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Overview

I Schemata are very useful in mathematical proofs (avoids explicit
use of the induction).

I Schemata are used on meta-level.

I Many problems can be expressed in propositional schema lan-
guage, like:

Circuit verification,
Graph coloring,
Pigeonhole principle, etc.
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Propositional Schema Language

I Set of index variables is a set of variables over natural numbers.

I Linear arithmetic expression is as usual built on the signature
0, s,+,− and on a set of index variables.

I Indexed proposition is an expression of the form pa, where a is a
linear arithmetic expression.

I Propositional variable is an indexed proposition pa, where a ∈ N.
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Syntax

I Formula schema is defined inductively:

Indexed proposition is a formula schema.

If φ1 and φ2 are formula schemata, then so are φ1 ∨ φ2, φ1 ∧ φ2
and ¬φ1.

If φ is a formula schema, a, b are linear arithmetic expressions
and i is an index variable, then

∧b
i=a φ and

∨b
i=a φ are formula

schemata, called iterations.
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Semantics

I Interpretation is a pair of functions, I = (I, Ip), s.t. I maps index
variables to natural numbers and Ip maps propositional variables
to truth values.

I Truth value JφKI of a formula schema φ in an interpretation I is
defined inductively:

JpaKI = Ip(pI(a)).

J¬φKI = T iff JφKI = F.

Jφ1 ∧ (∨)φ2KI = T iff Jφ1KI = T and (or) Jφ2KI = T.
r∧b

i=a

(∨b
i=a

)
φ
z

I
= T iff for every (there is an) integer α s.t.

I(a) ≤ α ≤ I(b), JφKI[α/i] = T.
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Cut-Elimination on Proof Schemata

Aim: describe syntactically sequence of cut-free proofs (χn)n∈N
obtained by cut-elimination on proof sequences (ϕn)n∈N.

Cut-free proofs of schema typically are described in
meta-language.

Find object language to define sequence (χn)n∈N.
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Which cut-elimination method?

I Reductive cut-elimination.

I CERES.

Efficient.

Strong methods of redundancy-elimination.

Atomic cut-normal form is constructed via parts of the original
proof.
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The CERES Method

I CERES is a cut-elimination method by resolution.

I Method consists of the following steps:
1 Skolemization of the proof (if it is not already skolemized).
2 Computation of the characteristic clause set.
3 Refutation of the characteristic clause set.
4 Computation of the Projections and construction of the Atomic

Cut Normal Form.
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Schematic LK
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Basic Notions

I Sequent Schema is an expression of the form Γ ` ∆, where Γ and
∆ are multisets of formula schemata.

I Initial Sequent Schema is an expression of the form A ` A, where
A is an indexed proposition.

I Proof Link is a tuple (ϕ, t), where ϕ is a proof name and t is a
linear arithmetic expression.
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Calculus LKS

some white space

I Axioms: initial sequent schemata or proof links.

I Rules:
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Calculus LKS

some white space

I Axioms: initial sequent schemata or proof links.

I Rules: ∧ introduction:
A,Γ ` ∆

∧ : l1A ∧ B,Γ ` ∆

B,Γ ` ∆
∧ : l2A ∧ B,Γ ` ∆

Γ ` ∆,A Π ` Λ,B ∧ : r
Γ,Π ` ∆,Λ,A ∧ B

Equivalences: A0 ≡
∧0

i=0 Ai and (
∧n

i=0 Ai) ∧ An+1 ≡
∧n+1

i=0 Ai
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Calculus LKS

some white space

I Axioms: initial sequent schemata or proof links.

I Rules: ∨ introduction:
A,Γ ` ∆ B,Π ` Λ

∨ : lA ∨ B,Γ,Π ` ∆,Λ

Γ ` ∆,A
∨ : r1

Γ ` ∆,A ∨ B
Γ ` ∆,B

∨ : r2
Γ ` ∆,A ∨ B

Equivalences: A0 ≡
∨0

i=0 Ai and (
∨n

i=0 Ai) ∨ An+1 ≡
∨n+1

i=0 Ai
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Calculus LKS

some white space

I Axioms: initial sequent schemata or proof links.

I Rules: ¬ introduction:
Γ ` ∆,A

¬ : l¬A,Γ ` ∆

A,Γ ` ∆ ¬ : r
Γ ` ∆,¬A
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Calculus LKS

some white space

I Axioms: initial sequent schemata or proof links.

I Rules: Weakening rules:

Γ ` ∆ w : lA,Γ ` ∆
Γ ` ∆ w : r

Γ ` ∆,A
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Calculus LKS

some white space

I Axioms: initial sequent schemata or proof links.

I Rules: Contraction rules:
A,A,Γ ` ∆

c : lA,Γ ` ∆

Γ ` ∆,A,A
c : r

Γ ` ∆,A
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Calculus LKS

some white space

I Axioms: initial sequent schemata or proof links.

I Rules: Cut rule:
Γ ` ∆,A A,Π ` Λ

cut
Γ,Π ` ∆,Λ
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LKS-proof

I Derivation is a directed tree with nodes as sequences and edges as
rules.

I LKS-proof of the sequence S is a derivation of S with axioms as
leaf nodes.

I An LKS-proof is called ground if it does not contain free param-
eters, index variables, or proof links.
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Proof Schemata

I Proof schemaψ is a tuple of pairs 〈(ψ1
base, ψ

1
step), . . . , (ψm

base, ψ
m
step)〉

such that:

ψ1 ≺ ψ2 ≺ · · · ≺ ψm,

ψi
base is a ground LKS-proof of Si {n← 0}, for i ∈ {1, . . . ,m},

ψi
step is an LKS-proof of Si {n← k + 1}, where k is an index vari-

able, and ψi
step contains proof links of the form (for i ≺ j):

(ψi, k)

Si {n← k}
or

(ψj, kj)

Sj
{

n← kj
}

I From now on m = 1.
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Proof Evaluation

I An evaluation of a proof schemaψ is a ground LKS-proof eval(ψ, k),
defined inductively:

eval(ψ, 0) = ψbase, and

eval(ψ, i + 1) is defined as ψstep with end-sequent S {k← i} and
every proof link to (ψ, k) in ψstep are replaced by eval(ψ, i).
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An Example

I ψbase:
A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1 ∨ : l

A0,¬A0 ∨ A1 ` A1

I ψstep:

(ψ, k)

A0,
∧k

i=0(¬Ai ∨ Ai+1) ` Ak+1

Ak+1 ` Ak+1
¬ : l¬Ak+1,Ak+1 ` Ak+2 ` Ak+2

∨ : l
Ak+1,¬Ak+1 ∨ Ak+2 ` Ak+2

cut
A0,

∧k
i=0(¬Ai ∨ Ai+1),¬Ak+1 ∨ Ak+2 ` Ak+2

∧ : l
A0,

∧k+1
i=0 (¬Ai ∨ Ai+1) ` Ak+2
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An Example (ctd.)

I eval(ψ, 0):
A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1 ∨ : l

A0,¬A0 ∨ A1 ` A1

I eval(ψ, 1):

(eval(ψ, 0))

A0,
∧0

i=0(¬Ai ∨ Ai+1) ` A1

A1 ` A1 ¬ : l¬A1,A1 ` A2 ` A2 ∨ : lA1,¬A1 ∨ A2 ` A2
cut

A0,
∧0

i=0(¬Ai ∨ Ai+1),¬A1 ∨ A2 ` A2
∧ : l

A0,
∧1

i=0(¬Ai ∨ Ai+1) ` A2
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Schematic Characteristic Clause Set
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Basic Notions

I Cut-configuration Ω of ψ is a set of formula occurrences from the
end-sequent of ψ.

I clΩ,ψk is an unique indexed proposition symbol for all cut-configurations
Ω of ψ.

I The intended semantics of clΩ,ψk will be “the characteristic clause
set of eval(ψ, k), with the cut-configuration Ω”.
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Characteristic Clause Set

CLρ(ψ,Ω) is defined inductively:

I if ρ is an axiom of the form ΓΩ,ΓC,Γ ` ∆Ω,∆C,∆, then

CLρ(ψ,Ω) = {ΓΩ,ΓC ` ∆Ω,∆C} .

I if ρ is a proof link of the form

(ψ, t)
ΓΩ,ΓC,Γ ` ∆Ω,∆C,∆

then
CLρ(ψ,Ω) = {` clΩ

′,ψ
t }.
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Characteristic Clause Set (ctd.)

I if ρ is an unary rule with immediate predecessor ρ′, then

CLρ(ψ,Ω) = CLρ′(ψ,Ω).

I if ρ is a binary rule with immediate predecessors ρ1, ρ2, then ei-
ther

CLρ(ψ,Ω) = CLρ1(ψ,Ω) ∪ CLρ2(ψ,Ω)

or
CLρ(ψ,Ω) = CLρ1(ψ,Ω)⊗ CLρ2(ψ,Ω).
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Characteristic Clause Set (ctd.)

I CL(ψ,Ω) = CLρ(ψ,Ω), where ρ is the last inference of ψ.

I CL(ϕ) = CL(ϕ, ∅), where ϕ is a ground LKS-proof.

I CLbase =
⋃

Ω({clΩ,ψ0 `} ⊗ CL(ψbase,Ω)).

I CLstep =
⋃

Ω({clΩ,ψk+1 `} ⊗ CL(ψstep,Ω)), for 0 ≤ k ≤ n.

I CLs(ψ) = {` cl∅,ψn } ∪ CLbase ∪ CLstep.
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Unsatisfiability of CLs(ψ)

Lemma (2.1)
Let C be a clause and C be a clause set. Then an interpretation
I � {C} ⊗ C iff I � C or I � C.

Lemma (2.2)

Let ψ be a proof schema and CL(ψ,Ω) be a characteristic clause set
as defined above. Assume that for all cut-configurations Ω, I � clΩ,ψi
implies I � CL(eval(ψ, i),Ω). Then I � CL(ψstep {k← i} ,Ω) implies
I � CL(eval(ψ, i + 1),Ω).
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Unsatisfiability of CLs(ψ) (ctd.)

Proposition (2.1)

Let ϕ be a ground LKS-proof. Then CL(ϕ) is unsatisfiable.

Proposition (2.2)

If I � CLs(ψ) then I � CL(eval(ψ, I(n))).

Corollary (2.1)

Let ψ be a proof schema and CLs(ψ) its characteristic clause set.
Then CLs(ψ) is unsatisfiable.
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An Example

I ψbase:
A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1 ∨ : l

A0,¬A0 ∨ A1 ` A1

I ψstep:

(ψ, k)

A0,
∧k

i=0(¬Ai ∨ Ai+1) ` Ak+1

Ak+1 ` Ak+1
¬ : l¬Ak+1,Ak+1 ` Ak+2 ` Ak+2

∨ : l
Ak+1,¬Ak+1 ∨ Ak+2 ` Ak+2

cut
A0,

∧k
i=0(¬Ai ∨ Ai+1),¬Ak+1 ∨ Ak+2 ` Ak+2

∧ : l
A0,

∧k+1
i=0 (¬Ai ∨ Ai+1) ` Ak+2
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An Example (ctd.)

I The characteristic clause set schema of ψ is:
(1) ` cl∅,ψn

(2) cl∅,ψ0 `

(3) cl{Ak′+1},ψ
0 ` A1

(4) cl{Ak′+1},ψ
k+1 ` cl{Ak′+1},ψ

k

(5) cl{Ak′+1},ψ
k+1 ,Ak+1 ` Ak+2

(6) cl∅,ψk+1 ` cl{Ak′+1},ψ
k

(7) cl∅,ψk+1,Ak+1 `
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An Example (ctd.)

I The characteristic clause set schema of ψ is:
(1) ` cl∅,ψn

(2) cl∅,ψ0 `

(3) cl{Ak′+1},ψ
0 ` A1

(4) cl{Ak′+1},ψ
k+1 ` cl{Ak′+1},ψ

k

(5) cl{Ak′+1},ψ
k+1 ,Ak+1 ` Ak+2

(6) cl∅,ψk+1 ` cl{Ak′+1},ψ
k

(7) cl∅,ψk+1,Ak+1 `
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Schematic Projections
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Basic Notions

I add some white space

I Let ρ be an unary and σ a binary rule. Let φ, ψ be LKS-proofs,
then ρ(φ) is the LKS-proof obtained from the φ by applying ρ,
and σ(φ, ψ) is the proof obtained from the proofs φ and ψ by ap-
plying σ.
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Basic Notions

I add some white space

I Let ρ be an unary and σ a binary rule. Let φ, ψ be LKS-proofs,
then ρ(φ) is the LKS-proof obtained from the φ by applying ρ,
and σ(φ, ψ) is the proof obtained from the proofs φ and ψ by ap-
plying σ.

φ = A0 ` A0
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Basic Notions

I add some white space

I Let ρ be an unary and σ a binary rule. Let φ, ψ be LKS-proofs,
then ρ(φ) is the LKS-proof obtained from the φ by applying ρ,
and σ(φ, ψ) is the proof obtained from the proofs φ and ψ by ap-
plying σ.

A0 ` A0¬(φ) = ¬ : l¬A0,A0 `
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Basic Notions

I add some white space

I Let ρ be an unary and σ a binary rule. Let φ, ψ be LKS-proofs,
then ρ(φ) is the LKS-proof obtained from the φ by applying ρ,
and σ(φ, ψ) is the proof obtained from the proofs φ and ψ by ap-
plying σ.

A0 ` A0¬(φ) = ¬ : l¬A0,A0 `
ψ = A1 ` A1
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Basic Notions

I add some white space

I Let ρ be an unary and σ a binary rule. Let φ, ψ be LKS-proofs,
then ρ(φ) is the LKS-proof obtained from the φ by applying ρ,
and σ(φ, ψ) is the proof obtained from the proofs φ and ψ by ap-
plying σ.

A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1∨(¬(φ), ψ) = ∨ : lA0,¬A0 ∨ A1 ` A1
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Basic Notions (ctd.)

add some white space

I PΓ`∆ = {ψΓ`∆ | ψ ∈ P}, where ψΓ`∆ is ψ followed by weak-
enings adding Γ ` ∆.
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Basic Notions (ctd.)

add some white space

I PΓ`∆ = {ψΓ`∆ | ψ ∈ P}, where ψΓ`∆ is ψ followed by weak-
enings adding Γ ` ∆.

ψ =
A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1 ∨ : lA0,¬A0 ∨ A1 ` A1

CERES for Proof Schemata M. Rukhaia Structural and Computational Proof Theory Oct 27, 2011 29 / 42
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Basic Notions (ctd.)

add some white space

I PΓ`∆ = {ψΓ`∆ | ψ ∈ P}, where ψΓ`∆ is ψ followed by weak-
enings adding Γ ` ∆.

ψΓ`∆ =

A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1 ∨ : lA0,¬A0 ∨ A1 ` A1 w : l∗A0,¬A0 ∨ A1,Γ ` A1 w : r∗
A0,¬A0 ∨ A1,Γ ` ∆,A1
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Basic Notions (ctd.)

I P×σ Q = {σ(φ, ψ) | φ ∈ P, ψ ∈ Q}.
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Basic Notions (ctd.)

I P×σ Q = {σ(φ, ψ) | φ ∈ P, ψ ∈ Q}.

P =
{

A0 ` A0 ¬ : l¬A0,A0 `
,

B0 ` B0
w : l¬A0,B0 ` B0

}
Q =

{
A1 ` A1 ,

B1 ` B1
w : l

A1,B1 ` B1

}
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Basic Notions (ctd.)

P×∨ Q =

{
A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1 ∨ : l

A0,¬A0 ∨ A1 ` A1

,

B0 ` B0
w : l¬A0,B0 ` B0 A1 ` A1 ∨ : l

B0,¬A0 ∨ A1 ` B0,A1

,

A0 ` A0 ¬ : l¬A0,A0 `
B1 ` B1

w : l
A1,B1 ` B1 ∨ : l

A0,B1,¬A0 ∨ A1 ` B1

,

B0 ` B0
w : l¬A0,B0 ` B0

B1 ` B1
w : l

A1,B1 ` B1 ∨ : l
B0,B1,¬A0 ∨ A1 ` B0,B1

}

space
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Projections

PR(ψ, ρ,Ω) is defined inductively:

I if ρ is an axiom S, then PR(ψ, ρ,Ω) = {S}.

I if ρ is a proof link of the form

(ψ, t)
ΓΩ,ΓC,Γ ` ∆Ω,∆C,∆

then PR(ψ, ρ,Ω) is:

(prΩ′,ψ, t)

Γ ` ∆, clΩ
′,ψ

t
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Projections (ctd.)

I If ρ is an unary inference with immediate predecessor ρ′ and

PR(ψ, ρ′,Ω) = {φ1, . . . , φn},

then either
PR(ψ, ρ,Ω) = PR(ψ, ρ′,Ω)

or
PR(ψ, ρ,Ω) = {ρ(φ1), . . . , ρ(φn)}.
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Projections (ctd.)

I If ρ is a binary inference with immediate predecessors ρ1 and ρ2,
then either

PR(ψ, ρ,Ω) = PR(ψ, ρ1,Ω)Γ2`∆2 ∪ PR(ψ, ρ2,Ω)Γ1`∆1

or
PR(ψ, ρ,Ω) = PR(ψ, ρ1,Ω)×ρ PR(ψ, ρ2,Ω)
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Introduction Schematic LK Schematic Characteristic Clause Set Schematic Projections Ongoing and Future Work

Projections (ctd.)

I The set of projections of ψ is defined as follows:

PR(ψ) =
⋃
Ω

(PR(ψbase, ρbase,Ω) ∪ PR(ψstep, ρstep,Ω)).
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An Example

I ψbase:
A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1 ∨ : l

A0,¬A0 ∨ A1 ` A1

I ψstep:

(ψ, k)

A0,
∧k

i=0(¬Ai ∨ Ai+1) ` Ak+1

Ak+1 ` Ak+1
¬ : l¬Ak+1,Ak+1 ` Ak+2 ` Ak+2

∨ : l
Ak+1,¬Ak+1 ∨ Ak+2 ` Ak+2

cut
A0,

∧k
i=0(¬Ai ∨ Ai+1),¬Ak+1 ∨ Ak+2 ` Ak+2

∧ : l
A0,

∧k+1
i=0 (¬Ai ∨ Ai+1) ` Ak+2
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An Example (ctd.)

I
⋃

Ω∈{∅,{Ak′+1}} PR(ψbase, ρbase,Ω) is:

A0 ` A0 ¬ : l¬A0,A0 ` A1 ` A1 ∨ : l
A0,¬A0 ∨ A1 ` A1

I
⋃

Ω∈{∅,{Ak′+1}} PR(ψstep, ρstep,Ω) is:

Ak+1 ` Ak+1
¬ : l¬Ak+1,Ak+1 ` Ak+2 ` Ak+2

∨ : l
Ak+1,¬Ak+1 ∨ Ak+2 ` Ak+2

w : l∗
Ak+1,A0,

∧k
i=0(¬Ai ∨ Ai+1),¬Ak+1 ∨ Ak+2 ` Ak+2

∧ : l
Ak+1,A0,

∧k+1
i=0 (¬Ai ∨ Ai+1) ` Ak+2
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An Example (ctd.)

(pr
{

Ak′+1

}
,ψ
, k)

A0,
∧k

i=0(¬Ai ∨ Ai+1) ` cl{Ak+1},ψ
k

w : l
A0,

∧k
i=0(¬Ai ∨ Ai+1),¬Ak+1 ∨ Ak+2 ` cl{Ak+1},ψ

k ∧ : l
A0,

∧k+1
i=0 (¬Ai ∨ Ai+1) ` cl{Ak+1},ψ

k

and
(pr

{
Ak′+1

}
,ψ
, k)

A0,
∧k

i=0(¬Ai ∨ Ai+1) ` cl{Ak+1},ψ
k w : l, r

A0,
∧k

i=0(¬Ai ∨ Ai+1),¬Ak+1 ∨ Ak+2 ` cl{Ak+1},ψ
k ,Ak+2

∧ : l
A0,

∧k+1
i=0 (¬Ai ∨ Ai+1) ` cl{Ak+1},ψ

k ,Ak+2
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Ongoing and Future Work
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Correctness of the definition of PR(ψ)

I Let ψ be a proof schema and PR(ψ) the set of projections of ψ as
defined above. Then by Proj(ψ, k) we denote the set {eval(φ, k) |
φ ∈ PR(ψ)}.

I Let PR(eval(ψ, k),Ω) be a set of projections for a ground LKS-
proof eval(ψ, k) with the cut-configuration Ω.
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Correctness of the definition of PR(ψ) (ctd.)

Lemma (3.1)

Let ψ be a proof schema and (ψ, k) an arbitrary proof link of ψ,
then for all cut-configurations Ω, (prΩ,ψ, k) evaluates to the set
PR(eval(ψ, k),Ω).

Proposition (3.1)

Let ψ be a proof schema, then PR(eval(ψ, k), ∅) ⊆ Proj(ψ, k).
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Future Work

I Given the schemata of refutations and projections construct the
schema of ACNF.

I Extend these results for the first order proof schemata.

I Cut-elimination on proof schema for Fürstenberg’s prime proof.
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Questions?
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