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Abstract

Linguistic models of vagueness usually record contexts of possible pre-
cisifications. A link between such models and fuzzy logic is established
by extracting fuzzy sets from context based word meanings and analyz-
ing standard logical connectives in this setting. In a further step Lawry’s
voting semantics for fuzzy logics is used to re-interpret standard t-norm
based truth functions from the point of view of context update semantics.

1 Introduction

Vagueness is a significant and ubiquitous phenomenon of human communication.
Adequate models of reasoning with vague information are not only of perennial
interest to philosophers and logicians (see, e.g., [15, 14, 31, 5, 28] and references
there), but are also a topic of current linguistic research. Of particular interest
from a logical point of view are approaches to formal semantics of natural lan-
guage that can be traced back to Richard Montague’s ground breaking work,
firmly connecting formal logic and linguistics (see, e.g., [24, 12]).

At a first glimpse it seems that most linguistic models of vagueness are in-
compatible with the degree based approach offered by fuzzy logic. In particular,
there are indeed good reasons why we should not simply replace Montague’s
type t = {0, 1} for sentences, i.e. the classical truth values false and true, by the
unit interval [0, 1] if we aim at a realistic and adequate model of meaning in nat-
ural language. What is rather needed, as is made clear e.g. in [25, 3, 1, 16, 18],
are models that systematically take into account contexts of utterance that
record relevant possible precisifications of vague word meanings. Our aim is to
bridge the seemingly wide gap between such linguistic models and fuzzy logic by
demonstrating how fuzzy sets can be systematically extracted from the meaning
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of predicates in a given context. To make this concrete we will refer to a specific
linguistic framework—dynamic context semantics—as used by Chris Barker [1]
for the analysis of vagueness. Building on this connection between contexts
and fuzzy sets we will also investigate how the truth functional approach of
fuzzy logic can be justified under certain conditions. Again, we will refer to
a specific example, namely Lawry’s [19] voting semantics, to illustrate how a
corresponding re-interpretation of logical operators could look like.

2 Linguistic approaches to vagueness

Linguists, like logicians, often focus on predicates and predicate modifiers in
modeling the semantics of vague language. It is impossible to provide a survey
on the relevant literature that does justice to all linguistic approaches to vague-
ness in short space.1 For our purpose it suffices to note that there seems to
be wide agreement that adequate truth conditions for vague sentences have to
refer not only to fixed lexical entries, but also to contexts of utterance that may
be identified with sets of contextually relevant possible precisifications. Indeed,
many authors take it for granted that a realistic and complete formal seman-
tics of natural languages has to take into account the context dependence of
truth conditions, anyway, e.g., to be able to resolve ambiguities and to handle
anaphora. However, some care has to be taken, since ‘context’ can mean differ-
ent things here that may operate on different levels. For example, it is obviously
relevant to know, whether in applying the adjective tall the reference is to trees
in a forest, to basket ball players, to women in central Europe, to school kids, or
to a tall story. But even if, say, it is clear that the general context of asserting
Jana is tall is a discussion about my students and not about basket players, ar-
guably something like Lewis’s conversational score [20] (cf. also [28]) is needed
in addition to understand whether Jana is tall is meant to communicate in-
formation about Jana’s height to someone who doesn’t know her or whether
speaker and hearer both have precise common information about Jana’s height
and the speaker intends to establish a standard of tallness by making this ut-
terance. Reference to such ‘conversational contexts of possible precisifications’
is convincingly argued to be an essential ingredient of adequate models of com-
munication with vague notions and propositions (see, e.g., [25, 3, 1, 16, 28]).

Instead of surveying the mentioned arguments, we will illustrate the versa-
tile use of contexts in formal semantics by outlining just one particular, rather
recent approach, due to Chris Barker [1]. This will serve as motivation and
bridgehead—to stick with the metaphor in the title of this contribution—for
exploring connections to fuzzy logic in the following sections. Barker casts
his analysis of various linguistic features of vagueness in terms of so-called dy-
namic semantics (see [10]), that has been successfully employed to handle, e.g.,
anaphora. In this approach the meaning [[φ]] of a declarative sentence (propo-
sitional expression) φ is given by an update function operating on the set of

1For this we refer to the handbook article [26], but also to the classic monograph [25], the
more recent papers [1, 16, 18] and the references there.
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contexts. As already indicated above, semantic theories differ in their intended
meaning and formal manifestation of the notion of contexts. Barker [1], follow-
ing Stalnaker [29], identifies a context with a set of ‘worlds’, where in each world
the extension of all relevant predicates with respect to the actual universe of dis-
course is completely precisified ; i.e., each (relevant) atomic proposition is either
true or false in a given world. For gradable adjectives these precisifications are
specified by a delineation δ that, for each world, maps every gradable adjective—
or more precisely: every reference to the meaning of a gradable adjective—into
a particular value or degree of a corresponding scale. These values represent
local standards of acceptance. For instance, if δ(c) is the delineation function
associated with world c, then d = δ(c)(↑[[tall]]) yields the standard of tallness
in c expressed, say, in cm; i.e. every individual that is at least d cm tall in c will
be accepted as tall in c.

In fact, only a simple form of update functions is needed; namely filters,
where [[φ]](C) ⊆ C holds for all contexts C—the result [[φ]](C) being the set
of worlds in C that survive the update of C with the assertion that φ. This
observation entails that dynamic semantics is just a notational variant of a
more traditional specification of ‘truth at a world’: φ is true (accepted) at c
if [[φ]]({c}) = {c} and φ is false (rejected) at c if [[φ]]({c}) = {}. Moreover,
we assume that every world c of a given context C refers to the same domain
(relevant universe of discourse) DC .

Gradable predicates, like tall, express a relation involving degrees and indi-
viduals. The denotation of tall is modeled by a function tall such that tall(d, a)
returns the set of worlds in which the individual a is at least d cm tall. Accord-
ingly Barker presents the (dynamic) meaning of tall by2

[[tall]] =df λxλC.{c ∈ C : c ∈ tall(δ(c)(↑[[tall]]), x)}

Among other features, this semantic setup allows Barker to capture the intuitive
difference in the meaning of the modifiers very, definitely, and clearly. To define
[[very]] an underlying relation very over degrees is used, such that very(s, d, d′)
holds iff the difference between d and d′ is larger than the (vague, i.e., world
dependent) standard s:

[[very]] =df λαλxλC.{c ∈ α(x)(C) : ∃d(c[d/α] ∈ α(x)(C)∧
very(δ(c)(↑[[very]]), δ(c)(↑α), d)}

where c[d/α] denotes a world that is like c, except for setting δ(c)(↑α) = d. E.g.,
in c[185cm/[[tall]]] the standard of tallness is 185cm. Thus [[Ann is very tall]] =
([[very]]([[tall]]))(Ann) is a filter (update) that is survived by exactly those worlds
of a given context where Ann exceeds the standard of tallness by at least some
amount s. This amount s not only depends on the meaning of tall and very,
but also on the world itself. Thus the vagueness of very is modeled by a twofold
context dependence: the meaning of very may obviously vary from context to

2In fact Barker does not distinguish between [[tall]] and the purely indexical reference ↑[[tall]]
to it. Our notation is meant to indicate that the circularity is of a harmless type.
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context, but even within a fixed context different worlds may have different
standards of accepting that an individual is very tall, granted that it is tall.

Note that, on the level of an individual world c, the update function for very
refers only to information pertaining to c. In contrast, Barker suggests to model
definitely as a type of modal operator:

[[definitely]] =df λαλxλC.{c ∈ α(x)(C) : ∀d(c[d/α] ∈ C → c[d/α] ∈ α(x)(C))}

This means that a world c ∈ C survives the update with [[Ann is definitely tall]]
iff all worlds in C in which Ann has the same height as in c judge Ann as tall
according to their local standard.3

Finally, essential elements of [[very]] and [[definitely]] are combined in the
following suggestion for the meaning of clearly:4

[[clearly]] =df λαλxλC.{c ∈ α(x)(C) : very(δ(c)(↑[[clearly]]),maxα,maxC)}

where maxα = {d : c[d/α] ∈ α(x)} and maxC = {d : c[d/α] ∈ C}. The reference
to [[clearly]] in the first argument of the relation very entails that, while the same
comparison relation is used, the (world dependent) amount that the difference
between the second and the third value has to exceed, may be different for clearly
and very, respectively. However the essential difference between [[very]] and
[[clearly]] is another one: while for very tall one compares the local standard of
tallness with the local value for an individuals’ height in each world, clearly tall
involves a comparison of the highest standard of tallness in the whole context
with the maximal height that the individual may have according to any world
of the context.

3 Extracting fuzzy sets from contexts

Our main pillar in building a bridge between linguistics and fuzzy logics con-
sists in connecting the meaning of predicates like tall with fuzzy sets. We
define logical operators and, or, and not directly on predicates5 in a natural
way and explore how they relate to the corresponding operations on fuzzy sets.
Note that linguists may seek to preserve the difference between statements like
Jana is tall and clever and Jana is tall and Jana is clever, respectively. How-
ever, it will be straightforward to lift our analysis of predicate operators to the
propositional level.

We introduce the notion of an element filter. These are filters parametrized
by a domain element. Element filters that we have already encountered are e.g.
[[tall]] but also [[very]]([[tall]]), where for a domain element x both [[tall]](x) and
([[very]]([[tall]]))(x) are filters.

3Note that there might be uncertainty about Ann’s height. I.e., Ann may have different
heights in different worlds. Therefore definitely tall is not just equivalent to ‘tall in all worlds
of the context’.

4Our version of [[clearly]] differs in inessential details from Barker’s in [1].
5For brevity we focus on monadic predicates, but the concepts can easily be extended to

relations of higher arity.
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Given a context C we can extract a fuzzy set from the meaning α = [[A]]
of a predicate A by applying for each domain element x the filter α(x) to C
and measuring the amount of surviving worlds of C. For simplicity we stipulate
contexts to be finite sets of worlds and identify fuzzy sets with their membership
functions to obtain the following:

Definition 1. Let C be a context with domain DC and α an element filter.
Then the fuzzy set [α]C is given by

[α]C : DC → [0, 1] : x 7→ |α(x)(C)|
|C|

Note that the collection of fuzzy sets [α]C for all relevant element filters α
carries less information that C itself. This will get apparent when we compare
logical operators defined on predicates with corresponding operations on fuzzy
sets.

Extending the framework of Barker, we model compound predicates (like
tall and clever), built up from logically simpler predicates (tall, clever), in a
straightforward manner:

Definition 2.

• [[and]] =df λαλβλxλC.α(x)(C) ∩ β(x)(C)

• [[or]] =df λαλβλxλC.α(x)(C) ∪ β(x)(C)6

• [[not]] =df λαλβλxλC.C\(α(x)(C))

Note that in the above definition α = [[A]] and β = [[B]] are element fil-
ters representing the meaning of the predicates A and B, respectively. Using
the usual infix notation, [[A andB]] is an element filter as well. In general, ap-
plying [[A andB]] is not equivalent to applying the element filters [[A]] and [[B]]
consecutively. We may additionally define

• [[and∗]]7 =df λαλβλxλC.[[B]](x)([[A]](x)(C))

Then [[A and∗B]] is, in general, different from [[A andB]] (and from [[B and∗A]]).
The membership degree of x in the fuzzy set [A andB]C8 is determined by

applying the filter [[A andB]](x) to the context C and calculating the fraction
of worlds in C that survive this update. Proceeding a step further on our
bridge from linguistics to fuzzy logics, the question arises if we can determine
[A andB]C(x) from the membership degrees [A]C(x) and [B]C(x) alone. This,
of course, would give us a fully truth-functional semantics for and, or, and not.
However, fuzzy sets abstract away from the internal structure of contexts that

6In natural language one can also find exclusive disjunction, e.g. Jana is either tall or
clever (but not both). He we focus on inclusive disjunction as this directly corresponds to
disjunction as it is normally used in logics.

7Arguably, and∗ corresponds to certain uses of and even and of but, respectively.
8For the sake of readability we write [X]C instead of [[[X]]]C .
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may show various possible dependencies of worlds. We illustrate this by the
following example.

Let C be a context consisting of the five possible worlds c1 to c5 as in Table 1.
Furthermore, let [[jana]] = j be a domain element and let tall, clever, and heavy
be the denotations of the unary predicates tall, clever, and heavy, respectively,
just as already demonstrated for tall and tall in Section 2.

c δ(c)(↑[[tall]]) maxdj
↑[[tall]] δ(c)(↑[[clever]]) maxdj

↑[[clever]]
δ(c)(↑[[heavy]]) maxdj

↑[[heavy]]

c1 170 175 100 105 80 75
c2 160 170 120 125 75 70
c3 170 180 100 95 90 100
c4 180 175 105 100 85 75
c5 170 165 110 115 70 65

with maxdxp denoting the maximum degree to which to individual x fulfills the predicate referenced by p.

Table 1: Example Context C

Then [[heavy]] is an element filter with [[heavy]](j)(C) = {c3}. Accordingly,
[heavy]C(j) = 1/5. Likewise we have [clever]C(j) = [tall]C(j) = 3/5. Since these
latter are equal, also the membership degrees of j in the fuzzy sets [tall andheavy]C
and [clever andheavy]C . respectively, had to be equal if the (context update)
meaning of and were truth functional. But [[tall andheavy]](j)(C) = {c3}, thus
[tall andheavy]C(j) = 1/5, while [clever andheavy]C(j) = 0. As we see, by ex-
tracting the three fuzzy sets from the corresponding element filters we lose the
information about the specific overlap of the corresponding updates in the given
context.

The following bounds encode our best knowledge about membership degrees
for fuzzy sets extracted from to composite predicates with respect to member-
ship degrees referring to the corresponding components.

Theorem 1. Let C be a context, d ∈ DC , and let α = [[A]] and β = [[B]] be two
element filters. Then the following bounds are tight:

• max{0, [α]C(d) + [β]C(d)− 1} ≤ [A andB]C(d) ≤ min{[α]C(d), [β]C(d)}

• max{[α]C(d), [β]C(d)} ≤ [A orB]C(d) ≤ min{1, [α]C(d) + [β]C(d)}

• [notA]C(d) = 1− [α]C(d)

Proof. The value 1 − [α]C(d) for negation follows directly from the relevant
definitions.

For conjunction and disjunction we focus on the extremal cases: the sets
α(d)(C) and β(d)(C) may either be ‘as disjoint as possible’ or one set may
contain the other one. In the latter case we have min{[α]C(d), [β]C(d)} as a tight
upper bound for conjunction, but also as a tight lower bound for disjunction.

Now assume that both sets are as disjoint as possible. We distinguish:
Case 1. [α]C(d) + [β]C(d) ≤ 1: Then α(d)(C) ∩ β(d)(C) = {}, thus

[A andB]C(d) = 0 and [A orB]C(d) = [α]C(d) + [β]C(d).
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Case 2. [α]C(d)+[β]C(d) > 1: Then α(d)(C)∩β(d)(C) 6= {}. As we assume
the sets to be as disjoint as possible, their intersection is as small as possible;
therefore |α(d)(C) ∩ β(d)(C)| = [α]C(d)+[β]C(d)−1, and α(d)(C)∪β(d)(C) = 1

Combining the cases yields the specified bounds.

Remark. Note that ∗G = min and ∗̄G = max are the Gödel t-norm and
co-t-norm, respectively. Moreover, ∗ L = λx, y.max{0, x + y − 1} and ∗̄ L =
λx, y.min{1, x+ y} are the  Lukasiewicz t-norm and co-t-norm, respectively. In
other words, Theorem 1 shows that the truth functions of (strong) conjunction
and (strong) disjunction in Gödel and  Lukasiewicz logic (see [11]) correspond
to opposite extremal cases of context based evaluations of conjunction and dis-
junction.

The above analysis on logical predicate operators can easily be lifted to the
propositional level. For a sentence like Jana is tall its meaning [[Jana is tall]] is
a filter (rather than an element filter). Usual logical connectives on propositions
can be defined in analogy to Definition 2:

Definition 3.

• [[φ ∧ ψ]] =df λC.[[φ]](C) ∩ [[ψ]](C)

• [[φ ∨ ψ]] =df λC.[[φ]](C) ∪ [[ψ]](C)

• [[¬φ]] =df λC.C\[[φ]](C)

In the following the set of all propositions formed in this way is called Prop.
Similarly to the predicate level, we can associate a ‘degree of truth’ ||φ||C for

every φ ∈ Prop by applying the filter [[φ]] to context C:

||φ||C =df
|[[φ]](C)|
|C|

.

In other words we identify the degree of truth of φ in a context C with the
fraction of worlds in C that survive the update with the filter [[φ]]. E.g., returning
to the context C specified in the example following Definition 2, Jana is tall is
true to degree 3/5 in C since three out of five worlds in C classify Jana’s height
as above the relevant local standard of tallness.

Once more we note that contexts allow to model specific constraints on the
worlds (i.e. contextually relevant possible precisifications) of which they consist.
Therefore, in general, there are no truth functions that determine ||φ ∧ ψ||C and
||φ ∨ ψ||C in terms of ||φ||C and ||ψ||C alone. However the optimal bounds of
Theorem 1 also apply at the level of sentences:

• ∗ L(||φ||C , ||ψ||C) ≤ ||φ ∧ ψ||C ≤ ∗G(||φ||C , ||ψ||C), and

• ∗̄G(||φ||C , ||ψ||C) ≤ ||φ ∨ ψ||C ≤ ∗̄ L(||φ||C , ||ψ||C),

where ∗G(∗̄G) and ∗ L(∗̄ L) are the Gödel and  Lukasiewicz t-norms (co-t-norms),
respectively.
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4 Translating voting semantics to contexts

As we have seen in Section 3, the context based semantics of logical connectives
is more fine grained than any specification by some particular truth function
over degrees. The fraction of worlds surviving an update with [[φ ∧ ψ]] is not
determined by the fractions of worlds surviving the filters [[φ]] and [[ψ]], respec-
tively: t-norm based truth functions provide optimal bounds, but in general the
internal structure of contexts determines the corresponding fractions of worlds
surviving updates with logically complex propositions. The following question
arises: can one constrain and/or modify the structure of contexts in a manner
that leads to standard fuzzy truth functions at the level of such contexts. For
a positive answer we rely on an analogy between Lawry’s voting semantics [19]
and our (or rather Barker’s) version of contextual semantics.

To explain the assignment of truth values ∈ [0, 1] to a statement φ Lawry [19],
but also many other reseachers (e.g., [7, 13]) suggest to consider the following
scenario. Ask each of N agents whether she accepts the statement φ. It is
assumed that the agents are all competent speakers of the respective language
and are fully informed about the relevant facts. Therefore they will all agree
on whether φ is to be accepted or to be rejected if φ is a precise statement.
However, if φ is vague9 then they may diverge on their judgements in spite of
their linguistic competence and factual knowledge. In this setting one assigns
the ‘truth value’ v = n/N to φ, where n is the number of agents that accept φ.

Let us write as(φ) = 1 if agent s accepts φ and as(φ) = 0 otherwise. If the
agents have to satisfy the following consistency conditions

as(φ ∧ ψ) = 1 ⇐⇒ as(φ) = 1 and as(ψ) = 1
as(φ ∨ ψ) = 1 ⇐⇒ as(φ) = 1 or as(ψ) = 1
as(¬φ) = 1 ⇐⇒ as(φ) = 0

then the resulting global ‘fuzzy truth value assignment’ turns out to be simply a
probability function (see, e.g., [21]) and therefore does not justify a truth func-
tional semantics of fuzzy logic if the agents’ votes are independent. However, if
we require that the agent’s voting behaviour is determined by an associated ‘de-
gree of scepticism’ in a particular way, than usual fuzzy truth functions emerge.

Definition 4. A family of functions aσ : Prop 7→ {0, 1}, where σ ∈ [0, 1] is
called a scepticism degree based voting behaviour if the following conditions
hold:

if σ ≤ σ′ and aσ(φ) = 0 then aσ′(φ) = 0
aσ(φ ∧ ψ) = 1 ⇐⇒ aσ(φ) = 1 and aσ(ψ) = 1
aσ(φ ∨ ψ) = 1 ⇐⇒ aσ(φ) = 1 or aσ(ψ) = 1
aσ(¬φ) = 1 ⇐⇒ a1−σ(φ) = 0

The intended interpretation of the scepticism degree σ is the level of will-
ingness to assert a positive statement. The first condition means that an agent

9We deliberately focus on vagueness and ignore other forms of indeterminateness and
uncertainty here.
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rejects at least all those propositions that are rejected by less skeptic agents.
The condition for negated statements implies that an agent with a high degree
of scepticism is willing to accept ¬φ whenever an agent with inverted (low) de-
gree of scepticism is willing to reject φ. This implies that, in general, agents do
not evaluate classically: we may have aσ(φ ∨ ¬φ) = 0 but also aσ(φ ∧ ¬φ) = 1;
only a0.5 is always a classic valuation. To obtain a (global) fuzzy valuation from
such families of (local) para-consistent {0, 1}-valuations, we have to measure
‘amounts of acceptance’.

Definition 5. Let Λ = {aσ : σ ∈ [0, 1]} be a scepticism degree based voting
behaviour and let µ be a measure on the Borel subsets of [0, 1]. Then the corre-
sponding fuzzy truth value assignment is defined by

vµA(φ) = µ{σ ∈ [0, 1] : aσ(φ) = 1}

Proposition 1. ([19]) For all scepticism degree based voting behaviours Λ
and measures µ, as above, we have:

vµA(φ ∧ ψ) = min(vµA(φ), vµA(ψ))
vµA(φ ∨ ψ) = max(vµA(φ), vµA(ψ))

Moreover, if µ is symmetric, i.e. if µ[a, b] = µ[1 − b, 1 − a] for 0 ≤ a ≤ b ≤ 1,
then

vµA(¬φ) = 1− vµA(φ)

How does this relate to contextual dynamic semantics? The most obvious
transfer of voting semantics to contexts is to associate with each world a value
that directly corresponds to the scepticism degree of an agent and to evaluate
logically complex statements as specified above. But remember that this entails
that local evaluations violate either the law of excluded middle (φ ∨ ¬φ) or
the law of contradiction (¬(φ ∧ ¬φ)) in general. Of course, a world c of a
context C is something different than a voter among many voting agents. But c
can be viewed as a local semantic test : it specifies for each sentence φ whether
φ holds according to certain precisified standards or not. It does not seem to
be unnatural to compare these semantic tests with respect to their strictness
in analogy to the comparison of agents with respect to degrees of scepticism.
Moreover, considering the intended application of contextual semantics, we may
assume that only one or at most a few directly related predicates are relevant
in a given context. Also the domain of any particular context can realistically
be assumed to be small. This makes it plausible that worlds of a context may
often be characterized solely by their degree of strictness. Let us illustrate this
by an example from natural language. A realistic context for evaluating

(1) Jana is tall

might be represented by worlds (i.e. precisifications) that agree on Jana’s actual
height (say 178cm) but differ in their standards of accepting 178cm as being
above the local standard of tallness. Obviously we can then define linearly
ordered degrees of strictness induced by increasing standards of tallness for the
worlds of such a context. A similar observation holds for
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(2) The weather is cold today

Again, we have no troubles to extract degrees of strictness corresponding to
decreasing threshold values (temperatures) for accepting (2). Using our re-
interpretation of voting semantics we can extract truth values ∈ [0, 1] for (1)
and for (2) in the respective contexts indicated above. In contrast, one might
argue that there simply is no natural context in which the conjunction of (1)
and (2) has to evaluated, which nicely fits our model.

While the above remarks may be sufficient to justify the focus on contexts
with associated linearly ordered degrees of strictness, the fact that the transla-
tion of voting semantics to contexts calls for ‘non-classical worlds’ seems to be
more problematic. However we claim that this is compatible with Barker’s con-
text based model [1], as introduced in Section 2. Note that Barker does not pro-
vide a semantics for logical connectives. Only non-compound vague predicates
and vagueness-related predicate modifiers are investigated. While, following
voting semantics, one can straightforwardly generalize to include conjunctions
and disjunctions at the local level of individual worlds, negation is viewed in
this model as an inherently global operator, which only receives meaning at the
level of whole contexts.

5 Summary and outlook

We started by noting the fact that linguists usually analyze the semantics of
vague words by reference to contexts of utterance that register relevant possible
precisifications. This seems to be at variance with the degree based approach
to vagueness suggested by fuzzy logic. However, taking Barker’s [1] version of
dynamic (update) semantics as a concrete point of reference, we have demon-
strated that fuzzy sets can be associated in a systematic manner with contexts
and corresponding filters as used in Barker’s model. While the structure of con-
text filters used to specify the different meanings of modifiers like very, definitely,
and clearly allows to take into account information that is abstracted away in
corresponding fuzzy sets, standard t-norm based operators faithfully register
the extremal cases that may result from applying logical connectives to vague
predicates and sentences.

While it is rather straightforward to identify intermediate truth values with
the fraction of worlds in a given context that survive certain updates codifying
the meaning of vague expressions, it is not clear how one might derive specific
truth functions in such a setting (beyond providing the indicated bounds). This
problem, of course, is just a particular instance of a well known challenge for
deductive fuzzy logic: how to justify particular truth functions with respect
to more fundamental semantic notions, like votes or arguments for and against
accepting a vague assertion. In [23] Jeff Paris provides an overview over semantic
frameworks for fuzzy logics that support truth functionality. Here we picked a
particular approach, namely so-called voting semantics as suggested by Lawry
[19] to illustrate how one might connect context based update semantics with
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frameworks that model the meaning of logical connectives by particular t-norm
based truth functions.

We emphasize that both, Barker’s specific update functions over contexts
and Lawry’s voting semantics, should be understood as just two particular spots
on either side of the river dividing linguistics from fuzzy logic, that may be cho-
sen as end points of a bridge crossing that troubled water. On the linguistic side
context and precisification based approaches suggested, e.g., by Kennedy [16],
Kyburg and Moreau [18], and already earlier by Pinkal [25] and Bosch [3] are
certainly worth investigating from this perspective. On the fuzzy logic side we
just mention similarity semantics [27, 17, 30], Robin Giles’s dialogue and bet-
ting game based characterisation of  Lukasiewicz logic [9, 8] (extended to other
logics in [4, 6]), acceptability semantics [22], rerandomising semantics [13, 11],
and approximation semantics [2, 23] as alternative candidates for corresponding
bridge heads. We plan to explore at least some of these options in future work.
In any case, we hope to have shown already here that constructing such a bridge
is neither a futile nor a completely trivial matter.
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