
Implementation of Second-Order
Cut-Elimination

Mikheil Rukhaia

Vienna University of Technology
e0827684@student.tuwien.ac.at

Abstract. This paper is about implementation of second-order cut-elimi-
nation. We define LKII, the second-order calculus, extending LK with
the second-order quantifier introduction rules. The goal was to extend
CERES system for LKII-proofs, but method CERES cannot be extended
to the second-order calculus in the straightforward way. We decided to
extend Gentzen’s method to LKII. We extended reduction rules for the
second-order quantifiers. We implemented reduction rules and a specific
algorithm to apply reduction rules to an LKII-proof and integrated it into
the CERES system. So, system was extended to the second-order calculus.

1 Introduction

Gentzen’s cut-elimination theorem is one of the most important theorems of
logic. Removing cuts from formal proofs corresponds to the elimination of inter-
mediary lemmas from mathematical proofs. In cut-free proofs all statements are
subformulas of the end-sequent and they allow extraction of Herbrand disjunc-
tions and interpolants. So, cut-free proofs are analytic.

Gentzen’s original proof of his theorem is constructive [1]. He gave a reductive
first-order cut-elimination method that is nondeterministic. It is proved (for
example by Orevkov in [7]) that cut-elimination in general is nonelementary, i.e.
there is no elementary bound on the size of cut-free proof in terms of the original
proof.

CERES is a first-order cut-elimination method by resolution. It is introduced
by Matthias Baaz and Alexander Leitsch in [8]. CERES is based on the construc-
tion of a resolution refutation of the unsatisfiable characteristic clause set. The
characteristic clause set is constructed from the derivation of cut-formula and
a resolution refutation of this clause set is used as a skeleton of LK-proof with
atomic cuts only. The complexity of the CERES method is directly related to
the resolution refutation complexity of the characteristic clause set.

The CERES method is implemented in the system CERES [4]. The programs
CERES, HLK [5] and ProofTool [6] are three computer programs that form a
system for the computer-aided analysis of mathematical proofs. HLK is used to
formalize mathematical proofs and generate input for CERES. Then CERES is used
to transform formal proofs (into cut-free, Atomic Cut Normal Form (ACNF),
etc.) and extract relevant information (characteristic clause set, herbrand se-
quent, etc.). ProofTool is used to visualize these formal proofs.



2 Mikheil Rukhaia

The goal was to extend the system CERES to second-order logic, but the
CERES method can not be extended in the straightforward way to second-order
logic because of various obstacles, such as a major difference between first- and
second-order resolution calculus and skolemization. So, extension of Gentzen’s
method for the second-order calculus was the first solution.

Implementation of Gentzen style cut-elimination is mainly based on the al-
gorithm described in the Gentzen’s original proof of his cut-elimination theorem
[1]. The basic idea is to use the cut reduction rules to move the cut rule upwards
within the LKII-proof. We extended reduction rules for the second-order quan-
tifier rules. The reduction rules are divided into two parts: the grade reduction
and the rank reduction rules. The grade reduction rules reduce the complexity of
the cut-formula and the rank reduction rules reduce the number of occurrences
of the cut-formula in the proof. These rules are described in details in the next
section. Third section is detailed description of the SecondOrder class that has
been added to the system CERES. It also contains description of major changes
in the existing CERES source code. The last section is conclusion.

2 Theoretical Background

In this section we will briefly describe the calculus LKII. Then we will present
the reduction rules, that are implemented as methods of the SecondOrder class.
At the end of this section we will present algorithm, how this reduction rules are
applied to the LKII-proof in order to get a cut-free LKII-proof.

2.1 Calculus LKII

Calculus LK in our case is defined as it is in [3] with some minor changes.
We do not have the equality and definition rules. The calculus LKII is defined
as an extension of the calculus LK with the following second-order quantifier
introduction rules:

A(X/λx̄.F ), Γ ` ∆
∀2 : l

(∀2X)A,Γ ` ∆
and

Γ ` ∆,A(X/Y )
∀2 : r

Γ ` ∆, (∀2X)A

A(X/Y ), Γ ` ∆
∃2 : l

(∃2X)A,Γ ` ∆
and

Γ ` ∆,A(X/λx̄.F )
∃2 : r

Γ ` ∆, (∃2X)A

Where X is a second-order variable, F is a second-order formula with free vari-
ables not bound in A and bound variables of F not in A; and Y is a second-order
eigenvariable of the same type as X.

Notion of LKII-derivation and LKII-proof is defined in an analogous way
as it is for LK-derivation and LK-proof.



Implementation of Second-Order Cut-Elimination 3

2.2 Reduction Rules

Reduction rules are defined as they are in [2], slightly modified. They are divided
into two parts: grade reduction and rank reduction. The grade reduction rules
reduce the complexity of the cut-formula and the rank reduction rules reduce
the number of occurrences of the cut-formula in the proof. Now we will list all
these rules, named as the corresponding methods of the SecondOrder class.

Grade Reduction Rules Let us list all grade reduction rules in this subsection.

caseAndRAndL1. Cut rule premises are lower sequents of the ∧ : r and ∧ : l1
rules:

φ1
Γ1 ` ∆1, A

φ2
Γ2 ` ∆2, B ∧ : r

Γ1, Γ2 ` ∆1, ∆2, A ∧B

φr
A,Γ ` ∆

∧ : l1
A ∧B,Γ ` ∆

cut
Γ1, Γ2, Γ ` ∆1, ∆2, ∆

transforms to

φ1
Γ1 ` ∆1, A

φr
A,Γ ` ∆

cut
Γ1, Γ ` ∆1, ∆

w, π : l∗
Γ1, Γ2, Γ ` ∆1, ∆ w, π : r∗

Γ1, Γ2, Γ ` ∆1, ∆2, ∆

If Γ2 and/or∆2 is empty, then the corresponding weakening and permutation
rules are omitted.

caseAndRAndL2. Cut rule premises are lower sequents of the ∧ : r and ∧ : l2
rules:

φ1
Γ1 ` ∆1, A

φ2
Γ2 ` ∆2, B ∧ : r

Γ1, Γ2 ` ∆1, ∆2, A ∧B

φr
B,Γ ` ∆

∧ : l2
A ∧B,Γ ` ∆

cut
Γ1, Γ2, Γ ` ∆1, ∆2, ∆

transforms to

φ2
Γ2 ` ∆2, B

φr
B,Γ ` ∆

cut
Γ2, Γ ` ∆2, ∆

w, π : l∗
Γ1, Γ2, Γ ` ∆2, ∆ w, π : r∗

Γ1, Γ2, Γ ` ∆1, ∆2, ∆

If Γ1 and/or∆1 is empty, then the corresponding weakening and permutation
rules are omitted.

caseOrR1OrL. Cut rule premises are lower sequents of the ∨ : r1 and ∨ : l
rules:



4 Mikheil Rukhaia

φl
Γ ` ∆,A

∨ : r1
Γ ` ∆,A ∨B

φ1
A,Γ1 ` ∆1

φ2
B,Γ2 ` ∆2 ∨ : l

A ∨B,Γ1, Γ2 ` ∆1, ∆2
cut

Γ, Γ1, Γ2 ` ∆,∆1, ∆2

transforms to

φl
Γ ` ∆,A

φ1
A,Γ1 ` ∆1

cut
Γ, Γ1 ` ∆,∆1

w, π : l∗
Γ, Γ1, Γ2 ` ∆,∆1 w, π : r∗

Γ, Γ1, Γ2 ` ∆,∆1, ∆2

If Γ2 and/or∆2 is empty, then the corresponding weakening and permutation
rules are omitted.

caseOrR2OrL. Cut rule premises are lower sequents of the ∨ : r2 and ∨ : l
rules:

φl
Γ ` ∆,B

∨ : r2
Γ ` ∆,A ∨B

φ1
A,Γ1 ` ∆1

φ2
B,Γ2 ` ∆2 ∨ : l

A ∨B,Γ1, Γ2 ` ∆1, ∆2
cut

Γ, Γ1, Γ2 ` ∆,∆1, ∆2

transforms to

φl
Γ ` ∆,B

φ2
B,Γ2 ` ∆2

cut
Γ, Γ2 ` ∆,∆2

w, π : l∗
Γ, Γ1, Γ2 ` ∆,∆2 w, π : r∗

Γ, Γ1, Γ2 ` ∆,∆1, ∆2

If Γ1 and/or∆1 is empty, then the corresponding weakening and permutation
rules are omitted.

caseImplRImplL. Cut rule premises are lower sequents of the ⊃ : r and ⊃ : l
rules:

φl
A,Γ ` ∆,B ⊃ : r
Γ ` ∆,A ⊃ B

φ1
Γ1 ` ∆1, A

φ2
B,Γ2 ` ∆2 ⊃ : l

A ⊃ B,Γ1, Γ2 ` ∆1, ∆2
cut

Γ, Γ1, Γ2 ` ∆,∆1, ∆2

transforms to

φ1
Γ1 ` ∆1, A

φl
A,Γ ` ∆,B

φ2
B,Γ2 ` ∆2

cut
A, Γ, Γ2 ` ∆,∆2

cut
Γ1, Γ, Γ2 ` ∆1, ∆,∆2

π : l
Γ, Γ1, Γ2 ` ∆1, ∆,∆2 π : r
Γ, Γ1, Γ2 ` ∆,∆1, ∆2



Implementation of Second-Order Cut-Elimination 5

If Γ or Γ1 is empty or Γ = Γ1 and/or ∆ or ∆1 is empty or ∆ = ∆1, then
the corresponding permutation rules are omitted.

caseNotRNotL. Cut rule premises are lower sequents of the ¬ : r and ¬ : l
rules:

φl
A,Γ1 ` ∆1 ¬ : r
Γ1 ` ∆1,¬A

φr
Γ2 ` ∆2, A ¬ : l¬A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

transforms to

φr
Γ2 ` ∆2, A

φl
A,Γ1 ` ∆1

cut
Γ2, Γ1 ` ∆2, ∆1

π : l
Γ1, Γ2 ` ∆2, ∆1 π : r
Γ1, Γ2 ` ∆1, ∆2

If Γ1 or Γ2 is empty or Γ1 = Γ2 and/or ∆1 or ∆2 is empty or ∆1 = ∆2, then
the corresponding permutation rules are omitted.

caseForallRForallL. Cut rule premises are lower sequents of the ∀ : r and ∀ : l
rules:

φl

Γ1 ` ∆1, A(x/α)
∀ : r

Γ1 ` ∆1, (∀x)A

φr

A(x/t), Γ2 ` ∆2 ∀ : l
(∀x)A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

transforms to

φl(α/t)

Γ1 ` ∆1, A(x/t)

φr

A(x/t), Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

caseExistsRExistsL. Cut rule premises are lower sequents of the ∃ : r and ∃ : l
rules:

φl

Γ1 ` ∆1, A(x/t)
∃ : r

Γ1 ` ∆1, (∃x)A

φr

A(x/α), Γ2 ` ∆2 ∃ : l
(∃x)A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

transforms to

φl

Γ1 ` ∆1, A(x/t)

φr(α/t)

A(x/t), Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

caseForallR2ForallL2. Cut rule premises are lower sequents of the ∀2 : r and
∀2 : l rules:



6 Mikheil Rukhaia

φl

Γ1 ` ∆1, A(X/Y )
∀2 : r

Γ1 ` ∆1, (∀2X)A

φr

A(X/λx̄.F ), Γ2 ` ∆2
∀2 : l

(∀2X)A,Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

transforms to

φl(Y/λx̄.F )

Γ1 ` ∆1, A(X/λx̄.F )

φr

A(X/λx̄.F ), Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

caseExistsR2ExistsL2. Cut rule premises are lower sequents of the ∃2 : r and
∃2 : l rules:

φl

Γ1 ` ∆1, A(X/λx̄.F )
∃2 : r

Γ1 ` ∆1, (∃2X)A

φr

A(X/Y ), Γ2 ` ∆2
∃2 : l

(∃2X)A,Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

transforms to

φl

Γ1 ` ∆1, A(X/λx̄.F )

φr(Y/λx̄.F )

A(X/λx̄.F ), Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

Rank Reduction Rules Let us list all rank reduction rules in this subsection.

caseLeftAxiom. Cut rule left premise is an axiom:

A ` A
φr

A,Γ ` ∆
cut

A, Γ ` ∆
transforms to

φr
A,Γ ` ∆

caseRightAxiom. Cut rule right premise is an axiom:

φl
Γ ` ∆,A A ` A

cut
Γ ` ∆,A

transforms to
φl

Γ ` ∆,A

caseLeftWeakR. Cut rule left premise is the lower sequent of the w : r rule:

φl
Γ1 ` ∆1 w : r
Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

transforms to

φl
Γ1 ` ∆1

w, π : l∗
Γ1, Γ2 ` ∆1 w, π : r∗

Γ1, Γ2 ` ∆1, ∆2



Implementation of Second-Order Cut-Elimination 7

If Γ2 is empty and/or ∆2 is empty, then the corresponding weakening and
permutation rules are omitted.

caseRightWeakL. Cut rule right premise is the lower sequent of the w : l rule:

φl
Γ1 ` ∆1, A

φr
Γ2 ` ∆2

w : l
A, Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

transforms to

φr
Γ2 ` ∆2

w, π : l∗
Γ1, Γ2 ` ∆2 w, π : r∗

Γ1, Γ2 ` ∆1, ∆2

If Γ1 is empty and/or ∆1 is empty, then the corresponding weakening and
permutation rules are omitted.

caseLeftContrR. Cut rule left premise is the lower sequent of the c : r rule:

φl
Γ1 ` ∆1, A

n

c : r
Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

transforms to

φl
Γ1 ` ∆1, A

n

φr
A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, A

n−1, ∆2 π : r
Γ1, Γ2 ` ∆1, ∆2, A

n−1
φn−1r

A,Γ2 ` ∆2
cut

Γ1, Γ2, Γ2 ` ∆1, ∆2, A
n−2, ∆2 π : r

Γ1, Γ2, Γ2 ` ∆1, ∆2, ∆2, A
n−2

...
Γ1, Γ2, . . . , Γ2 ` ∆1, ∆2, . . . ,∆2, A

φ1r
A,Γ2 ` ∆2

cut
Γ1, Γ2, . . . , Γ2 ` ∆1, ∆2, . . . ,∆2

π, c : l∗
Γ1, Γ2 ` ∆1, ∆2, . . . ,∆2 π, c : r∗

Γ1, Γ2 ` ∆1, ∆2

Where φir is a variant of φr for all i = 1, . . . , n− 1, such that the (first- and
second-order) eigenvariables are renamed. If Γ2 and/or ∆2 is empty, then
the corresponding contraction and permutation rules are omitted.

caseRightContrL. Cut rule right premise is the lower sequent of the c : l rule:

φl
Γ1 ` ∆1, A

φr
An, Γ2 ` ∆2

c : l
A, Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2



8 Mikheil Rukhaia

transforms to

φ1l
Γ1 ` ∆1, A

φn−1l

Γ1 ` ∆1, A

φl
Γ1 ` ∆1, A

φr
An, Γ2 ` ∆2

cut
Γ1, A

n−1, Γ2 ` ∆1, ∆2
π : l

An−1, Γ1, Γ2 ` ∆1, ∆2
cut

Γ1, A
n−2, Γ1, Γ2 ` ∆1, ∆1, ∆2

π : l
An−1, Γ1, Γ1, Γ2 ` ∆1, ∆1, ∆2

...
A,Γ1, . . . , Γ1, Γ2 ` ∆1, . . . ,∆1, ∆2

cut
Γ1, . . . , Γ1, Γ2 ` ∆1, . . . ,∆1, ∆2

π, c : l∗
Γ1, Γ2 ` ∆1, . . . ,∆1, ∆2 π, c : r∗

Γ1, Γ2 ` ∆1, ∆2

Where φil is a variant of φl for all i = 1, . . . , n− 1, such that the (first- and
second-order) eigenvariables are renamed. If Γ1 and/or ∆1 is empty, then
the corresponding contraction and permutation rules are omitted.

caseLeftUnary. Cut rule left premise is the lower sequent of an arbitrary unary
rule, except the π : r rule:

φl
Γ ` ∆ unary

Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

transforms to

φl
Γ ` ∆ π : r

Γ ` ∆′, A
φr

A,Γ2 ` ∆2
cut

Γ, Γ2 ` ∆′, ∆2 unary, π : r∗
Γ1, Γ2 ` ∆1, ∆2

If ∆ = ∆2 then the corresponding permutation rules are omitted.
caseRightUnary. Cut rule right premise is the lower sequent of an arbitrary

unary rule, except the π : l rule:

φl
Γ1 ` ∆1, A

φr
Γ ` ∆ unary

A, Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

transforms to

φl
Γ1 ` ∆1, A

φr
Γ ` ∆

π : l
A, Γ ′ ` ∆

cut
Γ1, Γ

′ ` ∆1, ∆
unary, π : l∗

Γ1, Γ2 ` ∆1, ∆2



Implementation of Second-Order Cut-Elimination 9

If Γ1 = Γ then the corresponding permutation rules are omitted.
caseLeftBinary. Cut rule left premise is the lower sequent of an arbitrary

binary rule, except the cut rule:

φ1
Γ1 ` ∆1, A

φ2
Γ2 ` ∆2

binary
Γ ` ∆,A

φr
A,Π ` Λ

cut
Γ,Π ` ∆,Λ

transforms to

φ1
Γ1 ` ∆1, A

φr
A,Π ` Λ

cut
Γ1, Π ` ∆1, Λ

φ2
Γ2 ` ∆2

binary
Γ,Π ` ∆,Λ

Or if cut-formula comes from the right premise of the binary rule:

φ1
Γ1 ` ∆1

φ2
Γ2 ` ∆2, A

binary
Γ ` ∆,A

φr
A,Π ` Λ

cut
Γ,Π ` ∆,Λ

transforms to

φ1
Γ1 ` ∆1

φ2
Γ2 ` ∆2, A

φr
A,Π ` Λ

cut
Γ2, Π ` ∆2, Λ

binary
Γ,Π ` ∆,Λ

caseRightBinary. Cut rule right premise is the lower sequent of an arbitrary
binary rule, except the cut rule:

φl
Π ` Λ,A

φ1
A,Γ1 ` ∆1

φ2
Γ2 ` ∆2

binary
A, Γ ` ∆

cut
Π, Γ ` Λ,∆

transforms to

φl
Π ` Λ,A

φ1
A,Γ1 ` ∆1

cut
Π, Γ1 ` Λ,∆1

φ2
Γ2 ` ∆2

binary
Π, Γ ` Λ,∆

Or if cut-formula comes from the right premise of the binary rule:

φl
Π ` Λ,A

φ1
Γ1 ` ∆1

φ2
A,Γ2 ` ∆2

binary
A, Γ ` ∆

cut
Π, Γ ` Λ,∆



10 Mikheil Rukhaia

transforms to

φ1
Γ1 ` ∆1

φl
Π ` Λ,A

φ2
A,Γ2 ` ∆2

cut
Π, Γ2 ` Λ,∆2

binary
Π, Γ ` Λ,∆

caseLeftPermR. Cut rule left premise is the lower sequent of the π : r rule:

Φ π : r
Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

We distinguish cases according to Φ.

Φ ≡
φ

Γ1 ` ∆ w : r
Γ1 ` ∆′1, A,∆′′1

transforms to

φ

Γ1 ` ∆
w, π : l∗

Γ1, Γ2 ` ∆ w, π : r∗
Γ1, Γ2 ` ∆1, ∆2

Where ∆1 = ∆′1, ∆
′′
1 . If Γ2 is empty and/or ∆1 = ∆ and ∆2 is empty, then

the corresponding weakening and permutation rules are omitted.

Φ ≡
φ

Γ1 ` ∆ π : r
Γ1 ` ∆′1, A,∆′′1

transforms to

φ

Γ1 ` ∆ π : r
Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

Φ ≡
φ

Γ1 ` ∆′1, A,A,∆′′1 c : r
Γ1 ` ∆′1, A,∆′′1

transforms to

φ

Γ1 ` ∆′1, A,A,∆′′1 π : r
Γ1 ` ∆1, A,A c : r
Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

Φ ≡
φ

Γ ′1 ` ∆′1, A,∆′′1 unary
Γ1 ` ∆′1, A,∆′′′1

transforms to



Implementation of Second-Order Cut-Elimination 11

φ

Γ ′1 ` ∆′1, A,∆′′1 π : r
Γ ′1 ` ∆′1, ∆′′1 , A

φr
A,Γ2 ` ∆2

cut
Γ ′1, Γ2 ` ∆′1, ∆′′1 , ∆2

unary, π : r∗
Γ1, Γ2 ` ∆1, ∆2

Where ∆1 = ∆′1, ∆
′′′
1 and unary is an arbitrary unary rule.

Φ ≡
φ1

Γl ` ∆l, A,∆
′′
l

φ2
Γr ` ∆r

binary
Γ1 ` ∆l, A,∆

′
l, ∆
′
r

transforms to

φ1

Γl ` ∆l, A,∆
′′
l π : r

Γl ` ∆l, ∆
′′
l , A

φr
A,Γ2 ` ∆2

cut
Γl, Γ2 ` ∆l, ∆

′′
l , ∆2

π : r
Γl, Γ2 ` ∆l, ∆2, ∆

′′
l

φ2
Γr ` ∆r

binary
Γ1, Γ2 ` ∆1, ∆2

Where ∆1 = ∆l, ∆
′
l, ∆
′
r and binary is an arbitrary binary rule.

Φ ≡
φ1

Γl ` ∆l

φ2

Γr ` ∆r, A,∆
′′
r binary

Γ1 ` ∆′l, ∆r, A,∆
′
r

transforms to

φ1
Γl ` ∆l

φ2

Γr ` ∆r, A,∆
′′
r π : r

Γr ` ∆r, ∆
′′
r , A

φr
A,Γ2 ` ∆2

cut
Γr, Γ2 ` ∆r, ∆

′′
r , ∆2

π : r
Γr, Γ2 ` ∆r, ∆2, ∆

′′
r binary

Γ1, Γ2 ` ∆1, ∆2

Where ∆1 = ∆′l, ∆r, ∆
′
r and binary is an arbitrary binary rule.

caseRightPermL. Cut rule left premise is the lower sequent of the π : l rule:

φl
Γ1 ` ∆1, A

Φ
π : l

A, Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

We distinguish cases according to Φ.

Φ ≡
φ

Γ ` ∆2
w : l

Γ ′2, A, Γ
′′
2 ` ∆2

transforms to

φ

Γ ` ∆2
w, π : l∗

Γ1, Γ2 ` ∆2 w, π : r∗
Γ1, Γ2 ` ∆1, ∆2



12 Mikheil Rukhaia

Where Γ2 = Γ ′2, Γ
′′
2 . If Γ2 = Γ and Γ1 is empty and/or ∆1 is empty, then

the corresponding weakening and permutation rules are omitted.

Φ ≡
φ

Γ ` ∆2
π : l

Γ ′2, A, Γ
′′
2 ` ∆2

transforms to
φl

Γ1 ` ∆1, A

φ

Γ ` ∆2
π : l

A, Γ2 ` ∆2
cut

Γ1, Γ2 ` ∆1, ∆2

Φ ≡
φ

Γ ′2, A,A, Γ
′′
2 ` ∆2

c : l
Γ ′2, A, Γ

′′
2 ` ∆2

transforms to

φl
Γ1 ` ∆1, A

φ

Γ ′2, A,A, Γ
′′
2 ` ∆2

π : l
A,A, Γ2 ` ∆2

c : l
A, Γ2 ` ∆2

cut
Γ1, Γ2 ` ∆1, ∆2

Φ ≡
φ

Γ ′′2 , A, Γ
′
2 ` ∆′2 unary

Γ ′′′2 , A, Γ
′
2 ` ∆2

transforms to

φl
Γ1 ` ∆1, A

φ

Γ ′′2 , A, Γ
′
2 ` ∆′2

π : l
A, Γ ′′2 , Γ

′
2 ` ∆′2

cut
Γ1, Γ

′′
2 , Γ

′
2 ` ∆1, ∆

′
2
unary, π : l∗

Γ1, Γ2 ` ∆1, ∆2

Where Γ2 = Γ ′′′2 , Γ
′
2 and unary is an arbitrary unary rule.

Φ ≡
φ1

Γ ′′l , A, Γl ` ∆l

φ2
Γr ` ∆r

binary
Γ ′l , A, Γl, Γr ` ∆2

transforms to

φl
Γ1 ` ∆1, A

φ1

Γ ′′l , A, Γl ` ∆l
π : l

A, Γ ′′l , Γl ` ∆l
cut

Γ1, Γ
′′
l , Γl ` ∆1, ∆l

π : l
Γ ′′l , Γ1, Γl ` ∆1, ∆l

φ2
Γr ` ∆r

binary
Γ1, Γ2 ` ∆1, ∆2

Where Γ2 = Γ ′l , Γl, Γr and binary is an arbitrary binary rule.



Implementation of Second-Order Cut-Elimination 13

Φ ≡
φ1

Γl ` ∆l

φ2

Γ ′′r , A, Γr ` ∆r
binary

Γ ′l , Γ
′
r, A, Γr ` ∆2

transforms to

φ1
Γl ` ∆l

φl
Γ1 ` ∆1, A

φ2

Γ ′′r , A, Γr ` ∆r
π : l

A, Γ ′′r , Γr ` ∆r
cut

Γ1, Γ
′′
r , Γr ` ∆1, ∆r

π : l
Γ ′′r , Γ1, Γr ` ∆1, ∆r

binary
Γ1, Γ2 ` ∆1, ∆2

Where Γ2 = Γ ′l , Γ
′
r, Γr and binary is an arbitrary binary rule.

2.3 Cut-elimination Algorithm

We decided to implement the following algorithm: the program eliminates the
leftmost upmost cut rule occurring into the proof. It goes through the proof,
starting from bottom and when it finds the upmost leftmost cut rule, first it
tries to reduce the grade if possible, then it tries to reduce the rank. For the
grade reduction, program first tries to remove from the cut-formula second-
order quantifiers, then first-order quantifiers, then implication, then ∧, then ∨,
and then ¬. If all these cases fail, then the program begins to apply the rank
reduction rules. First it tries to apply weakening rule cases, then axiom rule
cases, then contraction rule cases, then arbitrary unary and binary rule cases
and if none of them is applicable, then the program tries permutation rule cases.
For each rule case, the program first tries to reduce rank on the left and then
on the right cut-derivation. This procedure is applied repeatedly, while all cuts
are eliminated from the proof.

3 Implementation

The system CERES is written on C++. It is a quite complex system with his own
data-structures. Our cut-elimination algorithm for the second-order calculus is
implemented into two files: SecondOrder.h and SecondOrder.cpp. The class
SecondOrder is publicly derived from the class ProofOperation. A construc-
tor of the SecondOrder class receives the CeresInput object as input and extracts
from this object LKProof, ProofDatabase and AxiomSet. Also assigns the value
false to the global boolean variable error and creates LKProofVector. The last
one is used to hold intermediary proofs.

All reduction rules are implemented as methods of the SecondOrder class.
Each of them takes RuleCut as input and returns either transformed proof as a
ProofNode object, or the value NULL (if it was not a proper case, or there was
some error during the transformation of the proof).



14 Mikheil Rukhaia

The algorithm, that was described in Section 2.3 is implemented as the
method executeCut. In this method after applying the reduction rules, we
test if none of reduction rules were applied correctly (i.e. all of them returned
the value NULL), then error messages are printed, error is set to be true and
the program terminates.

In the main.cpp file we added boolean variables arg second order and
arg write interm proofs, which are false by default and they are set to be
true if user typed in command line the parameters -so and -w respectively. The
first one is a parameter to tell program that the input proof is a second-order
proof and the second one is to tell if we want to output intermediary proofs
or not. We test whether arg second order is set to be true, and if so, then the
constructor of SecondOrder object is called and the operation SecondOrder is
applied to the proof repeatedly, while proof is not a cut-free and there is no
an error. In the cycle we test if arg write interm proofs is true, then lkproof is
added to LKProofVector. Here is the corresponding piece of code of the main
function:
SecondOrder ∗ t;
if (arg second order) {
t = new SecondOrder(∗input);
LKProof ∗ lkproof = t− > getProof();
std :: string s = lkproof− > getName();
int i = 0;
while (!t− > isCutFree(lkproof− > getRoot())&&!t− > hasError()) {
lkproof − > execute(t);
if(arg write interm proofs) {
i+ +;
std :: stringstream s 1;
s 1 << i;
t− > setProofinProofV ector(lkproof− > clone(s+88 ′′ + s 1.str()));

}
}

}
To export resulted proof(s) into the XML file, we have modified the ex-

portceres.h and exportceres.cpp files. We have overloaded the method write
and operator � to output the SecondOrder object as an XML file. In the out-
put file the program writes resulted cut-free proof, original proof, intermediary
proofs that were saved in LKProofVector and the axiom set, if there was any.

There are some auxiliary methods implemented in the SecondOrder class.
Most interesting one is renameEigenvariables, that takes a ProofNode object
as input and returns again a ProofNode object, where first- and second- order
eigenvariables are renamed to preserve the proof regularity. This method is nec-
essary when the reduction rules for contraction cases are executed. The method
calls the renameFirstOrderEigenvariables and renameSecondOrderEi-
genvariables methods. Later ones are implemented by the following algorithm
for first- and second-order eigenvariables respectively: first create blacklist, a list
of eigenvariables of the whole proof. Then create eigvlist, a list of eigenvari-



Implementation of Second-Order Cut-Elimination 15

ables of input ProofNode (in which eigenvariables should be renamed). Then go
through eigvlist and generate for each variable a fresh one, which is not in black-
list. Then construct a substitution and apply it to the input ProofNode. Then
return ProofNode.

To create a list of first- and second-order eigenvariables, the methods build-
EigvarList and buildSecondOrderEigvarVector are implemented. They take
ProofNode as input and output VariableList and SecondOrderVariableVector re-
spectively. Algorithm is very simple: go throw the proof and find strong quantifier
rules. Get from this rules eigenvariables and add them into the list. Then return
the list.

The code, which was written in the SecondOrder.h and SecondOrder.cpp files
together is around 2000 lines.

4 Conclusion

The algorithm according to the Gentzen’s original method was implemented and
integrated into the existing CERES system. So, the CERES system was extended
for second-order proofs. Using the CERES system, it is possible to compare two
methods of cut-elimination (the CERES method and the Gentzen’s method) and
their performance. To call the program for second-order proofs user should use
the -so parameter from a command line and the optional parameter -w if he/she
wants to write all intermediary proofs in the output file.

The system was tested with some inputs and bugs that were found are cor-
rected.

References

1. G. Takeuti. Proof Theory. The foundations of mathematics, volume 81, Illinois,
U.S.A., 1975.

2. C. Richter. Proof Transformations by Resolution. PhD thesis, Vienna University
of Technology, 2006.

3. The Calculus LK. Available at
http://www.logic.at/ceres/downloads/calculus LK.pdf

4. The Cut-Elimination System CERES Homepage. Available at
http://www.logic.at/ceres/

5. Handy LK Homepage. Available at
http://www.logic.at/hlk/

6. Proof Tool Homepage. Available at
http://www.logic.at/prooftool/

7. V.P. Orevkov, Lower Bounds for Increasing Complexity of Derivations After Cut-
Elimination. Journal of Soviet Mathematics, 1982.

8. Matthias Baaz, Alexander Leitsch, Cut-elimination and Redundancy-elimination
by Resolution. Journal of Symbolic Computation, 2000.


