
COMPUTATIONAL ANALYSIS

OF PROOFS

CERES:

Cut-Elimination by Resolution
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Gentzen-type methods of cut-elimination:

• reduction of cut-complexity.

• “peeling” the cut-formulas from outside.

The method can be described as a

normal form computation

based on a set of rules R.

Computational features:

• very slow

• weak in detecting redundancy.

• application to complex proofs impossible

in practice
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Example of a Gentzen reduction:

P (a) ` P (a)
(∀x)P (x) ` P (a)

∀ : l
P (b) ` P (b)

(∀x)P (x) ` P (b)
∀ : l

(∀x)P (x) ` P (a) ∧ P (b)
∧ : r

P (a) ` P (a)
P (a) ∧ P (b) ` P (a)

∧ : l

P (a) ∧ P (b) ` (∃x)P (x)
∃ : r

(∀x)P (x) ` (∃x)P (x)
cut

rank = 3, grade = 1.

reduce to rank = 2, grade = 1:

P (a) ` P (a)
(∀x)P (x) ` P (a)

∀ : l
P (b) ` P (b)

(∀x)P (x) ` P (b)
∀ : l

(∀x)P (x) ` P (a) ∧ P (b)
∧ : r

P (a) ` P (a)
P (a) ∧ P (b) ` P (a)

∧ : l

(∀x)P (x) ` P (a)
cut

(∀x)P (x) ` (∃x)P (x)
∃ : r
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P (a) ` P (a)
(∀x)P (x) ` P (a)

∀ : l
P (b) ` P (b)

(∀x)P (x) ` P (b)
∀ : l

(∀x)P (x) ` P (a) ∧ P (b)
∧ : r

P (a) ` P (a)
P (a) ∧ P (b) ` P (a)

∧ : l

(∀x)P (x) ` P (a)
cut

(∀x)P (x) ` (∃x)P (x)
∃ : r

rank = 2, grade = 1.

reduce to grade = 0, rank = 3:

P (a) ` P (a)
(∀x)P (x) ` P (a) ∀ : l

P (a) ` P (a)
(∀x)P (x) ` P (a)

cut

(∀x)P (x) ` (∃x)P (x) ∃ : r

eliminate cut with axiom:

P (a) ` P (a)
(∀x)P (x) ` P (a) ∀ : l

(∀x)P (x) ` (∃x)P (x) ∃ : r
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Cut-elimination by Resolution (CERES):

based on a structural (algebraic) analysis of
LK-proofs.

sub-derivation into cuts

ϕ

sub-derivation into end sequent

Θ(ϕ): characteristic clause term,
carries substantial information on derivations
of cut formulas.

Θ(ϕ)⇒ CL(ϕ) (characteristic clause set)

clause = atomic sequent.

sequent = Γ `∆. Γ,∆ multisets of formulas

cut-elimination = reduction to atomic cuts.
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C-Terms (Clause Terms):

Definition 1 (C-term)

• (Finite) sets of clauses are C-terms.

• If X,Y are C-terms then (X ⊕ Y ) is a C-

term.

• If X,Y are C-terms then (X ⊗ Y ) is a C-

term.
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Definition 2 We define a mapping | | from C-

terms to sets of clauses in the following way:

|C| = C for sets of clauses C,
|X ⊕ Y | = |X| ∪ |Y |,
|X ⊗ Y | = |X| × |Y |.

where C × D = {C ◦D | C ∈ C, D ∈ D},

and “◦” denotes merging, i.e.

(Γ `∆) ◦ (Π ` Λ) = Γ,Π `∆,Λ

for multisets Γ,∆,Π,Λ.

We define C-terms to be equivalent if the cor-

responding sets of clauses are equal, i.e. X ∼ Y
iff |X| = |Y |.
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The Method CERES:

Example:

ϕ1 ϕ2
(∀x)(P (x)→ Q(x)) ` (∃y)(P (a)→ Q(y))

cut

ϕ1 =

P (u)? ` P (u) Q(u) ` Q(u)?

P (u)?, P (u)→ Q(u) ` Q(u)? →: l

P (u)→ Q(u) ` (P (u)→ Q(u))?
→: r

P (u)→ Q(u) ` (∃y)(P (u)→ Q(y))? ∃ : r

(∀x)(P (x)→ Q(x)) ` (∃y)(P (u)→ Q(y))? ∀ : l

(∀x)(P (x)→ Q(x)) ` (∀x)(∃y)(P (x)→ Q(y))? ∀ : r

ϕ2 =

P (a) ` P (a)? Q(v)? ` Q(v)
P (a), (P (a)→ Q(v))? ` Q(v)→: l

(P (a)→ Q(v))? ` P (a)→ Q(v)
→: r

(P (a)→ Q(v))? ` (∃y)(P (a)→ Q(y)) ∃ : r

(∃y)(P (a)→ Q(y))? ` (∃y)(P (a)→ Q(y)) ∃ : l

(∀x)(∃y)(P (x)→ Q(y))? ` (∃y)(P (a)→ Q(y)) ∀ : l
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X1 = {P (u) `}, X2 = {` Q(u)},
X3 = {` P (a)}, X4 = {Q(v) `}.

Y1 = X1 ⊗X2.

Y2 = X3 ⊕X4.

Θ(ϕ) = Y1 ⊕ Y2 =

({P (u) `} ⊗ {` Q(u)})⊕ ({` P (a)} ⊕ {Q(v) `})

CL(ϕ) = |Θ(ϕ)| =
{P (u) ` Q(u), ` P (a), Q(v) `}.
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Projection to CL(ϕ):

• Skip inferences leading to cuts.

• Obtain cut-free proof of end-sequent

+ a clause in CL(ϕ).

Let ϕ be the proof of the sequent

S: (∀x)(P (x) → Q(x)) ` (∃y)(P (a) → Q(y))

shown above.
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CL(ϕ) = {P (u) ` Q(u), ` P (a), Q(v) `}.

Skip inferences in ϕ1 leading to cuts:

P (u) ` P (u) Q(u) ` Q(u)
P (u), P (u)→ Q(u) ` Q(u) →: l

P (u), (∀x)(P (x)→ Q(x)) ` Q(u) ∀ : l

ϕ(C1) =

P (u) ` P (u) Q(u) ` Q(u)
P (u), P (u)→ Q(u) ` Q(u)

→: l

P (u), (∀x)(P (x)→ Q(x)) ` Q(u)
∀ : l

P (u), (∀x)(P (x)→ Q(x)) ` (∃y)(P (a)→ Q(y)), Q(u)
w : r

For C2 = ` P (a) we obtain the projection ϕ(C2):

P (a) ` P (a)
P (a) ` P (a), Q(v)

w : r

` P (a)→ Q(v), P (a)
→: r

` (∃y)(P (a)→ Q(y)), P (a)
∃ : l

(∀x)(P (x)→ Q(x)) ` (∃y)(P (a)→ Q(y)), P (a)
w : l
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next step:

• Construct an R-refutation γ of CL(ϕ),

• insert projections of ϕ into γ.

Let ϕ be the proof of

S: (∀x)(P (x)→ Q(x)) ` (∃y)(P (a)→ Q(y))

as defined above. Then

CL(ϕ) =

{C1 : P (u) ` Q(u), C2 : ` P (a), C3 : Q(u) `}.
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First we define a resolution refutation δ of

CL(ϕ):

` P (a) P (u) ` Q(u)
` Q(a) R

Q(v) `
` R

R = atomic mix + most general unification.

ground projection γ of δ:

` P (a) P (a) ` Q(a)
` Q(a) R

Q(a) `
` R

The ground substitution defining the ground

projection is

σ : {u← a, v ← a}.
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Let χ1 = ϕ(C1)σ,

χ2 = ϕ(C2)σ and

χ3 = ϕ(C3)σ.

B = (∀x)(P (x)→ Q(x)),

C = (∃y)(P (a)→ Q(y)).

Then ϕ(γ) =

(χ2)
B ` C,P (a)

(χ1)
P (a), B ` C,Q(a)

B,B ` C,C,Q(a)
cut

(χ3)
Q(a), B ` C

B,B,B ` C,C,C cut

B ` C contractions
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The problem of Skolemization:

CERES: end-sequents must be skolemized.

no projections with strong variables in end-

sequent.

example:

ϕ =

Pα ` Pα Qα ` Qα
Pα, Pα→ Qα ` Qα →: l

Pα, (∀x)(Px→ Qx) ` Qα ∀ : l+ p

(∀x)Px, (∀x)(Px→ Qx) ` Qα ∀ : l

(∀x)Px, (∀x)(Px→ Qx) ` (∀x)Qx ∀ : r

Qβ ` Qβ
Qβ ` Qβ ∨Rβ) ∨ : r

(∀x)Qx ` Qβ ∨Rβ ∀ : l

(∀x)Qx ` (∀x)(Qx ∨Rx) ∀ : r

(∀x)Px, (∀x)(Px→ Qx) ` (∀x)(Qx ∨R(x))
cut

CL(ϕ) = {` Qα; Qβ `}.
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Skolemization of Proofs

a. skolemization of formulas:

Definition 3 (strong and weak quantifiers)

If (∀x) occurs positively (negatively) in B then

(∀x) is called a strong (weak) quantifier. If

(∃x) occurs positively (negatively) in B then

(∃x) is called a weak (strong) quantifier.

Skolemization removes strong quantifiers.
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structural skolemization operator sk :

Definition 4 (skolemization) sk is a function

which maps closed formulas into closed formu-

las; it is defined in the following way:

sk(F ) = F

if F does not contain strong quantifiers,

= sk(F(Qy){y ← f(x1, . . . , xn)})
if (Qy) is in the scope of the

weak quantifiers (Q1x1), . . . , (Qnxn).

where (Qy) is the first strong quantifier in F .

F(Qy) = F after omission of (Qy).

f ∈ FS ∪ CS and f not in F .
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b. skolemization of sequents:

Definition 5 Let S be the sequent

A1, . . . , An ` B1, . . . , Bm

where Ai, Bj are closed and

(A′1 ∧ . . . ∧A
′
n)→ (B′1 ∨ . . . ∨B

′
m)

be the structural skolemization of

(A1 ∧ . . . ∧An)→ (B1 ∨ . . . ∨Bm). Then

S′ : A′1, . . . , A
′
n ` B′1, . . . , B

′
m

is called the skolemization of S.

Example: Let S be the sequent

(∀x)(∃y)P (x, y) ` (∀x)(∃y)P (x, y).

skolemization of S is S′:

(∀x)P (x, f(x)) ` (∃y)P (c, y)

for f ∈ FS1 and c ∈ CS.
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Definition 6 Let ϕ be an arbitrary LK-proof.

By ‖ϕ‖l we denote the number of logical in-

ferences and mixes (or cuts) in ϕ. Structural

rules like weakening, contraction and permu-

tation are not counted.

Proposition 1 Let ϕ be an LK-proof of S from

an atomic axiom set A. Then there exists a

proof sk(ϕ) of sk(S) (the structural skolemiza-

tion of S) from A s.t. ‖sk(ϕ)‖l ≤ ‖ϕ‖l.
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Example: Let ϕ =

P (c, α) ` P (c, α) Q(α) ` Q(α)
P (c, α), P (c, α)→ Q(α) ` Q(α)

→: l+ p : l

P (c, α)→ Q(α), (∀x)P (c, x) ` Q(α)
∀ : l+ p : l

P (c, α)→ Q(α), (∀x)P (c, x) ` (∃y)Q(y)
∃ : r

(∃y)(P (c, y)→ Q(y)), (∀x)P (c, x) ` (∃y)Q(y)
∃ : l

(∀x)P (c, x), (∀x)(∃y)(P (x, y)→ Q(y)) ` (∃y)Q(y)
∀ : l+ p : l

Then sk(ϕ) =

P (c, f(c)) ` P (c, f(c)) Q(f(c)) ` Q(f(c))
P (c, f(c)), P (c, f(c))→ Q(f(c)) ` Q(f(c))

→: l+ p : l

P (c, f(c))→ Q(f(c)), (∀x)P (c, x) ` Q(f(c))
∀ : l+ p : l

P (c, f(c))→ Q(f(c)), (∀x)P (c, x) ` (∃y)Q(y)
∃ : r

(∀x)P (c, x), (∀x)(P (x, f(x))→ Q(f(x))) ` (∃y)Q(y)
∀ : l+ p : l

‖ϕ‖l = 5 and ‖sk(ϕ)‖l = 4.
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Definition 7

• SK = set of all LK-derivations with

skolemized end-sequents.

• SK∅ = set of all cut-free proofs in SK.

• SKi = derivations in SK with cut-formulas of

formula complexity ≤ i. ]

Goal: reduction to derivations with only atomic

cuts, i.e.

transform ϕ ∈ SK into ψ ∈ SK0.

first step: construction of the

characteristic C-term
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Characteristic Terms:

Let ϕ be an LK-derivation of S and let Ω be

the set of all occurrences of cut formulas in ϕ.

We define the characteristic term Θ(ϕ) induc-

tively:

Let ν be the occurrence of an initial sequent

S′ in ϕ. Then

Θ(ϕ)/ν = S(ν,Ω)

where S(ν,Ω) is the subsequent of S containing

the ancestors of Ω.
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Assume: Θ(ϕ)/ν are already constructed for
depth(ν) ≤ k.

depth(ν) = k+ 1:

(a) ν is the consequent of µ:
Θ(ϕ)/ν = Θ(ϕ)/µ.

(b) ν is the consequent of µ1 and µ2:

(b1) The auxiliary formulas of X are ancestors
of Ω, i.e. the formulas occur in
S(µ1,Ω), S(µ2,Ω):

(+) Θ(ϕ)/ν = Θ(ϕ)/µ1 ⊕Θ(ϕ)/µ2.

(b2) The auxiliary formulas of X are
not ancestors of Ω:

(×) Θ(ϕ)/ν = Θ(ϕ)/µ1 ⊗Θ(ϕ)/µ2.

Θ(ϕ) = Θ(ϕ)/ν where ν is the occurrence of
the end-sequent.
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Remark: If ϕ is a cut-free proof then there are

no occurrences of cut formulas in ϕ and Θ(ϕ)

is a product of {`}. ]

Definition 8 (characteristic clause set)

Let ϕ be an LK-derivation and Θ(ϕ) be the

characteristic term of ϕ. Then CL(ϕ): |Θ(ϕ)|
is called the characteristic clause set of ϕ. ]

Proposition 2

Let ϕ be an LK-derivation. Then CL(ϕ) is

unsatisfiable.
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Projection:

Lemma 1

Let ϕ be a deduction in SK of a sequent S :

Γ ` ∆. Let C: P̄ ` Q̄ be a clause in CL(ϕ).

Then there exists a deduction

ϕ(C) of P̄ ,Γ `∆, Q̄

s.t.

ϕ(C) ∈ SK∅ and l(ϕ(C)) ≤ l(ϕ).

Projection of ϕ to C: construct ϕ(C).

25



the remaining steps:

• Construct an R-refutation γ of CL(ϕ),

• insert the projections of ϕ into γ.

• add some contractions and obtain a proof

with (only) atomic cuts.

(• eliminate the atomic cuts)
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Complexity:

complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):

There exists a sequence of LK-proofs ϕn of

sequents Sn s.t.

• ‖ϕn‖ ≤ 2k∗n and

• for all cut-free proofs ψ of ϕn:

‖ψ‖ > s(n) where

s(0) = 1, s(n+ 1) = 2s(n).

There exists no cheap way of cut-elimination

in principle!
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CERES:

main point of complexity: resolution proof.

ϕ: LK-proof of S.

Let γ be a resolution refutation of CL(ϕ).

Then there exists a proof ψ of S with (only)

atomic cuts s.t.

‖ψ‖ ≤ 2 ∗ ‖γ‖ ∗ ‖ϕ‖.

Moreover there exists a cut-free proof ψ′ of S

s.t.

‖ψ′‖ ≤ 2d∗‖γ‖∗‖ϕ‖.
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CERES is superior to Gentzen:

nonelementary speed-up of Gentzen by CERES:

• There exists a sequence of LK-proofs ϕn s.t.

‖ϕn‖ ≤ 2k∗n and

all Gentzen-eliminations are of size > s(n).

CERES produces ≤ 2m∗n symbols.

• There is no nonelementary speed-up of CERES

by Gentzen!
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Characteristic Clause Terms and

Cut-Reduction

Definition 9

Let θ be a substitution. We define the appli-

cation of θ to C-terms as follows:

Xθ = Cθ if X = C for sets of clauses C,

(X ⊕ Y )θ = Xθ ⊕ Y θ,

(X ⊗ Y )θ = Xθ × Y θ.
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Definition 10

Let X,Y be C-terms. We define

X ⊆ Y iff |X| ⊆ |Y |,

X v Y iff for all C ∈ |Y | there exists a

D ∈ |X| s.t. D v C,

X ≤s Y iff there exists a substitution θ with

Xθ = Y ,

X ≤ss Y iff |X| ≤ss |Y |.

Remark:

v is the subclause-relation:

C v D iff there exists an E s.t. C ◦ E = D.

≤ss is the subsumption relation.
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Lemma 2 Let X,Y, Z be C-terms and
X ⊆ Y . Then

(1) X ⊕ Z ⊆ Y ⊕ Z,

(2) Z ⊕X ⊆ Z ⊕ Y ,

(3) X ⊗ Z ⊆ Y ⊗ Z,

(4) Z ⊗X ⊆ Z ⊗ Y .

Lemma 3 Let X,Y, Z be C-terms and
X v Y . Then

(1) X ⊕ Z v Y ⊕ Z,

(2) Z ⊕X v Z ⊕ Y ,

(3) X ⊗ Z v Y ⊗ Z,

(4) Z ⊗X v Z ⊗ Y .
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Replacing subterms in a clause term preserves
the relations ⊆ and v:

Lemma 4 Let λ be an occurrence in a C-term
X and Y � X.λ for �∈ {⊆,v}. Then X[Y ]λ �
X.

The point is:
⊆,v and ≤s are preserved under cut-reduction
steps.

Together the define a relation �:

Definition 11 Let X and Y two C-terms. We
define X � Y if (at least) one of the following
properties is fulfilled:

(a) Y ⊆ X or

(b) X v Y or

(c) X ≤s Y . ]
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Remark: In general Y ≤s Z does not imply

X[Y ]λ ≤s X[Z]λ, i.e. ≤s is not compatible with

⊕ and ⊗. Consider, for example, the terms

Y = {` P (x)}, Z = {` P (f(x))} and

X = {` Q(x)} ⊗ {` R(x)},

X.λ = {` Q(x)}.

Clearly Y ≤s Z. By replacement we obtain

X[Y ]λ = {` P (x)} ⊗ {` R(x)},

X[Z]λ = {` P (f(x))} ⊗ {` R(x)}.

Obviously X[Y ]λ 6≤s X[Z]λ. ]
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The reflexive transitive closure �∗ of � can be

considered as a

weak form of subsumption:

Proposition 3

Let X and Y be C-terms s.t.

X �∗ Y . Then X ≤ss Y .

Note: The subsumption relation ≤ss is defined

on sets of clauses by

C ≤ss D ↔
for all D ∈ D there is a C ∈ C: C ≤ss D.

Γ `∆ ≤ss Π ` Λ↔
there exists a substitution θ s.t.

set(Γθ) ⊆ set(Π), set(∆θ) ⊆ set(Λ).
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Lemma 5 (main lemma)

Let ϕ, ϕ′ be LK-derivations with ϕ > ϕ′ for a

cut reduction relation > based on R. Then

Θ(ϕ) � Θ(ϕ′).

proof:

by cases according to the definitions of > and

R. 3

R = set of cut-reduction rules extracted from

Gentzen’s proof (possibly extended by cut-projection

rules).
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Theorem 1

Let ϕ be an LK-deduction and ψ be a nor-

mal form of ϕ under a cut reduction relation

> based on R. Then

Θ(ϕ) ≤ss Θ(ψ).

Proof: Use Lemma 5 and the facts

• � ⊆ ≤ss,

• ≤ss is transitive.

3
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Theorem 2

Let ϕ be an LK-derivation and ψ be a normal

form of ϕ under a cut reduction relation >R
based on R. Then there exists a resolution

refutation γ of CL(ϕ) s.t.

γ ≤ss RES(ψ).

RES(ψ) = (standard) resolution refutation of

CL(ψ).

Proof: Θ(ϕ) ≤ss Θ(ψ) and thus

CL(ϕ) ≤ss CL(ψ).

By the subsumption principle, for every resolu-

tion refutation δ of CL(ψ) there exists a reso-

lution refutation γ of CL(ϕ) with

γ ≤ss δ.

3
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Corollary 1

Let ϕ be an LK-derivation and ψ be a normal

form of ϕ under a cut reduction relation >R
based on R. Then there exists a resolution

refutation γ of CL(ϕ) s.t.

l(γ) ≤ l(RES(ψ)) ≤ l(ψ) ∗ 22∗l(ψ).

Proof: By Theorem 2 and the fact that l(RES(ψ))

is at most exponential in l(ψ). 3

39



Corollary 2

Let ϕ be an LK-derivation and ψ be a nor-

mal form of ϕ under a cut reduction relation

>R based on R. Then there exists a proof χ

obtained from ϕ by CERES s.t.

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ).

Proof: χ is defined by inserting the projections

of ϕ into a refutation γ of CL(ϕ). 3

Corollary 3

Let ϕ be an LK-derivation and ψ be a normal

form of ϕ under Gentzen’s or Tait’s method

(possibly extended by cut-projection rules). Then

there exists a proof χ obtained from ϕ by CERES

s.t.

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ).

Proof: Gentzens and Tait’s methods are based

on R. 3
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Extensions of CERES:

(I) CERES-m.

For cut-elimination in Gentzen calculi for many-

valued logics.

easy:

− generalization of clause terms.

− many-valued resolution.

− proof projections.

delicate:

skolemization and re-skolemization.

crucial: full contraction and weakening.
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(II) CERES-e.

For cut-elimination in proofs with equality.

approach:

axioms include A ` A and ` s = s.

extend LK to LK= by paramodulation-type

rules

Γ `∆, s = t A[s],Γ′ `∆′

Γ,Γ′, A[t] `∆,∆′ =: l

example:

` a = f(a, e)
P (a) ` P (a) Q(a) ` Q(a)
P (a)→ Q(a), P (a) ` Q(a) →: l

P (f(a, e))→ Q(a), P (a) ` Q(a) =: l

(∀y)(P (f(a, y))→ Q(a)), P (a) ` Q(a) ∀ : l

(∀x)(∀y)(P (f(x, y))→ Q(x)), P (a) ` Q(a) ∀ : l
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CERES-e:

− characteristic term: analogous

− projections: analogous

− skolemization: unproblematic.

− resolution ⇒ resolution + paramodulation.

very useful in handling mathematical proofs!
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main goal:

• Cut-elimination in real mathematical proofs.

Experiments with proof transformations.

Cut-elimination in classical logic is

− not confluent:

construct different elementary proofs

corresponding to a proof with lemmas.

Experiments: to be presented on Friday.
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Cut Reduction Rules:

If a cut-derivation ψ is transformed to ψ′ then

we define

ψ > ψ′

where ψ =

(ρ)
Γ `∆

(σ)
Π ` Λ

Γ,Π∗ `∆∗,Λ cut
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3.11. rank = 2.

The last inferences in ρ, σ are logical ones and

the cut-formula is the principal formula of these

inferences:

3.113.31.

(ρ1)
Γ `∆, A

(ρ2)
Γ `∆, B

Γ `∆, A ∧B ∧ : r

(σ′)
A,Π ` Λ

A ∧B,Π ` Λ ∧ : l

Γ,Π `∆,Λ cut(A ∧B)

transforms to

(ρ1)
Γ `∆, A

(σ′)
A,Π ` Λ

Γ,Π∗ `∆∗,Λ cut(A)

Γ,Π `∆,Λ w :∗

For the other form of ∧ : l the transformation

is straightforward.
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3.113.33.

(ρ′[α])
Γ `∆, Bxα

Γ `∆, (∀x)B ∀ : r

(σ′)
Bxt ,Π ` Λ

(∀x)B,Π ` Λ ∀ : l

Γ,Π `∆,Λ cut((∀x)B)

transforms to

(ρ′[t])
Γ `∆, Bxt

(σ′)
Bxt ,Π ` Λ

Γ,Π∗ `∆∗,Λ
cut(Bxt )

Γ,Π `∆,Λ w :∗

3.113.34. The last inferences in ρ, σ are ∃ :

r, ∃ : l: symmetric to 3.113.33.
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3.12. rank > 2:

3.121. right-rank > 1:

3.121.2. The cut formula does not occur in

the antecedent of the end-sequent of ρ.

3.121.23. The last inference in σ is binary:

3.121.231. The case ∧ : r. Here

(ρ)
Π ` Λ

(σ1)
Γ `∆, B

(σ2)
Γ `∆, C

Γ `∆, B ∧ C ∧ : r

Π,Γ∗ ` Λ∗,∆, B ∧ C cut(A)

transforms to

(ρ)
Π ` Λ

(σ1)
Γ `∆, B

Π,Γ∗ ` Λ∗,∆, B
cut(A)

(ρ)
Π ` Λ

(σ2)
Γ `∆, C

Π,Γ∗ ` Λ∗,∆, C
cut(A)

Π,Γ∗,` Λ∗,∆, B ∧ C ∧ : r
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3.121.232. The case ∨ : l. Then ψ is of the

form

(ρ)
Π ` Λ

(σ1)
B,Γ `∆

(σ2)
C,Γ `∆

B ∨ C,Γ `∆ ∨ : l

Π, (B ∨ C)∗,Γ∗ ` Λ∗,∆
cut(A)

(B ∨ C)∗ is empty if A = B ∨ C and B ∨ C
otherwise.

We first define the proof τ :

(ρ)
Π ` Λ

(σ1)
B,Γ `∆

B∗,Π,Γ∗ ` Λ∗,∆ cut(A)

B,Π,Γ∗ ` Λ∗,∆
x

(ρ)
Π ` Λ

(σ2)
C,Γ `∆

C∗,Π,Γ∗ ` Λ∗,∆ cut(A)

C,Π,Γ∗ ` Λ∗,∆
x

B ∨ C,Π,Γ∗ ` Λ∗,∆ ∨ : l

Note that, in case A = B or A = C, the in-

ference x is w : l; otherwise x is the identical

transformation and can be dropped.

If (B ∨ C)∗ = B ∨ C then ψ transforms to τ .
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If, on the other hand, (B ∨ C)∗ is empty (i.e.

B ∨ C = A) then we transform ψ to

(ρ)
Π ` Λ τ

Π,Π∗,Γ∗ ` Λ∗,Λ∗,∆ cut(A)

Π,Γ∗ ` Λ∗,∆ c :∗

50



3.121.233. The last inference in ψ2 is →: l.

Then ψ is of the form:

(ψ1)
Π ` Σ

(χ1)
Γ ` Θ, B

(χ2)
C,∆ ` Λ

B → C,Γ,∆ ` Θ,Λ →: l

Π, (B → C)∗,Γ∗,∆∗ ` Σ∗,Θ,Λ
cut(A)

As in 3.121.232 (B → C)∗ = B → C for B →
C 6= A and (B → C)∗ empty otherwise.

3.121.233.1. A occurs in Γ and in ∆. Again

we define a proof τ :

(ψ1)
Π ` Σ

(χ1)
Γ ` Θ, B

Π,Γ∗ ` Σ∗,Θ, B
cut(A)

(ψ1)
Π ` Σ

(χ2)
C,∆ ` Λ

C∗,Π,∆∗ ` Σ∗,Λ cut(A)

C,Π,∆∗ ` Σ∗,Λ
x

B → C,Π,Γ∗,Π,∆∗ ` Σ∗,Θ,Σ∗,Λ →: l

If (B → C)∗ = B → C then, as in 3.121.232,

ψ is transformed to τ + some additional con-

tractions. Otherwise an additional cut with cut

formula A is appended.
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3.121.233.2 A occurs in ∆, but not in Γ. As

in 3.121.233.1 we define a proof τ :

(χ1)
Γ ` Θ, B

(ψ1)
Π ` Σ

(χ2)
C,∆ ` Λ

C∗,Π,∆∗ ` Σ∗,Λ cut(A)

C,Π,∆∗ ` Σ∗,Λ
x

B → C,Γ,Π,∆∗ ` Θ,Σ∗,Λ →: l

Again we distinguish the cases B → C = A and

B → C 6= A and define the transformation of

ψ exactly like in 3.121.233.1.
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