under CERES such that

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ) + 2.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

CERES system

The CERES method has been implemented to allow (semi-)automatic
proof analysis by cut-elimination.

Auxiliary tools have been developed to
I aid in the formalization of proofs and
I let users visualize proofs, sequents, formulas, . . .

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

System overview

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The calculus

CERES uses a version of LK, called LKDe, which has additional rules
for easier proof formalization:

Definition introduction

Equality handling

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The calculus

CERES uses a version of LK, called LKDe, which has additional rules
for easier proof formalization:

Definition introduction

Equality handling

A(t1, . . . , tk), Γ ` ∆

P(t1, . . . , tk), Γ ` ∆
defP : l

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The calculus

CERES uses a version of LK, called LKDe, which has additional rules
for easier proof formalization:

Definition introduction

Equality handling

Γ1 ` ∆1, s = t A[s], Γ2 ` ∆2

A[t], Γ1, Γ2 ` ∆1,∆2
=: l1

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The tools

Proofs are written in the language HandyLK and compiled to LKDe
using the hlk compiler

I Proves propositional tautologies automatically

I Proofs can be defined recursively
I Proof schemes can be defined and instantiated
I Many-sorted first-order languages are supported

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The tools

Proofs are written in the language HandyLK and compiled to LKDe
using the hlk compiler

I Proves propositional tautologies automatically
I Proofs can be defined recursively

I Proof schemes can be defined and instantiated
I Many-sorted first-order languages are supported

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The tools

Proofs are written in the language HandyLK and compiled to LKDe
using the hlk compiler

I Proves propositional tautologies automatically
I Proofs can be defined recursively
I Proof schemes can be defined and instantiated

I Many-sorted first-order languages are supported

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The tools

Proofs are written in the language HandyLK and compiled to LKDe
using the hlk compiler

I Proves propositional tautologies automatically
I Proofs can be defined recursively
I Proof schemes can be defined and instantiated
I Many-sorted first-order languages are supported

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The tools

Input and output of the system can be visualized using the
ProofTool

I Supports some very light proof editing
I Proofs, sequents, . . . can be exported to LATEX

In fully automatic mode, CERES supports the resolution provers Otter
and Prover9

Resolution refutations can also be constructed (semi-)automatically
using our prover ATP

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The tools

Input and output of the system can be visualized using the
ProofTool

I Supports some very light proof editing
I Proofs, sequents, . . . can be exported to LATEX

In fully automatic mode, CERES supports the resolution provers Otter
and Prover9

Resolution refutations can also be constructed (semi-)automatically
using our prover ATP

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

The tools

Input and output of the system can be visualized using the
ProofTool

I Supports some very light proof editing
I Proofs, sequents, . . . can be exported to LATEX

In fully automatic mode, CERES supports the resolution provers Otter
and Prover9

Resolution refutations can also be constructed (semi-)automatically
using our prover ATP

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

Example proof

A version of the pigeon hole principle: The “tape proof” due to
C. Urban.

On a tape with infinitely many cells, each labelled either 0 or 1, there
are two distinct cells with the same label.

Uses a classical lemma: Either infinitely many cells are labelled 0, or
infinitely many cells are labelled 1.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

CERES method
CERES system
System demonstration

System demonstration

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Successful applications

Example (Hetzl, Leitsch, Weller, Woltzenlogel Paleo 2008)

There are different equivalent formulations of the notion of lattice:

1 〈S ,∩,∪〉 such that ∪ and ∩ are commutative, associative,
idempotent and (∀x)(∀y)x ∩ y = x ⇐⇒ x ∪ y = y .

2 〈S ,∩,∪〉 such that ∪ and ∩ are commutative, associative, idempotent
and (∀x)(∀y)(x ∩ y) ∪ x = x and (∀x)(∀y)(x ∪ y) ∩ x = x .

3 A partially ordered set 〈S ,≤〉 such that ∩ is the greatest lower bound
and ∪ is the least upper bound.

One proves (1)→ (2) by proving (1)→ (3) and (3)→ (2).
Using CERES, a proof of (1)→ (2) is obtained where the notion of
partially ordered set does not appear.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Successful applications

Example (Baaz, Hetzl, Leitsch, Richter, Spohr 2008)

H. Fürstenberg gave a proof of the infinity of primes by topological means,
where the topology is induced by arithmetic progressions over the integers.
One of the analytic arguments obtainable from Fürstenberg’s proof by
CERES is Euclid’s original proof!

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Herbrand sequents

Sequent calculus proofs are uncomfortable to read.

By Herbrand’s theorem, the essence of first-order proofs are the
substitutions used.

The Herbrand sequent summarizes these substitutions.

The extraction of Herbrand sequents has been implemented in the
CERES system.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

(Simplified) Herbrand sequent of example proof

f (p1) = 0 ∨ f (p1) = 1, f (p2) = 0 ∨ f (p2) = 1, f (p3) = 0 ∨ f (p3) = 1,
f (p4) = 0 ∨ f (p4) = 1, f (p5) = 0 ∨ f (p5) = 1, f (p6) = 0 ∨ f (p6) = 1,
f (p7) = 0 ∨ f (p7) = 1
`
p1 6= p2 ∧ f (p1) = f (p2), p3 6= p1 ∧ f (p3) = f (p1),
p3 6= p2 ∧ f (p3) = f (p2), p1 6= p4 ∧ f (p1) = f (p4),
p5 6= p6 ∧ f (p5) = f (p6), p7 6= p5 ∧ f (p7) = f (p5),
p7 6= p6 ∧ f (p7) = f (p6), p4 6= p7 ∧ f (p4) = f (p7).

where the pi are distinct positions on the tape.
Algorithm can be read off!

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Higher order logic

Proofs can be formalized more naturally and succinctly in higher-order
logic.

Arithmetic is finitely axiomatizable in second-order logic.

CERES has been theoretically extended to the (weak) class of proofs
in second-order logic using only quantifier-free comprehension.

Extension to full higher-order logic: current work.

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Future work

Extend the scope of the system: Use proofs formalized in Mizar, Coq,
Isabelle, . . .

Use the CERES method to characterize classes of proofs where fast
cut-elimination is possible

Characterize reductive cut-elimination methods (Gentzen, Tait, . . .)
as resolution refinements

Daniel Weller CERES: a program for cut-elimination



Proof analysis
CERES

Recent developments

Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik
Spohr.

CERES: An Analysis of Fürstenberg’s Proof of the Infinity of Primes.

Theoretical Computer Science, 403:160–175, August 2008.

Matthias Baaz and Alexander Leitsch.

Cut-elimination and Redundancy-elimination by Resolution.

Journal of Symbolic Computation, 29(2):149–176, 2000.

Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo.

Herbrand sequent extraction.

In Intelligent Computer Mathematics, volume 5144 of Lecture Notes in Computer
Science, pages 462–477. Springer Berlin, 2008.

Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo.

A clausal approach to proof analysis in second-order logic.

In Logical Foundations of Computer Science, volume 5407 of Lecture Notes in
Computer Science, pages 214–229. Springer Berlin, 2009.

Daniel Weller CERES: a program for cut-elimination


	Proof analysis
	CERES
	CERES method
	CERES system
	System demonstration

	Recent developments

