
CERES in Proof Schemata

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Mikheil Rukhaia
Matrikelnummer 0827684

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr.phil. Alexander Leitsch

Diese Dissertation haben begutachtet:

(Univ.Prof. Dr.phil. Alexander Leitsch) (Dr. Nicolas Peltier)

Wien, 15.11.2012
(Mikheil Rukhaia)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

CERES in Proof Schemata

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Mikheil Rukhaia
Registration Number 0827684

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr.phil. Alexander Leitsch

The dissertation has been reviewed by:

(Univ.Prof. Dr.phil. Alexander Leitsch) (Dr. Nicolas Peltier)

Wien, 15.11.2012
(Mikheil Rukhaia)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

To my love(ly) Kate.

ii

Erklärung zur Verfassung der
Arbeit

Mikheil Rukhaia
Favoritenstrasse 9-11, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und
dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbil-
dungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

iii

iv

Contents

Kurzfassung vii

Abstract ix

Acknowledgements xi

1 Introduction 1

2 Preliminaries 5
2.1 Sequent Calculus LK . 5
2.2 The Resolution Calculus . 8
2.3 The Cut-Elimination Theorem 9
2.4 The CERES method . 11

3 Propositional Schematic Proof Systems 13
3.1 Schematic Language . 13

3.1.1 Syntax . 13
3.1.2 Semantics . 15

3.2 Sequent Calculus LKs . 17
3.3 Resolution Calculus Rs . 21

3.3.1 Discussion . 29

4 The Method CERESs 31
4.1 Characteristic Terms . 31
4.2 Projection Set . 40
4.3 Atomic Cut Normal Form . 45

5 Extensions to First-Order Schemata 49
5.1 Schematic First-Order Language 51
5.2 Extension of LKs . 54

5.2.1 Regularization and Skolemization 58
5.3 Extension of Rs . 61

v

vi CONTENTS

5.4 CERESs for First-Order Schemata 64
5.5 Complexity of CERESs . 70

6 Applications of CERESs 73
6.1 The GAPT Framework . 73
6.2 The Adder Proof . 75
6.3 The Exponential Proof . 79

7 Conclusion and Future Work 85

A Cut Transformation Rules 87
A.1 Grade Reduction Rules . 87
A.2 Rank Reduction Rules . 89

B Characteristic Terms of the Adder Proof 95
B.1 Characteristic Terms . 95
B.2 Projection Terms . 98

Bibliography 101

Index 106

Kurzfassung

Die Methode der Schnittelimination nimmt als Kern von Gerhard Gentzens
Hauptsatz eine wichtige Rolle im Bereich der Logik ein. Verwendet ein Beweis
jedoch das Induktionsprinzip, ist Schnittelimination im Allgemeinen nicht
mehr möglich. Ein Ansatz ist, Schnittelimination für eine abzählbar un-
endliche Folge von Beweisen, ein sogenanntes Beweisschema, zu definieren.
Da das Resultat nun ebenfalls ein Beweisschema ist, lassen sich die auf re-
duktiven Ansätzen basierenden Methoden nicht mehr anwenden. Das dabei
auftretende Problem ist, dass eine Schnittregel nicht immer schrittweise in
Richtung der Axiome verschoben werden kann. Daher muss auf eine andere
Schnitteliminationstechnik zurückgegriffen werden.

Die Schnitteliminationsmethode CERES basiert auf dem Konzept der
charakteristischen Klauselmenge. Diese wird aus einem Beweis im Sequen-
zkalkül extrahiert und ist immer unerfüllbar. Eine Resolutionswiderlegung
dieser Klauselmenge wird als Vorlage für einen neuen Beweis herangezogen,
der nur mehr Schnitte über Atomformeln enthält. Dazu wird jede Klausel
durch eine Projektion des ursprünglichen Beweises ersetzt und jeder Res-
olutionsschritt als Schnitt über einer Atomformel nachvollzogen. Damit
analysiert CERES im Gegensatz zu den reduktiven Methoden alle Schnit-
tformeln auf einmal.

Diese Dissertation verallgemeinert CERES sowohl für Aussagenlogik als
auch für Prädikatenlogik erster Stufe auf Beweisschemata. Dazu wird der
Sequenzkalkül LKs eingeführt, der die Darstellung von Beweisschemata mit-
tels primitiver Rekursion zulässt. Es wird gezeigt, wie sich Schemata für die
charakteristische Klauselmenge und die Beweisprojektionen erstellen lassen.
Analog wird auch ein schematischer Resolutionskalkül definiert, der die Wider-
legung der charakteristischen Klauselmenge erlaubt. Diese Widerlegung wird
nun zusammen mit den Projektionen als Vorlage zur Konstruktion eines Be-
weisschemas herangezogen, das ausschließlich atomare Schnitte verwendet.
Daraus ergibt sich eine Methode zur Schnittelimination für Beweisschemata.

vii

viii KURZFASSUNG

Abstract

Gentzen’s cut-elimination theorem is one of the most important theorems of
logic. But it is proved that, in the presence of induction, cut-elimination is
not possible in general. One way to overcome this problem is to define an
infinite sequence of proofs in a uniform way (i.e. a proof schema), and do
cut-elimination for the proof schema. This makes sense if the cut-free proofs
also can be described uniformly. But the reductive methods fail to do so.
The reason is that shifting cuts is not always possible in such proof schemata.
Therefore another cut-elimination procedure is needed.

The cut-elimination method CERES (for first- and higher-order classical
logic) is based on the notion of a characteristic clause set, which is extracted
from an LK-proof and is always unsatisfiable. A resolution refutation of this
clause set can be used as a skeleton for a proof with atomic cuts only (atomic
cut normal form). This is achieved by replacing the input clauses from the
resolution refutation by corresponding projections of the original proof. So,
in contrast to reductive methods, CERES analyzes the proof as a whole.

We present a generalization of the CERES method to propositional and
first-order proof schemata. We define a schematic version of the sequent cal-
culus called LKs, and a notion of proof schema based on primitive recursive
definitions. A method is developed to extract schematic characteristic clause
sets and schematic projections from these proof schemata. We also define a
schematic resolution calculus for refutation of schemata of clause sets, which
can be applied to refute the schematic characteristic clause sets. Finally
the projection schemata and resolution schemata are plugged together and a
schematic representation of the atomic cut normal forms is obtained. Hence,
we obtain a cut-elimination procedure for proof schemata.

ix

x ABSTRACT

Acknowledgements

I would like to thank my supervisor, Prof. Alexander Leitsch. His expansive
knowledge and thoughtful advice though the many revisions of my thesis
helped me complete this body of work.

I would also like to thank Nicolas Peltier, who accepted the role of re-
viewer for my thesis. His comments and suggestions brought the clarity
needed for the greater scientific community to benefit from my work.

I would like to give thanks to all professors and teachers in Vienna Univer-
sity of Technology, especially Prof. Matthias Baaz, who’s lectures gave the
knowledge of Proof Theory required to make a contribution to the subject.

I would like to thank all members of Theory and Logic group, especially
Cvetan Dunchev and Daniel Weller, for new ideas and our many discussions.
This thesis could not have been finished without them. Special thanks goes to
David Cerna for correcting some of my English mistakes and Martin Riener
for writing Kurzfassung for me.

I would also like to thank all the people I have met during my study in
Vienna. Without them my life would have been a lot less interesting.

Last, but not least, I would like to thank my family and friends, for their
patience and encouragement.

xi

xii ACKNOWLEDGEMENTS

Chapter 1

Introduction

Gentzen’s cut-elimination theorem is one of the most important theorems of
logic. Removing cuts from formal proofs corresponds to the elimination of
intermediary lemmas from mathematical proofs. In cut-free proofs all state-
ments are subformulas of the end-sequent. Cut-free proofs are analytic in
sense that they allow extraction of the “hidden” knowledge, such as Her-
brand disjunctions and interpolants. Systems, that have a cut-elimination
theorem, are easily proved to be consistent.

Gentzen’s original proof of his cut-elimination theorem is constructive. He
gave a reductive cut-elimination method, which can be interpreted as a proof
rewriting system, which is terminating, and normal forms of this system are
cut-free proofs. Such kind of systems usually are nondeterministic, i.e. no
explicit algorithm is specified which selects the reduction rule to be applied
next. Another reductive method was given also by Tait and Schütte. These
two methods differ in the selection of the cut that has to be eliminated
first. These methods analyze only small parts of proofs (the derivation of
the uppermost logical operator of a cut-formula) and leave other parts of the
proof unchanged, which may lead to major redundancy.

A cut-elimination method, called CERES, was developed by Matthias
Baaz and Alexander Leitsch in [BL00], which radically differs from reductive
cut-elimination methods. CERES is a cut-elimination method by resolution,
reducing cut-elimination to a theorem proving problem. In this method not
only the derivation of the uppermost logical operator of a cut-formula is
analyzed, but all derivations of cut-formulas at once. This analysis leads
to the construction of an unsatisfiable set of clauses, called characteristic
clause set. Then a resolution refutation of the characteristic clause set is
used as a skeleton of a proof with atomic cuts only. The method was origi-
nally developed for first-order logic, but later it was extended to second- and
higher-order logics (see [HLWP09, HLW11]). The CERES method was imple-

1

2 INTRODUCTION

mented and real mathematical proofs were analyzed using the CERES-system
(see [BHL+05, BHL+08, DLL+10]).

Another very important tool in computer science and mathematics in
general is induction. But it adds complexity to proofs, because the rule
corresponds to an infinitary modus ponens rule. Also, on the syntactic side,
while logical rules change the complexity of formulas, the induction rule,
although it may change formulas, not necessarily changes the complexity of
formulas. Therefore, reducing the complexity of formulas cannot be used to
show the termination of cut-elimination in the presence of induction.

Gentzen’s procedure, and reductive cut-elimination methods in general,
shift cuts upwards until they are eliminated. When an induction rule occurs
in the proof, such kind of shift over it is not always possible, therefore cut-
elimination is not possible in general in the presence of induction.

This issue first was investigated in [Tak87]. From the Gentzen’s proof of
consistency of Peano arithmetic it is shown that cut-elimination is possible
when induction is grounded; in this case the induction term can be evaluated
to numeral and can be replaced by a finite number of cuts.

Later, in [MM00] a reductive cut-elimination method was given for intu-
itionistic proof systems with induction. In [Lib08] a cut-elimination theorem
for subclass of inductive proofs of weakly quantified theorems was proved.

In [Bro05] the author presented a so-called cyclic proof system and showed
that such kind of systems subsume the use of the induction rule. He also
mentioned the problem that there is no proof of the cut-elimination theorem
for classical cyclic proof systems in the literature. The point is that reductive
cut-elimination methods cannot be extended to proofs with cycles (shifting
cuts over cycles is a major problem).

Schemata are widely used in mathematics on a meta-level as an alter-
native to induction. Since cut-elimination in the presence of induction is so
problematic, there was an attempt in [BHL+08] to use schemata in prac-
tice, instead of induction, to analyze interesting mathematical proofs using
the CERES method. In this paper the CERES-system was applied to (a for-
malization of) a mathematical proof: Fürstenberg’s proof of the infinity of
primes [AZ99]. The proof was formalized as a sequence of proofs (πk)k∈N
showing that the assumption that there exist exactly k primes is contradic-
tory. The analysis was performed in a semi-automated way: CL(πk) (the
characteristic clause set of πk) was computed for some small values of k and
from this, a general scheme CL(πn) was constructed and refuted by hand.
Even the analysis of this proof was very interesting: from Fürstenberg’s proof,
which makes use of topological concepts, Euclid’s elementary proof was ob-
tained by cut-elimination. However, it was unsatisfactory that the fact, that
CL(πn) is really the correct schema for all n ∈ N, could not be verified, and

3

that the analysis of CL(πn) could not be performed in a computer-aided way.
The aim of this thesis is to define a language for treating schemata on

the object level and to present a cut-elimination method CERESs for it.
In such a way we avoid the explicit use of induction and get strong tool
to represent and reason on proofs with some kind of cycles. The method
CERESs overcomes the shortcoming of reductive cut-elimination methods
on such proofs by analyzing the proof as a whole and eliminating all cuts
together. Hence we obtain a cut-elimination method for cyclic proof systems.
It will be shown that there is a translation from a proof with an ordinary
induction rule into our system, and since cut-elimination is possible in our
settings, hence showing that our system has an advantage over usual systems
with induction rule.

To achieve this aim, we define a schematic version of sequent calculus,
called LKs. A schematic proof is a tuple of pairs of LKs-proofs (correspond-
ing to the base and step cases of an inductive definition). The CERESs
method is based on the notion of a schematic characteristic clause set, which
is extracted from a schematic proof and is always unsatisfiable. This will
close the gap in the application described above (and in future ones) by
automatically computing the correct schema CL(πn). We use a resolution
refutation of this clause set as a skeleton for a proof schema with atomic cuts
only. This is achieved by replacing clauses from the resolution refutation
by the corresponding projection schemata of the original proof schema. We
show that there is a correspondence between the schematic and the stan-
dard CERES methods: when given a proof schema, one can instantiate it for
some specific number n, get an LK-proof and apply the standard CERES
method on it, or apply CERESs directly to the given proof schema and then
instantiate the ACNF schema for the number n. Of course these two normal
forms cannot be the same in general, since cut-elimination is not confluent
in classical logics. Finally, we illustrate the method CERESs by applying it
to some examples in a semi-automated way.

The rest of the thesis is organized in the following way: In Chapter 2,
we introduce some basic concepts of proof theory, such as the sequent cal-
culus LK and the cut-elimination theorem. The next chapters benefit a lot
from [DLRW12, DLRW].

In Chapter 3 the notions of formula and proof schemata, as well the
calculus LKs and the resolution calculus for reasoning on schematic clause
sets will be presented for propositional logic.

Chapter 4 is devoted to the definition of the CERESs method for propo-
sitional LKs and the data structures central to it: the characteristic term
schema and the projection term schema, from which characteristic clause
set schema and projection set can be extracted respectively. Also, the main

4 INTRODUCTION

theoretical result on the CERESs method is stated.
Then, in Chapter 5, the language, as well the sequent and resolution

calculus is extended to first-order logic. The CERESs method is adjusted to
first-order proof schemata and its complexity is discussed.

Moreover, in Chapter 6, we apply the method semi-automatically to some
(formalizations of) mathematical proofs. Finally, in Chapter 7 we summarize
our work and give some hints about the future work.

Chapter 2

Preliminaries

In this chapter we define basic notions of proof theory, on which this thesis is
based. First, the sequent calculus LK is defined. Then the cut-elimination
theorem for the calculus LK will be given and Gentzen’s reductive method
of cut-elimination be described. In the third section, LK is extended with
the induction rule and cut-elimination in the extended calculus is discussed.
Finally, the CERES method is described informally.

2.1 Sequent Calculus LK

The first-order language, defined in [Tak87], consists of countable sets of
variables, n-ary function and predicate symbols. Terms are built in the
usual inductive fashion from variables and function symbols; and formulas
are built inductively from atoms using the logical connectives ¬,∧,∨,⊃,∀
and ∃ as usual. A variable occurrence in a formula is called bound if it is in
the scope of ∀ or ∃ connectives, otherwise it is called free. The notions of
interpretation, satisfiability and validity of formulas are defined in the usual
classical sense.

Atoms are subformulas of itself and the subformulas of formulas ¬A,A•B
and (Qx)A(x), for • ∈ {∧,∨,⊃} and Q ∈ {∀,∃}, are the subformulas of A,
A and B, and A(t) respectively, for an arbitrary term t, and the formulas
itself.

Definition 2.1.1 (Sequent). An expression of the form Γ ` ∆, where Γ
and ∆ are finite (maybe empty) multisets of formulas, is called a sequent.
Γ is called an antecedent and ∆ is called a succedent of the sequent. Two
sequents are equal iff multisets represented by their antecedents and respec-
tively succedents are equal.

5

6 PRELIMINARIES

Subformulas of a sequent are subformulas of those formulas, which occur
in the sequent. We will use Greek letters Γ,∆,Π,Λ (possibly with subscripts)
to denote finite (maybe empty) multisets of formulas.

Semantically a sequent S : A1, . . . , An ` B1, . . . , Bm is equivalent to the
formula F : (A1∧· · ·∧An) ⊃ (B1∨· · ·∨Bm). We say that I is an interpretation
of S iff it is an interpretation of F . S is valid iff F is valid. An empty sequent
` corresponds to > ⊃ ⊥, which is ⊥ (falsum).

Definition 2.1.2 (Inference). An inference is an expression of the form

S1

S
or

S1 S2

S

where S1 and S2 are called upper sequents and S is called lower sequent of
the inference. The formulas, the inference operates on, are called auxiliary
formulas and the formula, it derives, is called principal formula. The aux-
iliary formulas are called ancestors of the principal formula. The ancestor
relationship is transitive.

Definition 2.1.3 (Initial sequent). A sequent of the form A ` A, where A
is an arbitrary atomic formula, is called an initial sequent.

Definition 2.1.4 (Calculus LK). The sequent calculus LK contains initial
sequents as axioms and consists of the following inference rules:

1. Propositional rules:

• ¬ introduction

Γ ` ∆, A ¬ : l¬A,Γ ` ∆
and

A,Γ ` ∆ ¬ : r
Γ ` ∆,¬A

• ∧ introduction

A,B,Γ ` ∆ ∧ : l
A ∧B,Γ ` ∆

and
Γ ` ∆, A Π ` Λ, B ∧ : r

Γ,Π ` ∆,Λ, A ∧B
• ∨ introduction

A,Γ ` ∆ B,Π ` Λ ∨ : l
A ∨B,Γ,Π ` ∆,Λ

and
Γ ` ∆, A,B ∨ : r

Γ ` ∆, A ∨B
• ⊃ introduction

Γ ` ∆, A B,Π ` Λ ⊃ : l
A ⊃ B,Γ,Π ` ∆,Λ

and
A,Γ ` ∆, B ⊃ : r

Γ ` ∆, A ⊃ B

2. Quantifier rules:

• ∀ introduction

2.1. SEQUENT CALCULUS LK 7

A(t),Γ ` ∆
∀ : l

(∀x)A(x),Γ ` ∆
and

Γ ` ∆, A(u)
∀ : r

Γ ` ∆, (∀x)A(x)

where t is an arbitrary term and u is a free variable not occurring
in the lower sequent; u is called an eigenvariable and the condi-
tion, that it should not occur in the lower sequent is called the
eigenvariable condition. The ∀ : l rule is called a weak quantifier
rule and the ∀ : r rule is called a strong quantifier rule.

• ∃ introduction

A(u),Γ ` ∆
∃ : l

(∃x)A(x),Γ ` ∆
and

Γ ` ∆, A(t)
∃ : r

Γ ` ∆, (∃x)A(x)

where t is an arbitrary term and u is an eigenvariable satisfying the
eigenvariable condition. The ∃ : l rule is called a strong quantifier
rule and the ∃ : r rule is called a weak quantifier rule.

3. Structural rules:

• Weakening rules:

Γ ` ∆
w : l

A,Γ ` ∆
and Γ ` ∆ w : r

Γ ` ∆, A

• Contraction rules:

A,A,Γ ` ∆
c : l

A,Γ ` ∆
and

Γ ` ∆, A,A
c : r

Γ ` ∆, A

• Cut rule:

Γ ` ∆, A A,Π ` Λ
cut

Γ,Π ` ∆,Λ

Remark 2.1.5. Since we have defined sequents by means of multisets, we
do not need exchange or permutation rules.

Definition 2.1.6 (LK-derivation). An LK-derivation φ is a rooted tree,
where nodes are sequents and edges are inference rules. The root sequent S
is called an end-sequent and it is written at the bottom. Let A be the set of
sequents at the leaf nodes of φ, then we say that φ is a derivation of S from
A (notation A `LKs S).

Definition 2.1.7 (LK-proof and LK-subproof). An LK-proof is an LK-
derivation with initial sequents at the leaf nodes. If φ is an LK-proof of the
end-sequent Γ ` ∆, then we write:

φ

Γ ` ∆

8 PRELIMINARIES

and say that Γ ` ∆ is provable in LK. An LK-proof without the cut rule
is called cut-free. An LK-subproof of φ is any sub-tree of φ which is also an
LK-proof.

Proposition 2.1.1. The calculus LK is sound and complete, i.e. a sequent
S is derivable in LK iff S is valid.

Proof. In [Tak87].

2.2 The Resolution Calculus

Resolution is a very important tool of automated deduction. It was first
introduced by Robinson in [Rob65]. Here we briefly introduce the resolution
calculus as a specific sequent calculus with atomic sequents, atomic cuts and
unification. For a detailed textbook about the resolution calculus we refer
the interested reader to [Lei97].

Definition 2.2.1 (Clause). A clause is a sequent Γ ` ∆ where Γ and ∆ are
multisets of atoms. An empty clause is denoted by `.

Clauses are denoted by C,D, . . . and sets of clauses, shortly clause sets
by C,D,
Definition 2.2.2 (Substitution). A mapping σ from the set of variables to
the set of terms is called a substitution iff σ(x) 6= x only for finitely many
variables.

Definition 2.2.3 (Unifier). A substitution σ is called a unifier of a nonempty
set of expressions Σ, if the set Σσ contains exactly one element.

Definition 2.2.4 (Most general unifier). A substitution σ is called a most
general unifier (shortly m.g.u) of a nonempty set of expressions Σ, if for every
unifier ϑ of Σ there exists a substitution θ, such that σθ = ϑ.

Now we define the resolution rule, that is a generalization of the mix rule
by unification, but operates on atomic formulas only.

Definition 2.2.5 (Resolution). The following rule is called a resolution rule:

Γ ` ∆, L, . . . , L M, . . . ,M,Π ` Λ

Γσ,Πσ ` ∆σ,Λσ

Where ∆,Π does not contain L,M ; the clauses Γ ` ∆, L, . . . , L andM, . . . ,M,
Π ` Λ are variable disjoint and σ is an m.g.u of the atoms L,M . A clause
Γσ,Πσ ` ∆σ,Λσ is called a resolvent of the clauses Γ ` ∆, L, . . . , L and
M, . . . ,M,Π ` Λ.

2.3. THE CUT-ELIMINATION THEOREM 9

Definition 2.2.6 (Resolution deduction). A deduction tree having clauses
as nodes and resolution rules as edges is called a resolution deduction. If φ
is a resolution deduction, C is a root node of φ and C is a set of leaf nodes
of φ, then we say that φ is a resolution deduction of C from the clause set C,
or simply C is derivable from C. A resolution deduction of the ` from a set
of clauses C, is called a resolution refutation of C.
Proposition 2.2.1. The resolution calculus is sound and refutationally com-
plete, i.e.

• if a clause is derivable from a set of clauses, then it is logical conse-
quence of the clause set,

• if a set of clauses is unsatisfiable, then there exists a refutation of it.

Proof. In [Lei97].

2.3 The Cut-Elimination Theorem

In this section we recall Gentzen’s cut-elimination theorem and some of its
consequences, which was given for first-order sequent calculus LK in [Tak87].
We proceed with some basic definitions.

Definition 2.3.1 (Regularity). An LK-proof is called regular, if all eigen-
variables are distinct and if a free variable u occurs as an eigenvariable in a
sequent S of the LK-proof, then u occurs only in sequents above S.

It is necessary for reductive cut-elimination methods proof to be regular.
Clearly, every LK-proof can be regularized simply by renaming the eigen-
variables. The other important notions for reductive methods are grade and
rank.

Definition 2.3.2 (Grade). The number of logical symbols occurring in a
formula A is called a grade of A (or complexity of A) and is denoted with
comp(A). The grade of the cut rule is the grade of the cut-formula.

The notion of formula occurrence in a proof φ is defined as usual and if
Ω is a set of formula occurrences and o is a formula occurrence, then we say
that o is an Ω-ancestor, if o is an ancestor of some o′ ∈ Ω. If Ω is a set of
cut-formula occurrences, then o is called a cut-ancestor.

Definition 2.3.3 (Rank). Let φ be a proof with the cut rule as the last
inference. Let φl, φr be two subproofs of φ with cut rule left and right premises
as end-sequents. The left (right) rank of φ is a number of sequents in the
φl (φr), in which the cut-formula occurs in its succedent (antecedent). The
rank of φ is a sum of the left and right ranks and denoted with rank(φ).

10 PRELIMINARIES

Note that, according to the definition above, a proof φ is either cut-free
or rank(φ) ≥ 2.

Theorem 2.3.1 (Cut-elimination). If a sequent S is provable in LK, then
it is provable without a cut rule.

Proof (Sketch). The proof of theorem is by double induction over grade and
rank of the cut rule, reducing them with the transformation rules given in
Appendix A. The full detailed proof can be found in [Tak87].

Gentzen’s original proof is using the mix rule, but mix can be simulated
using the contraction and cut rules. Therefore the transformation rules in
Appendix A differs from the original transformation rules defined in [Tak87].

Gentzen gave a constructive proof of his cut-elimination theorem from
which a nondeterministic algorithm can be extracted. This algorithm is the
following:

• Select an uppermost cut rule ρ.

• If the rank of ρ, rank(ρ) = 2, then use the grade reduction rules defined
in Appendix A to reduce complexity of the cut-formula.

• If the rank of ρ, rank(ρ) > 2, then use the rank reduction rules defined
in Appendix A to reduce the rank of ρ.

• Repeat this procedure until all cuts are eliminated.

The most famous consequences of the cut-elimination theorem are Gentzen’s
midsequent theorem and the subformula property.

Theorem 2.3.2 (Mid-sequent). If a sequent S, which contains only prenex
formulas, is provable in LK, then there is a cut-free proof of S, which contains
a sequent S1, called mid-sequent, which is quantifier free and

• Every inference above S1 is either structural or propositional,

• Every inference after S1 is either structural or a quantifier inference.

Theorem 2.3.3 (Subformula property). Every sequent, which is LK-provable,
is provable with its subformulas only.

2.4. THE CERES METHOD 11

2.4 The CERES method

CERES is a cut-elimination method by resolution first introduced in [BL00].
It was originally developed for first-order logic, but later, the CERES method
was extended to second-order [HLWP09] and higher-order logics [HLW11].
Unlike reductive cut-elimination methods, which analyze only the derivation
of the uppermost logical operator of a cut-formula, the CERES method is
based on a global analysis of the proof. The method is very general and can
be used in different first-order theories like finitely valued and Gödel logics
(see [BL11]). Recently it was extended to intuitionistic logic as well [LRP12].

Here we describe the method informally. The CERES method consists of
the following steps:

Skolemization of proof. A proof is skolemized if the end-sequent of the
proof does not contain strong quantifier occurrences. Therefore skolem-
ization of a proof means removal of strong quantifiers from its end-
sequent. Skolemization is necessary because otherwise eigenvariable
conditions may be violated in proof projections (see below). Note that
even proofs with cuts can be skolemized, the cut-formulas itself cannot.
For a formal definition of skolemization see [BL99].

Computation of characteristic clause set. Originally, in [BL00], a no-
tion of characteristic clause set was introduced. Later, in [BL06], a
notion of characteristic clause term was defined, which can be evalu-
ated in a different ways to sets of clauses such as characteristic clause
set, proof profile [Het08] and the like (see [Pal09]). Anyway, all these
structures are based on analysis of cut-formula derivations in a proof.
The cut-formula ancestors at the leaf nodes of the proof is selected,
which correspond to singleton clauses1, and according to cut-formula
derivations the characteristic clause set (or similar structure mentioned
above) is produced.

Refutation of characteristic clause set. The resolution refutation of char-
acteristic clause set (proof profile or the like) serves as a skeleton of
(essential) cut-free proof. The term essential means that there is at
most atomic cuts in the proof. The elimination of atomic cuts (if it is
possible at all) is mathematically inessential.

Note that if the atomic axiom sequents are not closed under cuts (like
the equality axioms), then the atomic cuts cannot be eliminated. We

1If there are arbitrary atomic axioms admitted in the proof, then the selected clauses
at the leafs are not singleton, but arbitrary.

12 PRELIMINARIES

refer the interested reader to [Tak87] for more detailed discussion of
this issue.

Computation of proof projections. The proof projections are cut-free
parts of the original proof, obtained by omitting inference rules produc-
ing a cut-formula. Hence if there is a strong quantifier rule application,
producing a formula occurring in the end-sequent, and the correspond-
ing weak quantifier rule application is omitted since it was producing a
cut-formula, the proof projection will not be sound any more. There-
fore skolemization of the original proof is necessary. There is a cor-
respondence between sets of projections and characteristic clause sets:
for every clause in the characteristic clause set, there exists a corre-
sponding proof projection in the projection set. This correspondence
is important for atomic cut normal form, since it ensures that every
clause in the leaves of resolution refutation can be replaced by a proof
projection.

Production of ACNF. The Atomic Cut Normal Form (ACNF) is a proof
obtained from resolution refutation by plugging at the leaves the cor-
responding proof projections. Note that in general, the clauses in reso-
lution refutation are variants of the clauses in characteristic clause set,
therefore the substitutions used in the refutation should be applied to
proof projections as well.

The formal definitions, extended to proof schemata, will be given in the
next chapters, but still we refer the interested reader to the most recent book
about the CERES method [BL11].

Chapter 3

Propositional Schematic Proof
Systems

In this chapter we will introduce basic terms and notations that will be
used throughout the whole thesis. First we define a notion of propositional
formula schemata, syntax and semantics for it. Then a calculus, called LKs,
will be given for reasoning on formula schemata. The last section is about
propositional clause schemata, and a resolution calculus, called Rs, will be
defined. All these notions will be extended to first-order logic in Chapter 5.

3.1 Schematic Language

Propositional formula schemata were first introduced in [ACP09] and a sub-
class, called regular schemata was investigated and proved to be decidable.
Later, in [ACP11] a new subclass, called bound-linear schemata was defined
and a reduction algorithm to regular schemata was given, hence decidability
of bound-linear class was proven. Here a slightly modified version of bound-
linear schemata will be defined, but the expressive power (i.e. decidability)
will be preserved.

3.1.1 Syntax

We assume a countably infinite set of index variables (intended to be inter-
preted over N), and a countably infinite set of propositional symbols. As we
will see later in this section, index variables can be free or bound. Free index
variables are called parameters. The set of linear arithmetic expressions or
simply arithmetic expressions is defined as usual from the constant 0 and
the index variables over the signature s,+ (the usual properties of + are

13

14 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

assumed, e.g. s(0) + s(0) is equivalent to s(s(0))). We frequently identify
α ∈ N with sα(0). If n is an index variable then n + · · · + n (α times) is
denoted by α.n. Also we denote:

• elements of N by α, β, . . .,

• bound index variables by i, j, l, . . .,

• parameters by k,m, n, . . .,

• linear arithmetic expressions by a, b, . . .,

• propositional symbols by p, q,

We say an arithmetic expression a is ground if a does not contain index
variables. Obviously, ground arithmetic expressions can be rewritten to nu-
merals and we identify them with their normal forms (and therefore with the
natural numbers).

A substitution is a function mapping every index variable to an arith-
metic expression. The substitution of an index variable k by an arithmetic
expression a is denoted with [k/a].

Definition 3.1.1 (Indexed proposition). An expression of the form pa, where
a is an arithmetic expression and p a propositional symbol, is called an
indexed proposition. If a is ground, then we speak about ground indexed
propositions, which are called propositional variables.

Definition 3.1.2 (Formula schemata). We define formula schemata induc-
tively in the following way:

• An indexed proposition is an (atom) formula schema.

• If A and B are formula schemata, then so are ¬A, A ∨ B, A ∧ B and
A ⊃ B.

• If A is a formula schema, a, b are arithmetic expressions and i is an
index variable not bound in A, then

∧b
i=aA and

∨b
i=aA are formula

schemata such that i is bound in both formula schemata.

We denote formula schemata by A,B, The notion of application of
substitution σ to formula schema A is defined as usual and is denoted by Aσ.
The notation A(k) is used to indicate a parameter k in A, and A(a) then
denotes A[k/a].

3.1. SCHEMATIC LANGUAGE 15

Remark 3.1.3. We introduced ⊃ for convenience and assume ⊃ is right
associative, then the chain of implications like A(0) ⊃ A(1) ⊃ · · · ⊃ A(n+1)
can be represented as (

∨n
i=0 ¬A(i))∨A(n+1) or (¬∧n

i=0 A(i))∨A(n+1). Note
that (((A(0) ⊃ A(1)) ⊃ A(2)) · · ·) ⊃ A(n + 1) cannot be directly expressed
in our formalism, but a sat-equivalent formula can be encoded.

Definition 3.1.4 (Subformulas). Subformulas are defined as follows:

• An atomic formula schema is a subformula of itself.

• The subformulas of ¬A are subformulas of A and ¬A itself.

• The subformulas of A∨B, A∧B and A ⊃ B are subformulas of A and
of B and the formula itself.

• The subformulas of
∧b+1
i=a A(i) are subformulas ofA(b+1) and of

∧b
i=aA(i);

and the formula itself.

• The subformulas of
∨b+1
i=a A(i) are subformulas ofA(b+1) and of

∨b
i=aA(i);

and the formula itself.

Now, a formula schema A is bound-linear [ACP11] iff the following con-
ditions are fulfilled:

1. A contains at most one parameter n.

2. Every indexed proposition in A is of the form pα.n+β.i+γ, where n is a
parameter, i a bound variable, α, γ are arbitrary natural numbers and
β ∈ {0, 1}.

3. If A contains an iteration
∧b
i=aB (or

∨b
i=aB) then a, b are of the form

α.n + β and γ.n + κ.j + ι respectively, where α, β, γ, ι are arbitrary
natural numbers, κ ∈ {0, 1} and j is a bound variable.

Informally, the indices and iteration bounds should contain at most one
parameter and at most one bound variable with coefficient 1.

3.1.2 Semantics

An interpretation is a pair of functions, I = (I, Ip), s.t. I maps index vari-
ables to the natural numbers and Ip maps propositional variables to the truth
values. Let I(a) be a homomorphic extension of I for an arithmetic expres-
sion a. Let σ be a substitution, then by Iσ we denote the interpretation
defined as follows: Ipσ = Ip and Iσ(n) = I(nσ) for every index variable n.

A truth value JAKI of a formula schema A in an interpretation I is defined
inductively:

16 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

• JpaKI = Ip(pI(a)).

• J¬AKI = T iff JAKI = F.

• JA ∨BKI = T iff JAKI = T or JBKI = T.

• JA ∧BKI = T iff JAKI = T and JBKI = T.

• JA ⊃ BKI = T iff JAKI = F or JBKI = T.

•
r∧b

i=aA
z
I

= T iff for every natural number α s.t. I(a) ≤ α ≤ I(b),

JAKI[i/ᾱ] = T, where ᾱ is a numeral corresponding to α.

•
r∨b

i=aA
z
I

= T iff there is an natural number α s.t. I(a) ≤ α ≤ I(b),

JAKI[i/ᾱ] = T, where ᾱ is a numeral corresponding to α.

Remark 3.1.5. If I(a) > I(b), then
∧b
i=aA is always true and

∨b
i=aA is

always false for any formula schema A.

A formula schema A is satisfiable iff there is an interpretation I, s.t.
JAKI = T, otherwise A is unsatisfiable. If an interpretation I satisfies A, we
write I |= A.

We say that a formula schema is ground, if it does not contain free in-
dex variables, i.e. parameters. Then obviously, a ground formula schema is
a usual propositional formula (ground iterations are equivalent to a finite
conjunction/disjunction of propositional variables).

Proposition 3.1.1. The satisfiability problem is semi-decidable for formula
schemata.

Proof. Let A be a formula schema. Then for every interpretation I, I |=
A iff there exists a ground substitution σ, s.t. I |= Aσ. Since Aσ is a
ground formula schema, i.e. just a propositional formula, satisfiability of Aσ
is decidable. Also the set of ground substitutions is recursively enumerable.
Then checking satisfiability of A becomes semi-decidable.

Now, we define a subclass of bound-linear schemata, called regular [ACP11].
A formula schema A is regular iff the following conditions are fulfilled:

1. A contains at most one parameter n.

2. If A contains an iteration
∧b
i=aB (or

∨b
i=aB) then a, b are of the form

α and n + β respectively, where α, β ∈ N, B does not contain any
iteration and every indexed proposition in B is of the form pi+γ, for
γ ∈ N.

3.2. SEQUENT CALCULUS LKS 17

3. All iterations in A have the same bound.

Proposition 3.1.2. The satisfiability problem is decidable for bound-linear
schemata.

Proof (Sketch). The proof is by reduction to regular schemata. To do so, the
following steps are needed:

1. Eliminate nested iterations.

2. Transform every iteration into an iteration over an interval of the form
[α, n+ β], α, β ∈ N.

3. Remove the parameter from indices.

4. Align iterations in such a way that all iterations have the same bound.

Then, the obtained regular schema can be decided by a tableaux calculus,
called STAB, with the following strategy: if applicable, first apply decom-
position rules for propositional connectives, then apply either a so called
looping rule or a closure rule. If none of these rules is applicable, decompose
the iteration over a maximal interval with the iteration rules.

For a full description of transformation and the decision procedure for
regular schemata we refer the interested reader to [ACP11].

The key point here is that the indices contain bound variables with co-
efficients ≤ 1. If we allow coefficients to be grater than one, then the class
becomes undecidable. For more discussion about decidability and undecid-
ability issues please consult [ACP11].

3.2 Sequent Calculus LKs

In this section we define a version of the classical propositional sequent cal-
culus LK. It will differ from LK in two ways: The formulas it will operate
on will be regular formula schemata, and special initial sequents called proof
links will be allowed. Note that already in [ACP09], a tableaux calculus
STAB for formula schemata is introduced. Our calculus differs from it in
some aspects: most importantly, we include the cut rule, which allows the
formalization of proofs that use lemmas. Furthermore, instead of a looping
rule (which is geared towards automated theorem proving), we use a different
approach, based on recursive specifications of proofs which is more suited to
the formalization of proofs found by humans.

18 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

Definition 3.2.1 (Sequent schemata). An expression of the form Γ ` ∆,
where Γ and ∆ are finite (maybe empty) multisets of formula schemata,
is called a sequent schema. If S is a sequent schema and a an arithmetic
expression, the notation S(a) is defined as for formula schemata.

Semantics of sequent schemata is defined in the similar way as for se-
quents, but with respect to the interpretation defined in Section 3.1.2. Now,
initial sequent schemata are expressions of the form A ` A, where A is an
arbitrary atomic formula schema. Usually we will refer to sequent schemata
as sequents.

Definition 3.2.2 (Proof link). If ϕ is a proof symbol, a is an arithmetic

expression, and S a sequent schema, then the expression
(ϕ(a))

S
is called a

proof link.

We have seen that the expressive power of bound-linear schemata is the
same as the one of regular schemata. Since regular schemata are simpler and
easier to handle, from now on we consider only regular schemata.

The schematic LK is built according to the usual rules of classical proposi-
tional sequent calculus LK with the proviso that schematic formulas are con-
sidered modulo the equalities A(0) =

∧0
i=0A(i) and (

∧n
i=0A(i))∧A(n+1) =∧n+1

i=0 A(i) (and analogously for
∨

)1.

Definition 3.2.3 (Calculus LKs). The sequent calculus LKs contains initial
sequent schemata or proof links as axioms and consists of the propositional
and structural LK inference rules.

Definition 3.2.4 (LKs-proof and LKs-subproof). An LKs-proof is a rooted
tree, where the leaf nodes are initial sequents or proof links, other nodes are
arbitrary sequents and edges are inference rules. If φ is an LKs-proof, then
the root sequent Γ ` ∆ of φ is called the end-sequent of φ; then we write:

φ

Γ ` ∆

and say that Γ ` ∆ is provable in LKs. An LKs-proof without the cut rule
is called cut-free. An LKs-subproof of φ is any sub-tree of φ which is also an
LKs-proof.

We use the notation π(k) and π(a) for LKs-proofs analogously to formula
schemata.

1These equalities are used so that the rules for ∧ and ∨ can be applied to
∧

and
∨

.

3.2. SEQUENT CALCULUS LKS 19

An LKs-proof is called ground if it does not contain index variables and
proof links. Note that a ground LKs-proof is essentially an LK-proof (ob-
tained by replacing ground

∧
,
∨

by a finite number of ∧,∨).
For practical use, we need to add a notion of recursion to the LKs-proofs

defined above. This will yield our notion of proof schemata:

Definition 3.2.5 (Proof schemata). Let ψ1, . . . , ψα be proof symbols and
S1(n), . . . , Sα(n) be sequents. Then, a proof schema Ψ is a tuple of pairs2

〈(π1, ν1(k)), . . . , (πα, να(k))〉

such that:

1. Each pair (πβ, νβ(k)) is associated with ψβ for all β = 1, . . . , α,

2. πβ is a ground LKs-proof of Sβ(0), for all β = 1, . . . , α,

3. νβ(k) is an LKs-proof of Sβ(k + 1) such that νβ(k) contains only one
parameter k and proof links of the form:

(ψβ(k))

Sβ(k)
and/or

(ψγ(a))

Sγ(a)

for β < γ and a arbitrary.

We assume an identification between formula occurrences in the end-
sequents of πβ and νβ(k) (so that we can speak of occurrences in the end-
sequents of ψβ). We also say that S1(n) is the end-sequent of Ψ.

We now give a syntactic meaning to proof schemata: A proof schema Ψ
with end-sequent S(n) can be considered as a representation of a sequence
(π0, π1, . . .) of ground LKs-proofs that prove the sequents S(0), S(1), For
this definition, we consider LKs-proofs as terms and define a rewrite system
for them. The result of this system for α ∈ N will be exactly the proof πα
from the sequence of proofs just mentioned.

Definition 3.2.6 (Evaluation of proof schemata). Let Ψ be a proof schema
given in Definition 3.2.5. We define the rewrite rules for proof links

(ψβ(0))

S
→ πβ, and

(ψβ(k + 1))

S
→ νβ(k)

2Sometimes we may also write 〈ψ1, . . . , ψα〉

20 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

for all 1 ≤ β ≤ α.

Now, for γ ∈ N we define ψβ ↓γ as a normal form of
(ψβ(γ))

S(γ)
under the

rewrite system just given. Further, we define Ψ↓γ= ψ1 ↓γ.

Remark 3.2.7. Strictly speaking, ψβ ↓γ is the normal form of
(ψβ(γ̄))

S(γ̄)
where γ̄ is the numeral for γ.

Example 3.2.8. Let us consider the following proof schema Ψ:

〈(π, ν(k))〉,

where π is:

p0 ` p0 p1 ` p1 ⊃ : l
p0, p0 ⊃ p1 ` p1

and ν(k):

(ψ(k))

p0,
∧k
i=0(pi ⊃ pi+1) ` pk+1 pk+2 ` pk+2 ⊃ : l

p0,
∧k
i=0(pi ⊃ pi+1), pk+1 ⊃ pk+2 ` pk+2 ∧ : l
p0,

∧k+1
i=0 (pi ⊃ pi+1) ` pk+2

Then, according to Definition 3.2.6, Ψ↓0 is just π; Ψ↓1 is:

p0 ` p0 p1 ` p1 ⊃ : l
p0, p0 ⊃ p1 ` p1 p2 ` p2 ⊃ : l

p0, p0 ⊃ p1, p1 ⊃ p2 ` p2 ∧ : l
p0, (p0 ⊃ p1) ∧ (p1 ⊃ p2) ` p2

Ψ↓2 is:

p0 ` p0 p1 ` p1 ⊃ : l
p0, p0 ⊃ p1 ` p1 p2 ` p2 ⊃ : l

p0, p0 ⊃ p1, p1 ⊃ p2 ` p2 ∧ : l
p0, (p0 ⊃ p1) ∧ (p1 ⊃ p2) ` p2 p3 ` p3 ⊃ : l

p0, (p0 ⊃ p1) ∧ (p1 ⊃ p2), p2 ⊃ p3 ` p3 ∧ : l
p0, (p0 ⊃ p1) ∧ (p1 ⊃ p2) ∧ (p2 ⊃ p3) ` p3

and so on.

Now we prove that the definition of evaluation of proof schemata is indeed
correct.

Proposition 3.2.1 (Soundness). Let Ψ: 〈(π1, ν1(k)), . . . , (πα, να(k))〉 be a
proof schema with end-sequent S(n). Then, for every γ ∈ N and 1 ≤ β ≤ α,
ψβ ↓γ is a ground LKs-proof with end-sequent Sβ(γ). Hence Ψ↓γ is a ground
LKs-proof with end-sequent S(γ).

3.3. RESOLUTION CALCULUS RS 21

Proof. We proceed by double induction over α and γ. Assume α = 1. If
γ = 0, then the proof link rewrites to π1, which is as desired by definition.
Let assume γ > 0 and the proposition holds for all natural numbers less
than γ. By definition, ν1(k) may only contain proof links to ψ1(k) and by

induction hypothesis
(ψ1(γ − 1))

S1(γ − 1)
rewrites to an LKs-proof of S1(γ − 1).

Hence the proof link to ψ1(γ) rewrites to an LKs-proof of S1(γ). All these
LKs-proofs are ground since π1 is ground and k is the only parameter of
ν1(k).

Now, assume α > 1 and the proposition holds for all proof schemata with
proof symbols less than α. Again, if γ = 0, the proof link rewrites to πβ, for
all 1 ≤ β ≤ α. If γ > 0, then for proof links to ψβ(γ−1) the above argument
applies. So, consider proof links to ψβ′(γ

′), for β′ > β. Then obviously, the
proof schema Ψ′ : 〈(πβ′ , νβ′(k)), . . . , (πα, να(k))〉 has less proof symbols than
Ψ, therefore by (outer) induction hypothesis the proposition holds for Ψ′.
Then clearly, ψβ ↓γ is a ground LKs-proof of Sβ(γ) for all 1 ≤ β ≤ α.

Note that the calculus LKs is not complete in general, but it is complete
for a subset of regular schemata, where all iterations are aligned on the
interval [0, n + α] for some α ∈ N. For such a valid regular schema, a proof
schema can be obtained in a similar way as was discussed in the proof of
Proposition 3.1.2. The difference is that instead of a looping rule we put a
proof link in the proof.

3.3 Resolution Calculus Rs

In this section we formalize the resolution calculus as a specific sequent cal-
culus with atomic sequent schemata and atomic cuts. Later in Chapter 5 we
extend the calculus to first-order schemata with unification. The resolution
calculus for formula schemata was investigated in [AP11, AEP]. In [AP11] a
translation from tableaux to resolution calculus was defined, but the format
of specification is quite complex, hard to read and not intuitive to be inter-
preted by humans (even for trivial examples refutations are very long and
counterintuitive). Later, in [AEP] a version of propositional resolution calcu-
lus schemata was defined and its properties were investigated. Except usual
resolution and factorization rules, the so called pruning rule was introduced,
which is used to detect cycles in the refutation.

Here we define the calculus Rs, which is more general than the one de-
fined in [AEP]. Our notion of resolution proof will be based on recursion,
therefore we do not need the pruning rule. We define the calculus as a term

22 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

algebra. Such kind of definition is not new and it was investigated for ex-
ample in [CL08, FMWP10]. Our notation differs from the usual ones in the
following way: while usually the resolution term is defined as a binary term,
written in infix form, we define the resolution term as a ternary term and
write it in suffix form. The third place in a resolution term is needed to
indicate the resolved atom explicitly.

Definition 3.3.1 (Clause). A clause is a sequent Γ ` ∆ where Γ and ∆
are multisets of indexed propositions (atom formula schemata). An empty
clause is denoted with `.

We denote clauses with C,D and sets of clauses with C,D. As for proofs,
we require that a clause contains at most one parameter and it is called
ground, if it is parameter-free.

Definition 3.3.2 (Literal). An indexed proposition, or a negated indexed
proposition is called a literal. Indexed propositions are called positive literals
and negated indexed propositions are called negative literals.

So far all these definitions were somewhat standard. Now, we introduce
a type of variables, called clause variables, which are variables over clauses
and are denoted with X, Y, These variables correspond to some kind of
“placeholders” for clauses. Below we define clause schemata and will see that
the use of clause variables is needed to schematize clauses, which differ from
each other by a fixed number of atoms.

Definition 3.3.3 (Clause schema). A clause schema is defined recursively
as follows:

• Clauses and clause variables are clause schemata w.r.t. R = ∅.

• c(n,X1, . . . , Xα) is a clause schema w.r.t. R:

c(0, X1, . . . , Xα) → C ◦X1 ◦ · · · ◦Xα;

c(k + 1, X1, . . . , Xα) → c(k,X1, . . . , Xα) ◦D

where C is a ground clause and D an arbitrary clause not containing
parameter different from k.

• finally, if c1 and c2 are clause schemata w.r.t. R1 and R2 respectively,
then c1 ◦ c2 is a clause schema w.r.t R1 ∪R2.

The intended meaning of the ◦ operator is that if given two clauses Γ ` ∆
and Π ` Λ, then (Γ ` ∆) ◦ (Π ` Λ) is the clause Γ,Π ` ∆,Λ. Note that the
◦ operator semantically corresponds to a disjunction.

3.3. RESOLUTION CALCULUS RS 23

Remark 3.3.4. Definition 3.3.3 admits the representation of clauses of vari-
able length, in contrast to the sequents of LKs calculus.

The notion of application of substitution is extended to clause schemata in
a straightforward way. Additionally we introduce a clause substitution to be a
mapping from clause variables to clauses. Let C1, . . . , Cα be clauses not con-
taining parameters different from n and γ ∈ N, then θ = [X1/C1, . . . , Xα/Cα]
is a clause substitution and c(n,C1, . . . , Cα)↓γ denotes a clause which is nor-
mal form of c(n,X1, . . . , Xα)θ[n/γ] w.r.t. R. We denote clause schemata
with c, d,

Example 3.3.5. Let X be a clause variable. Consider a clause schema
c(n,X) w.r.t R:

c(0, X) → (` p0) ◦X,
c(k + 1, X) → c(k,X) ◦ (` pk+1).

Then c(n,`)↓α and c(n,` q0)↓α are clauses ` p0, . . . , pα and ` q0, p0, . . . , pα
respectively, for all α ≥ 0.

Below we define so-called resolution terms, which corresponds to some
kind of skeleton for resolution deductions. But the definition of resolution
terms is much more general and not every resolution term is a resolution
deduction in the usual sense.

Definition 3.3.6 (Resolution term). We define resolution terms inductively:

• A clause schema c w.r.t. a rewrite system R is a resolution term.

• Let t1 and t2 be resolution terms w.r.t. R1 and R2 respectively and A
be an indexed proposition. Then r(t1; t2;A) is a resolution term w.r.t.
R1 ∪R2.

Let C be a set of clause schemata. A resolution term t is based on C if all
(instances of) clause schemata in t are also in C.

A normal form of a resolution term is computed by normalizing all clause
schemata occurring in the term.

Example 3.3.7. Let c(n,X) be the clause schema w.r.t. rewrite system R
defined in Example 3.3.5. Then

r(r(c(n,X); pn `; pn); q0, q1 `; q0)

24 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

is a resolution term. Informally, the normal form of this term for α ∈ N and
X = ` q0 is:

r(r(` q0, p0, . . . , pα; pα `; pα); q0, q1 `; q0).

Note that the inner resolution term always corresponds to resolution de-
duction in usual sense, but the outer term is not, until X is instantiated to
` q0. Anyway, the inference is correct and the argument is the following: let
X = Γ ` ∆, q0 6∈ ∆, then the term for α ∈ N is:

r(r(Γ ` ∆, p0, . . . , pα; pα `; pα); q0, q1 `; q0)

and the end-sequent is q1,Γ ` ∆, p0, . . . , pα−1, but it is a weakening of
Γ ` ∆, p0, . . . , pα−1 (the end-sequent of inner resolution step). Therefore
the inference is still correct, but redundant.

The above example motivates the definition of notion of resolution deduc-
tion, which ensures that r-expressions without clause variables are evaluated
to resolution deductions in our sense.

Definition 3.3.8 (Resolvent). Let C : Γ ` ∆ and D : Π ` Λ be clauses and
A an indexed proposition. Then |r(C,D,A)| is a clause defined as Γ,Π\A `
∆ \A,D2, where Π \A and ∆ \A denotes the multi-sets of atoms in Π and
∆ respectively, after removal of all occurrences of A. The clause |r(C,D,A)|
is called a resolvent of C and D on A and A is called a resolved atom.

Remark 3.3.9. In caseA does not occur in ∆ and/or Π, the clause |r(C,D,A)|
is not a resolvent in the usual sense, but a clause which is subsumed by C or
D; thus, also in this case, |r(C,D,A)| is a logical consequence of C and D.

Definition 3.3.10 (Resolution deduction). If C is a clause, then C is a
resolution deduction with end-sequent C. If %1 and %2 are resolution deduc-
tions with end-sequents D1 and D2 respectively, then the resolution term
r(%1, %2, A) is a resolution deduction with end-sequent D = |r(D1, D2, A)|.

Let t be a resolution term based on C; if t is a resolution deduction, then
we say t is resolution deduction from C. Additionally, if the end-sequent of t
is `, then t is called a resolution refutation of C.

Remark 3.3.11. According to this definition, every resolution deduction
is a resolution term, but not vice versa. For example, a clause schema is
resolution term, but not resolution deduction.

It is clear, that any resolution deduction can easily be transformed into
a resolution tree in an obvious way.

3.3. RESOLUTION CALCULUS RS 25

Example 3.3.12. Let us consider the resolution term from Example 3.3.7
and assume n = 1, X = ` q0. Then r(r(` q0, p0, p1; p1 `; p1); q0, q1 `; q0)
corresponds to the following resolution tree:

` q0, p0, p1 p1 `
` q0, p0 q0, q1 `

q1 ` p0

Now, we define a notion of resolution proof schema in the similar way as
we did for proof schemata. We will add a notion of recursion to the resolution
terms and associate these terms with rewriting system in such a way, that
when a natural number is given, we evaluate the resolution proof schema to
the resolution deduction.

Definition 3.3.13 (Resolution proof schema). A resolution proof schema is
a structure R = ((%1, . . . , %α),R) where the %i denote resolution terms and
R = R1 ∪ . . . ∪Rα, where the Ri (for 0 ≤ i ≤ α) are defined as follows:

%i(0, X̄i) → si,

%i(k + 1, X̄i) → ti[%i(k, s̄
i
0), %l1(ai1, s̄

i
1), . . . , %lj(i)(a

i
j(i), s̄

i
j(i))]

where

• X̄i are vectors of clause variables occurring in si and ti,

• si are parameter-free resolution terms,

• ai1, . . . , aij(i) are arithmetic terms,

• s̄i0, . . . , s̄ij(i) are vectors of clause schemata,

• ti[%i(k, s̄i0), %l1(ai1, s̄
i
1), . . . , %lj(i)(a

i
j(i), s̄

i
j(i))] are resolution terms after re-

placement of some clause schemata by the terms %i(k, s̄
i
0), %l1(ai1, s̄

i
1), . . . ,

%lj(i)(a
i
j(i), s̄

i
j(i)) where i < l1 < · · · < lj(i) ≤ α.

Let θ be a clause substitution and γ ∈ N, then R↓γ denotes a resolution
term which is the normal form of %1(n, X̄1)θ[n/γ] w.r.t. R.

For a complete picture, we need to introduce notions of clause set schema
and of resolution refutation schema, which will be a specific instance of a
resolution proof schema.

Before we define a notion of clause set schema, we extend the composition
operator to sets of clauses in the following way: let C,D be two sets of clauses,
then C ◦D = {C ◦D | C ∈ C, D ∈ D}. Note that the ◦ operator corresponds
to a semantic disjunction of clause sets.

26 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

For example, assume C = {` p0; ` q0} and D = {p0 `; q0 `}, then
C ◦ D = {p0 ` p0; q0 ` p0; p0 ` q0; q0 ` q0}.

Now, clause set schemata will be defined in a similar way as resolution
proof schemata, based on clause-set terms. Again we introduce a new type
of variables, called clause-set variables, which are variables over clause-sets
and are denoted with X ,Y ,
Definition 3.3.14 (Clause-set term). Clause-set terms are defined induc-
tively using binary symbols ⊕ and ⊗ (which semantically correspond to con-
junctions and disjunctions respectively) in the following way:

• Clause sets and clause-set variables are clause-set terms.

• If t1 and t2 are clause-set terms, then t1 ⊕ t2 and t1 ⊗ t2 are clause-set
terms.

We say that clause-set term is ground if it does not contain clause-set
variables and parameters.

Definition 3.3.15. Let t be a ground clause-set term, then the transforma-
tion |t| is defined recursively:

• |C| = C, for C being a clause-set.

• |t1 ⊗ t2| = |t1| ◦ |t2|,
• |t1 ⊕ t2| = |t1| ∪ |t2|.

Definition 3.3.16 (Clause set schema). A clause set schema is a structure
C(n) = ((C1, . . . , Cα),R) where the Ci are clause-set symbols denoting clause-
set terms and R = R1 ∪ . . . ∪ Rα, where the Ri (for 0 ≤ i ≤ α) are defined
as follows:

Ci(0, X̄i, X̄i) → si,

Ci(k + 1, X̄i, X̄i) → ti

where si are ground clause-set terms and ti are clause-set terms not contain-
ing parameters different from k and are obtained after replacement of some
clause-set variables by Ci(k, X̄i, X̄i), Cl1(ai1, X̄l1 , X̄l1), . . . , Clj(i)(aij(i), X̄lj(i) , X̄lj(i))
where l1, . . . , lj(i) are indices different from i and ai1, . . . , a

i
j(i) are arithmetic

expressions such that R is always terminating.

Let clause-set substitution be a mapping from clause-set variables to
clause-set terms. Let ϑ be a clause-set substitution, θ be a clause substi-
tution and γ ∈ N, then C(n)↓γ denotes a clause set |C| where C is a normal
form of C1(n, X̄1, X̄1)ϑθ[n/γ] w.r.t. R. By abuse of notation we denote clause
set schemata with C(n),D(n),

3.3. RESOLUTION CALCULUS RS 27

Definition 3.3.17 (Resolution refutation schema). A resolution proof schema
is called a resolution refutation schema of a clause set schema C(n) if for every
assignment β for n, %1(n,`, . . . ,`)↓β is a resolution refutation of C(n)↓β.

Example 3.3.18. Let consider the clause set schema C(n) = ((C1, C2, C3),R)
where R is:

C1(0) → {` p0; p0 `}
C1(k + 1) → C2(k + 1)⊕ C3(k + 1)

C2(0) → {` p0}
C2(k + 1) → C2(k)⊗ {` pk+1}
C3(0) → {p0 `}

C3(k + 1) → C3(k)⊕ {pk+1 `}

A resolution refutation schema of C(n) can be defined as the resolution
proof schema R = ((%),R), where R is the following rewrite system:

%(0, X) → r((` p0) ◦X; p0 `; p0),

%(k + 1, X) → r(%(k, (` pk+1) ◦X); pk+1 `; pk+1)

Then a refutation of the clause set C(n)↓α is defined by the term %(n,`)↓α
for all α ∈ N.

Let compute some instances. For α = 0, C(n) ↓0= {` p0; p0 `} and
%(n,`)↓0 is

` p0 p0 `
`

for α = 1, C(n)↓1= {` p0, p1; p0 `; p1 `} and %(n,`)↓1 is

` p0, p1 p0 `
` p1 p1 `

`
Informally, for all α ∈ N, C(n) ↓α= {` p0, . . . , pα; p0 `; p1 `; . . . ; pα `}

and %(n,`)↓α is

` p0, . . . , pα p0 `
` p1, . . . , pα p1 `

...
` pα−1, pα pα−1 `

` pα pα `
`

28 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

Finally, we give soundness and completeness results for Rs. Soundness is
trivial, but the calculus is not complete in general. But it is refutationally
complete for bound-linear schemata.

Proposition 3.3.1 (Soundness). The calculus Rs is sound: if an empty
clause is derivable from a clause set schema C, then C is unsatisfiable.

Proof. Trivial by soundness of resolution rule.

Now we prove a weak form of completeness. Namely, we prove that for
every unsatisfiable clause set C, there exists a refutation by means of [AEP].
But note that it is not possible to transform such kind of refutations into
our formalism in general, because of two reasons: the first is the lack of
mutual recursion and the second is that the refutations in [AEP] are built by
starting to resolve on the literals with “maximal” indices, whereas we have
the opposite for the resolution proof schemata described above.

Proposition 3.3.2 (Weak completeness). If a clause set schema C of bound-
linear schemata is unsatisfiable, then there exists a refutation of C.

Proof (Sketch). The proof is by transforming every bound-linear clause set
schema into a clause set by means of [AEP] and applying the corresponding
completeness result (Theorem 7.1 in [AEP]).

There are two main steps in this transformation. The first step is to
encode our inductive definitions in the clause form by means of [AEP]. Note
that a clause set schema can be easily transformed into a tuple of definitions
of the form

C(0)→ B and C(k + 1)→ I (3.1)

for B, I being some formula schemata, where I can contain other inductively
defined formula schemata. Now, (3.1) can be encoded into the expression,
for a new predicate symbol φ denoting C:

{φ0 ⇔ B, φk+1 ⇔ I} (3.2)

where A1 ⇔ A2 is an abbreviation for ¬A1 ∨ A2, A1 ∨ ¬A2. Then, (3.2) can
be directly translated into clausal form C by means of [AEP].

The second step is to normalize atoms, occurring in C, in the sense
of [AEP]. It is enough to encode every atom of the form pk+α, for some
α > 1, occurring in C, in the following way: introduce new predicate symbol
pα, with the intended meaning pαk ⇔ pk+α and define

{
pβk ⇔ pβ−1

k+1 , p
0
k ⇔ pk | 0 < β ≤ α

}

For more details about the transformation please consult [AEP].

3.3. RESOLUTION CALCULUS RS 29

3.3.1 Discussion

There are two main problems which arose from the calculus Rs. The first is
how to find a resolution refutation schema for the given clause set schema.
The second is how to verify that the given resolution proof schema is indeed a
resolution refutation schema of the given clause set schema. Although these
questions are very natural, possible solutions are difficult and thus the subject
of future research. Here we discuss some intuitive ways these problems can
possibly be solved.

Intuitively, one strategy to find a resolution refutation schema is to “com-
pute” recursions in clause set schema and then derive the empty clause from
this “real” clause set. If the clauses in the resolution term are such that the
number of literals depends on a parameter, then there is a need for clause
variables to be introduced in this term. For example, consider the clause
set schema from Example 3.3.18. It contains one clause with parameter-
dependent literals. Being that the clause is used for the refutation, it is
necessary there to be one clause variable in the resolution term.

A solution to the second problem can be to compute an instance of clause
set and resolution proof schemata and check that every clause at the leaf
nodes in the resolution refutation occur in the clause set. But of course this
can not be done for all instances, therefore some kind of inductive checking
is needed. Below we describe one such algorithm informally.

Let us given a clause set schema C(n) and a resolution proof schema
R = ((%1, . . . , %α),R). To check that R is a refutation schema of C(n) we
need to check that for all β ∈ N, %1(n,`, . . . ,`)↓β is a refutation of C(n)↓β,
i.e. %1(n,`, . . . ,`) ↓β derives ` and every clause at leaf nodes is in C(n) ↓β.
The algorithm is the following:

1. Ensure that %1 is a refutation: check inductively the more general state-
ment, that %1(n, X̄1) derives X1 ◦ · · · ◦ Xα1 and for each 1 < β ≤ α,
%β(n, X̄β) derives C ◦Xl1 ◦ · · · ◦Xlβ , for a clause C. On the base case of
%β, for all 1 ≤ β ≤ α, simply check the resolution steps. In the inductive
case, for %β(k+1, X̄β), assume induction hypothesis that %γ(a, C ◦Xγ)
proves Cl1 ◦Xl1 ◦· · ·◦Clγ ◦Xlγ for all β < γ ≤ α and check the resolution
steps in %β(k + 1, X̄β). Then it is clear that %1(n,`, . . . ,`) derives the
empty clause.

2. Ensure that every clause schema occurring at leaf nodes in R is in C(n)
modulo factoring.

It is clear that the step (1) can always be performed (even automati-
cally), but to find a general algorithm, how one ought to construct the clause
schemata from the clause set schema for the step (2), is an open problem.

30 PROPOSITIONAL SCHEMATIC PROOF SYSTEMS

Example 3.3.19. Let C(n) = ((C1, C2),R) be a clause set schema with R:

C1(0) → {` p0; p0 `}
C1(k + 1) → C2(k + 1)⊕ {pk+1 `}
C2(0) → {` p0}

C2(k + 1) → C2(k)⊕ {pk ` pk+1}

The resolution term for C(0) is trivial. For n > 0, by “computing” the
recursion of C2, we can see that ` pk+1 is easily derivable. If this derivation is
δ(k+1), then the resolution term for the step case is r(δ(k+1); pk+1 `; pk+1).
Therefore a resolution refutation schema of C(n) is R = ((%, δ),R) with R:

%(0) → r(` p0; p0 `; p0),

%(k + 1) → r(δ(k + 1); pk+1 `; pk+1),

δ(0) → ` p0,

δ(k + 1) → r(δ(k); pk ` pk+1; pk).

Then a refutation of the clause set C(n)↓α is defined by the term %(n)↓α
for all α ∈ N. Informally, for all α ∈ N, C(n)↓α= {` p0; p0 ` p1; . . . ; pα−1 `
pα; pα `} and %(n)↓α is

` p0 p0 ` p1

` p1 p1 ` p2

...
` pα−1 pα−1 ` pα

` pα pα `
`

and we can check that all clauses at the leaf nodes are in the clause set.
Moreover, for this simple example we can apply an inductive argument and
check steps (1) and (2) of the algorithm. For (1), it is easy to see that
%(0) derives ` and δ(n) derives ` pn, then clearly, %(n) derives `. For (2),
obviously all of the clauses ` p0, p0 `, pk ` pk+1 and pk+1 ` are in C(n).

Chapter 4

The Method CERESs

As was discussed in the introduction, reductive cut-elimination methods fail
on cyclic proofs, because cut cannot be shifted over cycles. It is the case in our
calculus also. Reductive cut-elimination methods work for proof schemata
only if cuts can be eliminated inside the LKs-proof. Otherwise such methods
does not work, because shifting cuts over proof links fail. Since CERES is
based on the global analysis of the proof, we choose CERES to be extended
to proof schemata. Hence we define the method CERESs for sequent calculus
LKs.

To keep things simple, first CERESs for propositional LKs is given, which
will be extended to first-order LKs in the next chapter. The point is that
there is no need of skolemization and regularization in the propositional cal-
culus. Therefore the problems related to skolemization and regularization,
as well possible solutions will be discussed in Chapter 5.

4.1 Characteristic Terms

At the heart of the CERES method lies the characteristic clause set, which
describes the cuts in a proof. The connection between cut-elimination and the
characteristic clause set is that any resolution refutation of the characteristic
clause set can be used as a skeleton of a proof containing only atomic cuts.

Recall the discussion from Section 2.4, that the characteristic clause set
can either be defined directly, or it can be obtained via a transformation
from a characteristic term. Here we use the later approach and define a
schematic characteristic term and an evaluation of it to characteristic clause
set schema.

Our main aim is to extend the usual inductive definition of the charac-
teristic term to the case of proof links. This will give rise to a notion of

31

32 THE METHOD CERESS

schematic characteristic term. As usual, a clause-set term is a term built in-
ductively from clauses and the binary symbols ⊗,⊕ (we assume associativity
of these symbols and sometimes omit the unnecessary parenthesis in terms).
The usual definition of the characteristic term depends upon the cut-status
of the formula occurrences in a proof (i.e. whether a given formula occurrence
is a cut-ancestor, or not). But assume that a formula occurrence in a proof
link in a proof schema is a cut-ancestor. Then this formula gives rise to many
formula occurrences in its evaluation, which all will be cut-ancestors. There-
fore we need some machinery to track the cut-status of formula occurrences
through proof links. Hence we introduce the notion of cut-configuration.

Definition 4.1.1 (Cut-configuration). Let Ω be a set of formula occurrences
from the end-sequent of a proof schema pair ψ, then Ω is called a configuration
for ψ and if additionally, every formula occurrence in Ω is a cut-ancestor, then
Ω is called a cut-configuration for ψ. If Ω is ∅, then Ω is called an empty
cut-configuration for ψ.

Remark 4.1.2. For simplicity and readability, in practice we will write for-
mulas in a set instead of occurrences.

Example 4.1.3. Let us consider the proof schema Ψ = 〈ψ, ϕ〉 of the sequent
p0,
∧n
i=0(pi ⊃ pi+1) ` ∧n+1

i=0 pi, defined in the following way: ψ is associated
with the pair: π1:

p0 ` p0

p0 ` p0 p1 ` p1 ⊃ : l
p0, p0 ⊃ p1 ` p1 ∧ : r

p0, p0, p0 ⊃ p1 ` p0 ∧ p1
c : l

p0, p0 ⊃ p1 ` p0 ∧ p1

and ν1(k):

(ψ(k))

p0,
∧k
i=0(pi ⊃ pi+1) ` ∧k+1

i=0 pi

(ϕ(k + 1))
∧k+1
i=0 pi `

∧k+1
i=0 pi

pk+1 ` pk+1 pk+2 ` pk+2 ⊃ : l
pk+1, pk+1 ⊃ pk+2 ` pk+2 ∧ : r∧k+1

i=0 pi, pk+1, pk+1 ⊃ pk+2 `
∧k+2
i=0 pi

w : l∧k+1
i=0 pi,

∧k
i=0 pi, pk+1, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi ∧ : l∧k+1

i=0 pi,
∧k+1
i=0 pi, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi

c : l∧k+1
i=0 pi, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi

cut
p0,

∧k
i=0(pi ⊃ pi+1), pk+1 ⊃ pk+2 `

∧k+2
i=0 pi ∧ : l

p0,
∧k+1
i=0 (pi ⊃ pi+1) ` ∧k+2

i=0 pi

and ϕ is associated with the pair: π2 : p0 ` p0 and ν2(k):

(ϕ(k))
∧k
i=0 pi `

∧k
i=0 pi pk+1 ` pk+1 ∧ : r∧k

i=0 pi, pk+1 `
∧k+1
i=0 pi ∧ : l∧k+1

i=0 pi `
∧k+1
i=0 pi

4.1. CHARACTERISTIC TERMS 33

The end-sequent of ψ is p0,
∧n
i=0(pi ⊃ pi+1) ` ∧n+1

i=0 pi and the end-
sequent of ϕ is

∧n
i=0 pi `

∧n
i=0 pi. Then there are four configurations for

ϕ: ∅, {∧n
i=0 pi `}, {`

∧n
i=0 pi} and {∧n

i=0 pi ` ; ` ∧n
i=0 pi}. Clearly, for ψ

there are eight configurations and in general, if there are m formula occur-
rences in the end-sequent of a proof φ, then there will be 2m configurations
for φ. But not all these configurations are cut-configurations. For example,
for ψ the cut-configurations are ∅ and {` ∧n+1

i=0 pi} and for ϕ: {∧n
i=0 pi `}

and {∧n
i=0 pi ` ; ` ∧n

i=0 pi}. Note that, according to the definition, ∅ is also
a cut-configuration for ϕ, but this cut-configuration is not relevant for us
(since it is not “reachable”).

We will represent the characteristic term of a proof link in our object
language: For all proof symbols ψ and its (cut-)configurations Ω we assume
a unique indexed proposition symbol clψ,Ω called clause-set symbol. The
intended semantics of clψ,Ωa is “the characteristic clause set of ψ(a), with the
(cut-)configuration Ω”.

In fact, a characteristic term can be computed w.r.t any configuration Ω,
but not all these terms are interesting for us. We only need characteristic
terms w.r.t relevant cut-configurations.

Definition 4.1.4 (Characteristic term). Let π be an LKs-proof and Ω a
(cut-)configuration. In the following, by ΓΩ,∆Ω and ΓC ,∆C we will denote
multisets of formulas of Ω- and cut-ancestors respectively and Γ,∆ denote
multisets of formulas not being Ω- or cut-ancestor. Let ρ be an inference in
π. We define a clause-set term Θρ(π,Ω) inductively:

• if ρ is an axiom of the form ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆, then Θρ(π,Ω) =
ΓΩ,ΓC ` ∆Ω,∆C

• if ρ is a proof link of the form
(ψ(a))

ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆
then define

Ω′ as the cut-configuration corresponding to formula occurrences from
ΓΩ,ΓC ` ∆Ω,∆C and Θρ(π,Ω) = clψ,Ω

′
a

• if ρ is a unary rule with immediate predecessor ρ′, then Θρ(π,Ω) =
Θρ′(π,Ω).

• if ρ is a binary rule with immediate predecessors ρ1, ρ2, then

– if the auxiliary formulas of ρ are Ω- or cut-ancestors, then
Θρ(π,Ω) = Θρ1(π,Ω)⊕Θρ2(π,Ω),

– otherwise Θρ(π,Ω) = Θρ1(π,Ω)⊗Θρ2(π,Ω).

34 THE METHOD CERESS

Finally, define Θ(π,Ω) = Θρ0(π,Ω), where ρ0 is the last inference of π, and
Θ(π) = Θ(π, ∅).
Example 4.1.5. Let us consider the proof schema Ψ defined in Exam-
ple 4.1.3 and compute the characteristic terms for the relevant cut-configura-
tions. We denote nonempty cut-configurations in the following way:

Ωψ = {` ∧n+1
i=0 pi}

Ωϕ = {∧n
i=0 pi `}

Ω′ϕ = {∧n
i=0 pi ` ; ` ∧n

i=0 pi}
Then the characteristic terms of Ψ for these cut-configurations are:

Θ(π1, ∅) = ` ⊗(` ⊗ `)
Θ(π1,Ωψ) = ` p0 ⊕ (` ⊗ ` p1)

Θ(ν1(k), ∅) = cl
ψ,Ωψ
k ⊕ (cl

ϕ,Ωϕ
k+1 ⊗ (pk+1 ` ⊗ `))

Θ(ν1(k),Ωψ) = cl
ψ,Ωψ
k ⊕ (cl

ϕ,Ω′ϕ
k+1 ⊕ (pk+1 ` ⊗ ` pk+2))

Θ(π2,Ωϕ) = p0 `
Θ(π2,Ω

′
ϕ) = p0 ` p0

Θ(ν2(k),Ωϕ) = cl
ψ,Ωϕ
k ⊗ pk+1 `

Θ(ν2(k),Ω′ϕ) = cl
ψ,Ω′ϕ
k ⊕ pk+1 ` pk+1

We say that a characteristic term is ground if it does not contain index
variables and clause-set symbols. Analogously to proof schemata, we define
a notion of evaluation of characteristic terms:

Definition 4.1.6 (Evaluation). We define the rewrite rules for clause-set
symbols for all proof symbols ψβ and cut-configurations Ω:

cl
ψβ ,Ω
0 → Θ(πβ,Ω), cl

ψβ ,Ω

k+1 → Θ(νβ(k),Ω),

for all 1 ≤ β ≤ α. Next, let γ ∈ N and let clψβ ,Ω ↓γ be a normal form of
clψβ ,Ωγ under the rewrite system just given. Then define Θ(ψβ,Ω) = clψβ ,Ωn and
Θ(Ψ,Ω) = Θ(ψ1,Ω) and finally the schematic characteristic term Θ(Ψ) =
Θ(Ψ, ∅).

Here comes the second reason why we chose to define the characteristic
clause set via the characteristic term: The clause-set term is closed under
the rewrite rules we have given for the clause-set symbols, while the notion
of clause set is not (a clause will in general become a formula when subjected
to the rewrite rules). Also, the representation of the characteristic clause set
as a term is much more concise than an explicit representation (since the
distributivity rule increases the size of the formula exponentially).

4.1. CHARACTERISTIC TERMS 35

Example 4.1.7. Let us consider the proof schema and the characteris-
tic terms from Example 4.1.3 and Example 4.1.5 respectively. Then the
schematic characteristic term for Ψ, Θ(Ψ) = clψ,∅ and the normal forms of it
for 0, 1, 2 are the following terms:

Θ(Ψ)↓0 = ` ⊗ ` ⊗ `
Θ(Ψ)↓1 = ` p0 ⊕ (` ⊗ ` p1)⊕ (p0 ` ⊗p1 ` ⊗p1 ` ⊗ `)

Θ(Ψ)↓2 = ` p0 ⊕ (` ⊗ ` p1)⊕ p0 ` p0 ⊕ p1 ` p1 ⊕ (p1 ` ⊗ ` p2)⊕
(p0 ` ⊗p1 ` ⊗p2 ` ⊗p2 ` ⊗ `)

and informally, for all γ ∈ N:

Θ(Ψ)↓γ = ` p0 ⊕ (` ⊗ ` p1)⊕ p0 ` p0 ⊕ · · · ⊕ pγ ` pγ ⊕
(p1 ` ⊗ ` p2)⊕ · · · ⊕ (pγ−1 ` ⊗ ` pγ)⊕
(p0 ` ⊗ · · · ⊗ pγ ` ⊗pγ ` ⊗ `)

Now, we prove that the notion of characteristic term is well-defined.

Proposition 4.1.1. Let Ψ = 〈ψ1, . . . , ψα〉 be a proof schema. Let γ ∈ N and
Ω be a (cut-)configuration, then Θ(ψβ,Ω)↓γ is a ground characteristic term
for all 1 ≤ β ≤ α. Hence Θ(Ψ)↓γ is a ground characteristic term.

Proof. By double induction analogously to the proof of Proposition 3.2.1.

Next, we show that evaluation and extraction of characteristic terms com-
mute, i.e. the characteristic term of an evaluation of a proof schema is the
same as an evaluation of the characteristic term of a proof schema. We will
later use this property to derive results on schematic characteristic clause
sets from standard results on (non-schematic) CERES.

Proposition 4.1.2. Let Ψ be a proof schema, Ω a cut-configuration and
γ ∈ N. Then Θ(Ψ↓γ,Ω) = Θ(Ψ,Ω)↓γ.

Proof. We proceed by induction on γ. If γ = 0, then Θ(Ψ↓0,Ω) = Θ(π1,Ω)
and Θ(Ψ,Ω)↓0= Θ(π1,Ω).

IH1: assume γ > 0 and for all β < γ, Θ(Ψ ↓β,Ω) = Θ(Ψ,Ω) ↓β. We
proceed by induction on the number α of proof symbols in Ψ.

Let α = 1. By the definition of characteristic term, the constructions
of Θ(Ψ ↓γ,Ω) and Θ(Ψ,Ω) ↓γ differ only on proof links, i.e. if (ψ1(k)) is a
proof link in ν1(k), then by the definition of evaluation of proof schemata,
Θ(ψ1 ↓γ,Ω) contains the term Θ(ψ1 ↓β,Ω′) and by the definition of evaluation
of characteristic term schemata, Θ(Ψ,Ω) ↓γ contains the term Θ(Ψ,Ω′) ↓β,

36 THE METHOD CERESS

for some β < γ. Then by the assumption Θ(ψ1 ↓β,Ω′) = Θ(Ψ,Ω′)↓β and we
conclude that Θ(ψ1 ↓γ,Ω) = Θ(Ψ,Ω)↓γ.

Now, assume α > 1 and the proposition holds for all proof schemata with
proof symbols less than α (IH2). Again, for proof links in ν1(k) of the form
(ψ1(k)) the argument is the same as in the previous case. Let (ψι(a)), 1 <
ι ≤ α, be a proof link in ν1(k). Then, again, by the definition of evaluation
of proof schemata, Θ(ψ1 ↓γ,Ω) contains the term Θ(ψι ↓λ,Ω′) and by the
definition of evaluation of characteristic term schemata, Θ(Ψ,Ω)↓γ contains
the term Θ(Φ,Ω′) ↓λ, where Φ = 〈(πι, νι(k)), . . . , (πα, να(k))〉. Clearly, Φ
contains less than α proof symbols, then by IH2, Θ(ψι ↓λ,Ω′) = Θ(Φ,Ω′) ↓λ
and we conclude that Θ(ψ1 ↓γ,Ω) = Θ(Ψ,Ω)↓γ.

From the characteristic term schema we finally define the notion of char-
acteristic clause set schema in the spirit of Definition 3.3.16. We just need
to ensure that clause-set symbols do not produce mutual recursion or the
recursion is terminating.

We say that a clause-set symbol clψ,Ω depends on a clause-set symbol
clϕ,Ω

′
, if a term Θ(ψ,Ω) contains clϕ,Ω

′
. We assume that the dependency

relation is transitive and reflexive. The following proposition ensures that
the dependency relation is not symmetric.

Proposition 4.1.3. Let Ψ = 〈ψ1, . . . , ψα〉 be a proof schema such that for
each proof symbol ψβ ∈ Ψ, νβ(k) contains at most one proof link to ψβ. Then
the dependency relation between clause-set symbols for all proof symbols ψβ
and cut-configurations Ω is asymmetric.

Proof. We proceed by case distinction. Assume clψi,Ω depends on clψj ,Ω
′

for
some i 6= j. This means that there is a proof link in νi(k) to ψj explicitly or
implicitly (i.e in νi(k) there is a proof link to ψi1 , in νi1(k) there is a proof
link to ψi2 and so on. Finally, in νil(k) there is a proof link to ψj). In both

cases, clψj ,Ω
′

cannot depend on clψi,Ω by the definition of proof schemata.

Now, assume there exists a number 1 ≤ β ≤ α, such that clψβ ,Ω depends
on clψβ ,Ω

′
and vice versa. This means that the cut-configuration Ω gives rise

to Ω′ and vice versa. Then, since there is only one proof link in νβ(k), there
should exist formula schemata A(n) and B(n) in the end-sequent of ψβ, such
that A(k) is an ancestor of B(k + 1) and B(k) is an ancestor of A(k + 1).
According to our definitions of formula schemata this cannot happen for
A(n) 6= B(n), therefore assume A(n) = B(n). We distinguish two cases: if
both formulas are in the same side of the sequent, then it is possible to switch
the occurrences in such a way that Ω = Ω′ and clψβ ,Ω = clψβ ,Ω

′
; so assume

they are in different sides of the sequent. The only logical connectives that

4.1. CHARACTERISTIC TERMS 37

change sides of the sequent are ¬ and ⊃, but by the definition of formula
schemata the only iterated connectives are ∧ and ∨. A contradiction.

If there are two or more proof links to ψβ in νβ(k), then the dependency
relation is symmetric only if a cut-configuration Ω gives rise to both cut-
configurations Ω and Ω′ and so does Ω′. But since the structure of νβ(k) is
fixed, the terms Θ(νβ(k),Ω) and Θ(νβ(k),Ω′) have the same structure as well.
Therefore with the help of additional clause-set symbols, mutual recursion
can be eliminated. Hence now on we assume that the dependency relation is
asymmetric for an arbitrary proof schema.

Note that the mutual recursion anyway does not harm the characteristic
clause set schema in this particular case, because the parameter is strictly
decreasing and the rewrite system is still terminating.

Now, we perform some notational changes on characteristic terms, to get
a better readable clause-set schema.

Definition 4.1.8 (Characteristic clause set schema). Let Ψ = 〈ψ1, . . . , ψα〉
be a proof schema and Θ(Ψ) a characteristic term schema of it. We assume an
ordered list of clause-set symbols from Θ(Ψ) according to their dependency
and replace each member of this list with a new clause-set symbol Cγ. For
each Cγ assigned to clψβ ,Ω, for all 1 ≤ β ≤ α and cut-configurations Ω, we
define a rewrite system

Rγ = {Cγ(0)→ ‖Θ(πβ,Ω)‖; Cγ(k + 1)→ ‖Θ(νβ(k),Ω)‖} ,

where ‖ · ‖ is defined in the following way:

• ‖clψ,Ωa ‖ = Cj(a), where Cj is a clause-set symbol assigned to clψ,Ω,

• ‖Θ‖ = |Θ| for Θ being a characteristic term not containing clause-set
symbols,

• ‖Θ1 ⊗Θ2‖ = ‖Θ1‖ ⊗ ‖Θ2‖,

• ‖Θ1 ⊕Θ2‖ = ‖Θ1‖ ⊕ ‖Θ2‖.
Clearly clψ1,∅ is the first element in the list and C1 is assigned to it. Then
the schematic characteristic clause set CL(Ψ) = ((C1, C2, . . . , Cl),R), where
R = R1 ∪ · · · ∪ Rl. Proposition 4.1.3 and the discussion above ensures that
the requirements of Definition 3.3.16 are fulfilled.

For a ground LKs-proof π and cut-configuration Ω, CL(π,Ω) = |Θ(π,Ω)|.
We define the standard characteristic clause set CL(π) = CL(π, ∅).
Remark 4.1.9. From the definition above and from Proposition 4.1.2 it is
clear that CL(Ψ)↓γ= CL(Ψ↓γ) for all γ ∈ N.

38 THE METHOD CERESS

Example 4.1.10. Let us consider the characteristic terms defined in Ex-
ample 4.1.5. It is clear that the clause-set symbols have the following or-
der: clψ,∅, clψ,Ωψ , clϕ,Ωϕ , clϕ,Ω

′
ϕ ; therefore the schematic characteristic clause

set CL(Ψ) = ((C1, C2, C3, C4),R) where R is:

C1(0) → {`}
C1(k + 1) → C2(k)⊕ (C3(k + 1)⊗ {pk+1 `})
C2(0) → {` p0 ; ` p1}

C2(k + 1) → C2(k)⊕ C4(k + 1)⊕ {pk+1 ` pk+2}
C3(0) → {p0 `}

C3(k + 1) → C3(k)⊗ {pk+1 `}
C4(0) → {p0 ` p0}

C4(k + 1) → C4(k)⊕ {pk+1 ` pk+1}

It is obvious to see that C4 contains only tautologies and thus can be deleted.
Therefore the simplified version of CL(Ψ) is ((C1, C2, C3),R), where R is:

C1(0) → {`}
C1(k + 1) → C2(k)⊕ (C3(k + 1)⊗ {pk+1 `})
C2(0) → {` p0 ; ` p1}

C2(k + 1) → C2(k)⊕ {pk+1 ` pk+2}
C3(0) → {p0 `}

C3(k + 1) → C3(k)⊗ {pk+1 `}

Let us now consider the characteristic terms defined in Example 4.1.7.
The corresponding clause sets are:

CL(Ψ↓0) = {`}
CL(Ψ↓1) = {` p0 ; ` p1 ; p0, p1, p1 `}
CL(Ψ↓2) = {` p0 ; ` p1 ; p0 ` p0 ; p1 ` p1 ; p1 ` p2 ; p0, p1, p2, p2 `}

Informally, for all γ ∈ N, the simplified clause set, CL(Ψ)↓γ is:

{` p0 ; ` p1 ; p1 ` p2 ; . . . ; pγ−1 ` pγ ; p0, . . . , pγ, pγ `}.

Now we prove the main result about the characteristic clause set and lift
it to the schematic case.

Proposition 4.1.4. Let π be a ground LKs-proof. Then CL(π) is unsatisfi-
able.

4.1. CHARACTERISTIC TERMS 39

Proof. By the identification of ground LKs-proofs with propositional LK-
proofs, the result follows from the analogous proposition (Proposition 3.2)
in [BL00].

Proposition 4.1.5. CL(Ψ) ↓γ is unsatisfiable for all γ ∈ N (i.e. CL(Ψ) is
unsatisfiable).

Proof. By the definition of characteristic clause set schema and Proposi-
tion 4.1.2, CL(Ψ)↓γ= CL(Ψ↓γ), but the later one is unsatisfiable by Propo-
sition 4.1.4.

The rewrite rules from Definition 4.1.6 can be used as logical definitions.
Hence any theorem prover for propositional schemata can be used to re-
fute CL(Ψ). One such example is RegSTAB [ACP10], a tableaux solver for
propositional schemata, which can translate tableaux proofs into resolution
refutations [AP11].

Example 4.1.11. Just to complete the example, we give a resolution refu-
tation schema of the characteristic clause set schema obtained in Exam-
ple 4.1.10, hence show its unsatisfiability. The resolution proof schema can
be defined as R = ((%1, %2, %3),R), where R is the following rewrite system:

%1(0) → `
%1(k + 1) → %3(k, pk+1 `)

%2(0) → ` p1

%2(k + 1) → r(%2(k); pk+1 ` pk+2; pk+1)

%3(0, X) → r(` p1; r(` p0; (p0, p1 `) ◦X; p0); p1),

%3(k + 1, X) → r(%2(k + 1); %3(k, (pk+2 `) ◦X); pk+2)

Then a refutation of the characteristic clause set CL(Ψ)↓α is defined by the
term %1(n)↓α for all α ∈ N.

Let compute instances of the refutation schema for α = 0, 1, 2 to illustrate
that it is a refutation. For α = 0, clearly %1(n)↓0=`. For α = 1, %1(n)↓1 is

` p1

` p0 p0, p1, p1 `
p1, p1 `

`
and for α = 2, %1(n)↓2 is

` p1 p1 ` p2

` p2

` p1

` p0 p0, p1, p2, p2 `
p1, p2, p2 `

p2, p2 `
`

40 THE METHOD CERESS

Informally, for all α ∈ N, %1(n)↓α is

` p1 p1 ` p2

` p2 p2 ` p3

...

` pα−1 pα−1 ` pα
` pα

` p1 p1 ` p2

` p2

` p1

` p0 p0, . . . , pα, pα `
p1, . . . , pα, pα `

p2, . . . , pα, pα `
...

pα, pα `
`

Clearly, all clauses at the leaf nodes are in CL(Ψ) ↓α (see the simplified
clause set obtained in Example 4.1.10).

Finally, we would like to mention that there exist an exponentially smaller
refutation of CL(Ψ)↓α, which is:

` p0

` p1

p1 ` p2

pα−2 ` pα−1

pα−1 ` pα p0, . . . , pα, pα `
p0, . . . , pα−1, pα−1 `

...
p0, p1, p2, p2 `

p0, p1, p1 `
p0 `

`
The refutation is not expressible in our formalism and the reason is that the
recursion goes backwards from α to 0, i.e. on the base step we cannot have
a resolution term on the clauses pα−1 ` pα and p0, . . . , pα, pα `, resolving pα.

4.2 Projection Set

The next step in the schematization of the CERES method consists in the
definition of schematic proof projections. The aim is, in analogy with the
preceding section, to construct a schematic projection term that can be eval-
uated to a set of ground LKs-proofs. As before, we introduce formal symbols
representing sets of proofs; again the notion of LKs-proof is not closed under
the rewrite rules for these symbols, which is the reason for introducing the
notion of projection term.

For our term notation we assume for every rule ρ of LKs a corresponding
rule symbol that, by abuse of notation, we also denote by ρ. Given a unary
rule ρ and an LKs-proof π, there are different ways to apply ρ to the end-
sequent of π: namely, the choice of auxiliary formulas is free. Formally, the
projection terms we construct will include this information so that evaluation
is always well-defined, but we will surpress it in the notation since the choice
of auxiliary formulas will always be clear from the context.

4.2. PROJECTION SET 41

For every proof symbol ψ and (cut-)configuration Ω, we assume a unique
proof symbol prψ,Ω, called projection term symbol. The intended semantics
of prψ,Ω(a) is “the set of projections of ψ(a), with the (cut-)configuration Ω”.
Now, a projection term is a term built inductively from sequents and terms
prψ,Ω(a), for some arithmetic expression a, using unary rule symbols, unary
symbols wΓ`∆ for all sequents Γ ` ∆ and binary symbols ⊕,⊗σ for all binary
rules σ.

Definition 4.2.1 (Projection term). Let π be an LKs-proof and Ω an ar-
bitrary (cut-)configuration for π. Let ΓΩ,∆Ω and ΓC ,∆C be multisets of
formulas corresponding to Ω- and cut-ancestors respectively and Γ,∆ be
multisets of formulas not being Ω- or cut-ancestor. We define a projection
term Ξρ(π,Ω) inductively:

• If ρ corresponds to an initial sequent S, then we define Ξρ(π,Ω) = S.

• If ρ is a proof link in π of the form:
(ψ(a))

ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆
then define

Ω′ as the cut-configuration corresponding to formula occurrences from
ΓΩ,ΓC ` ∆Ω,∆C and Ξρ(π,Ω) = prψ,Ω

′
(a).

• If ρ is a unary inference with immediate predecessor ρ′, then:

– if the auxiliary formula(s) of ρ are Ω- or cut-ancestors, then
Ξρ(π,Ω) = Ξρ′(π,Ω),

– otherwise Ξρ(π,Ω) = ρ(Ξρ′(π,Ω)).

• If σ is a binary inference with immediate predecessors ρ1 and ρ2, then:

– if the auxiliary formulas of σ are Ω- or cut-ancestors, let Γi ` ∆i be
the ancestors of the end-sequent in the conclusion of ρi, for i = 1, 2,
and define: Ξσ(π,Ω) = wΓ2`∆2(Ξρ1(π,Ω))⊕ wΓ1`∆1(Ξρ2(π,Ω)),

– otherwise Ξσ(π,Ω) = Ξρ1(π,Ω)⊗σ Ξρ2(π,Ω).

Finally, define Ξ(π,Ω) = Ξρ0(π,Ω), where ρ0 is the last inference of π.

We say that a projection term is ground if it does not contain index
variables and projection term symbols.

Example 4.2.2. Let us consider the proof schema Ψ = 〈ψ, ϕ〉 defined in
Example 4.1.3: ψ is associated with the pair: π1:

p0 ` p0

p0 ` p0 p1 ` p1 ⊃ : l
p0, p0 ⊃ p1 ` p1 ∧ : r

p0, p0, p0 ⊃ p1 ` p0 ∧ p1
c : l

p0, p0 ⊃ p1 ` p0 ∧ p1

42 THE METHOD CERESS

and ν1(k):

(ψ(k))

p0,
∧k
i=0(pi ⊃ pi+1) ` ∧k+1

i=0 pi

(ϕ(k + 1))
∧k+1
i=0 pi `

∧k+1
i=0 pi

pk+1 ` pk+1 pk+2 ` pk+2 ⊃ : l
pk+1, pk+1 ⊃ pk+2 ` pk+2 ∧ : r∧k+1

i=0 pi, pk+1, pk+1 ⊃ pk+2 `
∧k+2
i=0 pi

w : l∧k+1
i=0 pi,

∧k
i=0 pi, pk+1, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi ∧ : l∧k+1

i=0 pi,
∧k+1
i=0 pi, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi

c : l∧k+1
i=0 pi, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi

cut
p0,

∧k
i=0(pi ⊃ pi+1), pk+1 ⊃ pk+2 `

∧k+2
i=0 pi ∧ : l

p0,
∧k+1
i=0 (pi ⊃ pi+1) ` ∧k+2

i=0 pi

and ϕ is associated with the pair: π2 : p0 ` p0 and ν2(k):

(ϕ(k))
∧k
i=0 pi `

∧k
i=0 pi pk+1 ` pk+1 ∧ : r∧k

i=0 pi, pk+1 `
∧k+1
i=0 pi ∧ : l∧k+1

i=0 pi `
∧k+1
i=0 pi

Recall the cut-configurations defined in Example 4.1.5:

Ωψ = {` ∧n+1
i=0 pi}

Ωϕ = {∧n
i=0 pi `}

Ω′ϕ = {∧n
i=0 pi ` ; ` ∧n

i=0 pi}
Then the projection terms of Ψ for those cut-configurations are:

Ξ(π1, ∅) = cl(p0 ` p0 ⊗∧r (p0 ` p0 ⊗⊃l p1 ` p1))
Ξ(π1,Ωψ) = cl(w

p0,p0⊃p1`(p0 ` p0)⊕ wp0`(p0 ` p0 ⊗⊃l p1 ` p1))

Ξ(ν1(k), ∅) = ∧l(wpk+1⊃pk+2`
∧k+2
i=0 pi(prψ,Ωψ(k))⊕

wp0,
∧k
i=0(pi⊃pi+1)`(prϕ,Ωϕ(k + 1)⊗∧r

(pk+1 ` pk+1 ⊗⊃l pk+2 ` pk+2)))
Ξ(ν1(k),Ωψ) = ∧l(wpk+1⊃pk+2`(prψ,Ωψ(k))⊕

wp0,
∧k
i=0(pi⊃pi+1)`(wpk+1⊃pk+2`(prϕ,Ω

′
ϕ(k + 1))⊕

w`(pk+1 ` pk+1 ⊗⊃l pk+2 ` pk+2)))
Ξ(π2,Ωϕ) = p0 ` p0

Ξ(π2,Ω
′
ϕ) = p0 ` p0

Ξ(ν2(k),Ωϕ) = prψ,Ωϕ(k)⊗∧r pk+1 ` pk+1

Ξ(ν2(k),Ω′ϕ) = w`(prψ,Ω
′
ϕ(k))⊕ w`(pk+1 ` pk+1)

We now define the evaluation of projection terms, which is compatible
with the respective definition for characteristic terms.

Definition 4.2.3 (Evaluation). We define the rewrite rules for projection
term symbols for all proof symbols ψβ and cut-configurations Ω:

prψβ ,Ω(0)→ Ξ(πβ,Ω), prψβ ,Ω(k + 1)→ Ξ(νβ(k),Ω),

4.2. PROJECTION SET 43

for all 1 ≤ β ≤ α. Next, let γ ∈ N and let prψβ ,Ω ↓γ be a normal form of

prψβ ,Ω(γ) under the rewrite system just given. Then define Ξ(ψβ,Ω) = pr
ψβ ,Ω
n

and Ξ(Ψ,Ω) = Ξ(ψ1,Ω) and finally the schematic projection term Ξ(Ψ) =
Ξ(Ψ, ∅).

Next, we prove analogous results for projection terms as we proved for
characteristic terms.

Proposition 4.2.1. Let Ψ be a proof schema, Ω a cut-configuration and
γ ∈ N. Then Ξ(Ψ↓γ,Ω) = Ξ(Ψ,Ω)↓γ.

Proof. We proceed as in the proof of Proposition 4.1.2.

We will define a map from ground projection terms to sets of ground LKs-
proofs. For this, we need some auxiliary notation. The discussion regarding
the notation for the application of rules from the beginning of this section
applies here.

Definition 4.2.4. Let ρ be a unary and σ a binary rule. Let ϕ, π be LKs-
proofs, then ρ(ϕ) is the LKs-proof obtained from ϕ by applying ρ, and
σ(ϕ, π) is the proof obtained from the proofs ϕ and π by applying σ.

We extend these notions to sets of LKs-proofs. Let P,Q be such sets.
Then ρ(P) = {ρ(π) | π ∈ P}, P Γ`∆ = {πΓ`∆ | π ∈ P}, where πΓ`∆ is π
followed by weakenings adding Γ ` ∆, and P ×σ Q = {σ(ϕ, π) | ϕ ∈ P, π ∈
Q}.
Definition 4.2.5. Let Ξ be a ground projection term. Then we define a set
of ground LKs-proofs |Ξ| in the following way:

• |Γ ` ∆| = {Γ ` ∆},

• |ρ(Ξ)| = ρ(|Ξ|) for unary rule symbols ρ,

• |wΓ`∆(Ξ)| = |Ξ|Γ`∆,

• |Ξ1 ⊕ Ξ2| = |Ξ1| ∪ |Ξ2|,

• |Ξ1 ⊗σ Ξ2| = |Ξ1| ×σ |Ξ2| for binary rule symbols σ.

For ground LKs-proofs π and cut-configurations Ω we define PR(π,Ω) =
|Ξ(π,Ω)| and the standard projection set PR(π) = PR(π, ∅). For a proof
schema Ψ and γ ∈ N we define PR(Ψ)↓γ= |Ξ(Ψ)↓γ |.
Example 4.2.6. Let us consider the projection terms defined in Exam-
ple 4.2.2. Then the schematic projection term for Ψ, Ξ(Ψ) = prψ,∅ and
the normal forms of it for 0, 1, 2 are the following terms:

44 THE METHOD CERESS

Ξ(Ψ)↓0 = cl(p0 ` p0 ⊗∧r (p0 ` p0 ⊗⊃l p1 ` p1))

Ξ(Ψ)↓1 = ∧l(wp1⊃p2`
∧2
i=0 pi(cl(w

p0,p0⊃p1`(p0 ` p0)⊕
wp0`(p0 ` p0 ⊗⊃l p1 ` p1)))⊕

wp0,p0⊃p1`((p0 ` p0 ⊗∧r p1 ` p1)⊗∧r (p1 ` p1 ⊗⊃l p2 ` p2)))

Ξ(Ψ)↓2 = ∧l(wp2⊃p3`
∧3
i=0 pi(∧l(wp1⊃p2`(cl(wp0,p0⊃p1`(p0 ` p0)⊕

wp0`(p0 ` p0 ⊗⊃l p1 ` p1)))⊕
wp0,p0⊃p1`(wp1⊃p2`(w`(p0 ` p0)⊕

w`(p1 ` p1))⊕
w`(p1 ` p1 ⊗⊃l p2 ` p2))))⊕

wp0,
∧1
i=0(pi⊃pi+1)`(((p0 ` p0 ⊗∧r p1 ` p1)⊗∧r p2 ` p2)⊗∧r

(p2 ` p2 ⊗⊃l p3 ` p3)))

Now, we compute the first two projection sets (PR(Ψ) ↓2 is already too
large and therefore it is left out):

PR(Ψ)↓0 =

{
p0 ` p0

p0 ` p0 p1 ` p1 ⊃ : l
p0, p0 ⊃ p1 ` p1 ∧ : r

p0, p0, p0 ⊃ p1 ` p0 ∧ p1
c : l

p0, p0 ⊃ p1 ` p0 ∧ p1

}

PR(Ψ)↓1 =

{ p0 ` p0
w : l∗

p0, p0, p0 ⊃ p1 ` p0
c : l

p0, p0 ⊃ p1 ` p0
w : l, r

p0, p0 ⊃ p1, p1 ⊃ p2 ` p0,
∧2
i=0 pi ∧ : l

p0,
∧1
i=0(pi ⊃ pi+1) ` p0,

∧2
i=0 pi

;

p0 ` p0 p1 ` p1 ⊃ : l
p0, p0 ⊃ p1 ` p1

w : l
p0, p0, p0 ⊃ p1 ` p1

c : l
p0, p0 ⊃ p1 ` p1

w : l, r
p0, p0 ⊃ p1, p1 ⊃ p2 ` p1,

∧2
i=0 pi ∧ : l

p0,
∧1
i=0(pi ⊃ pi+1) ` p1,

∧2
i=0 pi

;

p0 ` p0 p1 ` p1 ∧ : r
p0, p1 ` p0 ∧ p1

p1 ` p2 p1 ` p2 ⊃ : l
p1, p1 ⊃ p2 ` p2 ∧ : r

p0, p1, p1, p1 ⊃ p2 `
∧2
i=0 pi

w : l∗
p0, p1, p1, p0, p0 ⊃ p1, p1 ⊃ p2 `

∧2
i=0 pi ∧ : l

p0, p1, p1, p0,
∧1
i=0(pi ⊃ pi+1) ` ∧2

i=0 pi

}

Recall the clause sets:

CL(Ψ)↓0= {`} and CL(Ψ)↓1= {` p0 ; ` p1 ; p0, p1, p1 `}.
It is easy to see that the projection from PR(Ψ)↓0 corresponds to the empty
clause in CL(Ψ) ↓0 and the projections from PR(Ψ) ↓1 correspond to the
clauses in CL(Ψ)↓1 respectively.

4.3. ATOMIC CUT NORMAL FORM 45

From the example above, we can see that for each clause from the charac-
teristic clause set, there is a corresponding proof in the projection set. This
is a general property and not only specific to this example. Hence, the fol-
lowing result describes this relation between the standard projection set and
characteristic clause set in the ground case. It will allow us to construct,
together with a resolution refutation of CL(Ψ), essentially cut-free proofs of
S(γ) for all γ ∈ N. Finally, the result is lifted to the schematic case.

Proposition 4.2.2. Let π be a ground LKs-proof with end-sequent S, then
for all clauses C ∈ CL(π), there exists a ground LKs-proof π ∈ PR(π) with
end-sequent S ◦ C.

Proof. By the identification of ground LKs-proofs with propositional LK-
proofs, the result follows from the Definition 4.2.5 and from the analogous
result (Lemma 3.1) in [BL00].

Proposition 4.2.3. Let Ψ be a proof schema and γ ∈ N, then PR(Ψ↓γ) =
PR(Ψ)↓γ.

Proof. The result follows directly from Proposition 4.2.1.

Proposition 4.2.4. Let Ψ be a proof schema with end-sequent S(n) and
γ ∈ N. Then for every clause C ∈ CL(Ψ)↓γ there exists a ground LKs-proof
π ∈ PR(Ψ)↓γ with end-sequent C ◦ S(γ).

Proof. By Proposition 4.1.2, CL(Ψ)↓γ= CL(Ψ↓γ), and by Proposition 4.2.3,
PR(Ψ) ↓γ= PR(Ψ ↓γ). Then the result follows from Proposition 4.2.2, since
Ψ↓γ has end-sequent S(γ) by definition.

4.3 Atomic Cut Normal Form

While the ACNF in ordinary CERES method was an LK-proof, in this case
the ACNF schema is a pair of projection term and resolution refutation
schema. When a concrete number is given, then the corresponding ground
LKs-proof is computed with atomic cuts only.

Definition 4.3.1 (Transformation). Let % be a ground resolution refutation.
Then the transformation T (%) is defined inductively:

• if % = C for a clause C, then T (%) = C,

• if % = r(%1, %2, P), then T (%) is:

46 THE METHOD CERESS

T (%1)

Γ ` ∆, P, . . . , P
c : r∗

Γ ` ∆, P

T (%2)

P, . . . , P,Π ` Λ
c : l∗

P,Π ` Λ
cut

Γ,Π ` ∆,Λ

Definition 4.3.2 (ACNF). Let Ψ be a proof schema of the end-sequent S(n),
PR(Ψ) be its projection term schema and R be a resolution refutation schema
of the characteristic clause set schema CL(Ψ). Then a pair (PR(Ψ), R) is an
Atomic Cut Normal Form (shortly ACNF) schema of Ψ.

The ACNF for an arbitrary α ∈ N is defined in the following way: for
all C ∈ CL(Ψ)↓α, C being a leaf node in T (R ↓α), we take a corresponding
proof projection φC ∈ PR(Ψ) ↓α. Then define LKs-proof πα of the end-
sequent S(α) by replacing all initial sequents C in T (R↓α) by φC and adding
necessary contractions.

Example 4.3.3. Let consider the proof schema Ψ defined in Example 4.1.3:
ψ is associated with the pair: π1:

p0 ` p0

p0 ` p0 p1 ` p1 ⊃ : l
p0, p0 ⊃ p1 ` p1 ∧ : r

p0, p0, p0 ⊃ p1 ` p0 ∧ p1
c : l

p0, p0 ⊃ p1 ` p0 ∧ p1

and ν1(k):

(ψ(k))

p0,
∧k
i=0(pi ⊃ pi+1) ` ∧k+1

i=0 pi

(ϕ(k + 1))
∧k+1
i=0 pi `

∧k+1
i=0 pi

pk+1 ` pk+1 pk+2 ` pk+2 ⊃ : l
pk+1, pk+1 ⊃ pk+2 ` pk+2 ∧ : r∧k+1

i=0 pi, pk+1, pk+1 ⊃ pk+2 `
∧k+2
i=0 pi

w : l∧k+1
i=0 pi,

∧k
i=0 pi, pk+1, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi ∧ : l∧k+1

i=0 pi,
∧k+1
i=0 pi, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi

c : l∧k+1
i=0 pi, pk+1 ⊃ pk+2 `

∧k+2
i=0 pi

cut
p0,

∧k
i=0(pi ⊃ pi+1), pk+1 ⊃ pk+2 `

∧k+2
i=0 pi ∧ : l

p0,
∧k+1
i=0 (pi ⊃ pi+1) ` ∧k+2

i=0 pi

and ϕ is associated with the pair: π2 : p0 ` p0 and ν2(k):

(ϕ(k))
∧k
i=0 pi `

∧k
i=0 pi pk+1 ` pk+1 ∧ : r∧k

i=0 pi, pk+1 `
∧k+1
i=0 pi ∧ : l∧k+1

i=0 pi `
∧k+1
i=0 pi

Recall its resolution refutation schema from Example 4.1.11: R = ((%1, %2, %3),R),

4.3. ATOMIC CUT NORMAL FORM 47

where R is the following rewrite system:

%1(0) → `
%1(k + 1) → %3(k, pk+1 `)

%2(0) → ` p1

%2(k + 1) → r(%2(k); pk+1 ` pk+2; pk+1)

%3(0, X) → r(` p1; r(` p0; (p0, p1 `) ◦X; p0); p1),

%3(k + 1, X) → r(%2(k + 1); %3(k, (pk+2 `) ◦X); pk+2)

and the projection sets from Example 4.2.6. Then the atomic cut normal
form of Ψ for α = 0 is simply π1, since the resolution refutation is ` and the
empty clause is replaced by the corresponding projection (which is π1) from
PR(Ψ↓0).

Let now compute the ACNF of Ψ for α = 1. First we compute T (%1(n)↓1),
which is:

` p1

` p0 p0, p1, p1 `
cut

p1, p1 `
c : l

p1 `
cut`

Next, we denote projections from PR(Ψ)↓1 by φ`p0 , φ`p1 and φp0,p1,p1`, the
formulas

∧1
i=0(pi ⊃ pi+1) and

∧2
i=0 pi by A and B respectively. Then append

these projections in the proof skeleton above and add some contractions at
the end; so we get:

(φ`p1)

p0, A ` B, p1

(φ`p0)

p0, A ` B, p0

(φp0,p1,p1`)

p0, p1, p1, p0, A ` B
cut

p1, p1, p0, A, p0, A ` B,B
c : l

p1, p0, A, p0, A ` B,B
cut

p0, A, p0, A, p0, A ` B,B,B
c : l, r∗

p0,
∧1
i=0(pi ⊃ pi+1) ` ∧2

i=0 pi

This completes our example.

Note the difference to the straightforward method: first computing the
instance Ψ↓α and then using ordinary CERES on it. In schematic method,
Ψ↓α is not computed at all, however uniform representation of the sequence
of cut-free proofs is obtained. The later is not possible by the straightforward
method.

Finally, we can summarize the CERES method of cut-elimination for
proof schemata and give the main result. The whole procedure CERESs on
schemata is defined in the following way: let Ψ be a proof schema, then we
distinguish two phases – schematic construction and evaluation.

48 THE METHOD CERESS

Schematic construction. This phase consists of the following steps:

• compute CL(Ψ);

• compute PR(Ψ);

• construct a resolution refutation schema R of CL(Ψ).

Evaluation. Given a natural number α, this phase consists of the following
steps:

• compute PR(Ψ)↓α;

• compute R↓α and T (R↓α);

• append the corresponding projections in PR(Ψ)↓α to T (R↓α) and
propagate the contexts down in the proof. Finally add contrac-
tions if necessary.

Definition 4.3.4 (Proof length). Let π be an LKs-proof. The length of
π, denoted by l(π), is the number of sequents occurring in π. For a set of
LKs-proofs P , l(P) = max{l(π) | π ∈ P}.

Clearly, l can be trivially extended to ground resolution terms, therefore
below it is also used as a measure for them.

Theorem 4.3.1. Let Ψ be a proof schema with end-sequent S(n). Then the
evaluation phase of CERESs produces for all α ∈ N a ground LKs-proof πα
of S(α) with at most atomic cuts such that its size l(πα) is polynomial in
l(R↓α) · l(PR(Ψ)↓α).

Proof. Let α ∈ N. By Proposition 4.2.3 we obtain for any clause in CL(Ψ)↓α
a corresponding projection in PR(Ψ) ↓α. Let R be a resolution refuta-
tion schema for CL(Ψ) constructed in the schematic construction phase of
CERESs and T (R ↓α) the corresponding tree. Clearly the length of any
projection is at most l(PR(Ψ) ↓α) and l(T (R ↓α)) is polynomial in l(R ↓α).
Therefore, l(πα) is polynomial in l(R↓α) · l(PR(Ψ)↓α). Moreover, the result-
ing proof πα of S(α) obtained in the last step of evaluation phase contains
at most atomic cuts.

Chapter 5

Extensions to First-Order
Schemata

Before defining the language and the method extensions formally, we start
with a motivation example, where cut-elimination is not possible. First recall
the discussion from the introduction. We need to define a proof, where the
induction rule will produce a strong quantifier and then this formula will be
cut out.

Let us consider Peano arithmetic (PA), defined in [Tak87], with the in-
duction rule:

Γ, A(α) ` ∆, A(s(α))

A(0̄),Γ ` ∆, A(t)

where α is an eigenvariable not occurring in A(0̄),Γ,∆; A(α) is called the
induction invariant. This rule can simulate the binary induction rule

Γ ` ∆, A(0̄) Π, A(α) ` Λ, A(s(α))
ind

Γ,Π ` ∆,Λ, A(t)

with additional cut(s), but we want to avoid as many cuts as possible. There-
fore we consider the ind rule as a part of PA.

To avoid equality reasoning in LK-proofs, we admit atomic equality ax-
ioms of the form A(s), t = s ` A(t) and ` s = s.

Let us consider the sequent S:

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) `
(∀n)((P (f̂(n, c)) ⊃ P (g(n, c))) ⊃ (P (c) ⊃ P (g(n, c))))

where g is a binary function symbol, f is a unary one and f̂ a binary function
symbol s.t.

Def(f̂) : (∀x)f̂(0̄, x) = x, (∀n)(∀x)f̂(s(n), x) = f(f̂(n, x))

49

50 EXTENSIONS TO FIRST-ORDER SCHEMATA

Obviously, no Herbrand sequent exists for S, therefore it cannot be proven
without induction; some inductive lemma is needed which will prove some-
thing like (∀n)(∀x)(P (x) ⊃ P (f̂(n, x))) or a more general statement. We use
the following lemma:

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) ` (∀n)(∀x)(P (x) ⊃ P (f̂(n, x)))

A proof ψ of this inductive lemma could be:

(ψ1)

(∀x)f̂(0̄, x) = x ` (∀x)(P (x) ⊃ P (f̂(0̄, x)))

(ψ2)

Γ, (∀x)(P (x) ⊃ P (f̂(α, x))) ` (∀x)(P (x) ⊃ P (f̂(s(α), x)))
ind

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(γ, x)))
∀ : r

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) ` (∀n)(∀x)(P (x) ⊃ P (f̂(n, x)))

where Γ is (∀n)(∀x)f̂(s(n), x) = f(f̂(n, x)), (∀x)(P (x) ⊃ P (f(x))); ψ1 is:

P (u), f̂(0̄, u) = u ` P (f̂(0̄, u)) ⊃ : r
f̂(0̄, u) = u ` P (u) ⊃ P (f̂(0̄, u))

∀ : l
(∀x)f̂(0̄, x) = x ` P (u) ⊃ P (f̂(0̄, u))

∀ : r
(∀x)f̂(0̄, x) = x ` (∀x)(P (x) ⊃ P (f̂(0̄, x)))

and ψ2 is:

P (u) ` P (u)

P (f̂(α, u)) ` P (f̂(α, u)) P (f(f̂(α, u))), f̂(s(α), u) = f(f̂(α, u)) ` P (f̂(s(α), u))
⊃ : l

P (f̂(α, u)) ⊃ P (f(f̂(α, u))), f̂(s(α), u) = f(f̂(α, u)), P (f̂(α, u)) ` P (f̂(s(α), u))
∀ : l∗

Γ, P (f̂(α, u)) ` P (f̂(s(α), u))
⊃ : l

P (u),Γ, P (u) ⊃ P (f̂(α, u)) ` P (f̂(s(α), u)) ⊃ : r
Γ, P (u) ⊃ P (f̂(α, u)) ` P (u) ⊃ P (f̂(s(α), u))

∀ : l
Γ, (∀x)(P (x) ⊃ P (f̂(α, x))) ` P (u) ⊃ P (f̂(s(α), u)))

∀ : r
Γ, (∀x)(P (x) ⊃ P (f̂(α, x))) ` (∀x)(P (x) ⊃ P (f̂(s(α), x)))

Finally, we define ϕ as (the cut-formula (∀n)(∀x)(P (x) ⊃ P (f̂(n, x))) is
denoted with C):

(ψ)

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) ` C
(χ)

C ` (∀n)((P (f̂(n, c)) ⊃ P (g(n, c))) ⊃ (P (c) ⊃ P (g(n, c))))
cut

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) ` (∀n)((P (f̂(n, c)) ⊃ P (g(n, c))) ⊃ (P (c) ⊃ P (g(n, c))))

where χ is an induction-free proof of the form:

P (c) ` P (c)

P (f̂(β, c)) ` P (f̂(β, c)) P (g(β, c)) ` P (g(β, c))
⊃ : l

P (f̂(β, c)) ⊃ P (g(β, c)), P (f̂(β, c)) ` P (g(β, c))
⊃ : l

P (c), P (f̂(β, c)) ⊃ P (g(β, c)), P (c) ⊃ P (f̂(β, c)) ` P (g(β, c)) ⊃ : r
P (f̂(β, c)) ⊃ P (g(β, c)), P (c) ⊃ P (f̂(β, c)) ` P (c) ⊃ P (g(β, c)) ⊃ : r

P (c) ⊃ P (f̂(β, c)) ` (P (f̂(β, c)) ⊃ P (g(β, c))) ⊃ (P (c) ⊃ P (g(β, c)))
∀ : l∗

(∀n)(∀x)(P (x) ⊃ P (f̂(n, x))) ` (P (f̂(β, c)) ⊃ P (g(β, c))) ⊃ (P (c) ⊃ P (g(β, c)))
∀ : r

(∀n)(∀x)(P (x) ⊃ P (f̂(n, x))) ` (∀n)((P (f̂(n, c)) ⊃ P (g(n, c))) ⊃ (P (c) ⊃ P (g(n, c))))

5.1. SCHEMATIC FIRST-ORDER LANGUAGE 51

In the attempt of performing reductive cut-elimination, we locate the
place in the proof ϕ, where (∀n) is introduced. We can apply the corre-
sponding transformation rules from Appendix A which will yield

(ψ′)

Γ ` (∀x)(P (x) ⊃ P (f̂(β, x)))

(χ′)

(∀x)(P (x) ⊃ P (f̂(β, x))) ` (P (f̂(β, c)) ⊃ P (g(β, c))) ⊃ (P (c) ⊃ P (g(β, c)))
cut

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) ` (P (f̂(β, c)) ⊃ P (g(β, c))) ⊃ (P (c) ⊃ P (g(β, c))))
∀ : r

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) ` (∀n)((P (f̂(n, c)) ⊃ P (g(n, c))) ⊃ (P (c) ⊃ P (g(n, c))))

where χ′ is obtained from χ by removing the last two inferences ∀ : l and
∀ : r; ψ′ is obtained from ψ by deleting the last inference ∀ : r and replacing
γ by β. But now we get stuck, as we cannot “cross” the ind rule. Neither
can the ind rule be eliminated as β is variable. In fact, if we had instead
(∀x)(P (x) ⊃ P (f̂(t, x))) for a closed term t over {0̄, s,+, ∗} we could prove
PA ` t = n̄ and also

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(n̄, x)))

without induction (by iterated cuts) and cut-elimination would proceed.
This problem, however, is neither rooted in the specific form of ψ nor

the ind rule. In fact, there exists no proof of S with only atomic cuts.
In particular, induction on the formula (∀n)((P (f̂(n, c)) ⊃ P (g(n, c))) ⊃
(P (c) ⊃ P (g(n, c)))) fails. In order to prove the end-sequent an inductive
lemma is needed (something which implies (∀n)(∀x)(P (x) ⊃ P (f̂(n, x))))
and cannot be eliminated.

While there is no proof of S in PA with only atomic cuts, the sequents
Sn:

Def(f̂), (∀x)(P (x) ⊃ P (f(x))) `
(P (f̂(n̄, c)) ⊃ P (g(n̄, c))) ⊃ (P (c) ⊃ P (g(n̄, c)))

do have such proofs for all n; but instead of a unique proof ϕ of S we get an
infinite sequence of proofs ϕn of Sn, which have (essential) cut-free versions
ϕ′n. This kind of “infinitary” cut-elimination only makes sense if there exists
a uniform representation of the sequence of proofs ϕ′n. As we have seen in
the previous chapter, the CERESs method has the potential of producing
such a uniform representation. Below we extend our definitions to handle
first-order proofs, thus paving the way for cut-elimination in the presence of
induction.

5.1 Schematic First-Order Language

We define a schematic first-order language, a formal language that allows
the specification of an (infinite) sequence of first-order terms and formulas

52 EXTENSIONS TO FIRST-ORDER SCHEMATA

by a finite expression. Towards this, we introduce two types ω and ι, such
that ω is a type representing natural numbers and ι is a type representing
an arbitrary first-order domain. We extend our language with countable sets
of variables of type ι, n-ary function symbols of type τ1 × · · · × τn → τ and
n-ary predicate symbols. We assume that function symbols are partitioned
into constant function symbols and defined function symbols. The first set will
contain the usual uninterpreted function symbols and the second will allow
primitive recursively defined functions in the language. Constant function
symbols can have arity 0, but for defined function symbols we assume the
type ω × τ1 × · · · × τn → τ ; therefore they do have arity ≥ 1.

Definition 5.1.1 (Terms). Variables are terms and if f is an n-ary constant
function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term. By
V (t) we denote the set of variables of a term t.

Note that arithmetic expressions, defined in Chapter 3, are of type ω.
Henceforth we consider arithmetic expressions as a subset of the set of terms.

Definition 5.1.2 (Term schemata). Term schemata are defined recursively
as follows:

• Terms are terms schemata

• For every n + 1-ary defined function symbol f̂ , we assume given two
rewrite rules

f̂(0, x1, . . . , xn) → s,

f̂(k + 1, x1, . . . , xn) → t[f̂(k, x1, . . . , xn)]

such that V (s) ∪ V (t) = {x1, . . . , xn} and s, t are terms. The ex-
pression t[f̂(k, x1, . . . , xn)] denotes a term t with some occurrences of
f̂(k, x1, . . . , xn). If t1, . . . , tn are term schemata and a an arithmetic
expression, then f(a, t1, . . . , tn), is a term schema.

To distinguish between terms and term schemata, we denote constant
function symbols with f, g, . . . and defined function symbols with f̂ , ĝ,

Example 5.1.3. Let f be a unary constant function symbol, f̂ be a binary
defined function symbol and

f̂(0, x) → x,

f̂(k + 1, x) → f(f̂(k, x)).

Then f̂(n, x) is a term schema representing fn(x). Note that the rewrite
rules for f̂ correspond to Def(f̂) from the example given in the beginning
of this chapter.

5.1. SCHEMATIC FIRST-ORDER LANGUAGE 53

Remark 5.1.4. It is obvious that the usual primitive recursive definition of
∗, exponentiation and the like can be represented in our system.

Proposition 5.1.1. Let t be a term schema. Then primitive recursion de-
fined as rewrite rules for t, is strongly normalizing and confluent.

Proof. Trivial, since all definitions are primitive recursive.

We now turn to the definition of schematic formulas. There are two
possibilities: one is to directly extend our notion of formula schemata with
quantifiers and other is to define formula schemata in primitive recursive
fashion as we did for term schemata and as it is done in [DLRW]. The
difference between these two languages is that the language in [DLRW] allows
iterated ¬ and ⊃. But this breaks Proposition 4.1.3. Therefore we choose
the first approach here. Note that this does not affect the expressive power:
iterated ¬ or ⊃ can be encoded by auxiliary predicate symbols (see [AEP]).

Definition 5.1.5 (Atom formula schemata). Let P be an n-ary predicate
symbol and t1, . . . , tn be term schemata, then P (t1, . . . , tn) is an atom formula
schema.

Remark 5.1.6. Note that for a unary predicate symbol P and an arithmetic
expression a, P (a) corresponds to an indexed predicate pa.

Definition 5.1.7 (Formula schemata). We redefine formula schemata in the
following way:

• An atom formula schema is a formula schema.

• If A and B are formula schemata, then so are ¬A, A∨B, A∧B, A ⊃ B,
(∀x)A and (∃x)A for x being a variable of type ι.

• If A is a formula schema, a : ω, b : ω are arithmetic expressions and
i : ω is an index variable not bound in A, then

∧b
i=aA and

∨b
i=aA are

formula schemata such that i is bound in both formula schemata.

Remark 5.1.8. Note that formula schemata are schematic only w.r.t term
schemata and the connectives

∧
,
∨

.

We call a formula schema open if there is a free variable of type ι in
it, otherwise it is called closed. For an open formula schema A with free
variables x1, . . . , xn, we write A(x1, . . . , xn).

We define first-order substitution (shortly fo-substitution) as usual, map-
ping variables of type ι to terms. Then for a formula schema A(x1, . . . , xn)
and fo-substitution σ = [x1/t1, . . . , xn/tn], A(x1, . . . , xn)σ = A(t1, . . . , tn).

54 EXTENSIONS TO FIRST-ORDER SCHEMATA

According to the definition above it is clear that we do not allow quan-
tification over variables of type ω. Although it may happen that different
quantifiers bind the same variable, it always will be clear from the context
which quantifier binds which variable. We illustrate that with the following
example.

Example 5.1.9. Let us consider a formula schema (∃y)(
∨n
i=0(∀x)A(i, x, y)).

Here, i : ω, x : ι, y : ι are bound variables. Clearly, it represents the formula
(∃y)((∀x)A(0, x, y)∨· · ·∨(∀x)A(n, x, y)) and by renaming of bound variables,
this formula is equivalent to (∃y)((∀x0)A(0, x0, y) ∨ · · · ∨ (∀xn)A(n, xn, y)).

The semantics of formula schemata is extended to first-order in an obvious
way. It is clear that the validity problem of first-order formula schemata is
undecidable, therefore we do not restrict arithmetic expressions to be linear,
but we keep the restriction that at most one parameter is allowed in a formula
schema.

5.2 Extension of LKs

Having extended the notion of formula schemata, we adapt the calculus LKs

to first-order schemata. The main difference between propositional and first-
order proof schemata are free variables, therefore we should indicate them in
sequents and proof links. The motivation is the following: imagine there is
a proof ψ of an open sequent S1(n, x̄) for a variable vector x̄ and a proof ϕ
needs S1(n, t̄) and S1(n, s̄), for some term vectors t̄ and s̄, as axioms to prove
a sequent S. Therefore in ϕ there should be some proof links to ψ[x̄/t̄] and
ψ[x̄/s̄]. So we come up with the following definition.

Definition 5.2.1 (Proof link). If ϕ is a proof symbol, a is an arithmetic
expression, and S(n, x1, . . . , xl) an open sequent schema with a parameter n

and free variables x1, . . . , xl, then the expression
(ϕ(a, t1, . . . , tl))

S(a, t1, . . . , tl)
is called

a proof link, for t1, . . . , tl being term schemata not containing parameters
different from the one in a.

Except quantifier introduction rules, we need so called definition rules,
which will operate on formulas allowing us to rewrite term schemata accord-
ing their rewrite rules.

Definition 5.2.2 (Calculus LKs). We extend the calculus LKs with the
following rules:

• ∀ introduction

5.2. EXTENSION OF LKS 55

A(t),Γ ` ∆
∀ : l

(∀x)A(x),Γ ` ∆
and

Γ ` ∆, A(u)
∀ : r

Γ ` ∆, (∀x)A(x)

where t is an arbitrary term schema of type ι and u : ι is a free variable
not occurring in the lower sequent; u is called an eigenvariable and the
condition, that it should not occur in the lower sequent is called the
eigenvariable condition. The ∀ : l rule is called a weak quantifier rule
and the ∀ : r rule is called a strong quantifier rule.

• ∃ introduction

A(u),Γ ` ∆
∃ : l

(∃x)A(x),Γ ` ∆
and

Γ ` ∆, A(t)
∃ : r

Γ ` ∆, (∃x)A(x)

where t is an arbitrary term schema of type ι and u : ι is an eigenvariable
satisfying the eigenvariable condition. The ∃ : l rule is called a strong
quantifier rule and the ∃ : r rule is called a weak quantifier rule.

• definition rules

A(t),Γ ` ∆
def : l

A(s),Γ ` ∆
and

Γ ` ∆, A(t)
def : r

Γ ` ∆, A(s)

where t, s are term schemata and there exists a rewrite rule t→ s.

The definitions of LKs-proof, proof schema and the like stay the same.
Since we changed the definition of proof link, we should change the rewrite
rules for them accordingly.

Definition 5.2.3 (Evaluation of proof schemata). Let Ψ = 〈ψ1, . . . , ψα〉 be
a proof schema. We define the rewrite rules for proof links

(ψβ(0, t1, . . . , tl))

S
→ πβθ, and

(ψβ(k + 1, t1, . . . , tl))

S
→ νβ(k)θ

for all 1 ≤ β ≤ α and θ = {x1/t1, . . . , xl/tl}.
Now, for γ ∈ N we define ψβ ↓γ as a normal form of

(ψβ(γ, t1, . . . , tl))

S
under the rewrite system just given extended with rewrite rules for defined
function symbols. Note that after rewriting, the def : l and def : r rules
become trivial rules, i.e. upper and lower sequents become equal. Therefore
these rules can be skipped in ψβ ↓γ. Further, we define Ψ↓γ= ψ1 ↓γ.
Proposition 5.2.1 (Soundness of proof schemata). Let Ψ be a proof schema
with end-sequent S(n, x1, . . . , xγ), and let α ∈ N. Then Ψ↓α is a first-order
proof of S(α, x1, . . . , xγ)↓.

56 EXTENSIONS TO FIRST-ORDER SCHEMATA

Proof. First we prove the proposition for a proof schema consisting of one
pair only and then extend the result to arbitrary proof schemata. Assume
Ψ = 〈(π, ν(k))〉. We proceed by induction on α. If α = 0, Ψ ↓0= π ↓0. The
later one differs from π only in defined function symbols, therefore π ↓0 is
a proof of S(0, x1, . . . , xγ) ↓. Now assume for all β ≤ α, Ψ ↓β is a proof
of S(β, x1, . . . , xγ) ↓ and consider the case for α + 1. If (ψ(k, x1, . . . , xγ))
is a proof link in ν(k), then by hypothesis it rewrites to Ψ ↓α. Then after
applying rewrite rules of defined function symbols to ν(α), we get a proof of
S(α + 1, x1, . . . , xγ)↓.

The result is easily extended to arbitrary proof schema Ψ, considering
the fact that for all α ∈ N each pair (πi, νi(k)) ∈ Ψ is evaluated to a proof of
the sequent Si(α, xi1 , . . . , xiγ)↓.

Now we are ready to formalize the example given in the beginning of this
chapter into our calculus LKs.

Example 5.2.4. Let us given a term schema f̂(n, x) defined in Exam-
ple 5.1.3. Ψ = 〈ϕ, ψ〉 is a proof schema of the sequent S(n):

(∀x)(P (x) ⊃ P (f(x))) ` (P (f̂(n, c)) ⊃ P (g(n, c))) ⊃ (P (c) ⊃ P (g(n, c)))

where ϕ is associated with the pair (π1, ν1(k)) defined as:1

(ψ(k + 1))

(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k + 1, x))) (1)
cut

(∀x)(P (x) ⊃ P (f(x))) ` (P (f̂(k + 1, c)) ⊃ P (g(k + 1, c))) ⊃ (P (c) ⊃ P (g(k + 1, c)))

where (1) is:

P (c) ` P (c)

P (f̂(k + 1, c)) ` P (f̂(k + 1, c)) P (g(k + 1, c)) ` P (g(k + 1, c))
⊃ : l

P (f̂(k + 1, c)) ⊃ P (g(k + 1, c)), P (f̂(k + 1, c)) ` P (g(k + 1, c))
⊃ : l

P (c), P (f̂(k + 1, c)) ⊃ P (g(k + 1, c)), P (c) ⊃ P (f̂(k + 1, c)) ` P (g(k + 1, c)) ⊃ : r
P (f̂(k + 1, c)) ⊃ P (g(k + 1, c)), P (c) ⊃ P (f̂(k + 1, c)) ` P (c) ⊃ P (g(k + 1, c)) ⊃ : r

P (c) ⊃ P (f̂(k + 1, c)) ` (P (f̂(k + 1, c)) ⊃ P (g(k + 1, c))) ⊃ (P (c) ⊃ P (g(k + 1, c)))
∀ : l

(∀x)(P (x) ⊃ P (f̂(k + 1, x))) ` (P (f̂(k + 1, c)) ⊃ P (g(k + 1, c))) ⊃ (P (c) ⊃ P (g(k + 1, c)))

and ψ is associated with the pair (π2, ν2(k)), where π2 is:

P (f̂(0, u)) ` P (f̂(0, u))
def : l

P (u) ` P (f̂(0, u)) ⊃ : r
` P (u) ⊃ P (f̂(0, u))

∀ : r
` (∀x)(P (x) ⊃ P (f̂(0, x)))

w : l
(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(0, x)))

1To gain some space we only give ν1(k), π1 is the same proof grounded by replacing
k + 1 with 0.

5.2. EXTENSION OF LKS 57

and ν2(k) is:

(ψ(k))

(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k, x))) (2)
cut

(∀x)(P (x) ⊃ P (f(x))), (∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k + 1, x)))
c : l

(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k + 1, x)))

where (2) is:

P (u) ` P (u)

P (f̂(k, u)) ` P (f̂(k, u))

P (f̂(k + 1, u)) ` P (f̂(k + 1, u))
def : l

P (f(f̂(k, u))) ` P (f̂(k + 1, u))
⊃ : l

P (f̂(k, u)), P (f̂(k, u)) ⊃ P (f(f̂(k, u))) ` P (f̂(k + 1, u))
∀ : l

P (f̂(k, u)), (∀x)(P (x) ⊃ P (f(x))) ` P (f̂(k + 1, u))
⊃ : l

P (u), P (u) ⊃ P (f̂(k, u)), (∀x)(P (x) ⊃ P (f(x))) ` P (f̂(k + 1, u)) ⊃ : r
P (u) ⊃ P (f̂(k, u)), (∀x)(P (x) ⊃ P (f(x))) ` P (u) ⊃ P (f̂(k + 1, u))

∀ : l
(∀x)(P (x) ⊃ P (f̂(k, x))), (∀x)(P (x) ⊃ P (f(x))) ` P (u) ⊃ P (u))

∀ : r
(∀x)(P (x) ⊃ P (f̂(k, x))), (∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k + 1, x)))

Clearly, it is not the case that only this example can be translated into
our formalism. In general, the following proposition holds.

Proposition 5.2.2. Let φ be an LK-proof without nested inductions of a
sequent S fulfilling the following conditions:

1) The inductions occurring in φ are standard inductions on the natural
numbers.

2) The term definitions in S are primitive recursive.
Then φ can be transformed into a proof schema.

Proof. Let us given an LK-proof φ of a sequent S satisfying the conditions
of the proposition. First the term definitions (statements like Def(f̂) from
above) should be removed from S, getting a sequent S ′, and corresponding
term schemata be constructed. Next, every axiom of the form P (s), t = s `
P (t) should be replaced with:

P (t) ` P (t)
def : l

P (s) ` P (t)
or

P (s) ` P (s)
def : r

P (s) ` P (t)

depending whether t → s or s → t rewrite rule was created. And all infer-
ences deriving the term definitions should be skipped. Then we get a proof
φ′ of S ′.

Now, since φ′ does not contain nested inductions, S ′ contains at most one
variable, let us say n, of type ω; so we skip in φ′ all quantifier introduction
rules on n and get a proof φ′(n) of S(n).

Next, we assign a proof symbol ψ1 to φ′(n) and for each induction rule in
φ′(n) we introduce a new proof symbol ψβ, β > 1. Then replace all subproofs

58 EXTENSIONS TO FIRST-ORDER SCHEMATA

ending with the ind rule by corresponding proof links in φ′(n) and get an
LKs-proof φ′′(n). Hence, we construct a pair (π1, ν1(k)), where π1 = φ′′(0)
and ν1(k) = φ′′(k + 1).

Finally, we transform each subproof ending with the ind rule into an
LKs-proof pair in the following way: from

(χ1)

Γ ` ∆, A(0̄)

(χ2)

Π, A(k) ` Λ, A(k + 1)
ind

Γ,Π ` ∆,Λ, A(t)

we construct πβ:

(χ1)

Γ ` ∆, A(0̄)
w : l, r∗

Γ,Π ` ∆,Λ, A(0̄)

and νβ(k)

(ψβ(k))

Γ ` ∆, A(k)

(χ2)

Π, A(k) ` Λ, A(k + 1)
cut, c : l, r∗

Γ,Π ` ∆,Λ, A(k + 1)

Hence, Ψ = 〈ψ1, . . . , ψα〉 is a proof schema of S(n).

5.2.1 Regularization and Skolemization

Regularization and skolemization are very important for the CERES method.
In general, if an LK-proof is not regular, the characteristic clause set can
be satisfiable. If the proof is not skolemized, projections may be invalid
LK-proofs, because the eigenvariable conditions may be violated (recall the
discussion from Section 2.4).

An LK-proof φ is skolemized if the end-sequent S of φ is skolemized, i.e. S
does not contain strong quantifiers. There exist algorithms for skolemization
and deskolemization of LK-proofs (see [BL94, BHW12]). The extension of
these algorithms to proof schemata is the subject to future research.

Definition 5.2.5 (Skolemized proof schema). A proof schema Ψ is called
skolemized if the end-sequent S(n) of Ψ does not contain strong quantifiers.

Note that for a skolemized proof schema Ψ, there can be some ψβ ∈ Ψ,
β 6= 1, such that the end-sequents Sβ(n) of ψβ are not skolemized. For
example, the proof schema Ψ from Example 5.2.4 is skolemized, but ψ ∈ Ψ
is not.

Regularization is vital for CERES when two different eigenvariables come
from different branches of a binary rule, that produces an ancestor of some

5.2. EXTENSION OF LKS 59

formula into the end-sequent. Therefore we need also the notion of regular-
ization in proof schemata.

Definition 5.2.6 (Regularity). An LKs-proof is called regular, if all eigen-
variables are distinct and if a free variable u occurs as an eigenvariable in a
sequent S of the LKs-proof, then u occurs only in sequents above S.

But this notion of regularity is not sufficient for proof schemata; the
reason is illustrated by the following example.

Example 5.2.7. Consider the proof schema Ψ defined in Example 5.2.4.
Then clearly, u is an eigenvariable, all LKs-proofs in Ψ are regular, but
when an instance of the proof schema Ψ is computed for some α 6= 0, the
instance is not regular any more.

To avoid such collision of eigenvariables, a stronger notion of variable is
needed. So, we come up with the notion of schematic variable.

Definition 5.2.8 (Schematic variables). We introduce variable function sym-
bols of type ω → ι. Then the schematic variables are built from variable
function symbols and terms of type ω.

The semantics of schematic variables is that if x is a schematic variable,
then for all α ∈ N, x(0), . . . , x(α) corresponds to the sequence of first-order
variables x0, . . . , xα.

There is a “simpler” solution of the problem mention above, by having
a “naming convention” that local eigenvariables be enumerated according to
the number of iterations, but there are several reasons not to choose this
approach. The first is that the formal parameter k of an LKs-proof will
became a part of variable names and the second is that later, in resolution
calculus we need schematic variables anyway. Therefore it is better to directly
consider such variables in proof schemata; then if a clause set schema is
extracted from a proof schema, schematic variables will be already present.

We redefine our notions of term, formula and the like, in the usual in-
ductive fashion, taking into account schematic variables. A similar approach
was used in [MM00]. Although the language they consider is first-order, they
allow higher-order quantification on terms (but not on predicates). We do
not allow quantification over schematic variables, but just on instances of
them (which are variables of type ι).

Example 5.2.9. Let x be a schematic variable, f a binary constant function
symbol and f̂ a defined function symbol with the rewrite rules:

f̂(0, x) → x(0)

f̂(k + 1, x) → f(f̂(k, x), x(k + 1))

60 EXTENSIONS TO FIRST-ORDER SCHEMATA

then f̂(n, x) is a term schema, and the sequence of terms for α = 0, 1, 2, . . .
is x0, f(x0, x1), f(f(x0, x1), x2),

Another issue is to distinguish between global and local eigenvariables
of proof schemata. An eigenvariable is global in a proof schema, if it is
propagated through proof links, otherwise it is local. This distinction is
motivated by the fact that a global eigenvariable must occur in (at least) two
different LKs-proof pairs, where in one it is just a free variable and in other
it is an eigenvariable.

Example 5.2.10. Consider the proof schema Ψ = 〈ψ, ϕ〉, where ψ is asso-
ciated with the pair (π1, ν1(k)), for ν1(k):2

(ϕ(k + 1, u))
∨k+1
i=0 P (i, u) ` ∨k+1

i=0 P (i, u)
∀ : l

(∀x)(
∨k+1
i=0 P (i, x)) ` ∨k+1

i=0 P (i, u)
∀ : r

(∀x)(
∨k+1
i=0 P (i, x)) ` (∀x)(

∨k+1
i=0 P (i, x))

Q(v) ` Q(v)
∀ : l

(∀x)Q(x) ` Q(v)
∀ : r

(∀x)Q(x) ` (∀x)Q(x)
∧ : r

(∀x)(
∨k+1
i=0 P (i, x)), (∀x)Q(x) ` (∀x)(

∨k+1
i=0 P (i, x)) ∧ (∀x)Q(x)

∧ : l
(∀x)(

∨k+1
i=0 P (i, x)) ∧ (∀x)Q(x) ` (∀x)(

∨k+1
i=0 P (i, x)) ∧ (∀x)Q(x)

and ϕ is associated with (π2, ν2(k)), for π2 : P (0, u) ` P (0, u) and ν2(k):

(ϕ(k, u))
∨k
i=0 P (i, u) ` ∨k

i=0 P (i, u) P (k + 1, u) ` P (k + 1, u)
∨ : l∨k+1

i=0 P (i, u) ` ∨k
i=0 P (i, u), P (k + 1, u)

∨ : r∨k+1
i=0 P (i, u) ` ∨k+1

i=0 P (i, u)

Then u : ι is a global eigenvariable in Ψ and v : ι is a local one. Note that
the proof schema Ψ is regular (even for all its instances).

Finally, we define the procedure of regularization. The idea is to replace
free variables with schematic ones, producing different (unique) names for
them.

Definition 5.2.11 (Regularization). Let Ψ be a proof schema. Assume there
are y1 : ι, . . . , yα : ι global eigenvariables in Ψ. For each yj, 1 ≤ j ≤ α, create
a fresh schematic variable vj : ω → ι and replace yj with vj(0) : ι in Ψ. Next,
for each pair (πi, νi(k)) ∈ Ψ, for every local eigenvariable xj : ι in πi, create a
fresh schematic variable uj : ω → ι and replace xj with uj(0) : ι. Analogously,
for every local eigenvariable xj : ι in νi(k), create a fresh schematic variable
uj : ω → ι and replace xj with uj(k + 1): ι.

2π1 is the same proof grounded by replacing k + 1 with 0.

5.3. EXTENSION OF RS 61

Remark 5.2.12. We could leave global eigenvariables as they are in a proof
schema, but we replace them for uniformity, all free variables in the proof
schema to be the schematic ones.

Proposition 5.2.3. Regularization is sound, i.e. if a proof schema is sound,
a regularized version of it is also sound.

Proof. Trivial by Definition 5.2.11 and the fact that we only replace free
variables of type ι with the free variables of corresponding type.

Example 5.2.13. Consider the proof schema Ψ given in Example 5.2.4. Let
v : ω → ι be a schematic variable. To regularize Ψ, we redefine (π2, ν2(k)) in
the following way ((π1, ν1(k)) stays the same): π2 is

P (f̂(0, v(0))) ` P (f̂(0, v(0)))
def : l

P (v(0)) ` P (f̂(0, v(0))) ⊃ : r
` P (v(0)) ⊃ P (f̂(0, v(0)))

∀ : r
` (∀x)(P (x) ⊃ P (f̂(0, x)))

w : l
(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(0, x)))

and ν2(k) is:

(ψ(k))

(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k, x))) (2)
cut

(∀x)(P (x) ⊃ P (f(x))), (∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k + 1, x)))
c : l

(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k + 1, x)))

where (2) is:

P (v(k + 1)) ` P (v(k + 1))

P (f̂(k, v(k + 1))) ` P (f̂(k, v(k + 1)))

P (f̂(k + 1, v(k + 1))) ` P (f̂(k + 1, v(k + 1)))
def : l

P (f(f̂(k, v(k + 1)))) ` P (f̂(k + 1, v(k + 1)))
⊃ : l

P (f̂(k, v(k + 1))), P (f̂(k, v(k + 1))) ⊃ P (f(f̂(k, v(k + 1)))) ` P (f̂(k + 1, v(k + 1)))
∀ : l

P (f̂(k, v(k + 1))), (∀x)(P (x) ⊃ P (f(x))) ` P (f̂(k + 1, v(k + 1)))
⊃ : l

P (v(k + 1)), P (v(k + 1)) ⊃ P (f̂(k, v(k + 1))), (∀x)(P (x) ⊃ P (f(x))) ` P (f̂(k + 1, v(k + 1))) ⊃ : r
P (v(k + 1)) ⊃ P (f̂(k, v(k + 1))), (∀x)(P (x) ⊃ P (f(x))) ` P (v(k + 1)) ⊃ P (f̂(k + 1, v(k + 1)))

∀ : l
(∀x)(P (x) ⊃ P (f̂(k, x))), (∀x)(P (x) ⊃ P (f(x))) ` P (v(k + 1)) ⊃ P (v(k + 1)))

∀ : r
(∀x)(P (x) ⊃ P (f̂(k, x))), (∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f̂(k + 1, x)))

From now on we consider only regular and skolemized proof schemata.

5.3 Extension of Rs

In previous section we extended term- and formula schemata with schematic
variables. Therefore we extend the definitions of clause schema, clause set
schema, resolution proof schema and the like by indicating the schematic

62 EXTENSIONS TO FIRST-ORDER SCHEMATA

variables, occurring in these objects, on the left-hand side of the correspond-
ing rewrite rules. Normal forms of these objects are computed with respect
to rewrite rules for defined function symbols as well. We do not copy the
formal definitions here, but give some examples.

Example 5.3.1. Let u, v be schematic variables of type ω → ι and f̂ a
binary defined function symbol with the rewrite rules:

f̂(0, u) → u(0),

f̂(k + 1, u) → f(f̂(k, u)),

then f̂(n, u) is a term schema representing fα(u0) for all α ∈ N.
Let X be a clause variable and consider a clause schema c(n, u,X) w.r.t

R:

c(0, u,X) → (` P (0, f̂(0, u))) ◦X,
c(k + 1, u,X) → c(k, u,X) ◦ (` P (k + 1, f̂(k + 1, u))),

then c(n, u,`)↓α are the clauses ` P (0, u0), . . . , P (α, fα(u0)) for all α ≥ 0.
Next, consider the clause set schema C(n) = ((C1, C2, C3),R) where R is:

C1(0, u, v) → {` P (0, f̂(0, u)); P (0, v(0)) `}
C1(k + 1, u, v) → C2(k + 1, u)⊕ C3(k + 1, v)

C2(0, u) → {` P (0, f̂(0, u))}
C2(k + 1, u) → C2(k, u)⊗ {` P (k + 1, f̂(k + 1, u))}
C3(0, v) → {P (0, v(0)) `}

C3(k + 1, v) → C3(k, u)⊕ {P (k + 1, v(k + 1)) `}

then C(n)↓α, for all α ≥ 0, are clause sets

{` P (0, u0), . . . , P (α, fα(u0)); P (0, v0) `; P (1, v1) `; . . . ; P (α, vα) `}.

A resolution refutation schema of C(n) can be defined as the resolution
proof schema R = ((%),R), where R is the following rewrite system:

%(0, u, v,X) → r((` P (0, f̂(0, u))) ◦X; P (0, v(0)) `; P (0, f̂(0, u))),

%(k + 1, u, v,X) → r(%(k, u, v, (` P (k + 1, f̂(k + 1, u))) ◦X);

P (k + 1, v(k + 1)) `; P (k + 1, f̂(k + 1, u)))

Note that in resolution terms above the third argument is an atom to
be unified for resolution. Therefore for the evaluation of resolution proof
schemata we need a stronger notion of substitution, which will unify schematic
variables with term schemata.

5.3. EXTENSION OF RS 63

Definition 5.3.2 (Substitution schema). Let x1, . . . , xα be schematic vari-
ables of type ω → ι and t1, . . . , tα be term schemata. Then a substitution
schema is an expression of the form [x1/λk.t1, . . . , xα/λk.tα].

The intended semantics of a substitution schema is that for all γ ∈ N we
have a substitution [x1(γ)/t1 ↓γ, . . . , xα(γ)/tα ↓γ].
Definition 5.3.3 (Evaluation of proof schemata). Let R = ((%1, . . . , %α),R)
be a resolution proof schema, θ be a clause substitution, ϑ be a substitution
schema and γ ∈ N, then R ↓γ denotes a resolution term which is normal
form of %1(n, x̄1, X̄1)θϑ[n/γ] w.r.t. R and rewrite rules for defined function
symbols.

We say that a resolution derivation R ↓α, for R being a resolution proof
schema and α ∈ N, is closed, iff R ↓α does not contain any free variables,
otherwise it is called open.

Example 5.3.4. Consider the resolution proof schema from Example 5.3.1.
Let ϑ1 = [v/λk.f̂(k, u)] and ϑ2 = [u/λk.c], where c is some constant, be the
substitution schemata. Then, for all α ∈ N, an open refutation of the clause
set C(n) ↓α is defined by the term %(n, u, v,`)ϑ1 ↓α and a closed one by the
term %(n, u, v,`)ϑ1ϑ2 ↓α.

Let compute some instances for both of them. For α = 0, recall C(n)↓0=
{` P (0, u0); P (0, v0) `}, then the open and closed refutations are respec-
tively

` P (0, u0) P (0, u0) `
v0/u0` and ` P (0, c) P (0, c) `

v0/u0, u0/c`

for α = 1, recall C(n) ↓1= {` P (0, u0), P (1, f(u0)); P (0, v0) `; P (1, v1) `},
then the open refutation is

` P (0, u0), P (1, f(u0)) P (0, u0) `
v0/u0` P (1, f(u0)) P (1, f(u0)) `

v1/f(u0)`

and the closed one is

` P (0, c), P (1, f(c)) P (0, c) `
v0/u0, u0/c` P (1, f(c)) P (1, f(c)) `

v1/f(u0), u0/c`

It is obvious that finding a substitution schema for a given resolution
proof schema is not an easy task. In fact, this problem is undecidable, since
our term schemata can represent the primitive recursive functions.

Definition 5.3.5 (Unification problem). A term schema t1 is unifiable with
a term schema t2 iff there exists a substitution schema ϑ, such that for all
α ∈ N, t1ϑ↓α= t2ϑ↓α.

64 EXTENSIONS TO FIRST-ORDER SCHEMATA

Proposition 5.3.1. The unification problem of term schemata is undecid-
able.

Proof. Term schemata can represent primitive recursive functions, according
to the definition of term schemata. In [MR67] it is shown that the primitive
recursive functions correspond to so called Loop programs. Therefore our lan-
guage of term schemata can express Loop programs. Let ϑ be a substitution
schema for t1, t2 being term schemata. Then, the question whether ϑ is a
unifier of t1, t2 reduces to the equivalence problem for programs p1, p2, where
p1 is a loop program representing t1ϑ and p2 is a loop program representing
t2ϑ. But, according to [Tsi70], the equivalence problem for loop programs is
undecidable in general.

Finally, it is obvious that the soundness result holds again on extension
of Rs, but the completeness result does not hold even for the bound-linear
version of first-order schemata because of the undecidability of unification
problem.

5.4 CERESs for First-Order Schemata

There are several things to be changed for CERESs as well. First of all, we
should indicate free variables in clause-set symbols and redefine characteristic
term in the following way.

Definition 5.4.1 (Characteristic term). Let π be an LKs-proof, Ω a (cut-)
configuration and ρ an inference in π. We define a clause-set term Θρ(π,Ω)
inductively:

• if ρ is a proof link of the form
(ψ(a, t1, . . . , tl))

ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆
then define

Ω′ as the cut-configuration corresponding to formula occurrences from
ΓΩ,ΓC ` ∆Ω,∆C and Θρ(π,Ω) = clψ,Ω

′
(a, t1, . . . , tl)

• otherwise Θρ(π,Ω) is defined as in Definition 4.1.4.

Finally, define Θ(π,Ω) = Θρ0(π,Ω), where ρ0 is the last inference of π, and
Θ(π) = Θ(π, ∅).

Then we redefine notion of evaluation for characteristic terms accordingly.

Definition 5.4.2 (Evaluation). Let Ψ = 〈ψ1, . . . , ψα〉 be a proof schema.
We define the rewrite rules for clause-set symbols for all proof symbols ψβ

5.4. CERESS FOR FIRST-ORDER SCHEMATA 65

and cut-configurations Ω:

clψβ ,Ω(0, t1, . . . , tl) → Θ(πβ,Ω)θ,

clψβ ,Ω(k + 1, t1, . . . , tl) → Θ(νβ(k),Ω)θ,

for all 1 ≤ β ≤ α and θ = {x1/t1, . . . , xl/tl}.
Next, let γ ∈ N and let clψβ ,Ω ↓γ be a normal form of clψβ ,Ω(γ, t1, . . . , tl)

under the rewrite system just given extended with rewrite rules for defined
function symbols. Then define Θ(ψβ,Ω) = clψβ ,Ωn and Θ(Ψ,Ω) = Θ(ψ1,Ω)
and finally the schematic characteristic term Θ(Ψ) = Θ(Ψ, ∅).

The results about characteristic term schema from Section 4.1 still hold
and the definition of characteristic clause set schema CL(Ψ) stays the same.
Therefore we do not copy those definitions here, but give an example.

Example 5.4.3. Consider the proof schema Ψ defined in Example 5.2.13.
The relevant cut-configurations for Ψ are: ∅ for ϕ and Ω = {` (∀x)(P (x) ⊃
P (f̂(n, x)))} for ψ. The characteristic terms of Ψ for these cut-configurations
are:3

Θ(π1, ∅) = P (f̂(0, v(0))) ` P (f̂(0, v(0)))⊕ ` P (c)⊕ (P (f̂(0, c) ` ⊗ `)

Θ(ν1(k), ∅) = clψ,Ω(k + 1)⊕ ` P (c)⊕ (P (f̂(k + 1, c) ` ⊗ `)

Θ(π2,Ω) = P (f̂(0, v(0))) ` P (f̂(0, v(0)))

Θ(ν2(k),Ω) = clψ,Ω(k)⊕ P (v(k + 1)) ` P (v(k + 1))⊕
(P (f̂(k, v(k + 1))) ` ⊗ ` P (f̂(k + 1, v(k + 1))))

It is clear that the clause-set symbols have the following order: clϕ,∅, clψ,Ω;
therefore the schematic characteristic clause set CL(Ψ) = ((C1, C2),R) where
R is:

C1(0) → {P (f̂(0, v(0))) ` P (f̂(0, v(0))); ` P (c); P (f̂(0, c) `}
C1(k + 1) → C(k + 1)⊕ {` P (c); P (f̂(k + 1, c) `}
C2(0) → {P (f̂(0, v(0))) ` P (f̂(0, v(0)))}
C2(k + 1) → C(k)⊕ {P (v(k + 1)) ` P (v(k + 1));

P (f̂(k, v(k + 1))) ` P (f̂(k + 1, v(k + 1)))}
and after tautology deletion CL(Ψ) = ((C1, C2),R) where R is:

C1(0) → {` P (c); P (f̂(0, c) `}
C1(k + 1) → C(k + 1)⊕ {` P (c); P (f̂(k + 1, c) `}
C2(0) → ∅
C2(k + 1) → C(k)⊕ {P (f̂(k, v(k + 1))) ` P (f̂(k + 1, v(k + 1)))}

3Note that the proof links in Ψ does not contain free variables, therefore clause-set
symbols also.

66 EXTENSIONS TO FIRST-ORDER SCHEMATA

A resolution refutation schema for the characteristic clause set schema
can be defined as R = ((%, δ),R), where R is the following rewriting system:

%(0, v) → r(δ(0, v); P (f̂(0, c)) `; P (f̂(0, c))),

%(k + 1, v) → r(δ(k + 1, v); P (f̂(k + 1, c)) `; P (f̂(k + 1, c))),

δ(0, v) → ` P (c),

δ(k + 1, v) → r(δ(k, v); P (v(k + 1)) ` P (f(v(k + 1))); P (f̂(k, c)))

Next we define a predecessor function ˆpre(n). Let ˆpre : ω → ω be a
defined function symbol with the rewrite rules

ˆpre(0)→ 0 and ˆpre(k + 1)→ k.

Then the substitution schema θ = {v/λk.f̂(ˆpre(k), c)} can be used as a sub-
stitution schema for R and %(n, v)θ↓γ is a resolution refutation of CL(Ψ)↓γ
for all γ ∈ N. Note that it is even closed resolution refutation.

Let compute some instances. For γ = 0, CL(Ψ) ↓0= {` P (c); P (c) `}
and %(n, v)θ↓0 is:

` P (c) P (c) `
`

For γ = 1, CL(Ψ)↓1= {` P (c); P (v1) ` P (f(v1)); P (f(c)) `} and %(n, v)θ↓1

is:

` P (c) P (c) ` P (f(c))
v1/c` P (f(c)) P (f(c)) `
`

Now it remains to define projection term schemata and ACNF for the
first-order case. Analogously to clause-set symbols, we should indicate free
variables also in projection term symbols. But this is not enough, as after
evaluation the def : l and def : r rules become redundant, we will skip them
directly in projection terms.

Definition 5.4.4 (Projection term). Let π be an LKs-proof, Ω an arbitrary
(cut-)configuration for π and ρ an inference in π. We define a projection
term Ξρ(π,Ω) inductively:

• If ρ is a proof link in π of the form:
(ψ(a, t1, . . . , tl))

ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆
then define

Ω′ as the cut-configuration corresponding to formula occurrences from
ΓΩ,ΓC ` ∆Ω,∆C and Ξρ(π,Ω) = prψ,Ω

′
(a, t1, . . . , tl).

5.4. CERESS FOR FIRST-ORDER SCHEMATA 67

• If ρ is a unary inference with immediate predecessor ρ′, and the aux-
iliary formula(s) of ρ are Ω- or cut-ancestors, or ρ is either def : l or
def : r, then Ξρ(π,Ω) = Ξρ′(π,Ω),

• otherwise Ξρ(π,Ω) is defined as in Definition 4.2.1.

Finally, define Ξ(π,Ω) = Ξρ0(π,Ω), where ρ0 is the last inference of π.

Definition 5.4.5 (Evaluation). Let Ψ = 〈ψ1, . . . , ψα〉 be a proof schema.
We define the rewrite rules for projection term symbols for all proof symbols
ψβ and cut-configurations Ω:

prψβ ,Ω(0, t1, . . . , tl) → Ξ(πβ,Ω)θ,

prψβ ,Ω(k + 1, t1, . . . , tl) → Ξ(νβ(k),Ω)θ,

for all 1 ≤ β ≤ α and θ = {x1/t1, . . . , xl/tl}.
Next, let γ ∈ N and let prψβ ,Ω ↓γ be a normal form of prψβ ,Ω(γ, t1, . . . , tl)

under the rewrite system just given extended with rewrite rules for defined

function symbols. Then define Ξ(ψβ,Ω) = pr
ψβ ,Ω
n and Ξ(Ψ,Ω) = Ξ(ψ1,Ω)

and finally the schematic projection term Ξ(Ψ) = Ξ(Ψ, ∅).
Note that the projection terms are computed from skolemized proof sche-

mata. But recall that for a skolemized proof schema Ψ, there can exist
an LKs-proof ψβ ∈ Ψ, β > 1, such that the end-sequent of ψβ contains
strong quantifiers. Therefore, for some configurations the projections may
be unsound, but this never happens for relevant cut-configurations, since
the relevant cut-configurations contain all the formulas containing strong
quantifiers. Hence the results about projection term schema from Section 4.2
still hold. The definition of PR(Ψ) stays the same.

Example 5.4.6. Consider the proof schema Ψ defined in Example 5.2.13
and the relevant cut-configurations for Ψ: ∅ for ϕ and Ω = {` (∀x)(P (x) ⊃
P (f̂(n, x)))} for ψ. We introduce the following abbreviations for formulas:

A = (∀x)(P (x) ⊃ P (f(x)))

B(n) = (P (f̂(n, c)) ⊃ P (g(n, c))) ⊃ (P (c) ⊃ P (g(n, c))

B1(n) = P (f̂(n, c)) ⊃ P (g(n, c))

B2(n) = P (g(n, c))

Then the projection terms of Ψ for the cut-configurations ∅,Ω are:

Ξ(π1, ∅) = w`B(0)(wl(P (f̂(0, v(0))) ` P (f̂(0, v(0)))))⊕
wA`(⊃r (⊃r (wB1(0)`B2(0)(P (c) ` P (c))⊕

wP (c)`(P (f̂(0, c)) ` P (f̂(0, c))⊗⊃l
P (g(0, c)) ` P (g(0, c))))))

68 EXTENSIONS TO FIRST-ORDER SCHEMATA

Ξ(ν1(k), ∅) = w`B(k+1)(prψ,Ω(k + 1))⊕
wA`(⊃r (⊃r (wB1(k+1)`B2(k+1)(P (c) ` P (c))⊕

wP (c)`(P (f̂(k + 1, c)) ` P (f̂(k + 1, c))⊗⊃l
P (g(k + 1, c)) ` P (g(k + 1, c))))))

Ξ(π2,Ω) = wl(P (f̂(0, v(0))) ` P (f̂(0, v(0))))

Ξ(ν2(k),Ω) = cl(w
A`(prψ,Ω(k))⊕ wA`(
wA`(P (v(k + 1)) ` P (v(k + 1)))⊕
w`(∀l(P (f̂(k, v(k + 1))) ` P (f̂(k, v(k + 1)))⊗⊃l

P (f̂(k + 1, v(k + 1))) ` P (f̂(k + 1, v(k + 1)))))))

It is easy to see that these projection terms does not contain application
of ∀ : r rule and hence PR(Ψ) ↓α for all α ∈ N are sound. But let consider
the term (for the cut-configuration ∅ for ψ, that is not relevant for Ψ).

Ξ(ν2(k), ∅) = cl(w
A`(∀x)(P (x)⊃P (f̂(k+1,x)))(prψ,Ω(k))⊕ wA`(∀r(⊃r (

wA`P (f̂(k+1,v(k+1)))(P (v(k + 1)) ` P (v(k + 1)))⊕
wP (v(k+1))`(∀l(P (f̂(k, v(k + 1))) ` P (f̂(k, v(k + 1)))⊗⊃l

P (f̂(k + 1, v(k + 1))) ` P (f̂(k + 1, v(k + 1)))))))))

Then, for all α > 0, |Ξ(ν2(k), ∅)↓α | is unsound, since the application of the
∀ : r rule is unsound. We illustrate this fact for α = 1; |Ξ(ν2(k), ∅)↓1 | is
{

P (v0) ` P (v0)
w : l, r∗

(∀x)(P (x) ⊃ P (f(x))), (∀x)(P (x) ⊃ P (f(x))), P (v0) ` (∀x)(P (x) ⊃ P (f(x))), P (v0)
c : l

(∀x)(P (x) ⊃ P (f(x))), P (v0) ` (∀x)(P (x) ⊃ P (f(x))), P (v0)

;

P (v1) ` P (v1)
w : l, r∗

(∀x)(P (x) ⊃ P (f(x))), P (v1) ` P (f(v1)), P (v1) ⊃ : r
(∀x)(P (x) ⊃ P (f(x))) ` P (v1) ⊃ P (f(v1)), P (v1)

∀ : r
(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f(x))), P (v1)

w : l
(∀x)(P (x) ⊃ P (f(x))), (∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f(x))), P (v1)

c : l
(∀x)(P (x) ⊃ P (f(x))) ` (∀x)(P (x) ⊃ P (f(x))), P (v1)

;

P (v1) ` P (v1) P (f(v1)) ` P (f(v1))
⊃ : l

P (v1), P (v1) ⊃ P (f(v1)) ` P (f(v1))
∀ : l

P (v1), (∀x)(P (x) ⊃ P (f(x)) ` P (f(v1))
w : l

P (v1), (∀x)(P (x) ⊃ P (f(x))), P (v1) ` P (f(v1)) ⊃ : r
(∀x)(P (x) ⊃ P (f(x))), P (v1) ` P (v1) ⊃ P (f(v1))

∀ : r
(∀x)(P (x) ⊃ P (f(x))), P (v1) ` (∀x)(P (x) ⊃ P (f(x)))

w : l
(∀x)(P (x) ⊃ P (f(x))), (∀x)(P (x) ⊃ P (f(x))), P (v1) ` (∀x)(P (x) ⊃ P (f(x)))

c : l
(∀x)(P (x) ⊃ P (f(x))), P (v1) ` (∀x)(P (x) ⊃ P (f(x)))

}

5.4. CERESS FOR FIRST-ORDER SCHEMATA 69

and even all these derivations derive tautologies, the last two derivations
itself are not sound.

Final step is to redefine the ACNF. The difference to propositional proof
schemata is now that the clauses in the resolution refutation are instances of
the clauses from the characteristic clause set, therefore we need to apply a
substitution to projections as well.

Definition 5.4.7 (ACNF). Let Ψ be a proof schema of the end-sequent
S(n), PR(Ψ) be its projection term schema and R be a resolution refutation
schema of the characteristic clause set schema CL(Ψ). Additionally, let ϑ be
a substitution schema used in R. Then a tuple (PR(Ψ), R, ϑ) is an Atomic
Cut Normal Form schema of Ψ.

Next, by ϑα we denote an instance of ϑ for α ∈ N. Then the ACNF for
α is defined in the following way: for all C ∈ CL(Ψ)↓α, C ′ being an instance
of C and a leaf node in T (R ↓α), we take a corresponding proof projection
φC ∈ PR(Ψ)↓α and compute φ′C = φCϑα. Then define LKs-proof πα of the
end-sequent S(α) by replacing all initial sequents C ′ in T (R ↓α) by φ′C and
adding necessary contractions.

Example 5.4.8. Recall the proof schema Ψ from Example 5.2.13, resolution
refutation schema R from Example 5.4.3 and projection terms from Exam-
ple 5.4.6. Then T (R↓0) is:

` P (c) P (c) `
cut`

and ACNF of Ψ for n = 0 is (A ` B0 denotes S(0) : (∀x)(P (x) ⊃ P (f(x))) `
(P (c) ⊃ P (g(0, c))) ⊃ (P (c) ⊃ P (g(0, c)))):

P (c) ` P (c)
w : l, r

P (c) ⊃ P (g(0, c)), P (c) ` P (c), P (g(0, c)) ⊃ : r
P (c) ⊃ P (g(0, c)) ` P (c), P (c) ⊃ P (g(0, c)) ⊃ : r` P (c), B0

w : l
A ` P (c), B0

P (c) ` P (c) P (g(0, c)) ` P (g(0, c))
⊃ : l

P (c) ⊃ P (g(0, c)), P (c) ` P (g(0, c))
w : l

P (c), P (c) ⊃ P (g(0, c)), P (c) ` P (g(0, c)) ⊃ : r
P (c) ⊃ P (g(0, c)), P (c) ` P (c) ⊃ P (g(0, c)) ⊃ : r

P (c) ` B0
w : l

P (c), A ` B0
cut

A,A ` B0, B0
c : l, r

(∀x)(P (x) ⊃ P (f(x))) ` (P (c) ⊃ P (g(0, c))) ⊃ (P (c) ⊃ P (g(0, c)))

In this case there was no need to apply a substitution, so we compute the
ACNF of Ψ for n = 1. CL(Ψ) ↓1= {` P (c); P (v1) ` P (f(v1)); P (f(c)) `}
and T (R↓1) is:

` P (c) P (c) ` P (f(c))
cut` P (f(c)) P (f(c)) `

cut`

70 EXTENSIONS TO FIRST-ORDER SCHEMATA

The instance of the substitution schema, used in R, θ1 = [v0/c, v1/c] and
PR(Ψ)↓1 is:

{ P (c) ` P (c)
w : l, r

P (f(c)) ⊃ P (g(1, c)), P (c) ` P (c), P (g(1, c)) ⊃ : r
P (f(c)) ⊃ P (g(1, c)) ` P (c), P (c) ⊃ P (g(1, c)) ⊃ : r` (P (f(c)) ⊃ P (g(1, c))) ⊃ (P (c) ⊃ P (g(1, c))), P (c)

w : l
(∀x)(P (x) ⊃ P (f(x))) ` (P (f(c)) ⊃ P (g(1, c))) ⊃ (P (c) ⊃ P (g(1, c))), P (c)

;

P (f(c)) ` P (f(c)) P (g(1, c)) ` P (g(1, c))

P (f(c)) ⊃ P (g(1, c)), P (f(c)) ` P (g(1, c))
w : l

P (f(c)), P (f(c)) ⊃ P (g(1, c)), P (c) ` P (g(1, c)) ⊃ : r
P (f(c)), P (f(c)) ⊃ P (g(1, c)) ` P (c) ⊃ P (g(1, c)) ⊃ : r

P (f(c)) ` (P (f(c)) ⊃ P (g(1, c))) ⊃ (P (c) ⊃ P (g(1, c)))
w : l

P (f(c)), (∀x)(P (x) ⊃ P (f(x))) ` (P (f(c)) ⊃ P (g(1, c))) ⊃ (P (c) ⊃ P (g(1, c)))

;

P (v1) ` P (v1) P (f(v1)) ` P (f(v1))
⊃ : l

P (v1), P (v1) ⊃ P (f(v1)) ` P (f(v1))
∀ : l

P (v1), (∀x)(P (x) ⊃ P (f(x))) ` P (f(v1))
w : l

P (v1), (∀x)(P (x) ⊃ P (f(x))), (∀x)(P (x) ⊃ P (f(x))) ` P (f(v1))
c : l

P (v1), (∀x)(P (x) ⊃ P (f(x))) ` P (f(v1))
w : r

P (v1), (∀x)(P (x) ⊃ P (f(x))) ` (P (f(c)) ⊃ P (g(1, c))) ⊃ (P (c) ⊃ P (g(1, c))), P (f(v1))

}

Then ACNF of Ψ for n = 1 is (A ` B1 denotes S(1) : (∀x)(P (x) ⊃ P (f(x))) `
(P (f(c)) ⊃ P (g(1, c))) ⊃ (P (c) ⊃ P (g(1, c)))):

(φ`P (c))

A ` B1, P (c)

(φP (v1)`P (f(v1))θ1)

P (c), A ` B1, P (f(c))
cut

A,A ` B1, B1, P (f(c))

(φP (f(c))`)

P (f(c)), A ` B1
cut

A,A,A ` B1, B1, B1
c : l, r∗

(∀x)(P (x) ⊃ P (f(x))) ` (P (f(c)) ⊃ P (g(1, c))) ⊃ (P (c) ⊃ P (g(1, c)))

5.5 Complexity of CERESs

It is well known that cut-elimination is nonelementary in general (see [Ore82]),
i.e. there is no elementary bound on the size of a cut-free proof in terms of
the original one. Recall, that a function is elementary if its computation time
is bounded by e(m,n), for a fixed m ∈ N, n being a length of the input and

e(0, n) = n

e(k + 1, n) = 2e(k,n)

Nevertheless, in [BL10, Ruk11] subclasses of LK-proofs were investigated,
where cut-elimination is elementary. The idea was to identify subclasses of
LK-proofs, for which the characteristic clause set falls into a well known de-
cidable fragment of first-order logic. Following the same idea, it is possible

5.5. COMPLEXITY OF CERESS 71

those results to be extended for proof schemata as well. But finding a decid-
able fragment of first-order schemata is not an easy task (since unification is
undecidable). Therefore this problem is left to future research.

Here we concentrate on propositional schemata and on problems of ex-
tending the results from [BL10, Ruk11] to proof schemata. The class ONEQ,
a subclass of LK-proofs such that all cut-formulas in an LK-proof are closed
and have at most one quantifier, was proved to be elementary in [Ruk11].
If we consider propositional (bound-linear) proof schemata, they contain at
most one parameter, therefore the cut-formulas contain at most one param-
eter and can be seen as universally quantified formulas over the parameter.
So, propositional proof schemata somehow correspond to the ONEQ class
and the following proposition holds.

Proposition 5.5.1. Cut-elimination is elementary on propositional bound-
linear proof schemata.

Proof. Consider a bound-linear proof schema Ψ. It contains at most one
parameter, therefore the characteristic clause set schema contains at most
one parameter. This means that it falls into the one variable class of first-
order logic, which is decidable. Therefore, using the bound for the ONEQ
class from [Ruk11], we obtain a bound

l(acnf (Ψ, α)) ≤ γ ∗ l(Ψ↓α) ∗ 222l(Ψ↓α)

where acnf (Ψ, α) denotes an atomic cut normal form of Ψ for α and γ ∈ N is
some constant independent from l(Ψ↓α). Note that a bound for l(Ψ↓α) can
be computed easily: if β1 is a number of sequents, and β2 number of proof
links, occurring in Ψ, then l(Ψ↓α) ≤ α ∗ β1 ∗ β2.

Note that the bound obtained in the proof above is not tight and can
be improved. But still, while cut-elimination is exponential in usual propo-
sitional logic, it becomes at least double exponential in propositional proof
schemata.

Next we discuss some problems of extending the elementary classes to
first-order proof schemata. Consider the simplest class UIE (see [BL10]), i.e.
the class of proofs, where all inferences going into the end-sequent are unary.
The clause set of such proof contains only unit clauses, therefore it should
contain clauses ` A and B ` such that A and B are unifiable. Then there
is a one step resolution refutation, but since unification is not decidable in
proof schemata, we cannot be sure that the resolution refutation exist at all.
Therefore one should find a subset, where unification is decidable for term
schemata and restrict the class accordingly.

72 EXTENSIONS TO FIRST-ORDER SCHEMATA

The trivial subset of term schemata, where unification is decidable, is the
set of usual first-order terms, but there exists a term schematization language,
called extended primal grammars, that is a “maximal” language where the
unification problem is decidable (see [ACP08]). Therefore we should find
a restriction of term schemata to the equivalent class of extended primal
grammars.

Usually, the undecidability of the unification problem is caused by two
facts. The first is the expressibility of full Peano Arithmetic, i.e. expressing
multiplication; the second is the encoding of terms with an infinite number
of different variables (see e.g. [Sal93, ACP08] for more information). So,
if we restrict our term schemata such that terms of type ω are only arith-
metic expressions from Chapter 3 and restrict the terms on the right-hand
side of rewrite rules for defined function symbols such that they do not con-
tain nested defined function symbols (such terms are called regular terms
in [ACP08]), then we get an equivalent class to extended primal grammars.
The proof that this restrictions suffice is the subject to future research.

Another problem of extending the elementary classes to first-order proof
schemata is that the conditions defining the classes should be adjusted. This
is motivated with the fact, that if the LKs-proofs occurring in a proof schema
Ψ separately satisfy the conditions being in some class, the proof schema can
still be outside the class. For example, consider a proof schema Ψ with only
one proof symbol ψ. Assume π, ν(k) ∈ Ψ satisfy the conditions being in
the class UILM (UIRM), i.e. they contain only one monotone cut and all
inferences in the left (right) cut-derivation that go into the end sequent are
unary (for the full formal definition see [BL10]). But if ν(k) contains a proof
link to ψ, then Ψ is outside the class UILM (UIRM). Even more, it can be
outside the class G-UILM (G-UIRM), which has no restrictions about the
number of monotone cuts, but on positions of these cuts in the proof (for
the full formal definition see [Ruk11]). So, if there exists a binary inference
ρ in ν(k), such that ρ goes into the end-sequent, and the derivation of one
auxiliary formula of ρ contains a proof link to ψ and the other contains a
cut, then Ψ is outside the class G-UILM (G-UIRM).

Chapter 6

Applications of CERESs

Beyond theoretical importance, CERESs has practical applications as well.
Here we will investigate several mathematical proofs and analyze them us-
ing the CERESs method. These proofs contain some meaningful cuts and
after the analysis we will see that the refutations of characteristic clause set
schemata already contain the key steps of mathematical arguments. The
analysis is done semi-automatically. We start with the description of the
system, implementing the CERESs method.

6.1 The GAPT Framework

GAPT (General Architecture for Proof Theory)1 is a framework that aims at
providing data-structures, algorithms and user interfaces for analyzing and
transforming formal proofs. It is written in the hybrid functional object-
oriented language Scala [OSV10]. The framework is very general and it
implements the basic data structures for simply-typed lambda calculus, for
sequent and resolution proofs, and the like.

There are different algorithms for skolemization, regularization, and the
like, implemented in the GAPT framework for LK-proofs. The framework
implements Gentzen’s reductive cut-elimination method and the extraction
of data structures central to the CERES method such as characteristic term
(called struct in GAPT), characteristic clause set and projections. Although
GAPT has its own theorem prover, called TAP, the search for refutations is
delegated to renowned theorem provers such as Prover92 and Vampire3. Then
the prover TAP is used to replay the refutations found by external provers

1GAPT homepage: http://code.google.com/p/gapt/
2Prover9 Homepage: http://www.cs.unm.edu/~mccune/prover9/
3Vampire Homepage: http://www.vprover.org/

73

74 APPLICATIONS OF CERESS

to remove coarse-gained inferences and produce pure resolution refutations
(see [DLL+12] for more information about proof replay in GAPT).

The GAPT framework has a command line interface (CLI) that allows a
user to access the full capabilities of the framework and a graphical user iter-
face, called ProofTool, in which most of features of GAPT are integrated
(see [DLL+]).

Although GAPT is a quite complex system and has many useful applica-
tions, we will not describe the framework in details here. Rather we focus on
ProofTool and its features that are related to the CERESs method. We
start our discussion from parsers and exporters.

There are several input formats parsed by the GAPT framework but the
most important one (for CERESs) is the (schematic) proof input language. It
is designed to define (schematic) proofs in a form which is both easily human
and machine readable. The grammar of the language is very simple. We
describe it very briefly here from the user point of view. The full description
of the grammar can be found in [Dun12].

proof name proves sequent
base {
id1 : rule1
...
idn : rulen
root : rulen+1

}
step {
id1 : rule1
...
idm : rulem
root : rulem+1

}

Figure 6.1: Proof syntax of proof input language.

Proof schemata can be written in any text editor with ASCII characters.
To differentiate it from other text files, the extension .lks is used. One .lks file
must contain at least one proof pair definition, which has the pattern given
in Figure 6.1. For an inductive proof definition, the base block describes
the base case and the step block describes the recursive case. The ids are
arbitrary labels that are unique within the scope of {. . .} blocks (i.e. the

6.2. THE ADDER PROOF 75

same labels can be used in the definition of base and step cases) and rules
are tuples consisting of the rule’s name, the ids of the premises and of the
auxiliary formulas. The keyword root as an ID indicates that it is the last
inference of an LKs-proof.

An important feature of the parser of this language is that it has a so-
called auto-propositional mode. This means that if a user is not interested
in specifying exact proofs of propositional sequents, the auto-propositional
mode will prove the propositional sequents for the user.

There are also several xml formats in the GAPT framework, such as
simple xml format, that is used to communicate with other systems. One
such example is RegSTAB [ACP10]. It is a STAB prover that refutes regular
formula schemata and can output the tableau refutation in a simple xml
format, which can be read and displayed by ProofTool.

In ProofTool there are various exporters for objects of the GAPT
framework. The important ones are LATEX and pdf exportes. All objects
from ProofTool can be exported directly into .pdf files and additionally,
the proofs and clause sets can be exported into .tex files as well.

The GAPT framework contains an implementation of the basic data-
structures and algorithms for the CERESs method such as characteristic
clause-set terms, called schematic struct in GAPT, characteristic clause-set
schema, projection term schema and their extraction from proof schemata.
An important feature of ProofTool is that it allows instantiation of a
proof schema for some parameter. Then the data-structures needed for the
usual CERES method can be constructed and manipulated for the instance.

The characteristic and projection terms in ProofTool are displayed
as trees. Therefore some screenshots taken from ProofTool, which are
used in the example below, differs a bit from the usual notations used in
theoretical part of the thesis.

Finally, for a more detailed description of the GAPT framework, as
well on implementation details of CERESs we refer the interested reader
to [Dun12].

6.2 The Adder Proof

Our first example is about electronic adders, which are circuits adding two
numbers. A one-bit adder is a circuit, that adds two digits using a so called
carry bit and an n-bit adder is a composition of n one-bit adders. We consider
the following implementation of a one-bit adder: the sum of bits A and B,
using carry bit C is S = A�B�C, where� denotes an exclusive or, the initial
carry bit is 0 and the output carry bit computation is (A∧B)�(C∧(A�B)).

76 APPLICATIONS OF CERESS

Now, we analyze the following proposition.

Proposition 6.2.1. A circuit n-bit adder is commutative.

Proof. The initial carry bits for computing A + B and B + A are 0, then
by the computation of output carry bits, all the corresponding carry bits are
equal for each step of computation. Since all carry bits are equal, the sums
are also equal.

Even though the proof is mathematically simple and short, its formaliza-
tion in propositional proof schemata is quite big, (the adder.lks file contains
about 3500 lines). But it has several nice properties, which are mentioned
below. We start with some formula definitions (Ŝ denotes the sum and Ĉ
the carry bit computation):

A�B =def (A ∧ ¬B) ∨ (¬A ∧B)
A⇔ B =def (¬A ∨B) ∧ (¬B ∨ A)

Ŝi =def Si ⇔ (Ai �Bi)� Ci
Ŝ′i =def S ′i ⇔ (Bi � Ai)� C ′i
Ĉi =def Ci+1 ⇔ (Ai ∧Bi) ∨ (Ci ∧ Ai) ∨ (Ci ∧Bi)

Ĉ′i =def C ′i+1 ⇔ (Bi ∧ Ai) ∨ (C ′i ∧Bi) ∨ (C ′i ∧ Ai)
Addern =def

∧n
i=0 Ŝi ∧

∧n
i=0 Ĉi ∧ ¬C0

Adder′n =def

∧n
i=0 Ŝ′i ∧

∧n
i=0 Ĉ′i ∧ ¬C ′0

EqCn =def

∧n
i=0(Ci ⇔ C ′i)

EqSn =def

∧n
i=0(Si ⇔ S ′i)

Then the lemma the carry bits are equal is represented by the formula EqCn
and the proposition a circuit n-bit adder is commutative by the sequent
schema Addern, Adder

′
n ` EqSn.

The formalization of the proof above is the proof schema Ψ = 〈ψ, ϕ, φ, χ〉,
where ψ is associated with the pair (π1, ν1(k)), ν1(k) is:4

(ϕ(k + 1))

¬C0,¬C′0,
∧k+1
i=0 Ĉi,

∧k+1
i=0 Ĉ′i ` EqCk+1

(χ(k + 1))

EqCk+1,
∧k+1
i=0 Ŝi,

∧k+1
i=0 Ŝ′i ` EqSk+1

cut
¬C0,¬C′0,

∧k+1
i=0 Ĉi,

∧k
i=0 Ĉ′i,

∧k+1
i=0 Ŝi,

∧k+1
i=0 Ŝ′i ` EqSk+1

∧ : l∗
Adderk+1, Adder

′
k+1 ` EqSk+1

ϕ is associated with the pair (π2, ν2(k)) and ν2(k) is:

4Since the proofs are huge, we omit all base cases and the purely propositional parts
of the proofs. A full formal proof (the adder.lks file) can be found at http://www.logic.
at/asap/

6.2. THE ADDER PROOF 77

(ϕ(k))

¬C0,¬C′0,
∧k
i=0 Ĉi,

∧k
i=0 Ĉ′i ` EqCk

(φ(k))

¬C0,¬C′0,
∧k
i=0 Ĉi,

∧k
i=0 Ĉ′i ` Ck+1 ⇔ C′k+1 ∧ : r, c : l∗

¬C0,¬C′0,
∧k
i=0 Ĉi,

∧k
i=0 Ĉ′i ` EqCk+1

w : l,∧ : l∗
¬C0,¬C′0,

∧k+1
i=0 Ĉi,

∧k+1
i=0 Ĉ′i ` EqCk+1

φ is associated with the pair (π3, ν3(k)) and ν3(k) is:

(φ(k))

¬C0,¬C′0,
∧k
i=0 Ĉi,

∧k
i=0 Ĉ′i ` Ck+1 ⇔ C′k+1

...

Ck+1 ⇔ C′k+1, Ĉk+1, Ĉ
′
k+1 ` Ck+2 ⇔ C′k+2

cut
¬C0,¬C′0,

∧k
i=0 Ĉi,

∧k
i=0 Ĉ′i, Ĉk+1, Ĉ

′
k+1 ` Ck+2 ⇔ C′k+2

∧ : l∗
¬C0,¬C′0,

∧k+1
i=0 Ĉi,

∧k+1
i=0 Ĉ′i ` Ck+2 ⇔ C′k+2

and finally, χ is associated with the pair (π4, ν4(k)) and ν4(k) is:

(χ(k))

EqCk,
∧k
i=0 Ŝi,

∧k
i=0 Ŝ′i ` EqSk

...

Ck+1 ⇔ C′k+1, Ŝk+1, Ŝ
′
k+1 ` Sk+1 ⇔ S′k+1 ∧ : r

EqCk,
∧k
i=0 Ŝi,

∧k
i=0 Ŝ′i, Ck+1 ⇔ C′k+1, Ŝk+1, Ŝ

′
k+1 ` EqSk+1

∧ : l∗
EqCk+1,

∧k+1
i=0 Ŝi,

∧k+1
i=0 Ŝ′i ` EqSk+1

It is easy to see that for each proof symbol there is only one cut-configuration,
namely: ∅ for ψ and

Ωϕ = {` EqCn}
Ωφ = {` Cn+1 ⇔ C ′n+1}
Ωχ = {EqCn `}

The characteristic and projection terms for (some of) these cut-configurations
are given in Appendix B. The (simplified5) characteristic clause set schema
CL(Ψ) = ((C1, C2, C3, C4),R), where R is:

C1(0) → {C0 `; C ′0 `; ` C0, C
′
0; C0, C

′
0 `},

C1(k + 1) → C2(k + 1)⊕ C4(k + 1),

C2(0) → {C0 `; C ′0 `},
C2(k + 1) → C2(k)⊕ C3(k),

C3(0) → {C1 ` C ′1; C ′1 ` C1},
C3(k + 1) → C3(k)⊕ {Ck+2 ` C ′k+2, Ck+1; C ′k+2 ` Ck+2, C

′
k+1;

C ′k+1, Ck+2 ` C ′k+2; Ck+1, C
′
k+2 ` Ck+2},

C4(0) → {` C0, C
′
0; C0, C

′
0 `},

C4(k + 1) → C4(k)⊗ {` Ck+1, C
′
k+1; Ck+1, C

′
k+1 `}.

5For the better readability, factorization is done on the clauses and tautologies are
deleted.

78 APPLICATIONS OF CERESS

Note that, the clauses in C4 have parameter dependent number of literals,
namely, for all α ∈ N, the clauses in C4 ↓α contain 2∗(α+1) literals. Therefore,
for the specification of a corresponding resolution refutation schema, the use
of clause variables is needed. A resolution refutation schema of CL(Ψ) is
R = ((%, δ, η),R) where R is the following rewrite system:

%(0, X) → r(r((` C0, C
′
0) ◦X; C0 `; C0); C ′0 `; C ′0),

%(k + 1, X) → r(r(%(k, (` Ck+1, C
′
k+1) ◦X); η(k); C ′k+1);

r(δ(k); %(k, (Ck+1, C
′
k+1 `) ◦X); C ′k+1);

Ck+1),

δ(0) → C1 ` C ′1,
δ(k + 1) → r(Ck+2 ` C ′k+2, Ck+1;

r(δ(k); C ′k+1, Ck+2 ` C ′k+2; C ′k+1);

Ck+1),

η(0) → C ′1 ` C1,

η(k + 1) → r(C ′k+2 ` Ck+2, C
′
k+1;

r(η(k); Ck+1, C
′
k+2 ` Ck+2; Ck+1);

C ′k+1)

The resolution refutation of CL(Ψ)↓α is defined by %(n,`)↓α, for all α ∈ N.
Note that the derivations δ(n) and η(n), for all α ∈ N, derive respectively

the clauses Cα+1 ` C ′α+1 and C ′α+1 ` Cα+1 modulo factoring.
It is easy to verify that, for all α ∈ N, %(n,`)↓α is a resolution refutation

of CL(Ψ) ↓α. For %(n,`) ↓0 this is trivial. Assume that %(n,`) ↓α is a
resolution refutation of CL(Ψ) ↓α, for α > 0. Then, using this induction
hypothesis, %(n,`)↓α+1 is a resolution refutation if

r(r(` Cα+1, C
′
α+1; C ′α+1 ` Cα+1; C ′α+1);

r(Cα+1 ` C ′α+1; Cα+1, C
′
α+1 `; C ′α+1);

Cα+1)

is a resolution refutation, which it obviously is. Clearly, all clauses at the
leaf nodes of %(n,`)↓α+1 are in CL(Ψ)↓α+1.

Let us illustrate this with some instances. For α = 0,

CL(Ψ)↓0 = {C0 `; C ′0 `; ` C0, C
′
0; C0, C

′
0 `}

and %(n,`)↓0 is:

` C0, C
′
0 C0 `
` C ′0 C ′0 `

`

6.3. THE EXPONENTIAL PROOF 79

For α = 1, CL(Ψ)↓1 is:

{C0 `; C ′0 `; C1 ` C ′1; C ′1 ` C1; ` C0, C
′
0, C1, C

′
1;

C ′0, C0 ` C1, C
′
1; C ′1, C1 ` C0, C

′
0; C0, C

′
0, C1, C

′
1 ` }

and %(n,`)↓0 is:

` C0, C′0, C1, C′1 C0 `
` C′0, C1, C′1 C′0 `

` C1, C′1 C′1 ` C1

` C1

C1 ` C′1

C1, C′1 ` C0, C′0 C0 `
C1, C′1 ` C′0 C′0 `

C1, C′1 `
C1 `

`

Since the proof schema is too big, it is not possible to give the ACNF here,
but still we can see that the proof schema has some interesting properties.
First, we observe that for all α ∈ N, the number of clauses in CL(Ψ) ↓α is
exponentially growing, namely CL(Ψ)↓α contains 2α+2 clauses. Second, the
resolution refutation is also exponential in α.

Finally, while the original proof schema (with cuts) used the lemma that
all carry bits are equal, from the resolution refutation (which is a skeleton
of the essential cut-free proof) we can see that the (essential) cut-free proof
now derives the equality of the carry bits one-by-one.

6.3 The Exponential Proof

Our next example is taken from [BL99], where a sequence of proofs was
given as a worst case example for the so called QMON class, on which cut-
elimination is exponential. A meta-level proof schema of the sequents

Sn : T, (∀x)P (f(x), x) ` P (f 2n(a), a)

was defined, where T is transitivity of P , i.e.

T : (∀x)(∀y)(∀z)(P (x, y) ∧ P (y, z) ⊃ P (x, z))

and proved via the pigeonhole principle that every cut-free proof of Sn
must contain initial sequents P (f i+1(a), f i(a)) ` P (f i+1(a), f i(a)) for all
i = 0, . . . , 2n − 1 (and thus is exponential in n).

Below we will formalize that meta-level schema within our language and
prove the statement above via cut-elimination. We start from the term defi-
nitions. Let f̂ be a binary defined function symbol with the rewrite rules:

f̂(0, x) → x,

f̂(k + 1, x) → f(f̂(k, x)).

80 APPLICATIONS OF CERESS

Then f̂(α, x) represents fα(x) for all α ∈ N. So it remains to define a function
representing 2n. We define the function ê(n), for a unary defined function
symbol ê, with the rewrite rules:

ê(0) → 1,

ê(k + 1) → ê(k) + ê(k).

Then the term f 2n(x) is represented by f̂(ê(n), x) and we should construct
a proof schema of the sequent

S(n) : T, (∀x)P (f(x), x) ` P (f̂(ê(n), a), a).

A proof schema Ψ of S(n), is the tuple: 〈ψ, ϕ〉, where ψ is associated
with the pair (π1, ν1(k)); π1 is:

P (f̂(ê(0), a), a) ` P (f̂(ê(0), a), a)
def : l

P (f(a), a) ` P (f̂(ê(0), a), a)
∀ : l

(∀x)P (f(x), x) ` P (f̂(ê(0), a), a)
w : l

T, (∀x)P (f(x), x) ` P (f̂(ê(0), a), a)

and ν1(k) is:

(ϕ(k + 1))

T, (∀x)P (f(x), x) ` (∀x)P (f̂(ê(k + 1), x), x)

P (f̂(ê(k + 1), a), a) ` P (f̂(ê(k + 1), a), a)
∀ : l

(∀x)P (f̂(ê(k + 1), x), x) ` P (f̂(ê(k + 1), a), a)
cut

T, (∀x)P (f(x), x) ` P (f̂(ê(k + 1), a), a)

where ϕ is associated with the pair (π2, ν2(k)); π2 is (u : ω → ι is a schematic
variable):

P (f̂(ê(0), u(0)), u(0)) ` P (f̂(ê(0), u(0)), u(0))
def : l

P (f(u(0)), u(0)) ` P (f̂(ê(0), u(0)), u(0))
∀ : l

(∀x)P (f(x), x) ` P (f̂(ê(0), u(0)), u(0))
∀ : r

(∀x)P (f(x), x) ` (∀x)P (f̂(ê(0), x), x)
w : l

T, (∀x)P (f(x), x) ` (∀x)P (f̂(ê(0), x), x)

and ν2(k) is:

(ϕ(k))

T, (∀x)P (f(x), x) ` (∀x)P (f̂(ê(k), x), x)

(1)

(∀x)P (f̂(ê(k), x), x), T ` (∀x)P (f̂(ê(k + 1), x), x)
cut

T, T, (∀x)P (f(x), x) ` (∀x)P (f̂(ê(k + 1), x), x)
c : l

T, (∀x)P (f(x), x) ` (∀x)P (f̂(ê(k + 1), x), x)

where (1) is (A(i, j) is an abbreviation of P (f̂(i, u(k + 1)), f̂(j, u(k + 1)))):

6.3. THE EXPONENTIAL PROOF 81

A(ê(k + 1), ê(k)) ` A(ê(k + 1), ê(k)) A(ê(k), 0) ` A(ê(k), 0)
∧ : r

A(ê(k + 1), ê(k)), A(ê(k), 0) ` A(ê(k + 1), ê(k)) ∧A(ê(k), 0) A(ê(k + 1), 0) ` A(ê(k + 1), 0)
⊃ : l

(A(ê(k + 1), ê(k)) ∧A(ê(k), 0)) ⊃ A(ê(k + 1), 0), A(ê(k + 1), ê(k)), A(ê(k), 0) ` A(ê(k + 1), 0)
∀ : l∗

T,A(ê(k + 1), ê(k)), A(ê(k), 0) ` A(ê(k + 1), 0)
def : l

T, P (f̂(ê(k), f̂(ê(k), u(k + 1))), f̂(ê(k), u(k + 1))), A(ê(k), 0) ` A(ê(k + 1), 0)
∀ : l

T, (∀x)P (f̂(ê(k), x), x), A(ê(k), 0) ` A(ê(k + 1), 0)
∀ : l

T, (∀x)P (f̂(ê(k), x), x), (∀x)P (f̂(ê(k), x), x) ` A(ê(k + 1), 0)
c : l

T, (∀x)P (f̂(ê(k), x), x) ` A(ê(k + 1), 0)
∀ : r

T, (∀x)P (f̂(ê(k), x), x) ` (∀x)P (f̂(ê(k + 1), x), x)

There are two relevant cut-configurations for Ψ, namely ∅ for ψ and
Ω = {` (∀x)P (f̂(ê(k), x), x)} for ϕ. The characteristic terms for these cut-
configurations are:

Θ(π1, ∅) = `
Θ(ν1(k), ∅) = clϕ,Ωk+1 ⊕ P (f̂(ê(k + 1), a), a) `
Θ(π2,Ω) = ` P (f̂(ê(0), u(0)), u(0))

Θ(ν2(k),Ω) = clϕ,Ωk ⊕ (P (f̂(ê(k + 1), u(k + 1)), f̂(ê(k), u(k + 1))) ` ⊗
P (f̂(ê(k), u(k + 1)), u(k + 1)) ` ⊗
` P (f̂(ê(k + 1), u(k + 1)), u(k + 1)))

Then the characteristic clause set schema CL(Ψ) = ((C1, C2),R), where R is:

C1(0) → {`}
C1(k + 1) → C2(k + 1)⊕ {P (f̂(ê(k + 1), a), a) `}
C2(0) → {` P (f̂(ê(0), u(0)), u(0))}

C2(k + 1) → C2(k)⊕ {C(k + 1, u)}

where C(k + 1, u) is the following clause:

P (f̂(ê(k+ 1), u(k+ 1)), f̂(ê(k), u(k+ 1))), P (f̂(ê(k), u(k+ 1)), u(k+ 1)) `
P (f̂(ê(k + 1), u(k + 1)), u(k + 1))

The resolution refutation schema of CL(Ψ), R = ((%, δ),R), where R is:

%(0, u, v) → `
%(k + 1, u, v) → r(δ(k + 1, u, v); P (f̂(ê(k + 1), a), a) `; P (f̂(ê(k + 1), a), a))

δ(0, u, v) → ` P (f̂(ê(0), u(0)), u(0))

δ(k + 1, u, v) → r(δ(k, u′, v);

r(δ(k, u, v); C(k + 1, v); P (f̂(ê(k + 1), v(k + 1)), f̂(ê(k), v(k + 1))));

P (f̂(ê(k), v(k + 1)), v(k + 1)))

82 APPLICATIONS OF CERESS

Note that δ(k, u′, v) is just a renaming of the schematic variable u with u′ in
the end-sequent of δ. This renaming is necessary for defining a substitution
schema for R, which is:

ϑ = [u/λk.f̂(ê(k), v(k + 1)), u′/λk.v(k + 1)][v/λk.a]

= [u/λk.f̂(ê(k), a), u′/λk.a, v/λk.a]

Then the resolution refutation of CL(Ψ) for all α ∈ N is %(n, u, v)ϑ↓α.
It remains to compute the projection terms and the ACNF. The pro-

jection terms for the cut-configurations defined above are (the abbreviation
A(i, j) from above is used here again):

Ξ(π1, ∅) = wl(∀l(P (f̂(ê(0), a), a) ` P (f̂(ê(0), a), a)))

Ξ(ν1(k), ∅) = w`P (f̂(ê(k+1),a),a)(prϕ,Ω(k + 1))⊕
wT,(∀x)P (f(x),x)`(P (f̂(ê(k + 1), a), a) ` P (f̂(ê(k + 1), a), a))

Ξ(π2,Ω) = wl(∀l(P (f̂(ê(0), u(0)), u(0)) ` P (f̂(ê(0), u(0)), u(0)))

Ξ(ν2(k),Ω) = cl(w
T`(prϕ,Ω(k))⊕ wT,(∀x)P (f(x),x)`(∀l(∀l(∀l(
(A(ê(k + 1), ê(k)) ` A(ê(k + 1), ê(k))⊗∧r

A(ê(k), 0) ` A(ê(k), 0))⊗⊃l
A(ê(k + 1), 0) ` A(ê(k + 1), 0))))))

Now, the ACNF schema is the tuple (PR(Ψ), R, ϑ). Let us compute some
instances. For α = 0, R↓0 is just ` and PR(Ψ)↓0 is:

{
P (f(a), a) ` P (f(a), a)

∀ : l
(∀x)P (f(x), x) ` P (f(a), a)

w : l
T, (∀x)P (f(x), x) ` P (f(a), a)

}

Therefore the ACNF of Ψ for α = 0 is simply the projection from PR(Ψ)↓0.
For α = 1, R↓1 is

` P (f(u′0), u′0)

` P (f(u0), u0) P (f2(v1), f(v1)), P (f(v1), v1) ` P (f2(v1), v1)
u0/f(v1)

P (f(v1), v1) ` P (f2(v1), v1)
u′0/v1` P (f2(v1), v1) P (f2(a), a) `

v1/a`

and T (R↓1) is

` P (f(a), a)

` P (f2(a), f(a)) P (f2(a), f(a)), P (f(a), a) ` P (f2(a), a)
cut

P (f(a), a) ` P (f2(a), a)
cut

` P (f2(a), a) P (f2(a), a) `
cut`

6.3. THE EXPONENTIAL PROOF 83

Now, the set of projections PR(Ψ) ↓1, contains exactly the projections
φC1 , φC2 , φC3 , for

C1 = ` P (f(u0), u0)

C2 = P (f 2(u1), f(u1)), P (f(u1), u1) ` P (f 2(u1), u1)

C3 = P (f 2(a), a) `

which are respectively:

P (f(u0), u0) ` P (f(u0), u0)
∀ : l

(∀x)P (f(x), x) ` P (f(u0), u0)
w : l

T, (∀x)P (f(x), x) ` P (f(u0), u0)
w : l

T, T, (∀x)P (f(x), x) ` P (f(u0), u0)
c : l

T, (∀x)P (f(x), x) ` P (f(u0), u0)
w : r

T, (∀x)P (f(x), x) ` P (f(u0), u0), P (f2(a), a)

;

P (f2(u1), f(u1)) ` P (f2(u1), f(u1)) P (f(u1), u1) ` P (f(u1), u1)
∧ : r

P (f2(u1), f(u1)), P (f(u1), u1) ` P (f2(u1), f(u1)) ∧ P (f(u1), u1) P (f2(u1), u1) ` P (f2(u1), u1)
⊃ : l

(P (f2(u1), f(u1)) ∧ P (f(u1), u1) ⊃ P (f2(u1), u1), P (f2(u1), f(u1)), P (f(u1), u1) ` P (f2(u1), u1)
∀ : l∗

T, P (f2(u1), f(u1)), P (f(u1), u1) ` P (f2(u1), u1)
w : l∗

T, T, (∀x)P (f(x), x), P (f2(u1), f(u1)), P (f(u1), u1) ` P (f2(u1), u1)
c : l

T, (∀x)P (f(x), x), P (f2(u1), f(u1)), P (f(u1), u1) ` P (f2(u1), u1)
w : r

T, (∀x)P (f(x), x), P (f2(u1), f(u1)), P (f(u1), u1) ` P (f2(u1), u1), P (f2(a), a)

;

P (f2(a), a) ` P (f2(a), a)
w : l∗

T, (∀x)P (f(x), x), P (f2(a), a) ` P (f2(a), a)
;

Next, we denote A = (∀x)P (f(x), x) and B = P (f 2(a), a), then the the
ACNF of Ψ for α = 1 is

(φC1
[u0/a])

T,A ` B,P (f(a), a)

(φC1
[u0/f(a)])

T,A ` B,P (f2(a), f(a))

(φC2
[u1/a])

T,A, P (f2(a), f(a)), P (f(a), a) ` B,P (f2(a), a)
cut

T, T,A,A, P (f(a), a) ` B,B, P (f2(a), a)
cut

T, T, T,A,A,A ` B,B,B, P (f2(a), a)

(φC3
)

T,A, P (f2(a), a) ` B
cut

T, T, T, T,A,A,A,A ` B,B,B,B
c : l, r∗

T, (∀x)P (f(x), x) ` P (f2(a), a)

Finally, from the resolution refutation schema, which is a skeleton of
an (essentially) cut-free proof, and from the projection terms, namely from
Ξ(ν2(k),Ω), it is easy to see that indeed every cut-free proof of Sn must
contain initial sequents P (f i+1(a), f i(a)) ` P (f i+1(a), f i(a)) for all i =
0, . . . , 2n − 1.

84 APPLICATIONS OF CERESS

Chapter 7

Conclusion and Future Work

It is well known that cut-elimination is not in general possible in the pres-
ence of induction. In the literature attempts were made to find restrictions
which would allow cut-elimination. For example in [MM00] a reductive cut-
elimination method was given for intuitionistic proof systems with induction.
The other way was to avoid the use of the induction rule by so called cyclic
proofs. But in [Bro05] it was mentioned that there is no cut-elimination the-
orem for classical cyclic proof systems in the literature. The reason is that
the reductive cut-elimination methods cannot be extended to proofs with
cycles (shifting cuts over cycles is a major problem).

We presented a cut-elimination method CERESs for some kind of cyclic
proofs, which we call proof schemata and hence have shown that cut-elimina-
tion is possible also in proofs with cycles. To the best of our knowledge no
other proof of cut-elimination theorem exists for cyclic proofs.

CERESs is an extension of the cut-elimination method CERES (which is
cut-elimination method by resolution), removing all cuts at once, avoiding
the problem of shifting cuts over cycles. It allows extractions of the charac-
teristic clause set schema and of the projection schema from a proof schema.
Then the resolution refutation schema of the characteristic clause set schema
together with the projection schema describes a sequence of atomic cut nor-
mal forms.

The CERESs method, besides its theoretical importance, has also very
useful practical applications. Therefore the method was implemented and
applied to some schematic problems, which was illustrated in the previous
chapter.

As it usually happens in research, solving one problem gives rise to sev-
eral other problems. Therefore there are many potential improvements of
CERESs left to future research. Here we present the most important open
questions.

85

86 CONCLUSION AND FUTURE WORK

Extraction of Herbrand Sequent and Interpolants. There are proce-
dures which extract valuable information from cut-free proofs, such as
Herbrand sequent or interpolants. Considering the fact, that CERESs
does not produce a cut-free sequence of proofs in usual notation, it is
worthy to have such algorithms for proof schemata as well, which will
allow the extraction of valuable information form the ACNF schema.

Skolemization and Deskolemization. As was discussed in Chapter 2 and
Chapter 5, skolemization is vital for CERES, as well for CERESs.
Therefore the algorithm for skolemizing and deskolemizing a proof
schema should be found.

Investigate the Resolution Calculus Rs. There are numerous problems
that can be investigated in Rs. The first is to find a general algo-
rithm, verifying that given resolution proof schema is indeed a resolu-
tion refutation schema of the given clause set schema. Moreover, the
term language should be restricted such that the unification problem
becomes decidable (and a unification algorithm can be obtained). This
will allow to investigate decidable fragments of first-order schemata.

Investigate Fast Classes. Once we have decidable fragments of first-order
schemata, fast cut-elimination classes can be investigated for proof
schemata and the results from [BL10, Ruk11] can be extended to it.

Extend the Method to Multiple parameters. Having only one param-
eter is a major restriction of our language, since nested inductions can-
not be handled. Therefore extending the calculus and the method to
multiple parameters is of major importance.

Appendix A

Cut Transformation Rules

We will list below transformation rules for the Gentzen’s method. Unlike
Gentzen’s original proof of cut-elimination theorem, we will use a cut rule in-
stead of a mix rule. We divide rules into two parts, grade reduction rules and
rank reduction rules. Note that these rules are complete for cut-elimination,
provided an uppermost cut is selected.

A.1 Grade Reduction Rules

1. Cut rule premises are lower sequents of the ∧ : r and ∧ : l rules:

φ1

Γ1 ` ∆1, A

φ2

Γ2 ` ∆2, B ∧ : r
Γ1,Γ2 ` ∆1,∆2, A ∧B

φr
A,B,Γ ` ∆ ∧ : l
A ∧B,Γ ` ∆

cut
Γ1,Γ2,Γ ` ∆1,∆2,∆

transforms to

φ2

Γ2 ` ∆2, B

φ1

Γ1 ` ∆1, A

φr
A,B,Γ ` ∆

cut
B,Γ1,Γ ` ∆1,∆

cut
Γ1,Γ2,Γ ` ∆1,∆2,∆

2. Cut rule premises are lower sequents of the ∨ : r and ∨ : l rules:

φl
Γ ` ∆, A,B ∨ : r

Γ ` ∆, A ∨B

φ1

A,Γ1 ` ∆1

φ2

B,Γ2 ` ∆2 ∨ : l
A ∨B,Γ1,Γ2 ` ∆1,∆2

cut
Γ,Γ1,Γ2 ` ∆,∆1,∆2

87

88 CUT TRANSFORMATION RULES

transforms to

φl
Γ ` ∆, A,B

φ1

A,Γ1 ` ∆1
cut

Γ,Γ1 ` ∆,∆1, B

φ2

B,Γ2 ` ∆2
cut

Γ,Γ1,Γ2 ` ∆,∆1,∆2

3. Cut rule premises are lower sequents of the ⊃ : r and ⊃ : l rules:

φl
A,Γ ` ∆, B ⊃ : r

Γ ` ∆, A ⊃ B

φ1

Γ1 ` ∆1, A

φ2

B,Γ2 ` ∆2 ⊃ : l
A ⊃ B,Γ1,Γ2 ` ∆1,∆2

cut
Γ,Γ1,Γ2 ` ∆,∆1,∆2

transforms to

φ1

Γ1 ` ∆1, A

φl
A,Γ ` ∆, B

φ2

B,Γ2 ` ∆2
cut

A,Γ,Γ2 ` ∆,∆2
cut

Γ,Γ1,Γ2 ` ∆,∆1,∆2

4. Cut rule premises are lower sequents of the ¬ : r and ¬ : l rules:

φl
A,Γ1 ` ∆1 ¬ : r

Γ1 ` ∆1,¬A

φr
Γ2 ` ∆2, A ¬ : l¬A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

φr
Γ2 ` ∆2, A

φl
A,Γ1 ` ∆1

cut
Γ1,Γ2 ` ∆1,∆2

5. Cut rule premises are lower sequents of the ∀ : r and ∀ : l rules:

φl
Γ1 ` ∆1, A(x/α)

∀ : r
Γ1 ` ∆1, (∀x)A

φr
A(x/t),Γ2 ` ∆2 ∀ : l
(∀x)A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

A.2. RANK REDUCTION RULES 89

φl(α/t)

Γ1 ` ∆1, A(x/t)

φr
A(x/t),Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

6. Cut rule premises are lower sequents of the ∃ : r and ∃ : l rules:

φl
Γ1 ` ∆1, A(x/t)

∃ : r
Γ1 ` ∆1, (∃x)A

φr
A(x/α),Γ2 ` ∆2 ∃ : l
(∃x)A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

φl
Γ1 ` ∆1, A(x/t)

φr(α/t)

A(x/t),Γ2 ` ∆2
cut

Γ1,Γ2 ` ∆1,∆2

A.2 Rank Reduction Rules

1. Cut rule left premise is an axiom:

A ` A
φr

A,Γ ` ∆
cut

A,Γ ` ∆

transforms to
φr

A,Γ ` ∆

2. Cut rule right premise is an axiom:

φl
Γ ` ∆, A A ` A

cut
Γ ` ∆, A

transforms to
φl

Γ ` ∆, A

3. Cut rule left premise is a lower sequent of the w : r rule:

φl
Γ1 ` ∆1 w : r

Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

φl
Γ1 ` ∆1

w : l∗
Γ1,Γ2 ` ∆1

w : r∗
Γ1,Γ2 ` ∆1,∆2

90 CUT TRANSFORMATION RULES

If Γ2 is empty and/or ∆2 is empty, then corresponding weakening rules
are omitted.

4. Cut rule right premise is a lower sequent of the w : l rule:

φl
Γ1 ` ∆1, A

φr
Γ2 ` ∆2

w : l
A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

φr
Γ2 ` ∆2

w : l∗
Γ1,Γ2 ` ∆2

w : r∗
Γ1,Γ2 ` ∆1,∆2

If Γ1 is empty and/or ∆1 is empty, then corresponding weakening rules
are omitted.

5. Cut rule left premise is a lower sequent of the c : r rule:

φl
Γ1 ` ∆1, A,A c : r

Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

φl
Γ1 ` ∆1, A,A

φr
A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2, A

φ1
r

A,Γ2 ` ∆2
cut

Γ1,Γ2,Γ2 ` ∆1,∆2,∆2
c : l∗

Γ1,Γ2 ` ∆1,∆2,∆2
c : r∗

Γ1,Γ2 ` ∆1,∆2

Where φ1
r is variant of φr, such that all eigenvariables are renamed.

If Γ2 and/or ∆2 is empty, then corresponding contraction rules are
omitted.

6. Cut rule right premise is a lower sequent of the c : l rule:

A.2. RANK REDUCTION RULES 91

φl
Γ1 ` ∆1, A

φr
A,A,Γ2 ` ∆2

c : l
A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

φ1
l

Γ1 ` ∆1, A

φl
Γ1 ` ∆1, A

φr
A,A,Γ2 ` ∆2

cut
A,Γ1,Γ2 ` ∆1,∆2

cut
Γ1,Γ1,Γ2 ` ∆1,∆1,∆2

c : l∗
Γ1,Γ2 ` ∆1,∆1,∆2

c : r∗
Γ1,Γ2 ` ∆1,∆2

Where φ1
l is variant of φl, such that all eigenvariables are renamed. If Γ1

and/or ∆1 is empty, then corresponding contraction rules are omitted.

7. Cut rule left premise is a lower sequent of an arbitrary unary rule:

φl
Γ ` ∆, A unary

Γ1 ` ∆1, A

φr
A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

φl
Γ ` ∆, A

φr
A,Γ2 ` ∆2

cut
Γ,Γ2 ` ∆,∆2 unary

Γ1,Γ2 ` ∆1,∆2

8. Cut rule right premise is a lower sequent of an arbitrary unary rule:

φl
Γ1 ` ∆1, A

φr
A,Γ ` ∆ unary
A,Γ2 ` ∆2

cut
Γ1,Γ2 ` ∆1,∆2

transforms to

φl
Γ1 ` ∆1, A

φr
A,Γ ` ∆

cut
Γ1,Γ ` ∆1,∆ unary

Γ1,Γ2 ` ∆1,∆2

92 CUT TRANSFORMATION RULES

9. Cut rule left premise is a lower sequent of an arbitrary binary rule:

φ1

Γ1 ` ∆1, A

φ2

Γ2 ` ∆2 binary
Γ ` ∆, A

φr
A,Π ` Λ

cut
Γ,Π ` ∆,Λ

transforms to

φ1

Γ1 ` ∆1, A

φr
A,Π ` Λ

cut
Γ1,Π ` ∆1,Λ

φ2

Γ2 ` ∆2 binary
Γ,Π ` ∆,Λ

Or if cut formula comes from right premise of a binary rule:

φ1

Γ1 ` ∆1

φ2

Γ2 ` ∆2, A binary
Γ ` ∆, A

φr
A,Π ` Λ

cut
Γ,Π ` ∆,Λ

transforms to

φ1

Γ1 ` ∆1

φ2

Γ2 ` ∆2, A

φr
A,Π ` Λ

cut
Γ2,Π ` ∆2,Λ binary

Γ,Π ` ∆,Λ

10. Cut rule right premise is a lower sequent of an arbitrary binary rule:

φl
Π ` Λ, A

φ1

A,Γ1 ` ∆1

φ2

Γ2 ` ∆2 binary
A,Γ ` ∆

cut
Π,Γ ` Λ,∆

transforms to

φl
Π ` Λ, A

φ1

A,Γ1 ` ∆1
cut

Π,Γ1 ` Λ,∆1

φ2

Γ2 ` ∆2 binary
Π,Γ ` Λ,∆

Or if cut formula comes from right premise of a binary rule:

A.2. RANK REDUCTION RULES 93

φl
Π ` Λ, A

φ1

Γ1 ` ∆1

φ2

A,Γ2 ` ∆2 binary
A,Γ ` ∆

cut
Π,Γ ` Λ,∆

transforms to

φ1

Γ1 ` ∆1

φl
Π ` Λ, A

φ2

A,Γ2 ` ∆2
cut

Π,Γ2 ` Λ,∆2 binary
Π,Γ ` Λ,∆

94 CUT TRANSFORMATION RULES

Appendix B

Characteristic Terms of the
Adder Proof

We will list below the characteristic terms and (some of) the projections
terms of the Adder proof, obtained from ProofTool. First, note that in
ProofTool all these terms are displayed as trees upside-down, where the
leaf nodes are clauses and the other nodes are the symbols⊕,⊗,∼ (represents
the negation) for characteristic terms and⊕,⊗σ, ρ for projection terms, where
σ, ρ are the binary and unary rule names respectively.

In ProofTool the notation of cut-configurations also differs from the
one that we used in the thesis. The cut-configurations are represented as lists
of formulas, separated by |, that separates formulas from the antecedent of a
sequent from the ones from the succedent. Here we list the cut-configurations
of the proof schema Ψ from Section 6.2 in the notation of ProofTool:1

∅ = (|)

Ωϕ =
(
|

k∧

i=0

((¬Ci ∨ Cpi) ∧ (¬Cpi ∨ Ci))
)

Ωφ = (| ((¬Ck+1 ∨ Cpk+1) ∧ (¬Cpk+1 ∨ Ck+1)))

Ωχ =
(k∧

i=0

((¬Ci ∨ Cpi) ∧ (¬Cpi ∨ Ci)) |
)

B.1 Characteristic Terms

Below we list the characteristic terms of the proof schema Ψ from Section 6.2.
Note that for the better readability, in ProofTool the empty nodes of the

1The atom Cp corresponds to the atom C ′.

95

96 CHARACTERISTIC TERMS OF THE ADDER PROOF

characteristic terms are pruned.
The characteristic term Θ(π1, ∅):

The characteristic term Θ(ν1(k), ∅):

The characteristic term Θ(π2,Ωϕ):

The characteristic term Θ(ν2(k),Ωϕ):

The characteristic term Θ(π3,Ωφ):

B.1. CHARACTERISTIC TERMS 97

The characteristic term Θ(ν3(k),Ωφ): The characteristic term Θ(ν4(k),Ωχ):

98 CHARACTERISTIC TERMS OF THE ADDER PROOF

The characteristic term Θ(π4,Ωχ)

B.2 Projection Terms

Below we list (some of2) the projection terms of the proof schema Ψ from
Section 6.2. Note that the calculus of the GAPT framework is a bit different:
our ∧ : l and ∨ : r rules are represented as a chain of several unary rules, like
for example the chains ∧ : l1,∧ : l2, c : l and ∨ : r1,∨ : r2, c : r; therefore these
rules appear in the projection terms instead of ∧ : l and ∨ : r.

The projection term Ξ(ν1(k), ∅):

2The projection terms which are too big to be put on a page can be found at http:

//www.logic.at/asap/

B.2. PROJECTION TERMS 99

The projection term Ξ(π2,Ωϕ):

The projection term Ξ(ν2(k),Ωϕ):

100 CHARACTERISTIC TERMS OF THE ADDER PROOF

Bibliography

[ACP08] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. More
Flexible Term Schematisations via Extended Primal Grammars.
In International Symposium on Artificial Intelligence and Math-
ematics (ISAIM 2008), 2008.

[ACP09] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A
Schemata Calculus for Propositional Logic. In Automated Rea-
soning with Analytic Tableaux and Related Methods, volume 5607
of Lecture Notes in Computer Science, pages 32–46, 2009.

[ACP10] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier.
RegSTAB: A SAT-Solver for Propositional Iterated Schemata. In
International Joint Conference on Automated Reasoning, pages
309–315, 2010.

[ACP11] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier.
Decidability and Undecidability Results for Propositional
Schemata. Journal of Artificial Intelligence Research, 40:599–
656, 2011.

[AEP] Vincent Aravantinos, Mnacho Echenim, and Nicolas Peltier. A
Resolution Calculus for First-Order Schemata. To appear.

[AP11] Vincent Aravantinos and Nicolas Peltier. Generating Schemata
of Resolution Proofs. In Martin Giese and Roman Kuznets, edi-
tors, TABLEAUX 2011 Workshops, Tutorials, and Short Papers,
pages 16–30, 2011.

[AZ99] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK.
Springer, 1999.

[BHL+05] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens
Richter, and Hendrik Spohr. Cut-Elimination: Experiments with
CERES. In Franz Baader and Andrei Voronkov, editors, Logic

101

102 BIBLIOGRAPHY

for Programming, Artificial Intelligence, and Reasoning (LPAR)
2004, volume 3452 of Lecture Notes in Computer Science, pages
481–495. Springer, 2005.

[BHL+08] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens
Richter, and Hendrik Spohr. CERES: An Analysis of Fürsten-
berg’s Proof of the Infinity of Primes. Theoretical Computer
Science, 403:160–175, 2008.

[BHW12] Matthias Baaz, Stefan Hetzl, and Daniel Weller. On the Com-
plexity of Proof Deskolemization. Journal of Symbolic Logic,
77(2):669–686, 2012.

[BL94] Matthias Baaz and Alexander Leitsch. Skolemization and proof
complexity. Fundamenta Informaticae, 20(4):353–379, 1994.

[BL99] Matthias Baaz and Alexander Leitsch. Cut Normal Forms and
Proof Complexity. Annals of Pure and Applied Logic, 97:127–
177, 1999.

[BL00] Matthias Baaz and Alexander Leitsch. Cut-Elimination and
Redundancy-Elimination by Resolution. Journal of Symbolic
Computation, 29(2):149–176, 2000.

[BL06] Matthias Baaz and Alexander Leitsch. Towards a Clausal Anal-
ysis of Cut-Elimination. Journal of Symbolic Computation, 41(3-
4):381–410, 2006.

[BL10] Matthias Baaz and Alexander Leitsch. Fast Cut-Elimination by
CERES. In S. Feferman and W. Sieg, editors, Proofs, Categories
and Computations, pages 31–49. College Publications, London,
2010.

[BL11] Matthias Baaz and Alexander Leitsch. Methods of Cut-
Elimination, volume 34 of Trends in Logic. Springer, 2011.

[Bro05] James Brotherston. Cyclic Proofs for First-Order Logic with
Inductive Definitions. In B. Beckert, editor, Automated Reason-
ing with Analytic Tableaux and Related Methods, volume 3702 of
Lecture Notes in Computer Science, pages 78–92, 2005.

[CL08] Agata Ciabattoni and Alexander Leitsch. Towards an Algorith-
mic Construction of Cut-Elimination Procedures. Mathematical
Structures in Computer Science, 18:81–105, 2008.

BIBLIOGRAPHY 103

[DLL+] Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Mar-
tin Riener, Mikheil Rukhaia, Daniel Weller, and Bruno
Woltzenlogel-Paleo. ProofTool: GUI for the GAPT Framework.
To appear.

[DLL+10] Tsvetan Dunchev, Alexander Leitsch, Tomer Libal, Daniel
Weller, and Bruno Woltzenlogel Paleo. System Description: The
Proof Transformation System CERES. In Automated Reasoning,
pages 427–433. Springer Berlin / Heidelberg, 2010.

[DLL+12] Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Mar-
tin Riener, Mikheil Rukhaia, Daniel Weller, and Bruno
Woltzenlogel-Paleo. System Feature Description: Importing
Refutations into the GAPT Framework. In David Pichardie
and Tjark Weber, editors, Second International Workshop on
Proof Exchange for Theorem Proving (PxTP 2012), volume 878
of CEUR Workshop Proceedings, pages 51–57, 2012.

[DLRW] Cvetan Dunchev, Alexander Leitsch, Mikheil Rukhaia, and
Daniel Weller. CERES for First-Order Schemata. To appear.

[DLRW12] Cvetan Dunchev, Alexander Leitsch, Mikheil Rukhaia, and
Daniel Weller. CERES for Propositional Proof Schemata. Tech-
nical report, Vienna University of Technology, 2012.

[Dun12] Cvetan Dunchev. Automation of Cut-Elimination in Proof
Schemata. PhD thesis, Vienna University of Technology, 2012.

[FMWP10] Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo.
Exploring and Exploiting Algebraic and Graphical Properties
of Resolution. In 8th International Workshop on Satisfiability
Modulo Theories - SMT 2010, Edinburgh, Royaume-Uni, 2010.

[Het08] Stefan Hetzl. Proof Profiles. Characteristic Clause Sets and
Proof Transformations. VDM-Verlag, Saarbrücken, 2008.

[HLW11] Stefan Hetzl, Alexander Leitsch, and Daniel Weller. CERES
in Higher-order Logic. Annals of Pure and Applied Logic,
162(12):1001–1034, 2011.

[HLWP09] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and
Bruno Woltzenlogel Paleo. A Clausal Approach to Proof
Analysis in Second-order Logic. In Sergei Artemov and Anil
Nerode, editors, Logical Foundations of Computer Science,

104 BIBLIOGRAPHY

volume 5407 of Lecture Notes in Computer Science, pages
214–229. Springer Berlin, 2009.

[Lei97] Alexander Leitsch. The resolution calculus. Texts in theoretical
computer science. Springer-Verlag Inc., New York, NY, USA,
1997.

[Lib08] Tomer Libal. Cut Elimination in Inductive Proofs of Weakly
Quantified Theorems. Master’s thesis, Vienna University of
Technology, 2008.

[LRP12] Alexander Leitsch, Giselle Reis, and Bruno Woltzenlogel Paleo.
Towards CERES in Intuitionistic Logic. In Patrick Cégielski
and Arnaud Durand, editors, Computer Science Logic (CSL’12),
volume 16 of LIPIcs, pages 485–499. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012.

[MM00] Raymond McDowell and Dale Miller. Cut-Elimination for a
Logic with Definitions and Induction. Theoretical Computer Sci-
ence, 232(1–2):91–119, 2000.

[MR67] Albert R. Meyer and Dennis M. Ritchie. The Complexity of Loop
Programs. In Proceedings of the 1967 22nd national conference,
ACM ’67, pages 465–469, New York, NY, USA, 1967.

[Ore82] Vladimir P. Orevkov. Lower Bounds for Increasing Complexity
of Derivations After Cut-Elimination. Journal of Mathematical
Sciences, 20:2337–2350, 1982.

[OSV10] Martin Odersky, Lex Spoon, and Bill Venners. Programming in
Scala: A Comprehensive Step-by-step Guide. Artima, Inc., 2nd
edition, 2010.

[Pal09] Bruno Woltzenlogel Paleo. A General Analysis of Cut-
Elimination by CERes. PhD thesis, Vienna University of Tech-
nology, 2009.

[Rob65] John Alan Robinson. A Machine-Oriented Logic Based on the
Resolution Principle. Journal of the ACM, 12(1):23–41, 1965.

[Ruk11] Mikheil Rukhaia. CERES and Fast Cut-Elimination. A mono-
graph. VDM-Verlag, Saarbrücken, 2011.

BIBLIOGRAPHY 105

[Sal93] Gernot Salzer. On the Relationship between Cycle Unifica-
tion and the Unification of Infinite Sets of Terms. In Franz
Baader and Wayne Snyder, editors, 7th Workshop on Unifica-
tion (UNIF’93), Boston, Mass., USA, 1993.

[Tak87] Gaisi Takeuti. Proof Theory. North Holland, second edition,
1987.

[Tsi70] Dionysis Tsichritzis. The Equivalence Problem of Simple Pro-
grams. Journal of the ACM, 17(4):729–738, 1970.

Index

Arithmetic expression, 13
ground, 14
linear, 13

Atomic Cut Normal Form, 46, 69

Calculus
LK, 6
LKs, 18, 54

Characteristic term, 33, 64
Clause, 8, 22

schema, 22
set schema, 26

Clause-set term, 26
Cut-configuration, 32
Cut-elimination, 10

Derivation, 7

Formula schema, 14, 53
bound-linear, 15
ground, 16
regular, 16

Grade, 9

Index variable, 13
Indexed proposition, 14
Inference, 6

Literal, 22

Parameter, 13
Projection term, 41, 66
Proof, 7

link, 18, 54
schema, 19

Rank, 9
Regularity, 9, 59
Resolution, 8, 24

deduction, 9, 24
proof schema, 25
refutation schema, 27
term, 23

Schematic variable, 59
Sequent, 5

schema, 18
Substitution schema, 63

Term schema, 52

106

