COMPUTATIONAL ANALYSIS
OF PROOFS

CERES:
Cut-Elimination by Resolution



Gentzen-type methods of cut-elimination:

e reduction of cut-complexity.
e ‘“‘peeling”’ the cut-formulas from outside.

The method can be described as a

normal form computation

based on a set of rules R.

Computational features:

e very slow

e Weak in detecting redundancy.

e application to complex proofs impossible
in practice



Example of a Gentzen reduction:

P(a) - P(a) P(b) F P(b) P(a) - P(a)

Vil Vil Al

(Vz)P(z) - P(a) (Vz)P(z) - P(b) A ' . P(a) NP(b) - P(a) " _" .
(Vx)P(z) - P(a) N P(b) ' P(a) NP(b) - (3x)P(x) cu-t
(Vz)P(z) - (3x)P(x)

rank = 3, grade = 1.
reduce to rank = 2, grade = 1.

P(a) F P(a) _ P(b) + P(b)

Vo) P(z) - P(a) " ! (Y2)P(z) F P(b) X lr Pk P@)
(V2)P (@) F P(a) A P(b) " P@APOFP@ "
(PG Pa)

(Vz)P(z) - (Fz)P(x) ~°



P(a)F P(a) P(b) - P(b)
Vo) P(z) - P(a) ¥ -

Vo) P(z) F P(b) ¥ ! P(a) - P(a)

(Vz)P(z) + P(a) -
(Vz)P(z) - (dz)P(x) ~

rank = 2, grade = 1.
reduce to grade = 0, rank = 3:

P(a)F P(a) .,

(Vx)P(x) F P(a) " P(a) F P(a)
()P F Pla)

(Vx)P(x) F (Jz)P(x) ~ -

cut

eliminate cut with axiom:

P(a) F P(a)
(Vx)P(z) F P(a)
(Vx)P(x) - (3z) P(x)

Vil
J:7r

(Vz)P(z) - P(a) A P(b) " Pla) A POB) - Pa) ?u l



Cut-elimination by Resolution (CERES):

based on a structural (algebraic) analysis of
LK-proofs.

sub-derivation into cuts

sub-derivation into end sequent

©(p): characteristic clause term,

carries substantial information on derivations
of cut formulas.

©(p) = CL(p) (characteristic clause set)
clause = atomic sequent.

sequent =T F A. ', A multisets of formulas

cut-elimination = reduction to atomic cuts.
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C-Terms (Clause Terms):

Definition 1 (C-term)

e (Finite) sets of clauses are C-terms.

o If X,Y are C-terms then (X @Y) is a C-
term.

o If XY are C-terms then (X ® Y) is a C-
term.



Definition 2 We define a mapping | | from C-
terms to sets of clauses in the following way:

|IC| = C for sets of clauses C,
XoY| = |X[UlY],
X®Y| = |X]|x]|Y|

where Cx D={CoD|C €(C,D € D},
and "o’ denotes merging, i.e.
(FrEA)o(MEAN)=T,MTFA,A

for multisets ', A, ', A.

We define C-terms to be equivalent if the cor-
responding sets of clauses are equal, i.e. X ~Y
iff | X| = [Y].



The Method CERES:

Example:

©1 ©2 cuut
(Vz)(P(z) — Q(z)) F (Fy)(P(a) — Q(y))

Y1 —

P()* F P(u)  Q(w) - Q(u)*
P(w)*, P(w) = Q(u) F Q(w)*
P(u) — Q(u) F (P(w) — Q())* 1"
P(u) — Q) F Gy)(P(w) = QW)* ' 1,
(V) (P() — Q@) F Gy)(P(w) — Q)* " /.
(V) (P(2) — Q(2)) F (V) Gp) (P(2) — Q)™ 7

—:

—. T

Y2 =

Pa)F P(a)* QM) FQ(v)
P(a), (P(a) = Q@)* F Q) !,
(P(a) = Q) P(a) — Q) 'L
(P(a) — Q))* - Gy)(P(a) = Q)
() (P(a) —~ Q)" F Gy)(P(a) — Q)

(vVz)(Fy) (P(z) — Q())* - @) (P(a) — Q) " -
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X1 ={P(u) F}, Xo={FQ(u)},
Xz ={F P(a)}, X4 =1{Q(v) F}.

Y1 = X1 ® Xo.
Yo = X3 & X4.

O(p) =Y1 DY =
{Pu) Fr@{FQ(u)}) & ({F P(a)} ®{Q(v) F})

CL(p) = 0(¢p)| =
{P(uw) F Qu), - Pla), Q(v) F}.



Projection to CL(y):
e SKip inferences leading to cuts.

e Obtain cut-free proof of end-sequent
+ a clause in CL(yp).

Let ¢ be the proof of the sequent

S:(Vz)(P(z) — Q(z)) F (Fy)(P(a) — Q(y))

shown above.
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CL(p) ={P(uw) F Qu), F P(a), Q(v)H}.

Skip inferences in ¢4 leading to cuts:

P(u)F P(u) QM)FQ(w)
P(w), P(u) = Q) F Q(w) !
P(w), (¥2)(P(z) — Q@) - Q(w) ¥

0(C1) =

Pu) - P(u) QM) FQ)
P(u), P(u) — Q(u) - Q(u) ")
P(u), (Vz)(P(z) — Q(z)) F Q(u) "~

P(u), (V2)(P(z) — Q) F (Fy)(P(a) — Q(®)),Q(w) “ "

For C> = + P(a) we obtain the projection ¢(C>):

P(a) F P(a)
P(a) - P(@),Q) 7
- P(a) — Q) P@) L
FGP@ = Q). P@
(V) (P(2) = Q@) F Gy (P(a) — Qw)), P(a) '

w.r
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next step:

e Construct an R-refutation v of CL(y),
e insert projections of ¢ into ~.

Let ¢ be the proof of

S: (Vz)(P(z) — Q(z)) F (Fy)(P(a) — Q(y))

as defined above. Then

CL(p) =
{C1:P(u)FQ(u), Cr:F P(a), C3:Q(u) F}.
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First we define a resolution refutation 6 of
CL(y):

FP(a) P(u)tF Q(u)
- Q(a)

R

"t awr,

R = atomic mix 4+ most general unification.

ground projection « of §:

= P(a) P(a)F Q(a)
= Q(a)

R
Qa) .

|_

The ground substitution defining the ground
projection is

o {u+—a,v+—a}l.
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Let x1 = ¢(C1)o,
x2 = ¢(C2)o and
x3 = ¢(C3)o.

B = (Vz)(P(z) — Q(z)),
C = (Fy)(Pa) — Qy)).

Then p(v) =

(x2) (x1)
B+C,P(a) P(a),BFC,Q(a)

B,BFC,C,Q(a)

cut

(x3)
Q(a),BEC .

B,B.BFC,C.C

BEFC

contractions

14
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The problem of Skolemization:

CERES: end-sequents must be skolemized.
no projections with strong variables in end-
sequent.

example:

90:

Poal Pa Qoab Qo .

Poz,Poz—>rol—Qa_>'v:l_|_p QB QB Voo
Pa, (Vz)(Pz — Qx) F Qo V- QB FQBYV RB) v
(Vz) Pz, (Vz)(Pr — Q) F Qo Y (Vz)Qx - QBV RB " "

(Vz) Pz, (V) (Pz — Qx) - (Vz)Qux (V2)Oz - (V) (Qz v Rz) " - "

(Vz)Pz, (Vz)(Px — Qz) F (V2)(Qz VvV R(x)) cut

CL(p) = {F Qa; QB+}.
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Skolemization of Proofs

a. skolemization of formulas:

Definition 3 (strong and weak quantifiers)
If (Vx) occurs positively (negatively) in B then
(Vx) is called a strong (weak) quantifier. If
(dx) occurs positively (negatively) in B then
(3dx) is called a weak (strong) quantifier.

Skolemization removes strong quantifiers.
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structural skolemization operator sk:

Definition 4 (skolemization) sk is a function
which maps closed formulas into closed formu-
las; it is defined in the following way:

sk(EF") F

if /' does not contain strong quantifiers,

Sk(F(Qy){y N f(mla - 751377/)})
if (Qy) is in the scope of the

weak quantifiers (Q1x1),..., (Qnxn).

where (Qy) is the first strong quantifier in F'.
F(g,) = F' after omission of (Qu).

fe FSUCS and f not in F.
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b. skolemization of sequents:

Definition b Let S be the sequent
Ai,...,Apn+ Bq1,...,Bm
where A;, B; are closed and
(AN ANAL) = (BYv...vB.)

be the structural skolemization of
(A{N...NAp) — (B1 V...V Bp). Then

S’ Ay, ... AL -BY,...,B,

is called the skolemization of S.

Example: Let S be the sequent

(Vz)(3y) P(z,y) b (Vz)(3y) P(z, y).

skolemization of S is S’:

(Vz)P(z, f(z)) = (3y) P(c, y)
for f € FS1 and c € CS.

18



Definition 6 Let ¢ be an arbitrary LK-proof.
By ||¢||; we denote the number of logical in-
ferences and mixes (or cuts) in ¢. Structural
rules like weakening, contraction and permu-
tation are not counted.

Proposition 1 Let ¢ be an LK-proof of S from
an atomic axiom set A. Then there exists a
proof sk(p) of sk(S) (the structural skolemiza-
tion of S) from A s.t. ||sk(o)|l; < |lell;-

19



Example: Let ¢ =

Pleo)i Plea) Q) - Q)
P(c,a), P(c, Q(a) F Qo
P,0) = Q(a), (V) P(er) F Q(a) * ' TP
P(e.0) — Q(a), (%) P(e,2) F GnQ) 7L
Go)(P(e.y) — Q). (W0)Plen) - GnRW ., .,
(v2) P (e, 2), (V) Gy) (P(x, 9) — Q) F (F)Q() '

—:l4+p:l

Then sk(p) =

P(c, f(e)) = P(c, f(0))  Q(f(c)) FQ(f(c)) . I+ p: 1
P(c, f(c)), P(¢, f(c)) — Q(f(e)) - Q(f(c)) l—l—p ]
P(e, f(0)) — QU (Ya) Ple,2) F QUF()) 3 -
P(c, f(c)) — Q(f(c)), (Va)P(c,x) - (y)Q(y) 4
(¥2) P(e2), (¥2) (P(z, £ (2)) — QU () F (F)QW) ©

lell; =5 and [[sk(@)[; = 4.

20



Definition 7
e SK = set of all LK-derivations with
skolemized end-sequents.

o SKy = set of all cut-free proofs in SK.

e SK! = derivations in SK with cut-formulas of
formula complexity <z. {

Goal: reduction to derivations with only atomic
cuts, i.e.
transform ¢ € SK into ¢ € SKO.

first step: construction of the
characteristic C-term

21



Characteristic Terms:

Let ¢ be an LK-derivation of S and let €2 be
the set of all occurrences of cut formulas in .
We define the characteristic term ©(y) induc-
tively:

Let v be the occurrence of an initial sequent
S’ in ¢. Then

S(p)/v =5, Q)

where S(v, ?) is the subsequent of S containing
the ancestors of €.

22



Assume: ©(p)/v are already constructed for
depth(v) < k.

depth(v) = k + 1:

(a) v is the consequent of u:
O(p)/v = O(p)/n.

(b) v is the consequent of u1 and u»:

(b1) The auxiliary formulas of X are ancestors
of €2, i.e. the formulas occur in

S(/L]_,Q),S(,LLQ,Q>:
(+) ©(p)/v=0(p)/u1 @ O(p)/u2.

(b2) The auxiliary formulas of X are
not ancestors of £2:

(x) O(p)/v=0(p)/u1 ® O(p)/us.

©(p) = ©(p)/v where v is the occurrence of
the end-sequent.

23



Remark: If ¢ is a cut-free proof then there are
no occurrences of cut formulas in ¢ and ©(y)
is a product of {}. f

Definition 8 (characteristic clause set)
Let ¢© be an LK-derivation and ©(y) be the
characteristic term of ¢. Then CL(p): |©(p)]
is called the characteristic clause set of p.

Proposition 2
Let ¢ be an LK-derivation. Then CL(yp) is
unsatisfiable.

24



Projection:
Lemma 1
Let o be a deduction in SKC of a sequent S

T+ A. Let C:PF Q be a clause in CL(yp).
T hen there exists a deduction

o(C) of P,TFA,Q

S.t.

p(C) € SKy and I(x(C)) < I(p).

Projection of ¢ to C: construct o(C).

25



the remaining steps:
e Construct an R-refutation v of CL(y),
e insert the projections of ¢ into ~.

e add some contractions and obtain a proof
with (only) atomic cuts.

(e eliminate the atomic cuts)

26



Complexity:
complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):
There exists a sequence of LK-proofs ¢, of
sequents Sj, s.t.

o [[on|l < 2F*" and
e for all cut-free proofs ¢ of oy:

||| > s(n) where
s(0)=1, s(n+ 1) =25(n)

There exists no cheap way of cut-elimination
in principle!

27



CERES:
main point of complexity: resolution proof.

¢. LK-proof of S.

Let v be a resolution refutation of CL(yp).
Then there exists a proof i of S with (only)
atomic cuts s.t.

[l < 2% Iy + [l

Moreover there exists a cut-free proof ¢/ of S
S.t.

[!]] < 2a*[17lxllell.

28



CERES is superior to Gentzen:

nonelementary speed-up of Gentzen by CERES:

e T here exists a sequence of LK-proofs ¢, s.t.
ln|| < 287 and
all Gentzen-eliminations are of size > s(n).

CERES produces < 2™* gymbols.

e [ hereis no nonelementary speed-up of CERES
by Gentzen!

29



Characteristic Clause Terms and
Cut-Reduction

Definition 9
Let & be a substitution. We define the appli-
cation of 6 to C-terms as follows:

X0 = CO if X =C for sets of clauses C,
(XpY)O

X0® Yo,

(X ®@Y)0 X0 x Y.

30



Definition 10
Let X,Y be C-terms. We define

X CY iff | X|C|Y],

X C Y iff for all C € |Y| there exists a
De|X|st. DCC,

X <gY iff there exists a substitution 6 with
X0=Y,

X <45 YV iff |X| <ss [Y].

Remark:

[ is the subclause-relation:

C C D iff there exists an E s.t. Co E = D.
<g5 IS the subsumption relation.
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Lemma 2 Let X,Y,Z be C-terms and
X CY. Then

(1) X®ZCY D Z,
2)ZaoXCZaY,
(3) X®ZCY®Z,

(4) ZXCZQY.

Lemma 3 Let X,Y,Z be C-terms and
X LY. Then

(1) X®ZLCY @ Z,
2) Zeo X ZaY,
3) X®ZLY®Z,

(4) ZeXCZQY.

32



Replacing subterms in a clause term preserves
the relations C and L.:

Lemma 4 Let )\ be an occurrence in a C-term
X and Y =X X.\ for € {C,C}. Then X[Y]) =
X.

The point is:
C,LC and <g are preserved under cut-reduction
steps.

Together the define a relation >

Definition 11 Let X and Y two C-terms. We
define X > Y if (at least) one of the following
properties is fulfilled:

(a) YCX or

(b) XCY or

() X <sY. §

33



Remark: In general ¥ <g Z does not imply
X[Y]\ <s X[Z],, i.e. <sis not compatible with
@ and ®. Consider, for example, the terms

Y =A{F P(zx)}, Z2={F P(f(x))} and
X ={FQ(z)} & {F R(z)},
XA={FQ(xz)}.

Clearly Y <5 Z. By replacement we obtain

X[Y]x=A{F P(x)} ®{F R(z)},
X[Z]A ={F P(f(z))} @ {+ R(z)}.

Obviously X[Y])\ gs X[Z])\ ﬁ

34



The reflexive transitive closure >* of > can be
considered as a
weak form of subsumption:

Proposition 3
Let X and' Y be C-terms s.t.
Xp>*Y. Then X <sY.

Note: The subsumption relation <gs is defined
on sets of clauses by

C <ssD
for all D € D thereisa C e(C: C <gs D.

[ A SSS I RAR
there exists a substitution 6 s.t.
set(9) C set(ln), set(Af) C set(A).

35



Lemma 5 (main lemma)
Let ¢, be LK-derivations with ¢ > ¢’ for a
cut reduction relation > based on 'R. Then

O(p) > O(¢").

proof:
by cases according to the definitions of > and
R. &

R = set of cut-reduction rules extracted from
Gentzen's proof (possibly extended by cut-projection
rules).

36



Theorem 1
Let o be an LK-deduction and ¢ be a nor-

mal form of ¢ under a cut reduction relation
> based on R. Then

O(p) <ss O©().

Proof: Use Lemma 5 and the facts

o > C <gg,

o < 5 IS transitive.

37



Theorem 2

Let ¢ be an LK-derivation and ¢ be a normal
form of ¢ under a cut reduction relation >x
based on R. Then there exists a resolution
refutation v of CL(y) s.t.

v <ss RES(%).

RES(v) = (standard) resolution refutation of
CL(v).

Proof: ©(p) <ss ©(¢) and thus

CL(¢) <ss CL(%).

By the subsumption principle, for every resolu-
tion refutation 6 of CL(vy) there exists a reso-
lution refutation v of CL(p) with

v <ss 0.
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Corollary 1

Let o be an LK-derivation and ¢ be a normal
form of ¢ under a cut reduction relation >x
based on R. Then there exists a resolution
refutation v of CL(y) s.t.

[(7) < U(RES(%)) < I(3) » 22+(¥),

Proof: By Theorem 2 and the fact that [((RES(v))
is at most exponential in I(y). &
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Corollary 2

Let o be an LK-derivation and i be a nor-
mal form of ¢ under a cut reduction relation
>n based on R. Then there exists a proof x
obtained from ¢ by CERES s.t.

1(x) < 1(p) * () + 224W).

Proof: x is defined by inserting the projections
of ¢ into a refutation v of CL(y). &

Corollary 3

Let o be an LK-derivation and ¢ be a normal
form of ¢ under Gentzen’s or Tait’'s method
(possibly extended by cut-projection rules). Then
there exists a proof x obtained from o by CERES
Ss.t.

[(x) < 1(p) * () + 22¥W),

Proof: Gentzens and Tait's methods are based

on R. &
40



Extensions of CERES:

(I) CERES-m.

For cut-elimination in Gentzen calculi for many-
valued logics.

easy:
— generalization of clause terms.

— many-valued resolution.
— proof projections.

delicate:
skolemization and re-skolemization.

crucial: full contraction and weakening.

41



(1) CERES-e.

For cut-elimination in proofs with equality.

approach:

axioms include A+ A and F s = s.

extend LK to LK—= by paramodulation-type
rules

(A, s=t A[s],I_’I—A’__l
T A F A, A o

example:

P(a)F P(a)  Q(a) F Q(a)

o= f(ae) Pla) = Qa), P(a) - Qa) ),
P(f(a,0)) — Q(a), P(a) F Q(a) .,

(P9 (P(f(a.3)) — Q(@), P(a) F Q) " !
(%) () (P(F (2. 9)) — Q()), P(a) F Q(a) 7

42



CERES-e€:

— characteristic term: analogous

— projections: analogous

— skolemization: unproblematic.

— resolution = resolution 4+ paramodulation.

very useful in handling mathematical proofs!
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main goal:

e Cut-elimination in real mathematical proofs.
Experiments with proof transformations.

Cut-elimination in classical logic is

— not confluent:

construct different elementary proofs
corresponding to a proof with lemmas.

Experiments: to be presented on Friday.
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Cut Reduction Rules:

If a cut-derivation ) is transformed to ' then
we define

b >
where ¢ =
(p) (o)
A TTEA

F - A% A W
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3.11. rank = 2.

The last inferences in p,o are logical ones and
the cut-formula is the principal formula of these
inferences:

3.113.31.
(p1) (p2) (")
r-2,A THEAB, ADEAN
rFA AAB T AABNFAN:
FE A A cut(A N B)
transforms to
984 A2
FreEan A cut(A)

FCAOFAA W

For the other form of A : [ the transformation
IS straightforward.
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3.113.33.
(P'[a]) (o)
r-A,BE BE,ME A
FEA (Vo)B' " (Vo)B.ME A
FOFALA

cut((Vz)B)

transforms to
(A'[t]) (o)
= A, Bf £, EA
MM EASNAN
C,AOFAAN W

cut(BY)

3.113.34. The last inferences in p,oc are 3 :
r,3 1. symmetric to 3.113.33.

a7



3.12. rank > 2:
3.121. right-rank > 1:

3.121.2. The cut formula does not occur in
the antecedent of the end-sequent of p.

3.121.23. The last inference in o is binary:
3.121.231. The case A : r. Here

(01) (02)
(p) A, B rl—A,C/\_T
nEA T-ABAC LS

Nr*FA* A, BAC

transforms to

(p) (o1) (p) (02)
NEA TEAB oy TEA TEAC

N FA* A, B N FA*A,C
N FANA BAC

cut(A)
NIT
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3.121.232. The case Vv :[l. Then v is of the
form

(1) (02)
() BTFA CTFa
mE A BVOTEA Y

N, (BVC*T*F A", A

(Bv(CO)*is empty if A = BvC and BV C
otherwise.
We first define the proof :

(p) (o1) (p) (02)
NEA BTEA oy OFEA CTEA

B* M. T*F A" A CF LT - AR A Cut(A)
BOT*FA A" C’,I‘I,I‘*I—/\*,Aw_l
BV CO,N,T*F A" A v

Note that, in case A = B or A = C, the in-
ference x is w : [; otherwise z is the identical
transformation and can be dropped.

If (Bv(C)*= BVC then v transforms to r.
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If, on the other hand, (B Vv C)* is empty (i.e.
BV (C = A) then we transform ¢ to

s
T cut(A
O, 0% = AN A *( )

N+ A< A -
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3.121.233. The last inference in ¢, is —: [.
Then v is of the form:

(x1) (x2)
(b)) THO,B CAFA

NFS B-CTlAFO.A —“tl(A)
N(B—C)T* A*Fx* o N
As in 3.121.232 (B — C)* = B — C for B —
C # A and (B — C)* empty otherwise.

3.121.233.1. A occursin [ and in A. Again
we define a proof T:

(1) (x2)
(Y1) (x1) NE> C,AFA

NES TESB Lo C’*,I‘I,A*l—Z*,/\;/U’t(A)
NnrFxo,B C,NA ES A"
B—CNIr*nNA*>*,x* A 7

If (B— C)* =B — C then, as in 3.121.232,
Y is transformed to r 4+ some additional con-
tractions. Otherwise an additional cut with cut
formula A is appended.

51



3.121.233.2 A occurs in A, but notin . As
in 3.121.233.1 we define a proof T:

(1) (x2)
NEsS O AFA

(x1) CHOLA A ;“t(A)
r-6,B CNAFEZ A"
B—C,IN,A*FO,Z* N\

Again we distinguish the cases B — C' = A and
B — C # A and define the transformation of
1 exactly like in 3.121.233.1.
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