# Dialogue Games for Fuzzy Logic 2. Diplomarbeitsvortrag

Christoph Roschger

#### Dec. 3, 2008 / Seminar für DiplomandInnen

• • = • • = •

# Outline



#### Giles Style Dialogue Games

- Motivation
- Description
- Adequateness for Łukasiewicz Logic
- 2 t-Norm Based Fuzzy Logics

Variants of Giles's Game for Other Logics

### Implementation

- Giles Games
- Hypersequential Proofs
- Truth Comparison Games
- Webgame

Overview of Giles's Game I

### **Motivation**

- introduced by Robin Giles in the 1970s
- aim: model reasoning in physical theories
- provide a tangible meaning to (compound) propositions
- corresponds to Łukasiewicz Logic

#### Overview

- atomic propositions are identified with binary experiments
- experiments may show dispersion
- at any point in the game each player asserts a (multi)set of propositions
- game is divided into two seperate parts:
  - deconstruction of complex propositions
  - evaluation of atomic game states

Overview of Giles's Game I

### **Motivation**

- introduced by Robin Giles in the 1970s
- aim: model reasoning in physical theories
- provide a tangible meaning to (compound) propositions
- corresponds to Łukasiewicz Logic

### Overview

- atomic propositions are identified with binary experiments
- experiments may show dispersion
- at any point in the game each player asserts a (multi)set of propositions
- game is divided into two seperate parts:
  - deconstruction of complex propositions
  - evaluation of atomic game states

Э

Overview of Giles's Game II

#### **Risk Values**

- after playing the game both players have to pay a certain amount of money to each other
- the expected amount a player has to pay is called his risk value
- both players aim to minimize their risk

### Game Interpretation

- primarily an evaluation game
- fixed assignment of probability values to experiments
- finite two-player zero-sum game with perfect information
- truth of a proposition *F* is identified with the existence of a winning strategy for a player asserting *F*

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Overview of Giles's Game II

#### **Risk Values**

- after playing the game both players have to pay a certain amount of money to each other
- the expected amount a player has to pay is called his risk value
- both players aim to minimize their risk

### Game Interpretation

- primarily an evaluation game
- fixed assignment of probability values to experiments
- finite two-player zero-sum game with perfect information
- truth of a proposition F is identified with the existence of a winning strategy for a player asserting F

글 아 이 글 아

**Evaluating Final Game States** 

Assume that both players assert only atomic propositions.

### **Betting for Positive Results**

Let a be an atomic proposition. He who asserts a agrees to pay his opponent  $1 \in$  if a trial of  $E_a$  yields the outcome "no".

- for each assertion of an atomic proposition a trial of the associated experiment is done
- for an atomic proposition a the corresponding experiment is denoted E<sub>a</sub>
- the risk value for one player is the expected amount of money he has to pay in this game state

**Evaluating Final Game States** 

In the following let the players be called you and me.

#### Example

Let *a* and *b* be atomic propositions associated with the experiments  $E_a$  and  $E_b$  and  $\pi(E_a) = 0.3$  and  $\pi(E_b) = 0.9$ . Assume that you assert *a* and I assert both *a* and *b*.

When evaluating this final game state, the experiment  $E_a$  is conducted twice and  $E_b$  once. In the expected case you have to pay me  $0.7 \in$  and I have to pay you  $0.8 \in$ . Thus, my risk value for this game state is  $0.1 \in$ .

**Decomposing Complex Propositions** 

Assume that both players assert a (multi)set of arbitrary propositions.

### General Game Rule

One player chooses a compound proposition asserted by the other one. Either

- he attacks it according to the corresponding dialogue rule. Then the other player has to defend his claim as indicated by the rule.
- or he grants the proposition to his opponent.

Afterwards the proposition is deleted from the game.

 The order in which the players attack each others' assertions is not specified.

#### Implication

He who asserts A 
ightarrow B agrees to assert B if his opponent will assert A

**Decomposing Complex Propositions** 

Assume that both players assert a (multi)set of arbitrary propositions.

### General Game Rule

One player chooses a compound proposition asserted by the other one. Either

- he attacks it according to the corresponding dialogue rule. Then the other player has to defend his claim as indicated by the rule.
- or he grants the proposition to his opponent.

Afterwards the proposition is deleted from the game.

• The order in which the players attack each others' assertions is not specified.

#### Implication

He who asserts  $A \rightarrow B$  agrees to assert B if his opponent will assert A

Other Rules

#### Disjunction

He who asserts  $A \lor B$  undertakes to assert either A or B at his own choice if challenged

#### Conjunction

He who asserts  $A \land B$  undertakes to assert either A or B at his opponent's choice

- Negation can be expressed using  $\neg A \equiv A \rightarrow \bot$ .
- Other rules suitable for conjunction and disjunction as well.
- Dialogue rules refer to Lorenzen (1960s).

ロト イポト イラト イラト

Łukasiewicz Logic Ł

- many-valued, truth functional fuzzy logic
- domain of truth values: unit interval [0,1]

### Connectives of Łukasiewicz Logic

Connectives:  $\rightarrow$ , &,  $\land$ ,  $\lor$ ,  $\neg$  with truth functions:

• 
$$f_{\to}(x,y) = \min(1,1-x+y),$$

• 
$$f_{\&}(x,y) = \max(0, x+y-1)$$

• 
$$f_{\wedge}(x,y) = \min(x,y),$$

• 
$$f_{\vee}(x,y) = \max(x,y)$$
,

• 
$$f_{\neg}(x) = 1 - x$$
.

A formula is called *true* in Ł under given interpretation iff it evaluates to 1.

ロト イポト イヨト イヨト

Adequateness of Giles's Game for Ł

### Adequateness of Giles's Game for Ł

For a fixed assignment of probability values to atomic propositions and a corresponding interpretation, I have a strategy to ensure that my risk is 0 when asserting a formula *A*, if and only if *A* is true in Łukasiewicz Logic.

#### Correspondence Between Risk Values and Valuations

Let *v* be an interpretation corresponding to the assignment of probability values to atomic propositions, *A* be an arbitrary formula, and  $\langle A \rangle$  be the risk value (for me) for the game starting with me asserting *A*. Then the valuation of *A* under *v* in  $\natural$  and the inverted risk value  $1 - \langle A \rangle$  coincide.

イロト イポト イヨト イヨト

Adequateness of Giles's Game for Ł

### Adequateness of Giles's Game for Ł

For a fixed assignment of probability values to atomic propositions and a corresponding interpretation, I have a strategy to ensure that my risk is 0 when asserting a formula *A*, if and only if *A* is true in Łukasiewicz Logic.

#### Correspondence Between Risk Values and Valuations

Let *v* be an interpretation corresponding to the assignment of probability values to atomic propositions, *A* be an arbitrary formula, and  $\langle A \rangle$  be the risk value (for me) for the game starting with me asserting *A*. Then the valuation of *A* under *v* in  $\pounds$  and the inverted risk value  $1 - \langle A \rangle$  coincide.

イロト イポト イヨト イヨト

Definition: t-Norm

#### Continuous t-norm

A continuous t-norm is a continuous, associative, monotonically increasing function  $*: [0,1]^2 \rightarrow [0,1]$  where  $1 * x = x \quad \forall x \in [0,1]$ .

#### Residuum of a continuous t-norm \*

The residuum of \* is a function  $\Rightarrow_*: [0,1]^2 \rightarrow [0,1]$  where  $x \Rightarrow_* y := \max\{z | x * z \le y\}.$ 

- \* is used as truth function for (strong) conjunction.
- $\Rightarrow_*$  is used for as truth function implication.

ロト イポト イラト イラト

Definition: t-Norm

#### Continuous t-norm

A continuous t-norm is a continuous, associative, monotonically increasing function  $* : [0, 1]^2 \rightarrow [0, 1]$  where  $1 * x = x \quad \forall x \in [0, 1]$ .

#### Residuum of a continuous t-norm \*

The residuum of \* is a function  $\Rightarrow_*: [0,1]^2 \rightarrow [0,1]$  where  $x \Rightarrow_* y := \max\{z | x * z \le y\}.$ 

- \* is used as truth function for (strong) conjunction.
- $\Rightarrow_*$  is used for as truth function implication.

ロト イポト イヨト イヨト

Popular t-Norms

The three most important t-norms are:

|             | t-Norm                           | Residuum                                                                                            |
|-------------|----------------------------------|-----------------------------------------------------------------------------------------------------|
| Łukasiewicz | $x *_{L} y = \max(0, x + y - 1)$ | $x \Rightarrow_{L} y = \min(1, 1 - x + y)$                                                          |
| Gödel       | $x *_G y = \min(x, y)$           | $x \Rightarrow_G y = \begin{cases} 1 \text{ if } x \le y \\ y \text{ otherwise} \end{cases}$        |
| Product     | $x *_{\Pi} y = x \cdot y$        | $x \Rightarrow_{\Pi} y = \begin{cases} 1 \text{ if } x \leq y \\ y/x \text{ otherwise} \end{cases}$ |

• Any continuous t-norm can be constructed from these three ones.

イロト イポト イヨト イヨ

**Defining Connectives** 

Using \* and its residuum  $\Rightarrow_*$  a logic  $L_*$  can be defined containing of

- the binary connective & (strong conjunction),
- the binary connective →,
- the constant  $\perp$ .

We can, furthermore, define the following derived connectives:

- $\neg A := A \rightarrow \bot$
- $A \wedge B := A\&(A \rightarrow B)$
- $A \lor B := ((A \rightarrow B) \rightarrow B) \land ((B \rightarrow A) \rightarrow A)$

# Variants for Other Logics

Changing Evaluation Strategy

#### Joint Bets

A player has to pay  $1 \in$  to his opponent, unless all experiments associated with his assertions test positively.

#### $\rightarrow \text{Product Logic}$

#### Selecting Representatives

Each player picks one of the propositions asserted by his opponent; if the associated experiment tests false, he is paid  $1 \in$ .

ightarrow Gödel logic

# Variants for Other Logics

Changing Evaluation Strategy

#### Joint Bets

A player has to pay  $1 \in$  to his opponent, unless all experiments associated with his assertions test positively.

 $\rightarrow$  Product Logic

### Selecting Representatives

Each player picks one of the propositions asserted by his opponent; if the associated experiment tests false, he is paid  $1 \in$ .

 $\rightarrow$  Gödel logic

## Variants for Other Logics

Changing Dialogue Rules

- just changing the evaluation scheme does not suffice
- introduction of the flag ¶ signalizing that in order to win the game, my risk has to be strictly negative
- dialogue rule for implication has to be adjusted
- loss of uniformity of rules for both players

### Implication (by you)

If you assert  $A \to B$  then, whenever I choose to attack this statement by asserting A, you have the following choice: either you assert B in reply or you challenge my attack on  $A \to B$  by replacing the current game with a new one in which the flag  $\P$  is raised and I assert A while you assert B.

also other ways to change the implication rule

ロト イポト イヨト イヨト

Adequateness of Giles's Game for G and  $\Pi$ 

### Adequateness of Giles's Game for G

For a fixed assignment of probability values to atomic propositions and a corresponding interpretation, I have a winning strategy when asserting a formula A, if and only if A is true in Gödel Logic.

### Adequateness of Giles's Game for Π

For a fixed assignment of probability values to atomic propositions and a corresponding interpretation, I have a winning strategy when asserting a formula *A*, if and only if *A* is true in Product Logic.

ロト イポト イラト イラ

Adequateness of Giles's Game for G and  $\Pi$ 

### Adequateness of Giles's Game for G

For a fixed assignment of probability values to atomic propositions and a corresponding interpretation, I have a winning strategy when asserting a formula A, if and only if A is true in Gödel Logic.

### Adequateness of Giles's Game for $\Pi$

For a fixed assignment of probability values to atomic propositions and a corresponding interpretation, I have a winning strategy when asserting a formula *A*, if and only if *A* is true in Product Logic.

## **Other Topics**

Other topics the thesis deals with:

- Proofs using relational hypersequents
- Truth comparison games
- Giles's Game for first order logic
- Devising rules for other connectives
- Using games to prove equivalences

• . . .

Giles Games



Hypersequential Proofs

Similarly, a tool to visualize proofs in the r-hypersequential calculus rH. Example:  $\gg hypseq "a/(b->c)"$  produces:



Truth Comparison Games

A utility to find winning strategies for the proponent for a truth comparison game Example:  $\$  tcgame "(a /\ b) -> (b /\ a) " produces:

$$\begin{array}{c} \left( \left( a \wedge b \right) \rightarrow \left( b \wedge a \right) \right) < \top \\ \left( \left( \left( a \wedge b \right) \rightarrow \left( b \wedge a \right) \right) < \top \\ \left( \left( a \wedge b \right) \rightarrow \left( b \wedge a \right) \right) < \top \\ \left( \left( a \wedge b \right) \rightarrow \left( b \wedge a \right) \right) < \top \\ \left( \left( b \wedge a \right) < \left( a \wedge b \right) \right) < \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right) < \left( a \wedge b \right) \\ \left( b \wedge a \right)$$

Christoph Roschger ()

Webgame

A web page where you can actually play Giles style dialogue games. Features:

- multiple undo and redo
- includes variants for Product and Gödel Logic
- elimination of connectives
- simulation of dispersive evaluation
- online at

http://www.logic.at/staff/roschger/thesis/webgame/

• ...

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

#### Webgame - Screenshots

| >> Enter the Formula(s)                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial state: $\left[\frac{(a \rightarrow b) \land (c \lor \neg a)}{(c \lor \neg a)}\right]$                                                                                                                                                                                      |
| Another Formula:                                                                                                                                                                                                                                                                   |
| □ eliminate connectives OK                                                                                                                                                                                                                                                         |
| Use the following characters:                                                                                                                                                                                                                                                      |
| <pre>"&amp;" for (min) conjunction "&amp;&amp;" for strong conjunction "]" for (max) disjunction "]" for strong disjunction ".&gt;" for implication [a-z] for atoms "0" for Falsum "1" for Verum "(",")" to group expressions Note: implication is associative to the right.</pre> |
| Finished                                                                                                                                                                                                                                                                           |

- 3

イロト イヨト イヨト イヨト

Webgame - Screenshots

| >> Start a Dialogue                                                 |                                           |               |                       |
|---------------------------------------------------------------------|-------------------------------------------|---------------|-----------------------|
| Your tenet:                                                         | My tenet:                                 |               |                       |
|                                                                     | $(a \rightarrow b) \land (c \lor \neg a)$ |               |                       |
| Available moves:<br>Your Actions:<br>Attack ( $a \rightarrow b$ ) A | (c v ¬a): Choose a → b                    | Choose c v ¬a |                       |
| Undo last move                                                      | Redo move                                 |               | Next Step: Evaluation |

Э

イロト イポト イヨト イヨト

Webgame - Screenshots

| >> Start a Dialogue                     |                               |                       |  |  |
|-----------------------------------------|-------------------------------|-----------------------|--|--|
| Your topot                              | Mytopot                       |                       |  |  |
|                                         | wy tenet.                     |                       |  |  |
|                                         | <del>(a → b) ∧ (c v ¬a)</del> |                       |  |  |
|                                         | <del>c v ¬a</del>             |                       |  |  |
|                                         | <del>-a</del>                 |                       |  |  |
| а                                       | $\perp$                       |                       |  |  |
| Aveilable moves:                        |                               |                       |  |  |
| Available moves:                        |                               |                       |  |  |
| No more Actions left; Game is finished. |                               |                       |  |  |
|                                         |                               |                       |  |  |
| Undo last move                          | Redo move                     | Next Step: Evaluation |  |  |

3

イロト イポト イヨト イヨト

Webgame - Screenshots

| >> Evaluate                                                                                                                                               |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Evaluation of Risks                                                                                                                                       |  |  |  |
| <ul> <li>Final state: [a   ⊥]</li> <li>Calculating your risk: 0.5</li> <li>Calculating my risk: 1</li> <li>→ You succeed (You gain in average)</li> </ul> |  |  |  |
| Dispersive binary experiments:                                                                                                                            |  |  |  |
| [a   ⊥]                                                                                                                                                   |  |  |  |
| 0 0 draw!                                                                                                                                                 |  |  |  |
| 1 0 You win 1 Euro                                                                                                                                        |  |  |  |
| 0 0 drawl                                                                                                                                                 |  |  |  |
| 0 0 draw!                                                                                                                                                 |  |  |  |
| 1 0 You win 1 Euro                                                                                                                                        |  |  |  |
| 1 0 You win 1 Euro                                                                                                                                        |  |  |  |
| 0 0 draw!                                                                                                                                                 |  |  |  |
| 1 0 You win 1 Euro                                                                                                                                        |  |  |  |
| 1 0 Youwin 1 Euro                                                                                                                                         |  |  |  |
|                                                                                                                                                           |  |  |  |
| Another Evaluation Another 10 Ones Another 100 Ones                                                                                                       |  |  |  |
| Do not display evaluations.                                                                                                                               |  |  |  |
| 35411 Evaluations done; I have lost 0.5018 Euros in average.                                                                                              |  |  |  |

イロト イポト イヨト イヨト

Э

## That's it

Thanks for your attention!

Any questions?

3

イロト イポト イヨト イヨト