COMPUTATIONAL ANALYSIS OF PROOFS

CERES:

Cut-Elimination by Resolution

Gentzen-type methods of cut-elimination:

- reduction of cut-complexity.
- "peeling" the cut-formulas from outside.

The method can be described as a

normal form computation

based on a set of rules \mathcal{R}.

Computational features:

- very slow
- weak in detecting redundancy.
- application to complex proofs impossible in practice

Example of a Gentzen reduction:

$$
\frac{\frac{P(a) \vdash P(a)}{(\forall x) P(x) \vdash P(a)} \forall l \quad \frac{P(b) \vdash P(b)}{(\forall x) P(x) \vdash P(b)} \forall: l}{\frac{(\forall x) P(x) \vdash P(a) \wedge P(b)}{(\forall x) P(x) \vdash(\exists x) P(x)}} \stackrel{\frac{P(a) \vdash P(a)}{P(a) \wedge P(b) \vdash P(a)} \wedge: l}{P(a) \wedge P(b) \vdash(\exists x) P(x)} \exists: r
$$

rank $=3$, grade $=1$. reduce to rank $=2$, grade $=1$:

$$
\frac{\frac{P(a) \vdash P(a)}{(\forall x) P(x) \vdash P(a)} \forall: l \quad \frac{P(b) \vdash P(b)}{(\forall x) P(x) \vdash P(b)} \wedge: l}{\forall: r} \frac{P(a) \vdash P(a)}{(\forall x) P(x) \vdash P(a) \wedge P(b)} \wedge: l
$$

$$
\frac{\frac{P(a) \vdash P(a)}{(\forall x) P(x) \vdash P(a)} \forall: l \quad \frac{P(b) \vdash P(b)}{(\forall x) P(x) \vdash P(b)} \forall: l}{\frac{(\forall x) P(x) \vdash P(a) \wedge P(b)}{} \forall r \quad \frac{P(a) \vdash P(a)}{P(a) \wedge P(b) \vdash P(a)} \wedge: l} \text { cut }
$$

rank $=2$, grade $=1$.
reduce to grade $=0$, rank $=3$:

$$
\frac{\frac{P(a) \vdash P(a)}{(\forall x) P(x) \vdash P(a)} \forall: l \quad P(a) \vdash P(a)}{\frac{(\forall x) P(x) \vdash P(a)}{(\forall x) P(x) \vdash(\exists x) P(x)} \exists: r}
$$

eliminate cut with axiom:

$$
\frac{P(a) \vdash P(a)}{\frac{P x) P(x) \vdash P(a)}{(\forall: l}} \underset{(\forall x) P(x) \vdash(\exists x) P(x)}{\exists: r}
$$

Cut-elimination by Resolution (CERES):

based on a structural (algebraic) analysis of LK-proofs.
sub-derivation into cuts
φ
sub-derivation into end sequent
$\Theta(\varphi)$: characteristic clause term, carries substantial information on derivations of cut formulas.
$\Theta(\varphi) \Rightarrow \mathrm{CL}(\varphi)$ (characteristic clause set)
clause $=$ atomic sequent.
sequent $=\Gamma \vdash \Delta . \Gamma, \Delta$ multisets of formulas
cut-elimination $=$ reduction to atomic cuts.

C-Terms (Clause Terms):

Definition 1 (C-term)

- (Finite) sets of clauses are C-terms.
- If X, Y are C-terms then $(X \oplus Y)$ is a Cterm.
- If X, Y are C-terms then $(X \otimes Y)$ is a Cterm.

Definition 2 We define a mapping || from Cterms to sets of clauses in the following way:

$$
\begin{aligned}
|\mathcal{C}| & =\mathcal{C} \text { for sets of clauses } \mathcal{C}, \\
|X \oplus Y| & =|X| \cup|Y|, \\
|X \otimes Y| & =|X| \times|Y| .
\end{aligned}
$$

where $\mathcal{C} \times \mathcal{D}=\{C \circ D \mid C \in \mathcal{C}, D \in \mathcal{D}\}$,
and "o" denotes merging, i.e.
$(\Gamma \vdash \Delta) \circ(\Pi \vdash \wedge)=\Gamma, \Pi \vdash \Delta, \wedge$
for multisets $\Gamma, \Delta, \Pi, \wedge$.

We define C-terms to be equivalent if the corresponding sets of clauses are equal, i.e. $X \sim Y$ iff $|X|=|Y|$.

The Method CERES:

Example:

$$
\frac{\varphi_{1}}{(\forall x)(P(x) \rightarrow Q(x)) \vdash(\exists y)(P(a) \rightarrow Q(y))} \text { cut }
$$

$$
\varphi_{1}=
$$

$$
\begin{aligned}
& P(u)^{\star} \vdash P(u) \quad Q(u) \vdash Q(u)^{\star} \\
& \begin{array}{c}
\frac{P(u)^{\star}, P(u) \rightarrow Q(u) \vdash Q(u)^{\star}}{} \rightarrow: l \\
P(u) \rightarrow Q(u) \vdash(P(u) \rightarrow Q(u))^{\star}
\end{array}: r \\
& \overline{P(u) \rightarrow Q(u) \vdash(\exists y)(P(u) \rightarrow Q(y))^{\star}} \exists: r \\
& (\forall x)(P(x) \rightarrow Q(x)) \vdash(\exists y)(P(u) \rightarrow Q(y))^{\star} \forall: l \\
& (\forall x)(P(x) \rightarrow Q(x)) \vdash(\forall x)(\exists y)(P(x) \rightarrow Q(y))^{\star} \forall: r \\
& \varphi_{2}= \\
& \frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{P(a),(P(a) \rightarrow Q(v))^{\star} \vdash Q(v)} \rightarrow: l \\
& (P(a) \rightarrow Q(v))^{\star} \vdash P(a) \rightarrow Q(v) \rightarrow: r \\
& (P(a) \rightarrow Q(v))^{\star} \vdash(\exists y)(P(a) \rightarrow Q(y)) \exists: r \\
& (\exists y)(P(a) \rightarrow Q(y))^{\star} \vdash(\exists y)(P(a) \rightarrow Q(y)) \exists: l \\
& \overline{(\forall x)(\exists y)(P(x) \rightarrow Q(y))^{\star} \vdash(\exists y)(P(a) \rightarrow Q(y))} \forall: l
\end{aligned}
$$

$X_{1}=\{P(u) \vdash\}, \quad X_{2}=\{\vdash Q(u)\}$,
$X_{3}=\{\vdash P(a)\}, X_{4}=\{Q(v) \vdash\}$.
$Y_{1}=X_{1} \otimes X_{2}$.
$Y_{2}=X_{3} \oplus X_{4}$.
$\Theta(\varphi)=Y_{1} \oplus Y_{2}=$
$(\{P(u) \vdash\} \otimes\{\vdash Q(u)\}) \oplus(\{\vdash P(a)\} \oplus\{Q(v) \vdash\})$
$\mathrm{CL}(\varphi)=|\Theta(\varphi)|=$
$\{P(u) \vdash Q(u), \vdash P(a), Q(v) \vdash\}$.

Projection to $\mathrm{CL}(\varphi)$:

- Skip inferences leading to cuts.
- Obtain cut-free proof of end-sequent + a clause in CL(φ).

Let φ be the proof of the sequent
$S:(\forall x)(P(x) \rightarrow Q(x)) \vdash(\exists y)(P(a) \rightarrow Q(y))$
shown above.
$\mathrm{CL}(\varphi)=\{P(u) \vdash Q(u), \vdash P(a), Q(v) \vdash\}$.

Skip inferences in φ_{1} leading to cuts:

$$
\frac{\frac{P(u) \vdash P(u) \quad Q(u) \vdash Q(u)}{P(u), P(u) \rightarrow Q(u) \vdash Q(u)} \rightarrow: l}{P(u),(\forall x)(P(x) \rightarrow Q(x)) \vdash Q(u)} \forall: l
$$

$\varphi\left(C_{1}\right)=$

$$
\begin{gathered}
\frac{P(u) \vdash P(u) \quad Q(u) \vdash Q(u)}{P(u), P(u) \rightarrow Q(u) \vdash Q(u)} \rightarrow: l \\
\frac{}{P(u),(\forall x)(P(x) \rightarrow Q(x)) \vdash Q(u)} \forall: l \\
P(u),(\forall x)(P(x) \rightarrow Q(x)) \vdash(\exists y)(P(a) \rightarrow Q(y)), Q(u) \\
P(x)
\end{gathered}
$$

For $C_{2}=\vdash P(a)$ we obtain the projection $\varphi\left(C_{2}\right)$:

$$
\begin{gathered}
\frac{P(a) \vdash P(a)}{\frac{P(a) \vdash P(a), Q(v)}{\vdash P(a) \rightarrow Q(v), P(a)} \rightarrow: r} \nexists: l \\
\frac{\vdash(\exists y)(P(a) \rightarrow Q(y)), P(a)}{\vdash(\forall x)(P(x) \rightarrow Q(x)) \vdash(\exists y)(P(a) \rightarrow Q(y)), P(a)} w: l
\end{gathered}
$$

next step:

- Construct an R-refutation γ of $\operatorname{CL}(\varphi)$,
- insert projections of φ into γ.

Let φ be the proof of
$S:(\forall x)(P(x) \rightarrow Q(x)) \vdash(\exists y)(P(a) \rightarrow Q(y))$
as defined above. Then
$C L(\varphi)=$
$\left\{C_{1}: P(u) \vdash Q(u), C_{2}: \vdash P(a), C_{3}: Q(u) \vdash\right\}$.

First we define a resolution refutation δ of CL(φ):

$$
\frac{\vdash P(a) \quad P(u) \vdash Q(u)}{\frac{\vdash Q(a)}{\vdash} R \quad Q(v) \vdash} R
$$

$R=$ atomic mix + most general unification.
ground projection γ of δ :

$$
\frac{\vdash P(a) \quad P(a) \vdash Q(a)}{\qquad \frac{\vdash Q(a)}{\vdash} R \quad Q(a) \vdash} R
$$

The ground substitution defining the ground projection is

$$
\sigma:\{u \leftarrow a, v \leftarrow a\}
$$

Let $\chi_{1}=\varphi\left(C_{1}\right) \sigma$,
$\chi_{2}=\varphi\left(C_{2}\right) \sigma$ and
$\chi_{3}=\varphi\left(C_{3}\right) \sigma$.
$B=(\forall x)(P(x) \rightarrow Q(x))$,
$C=(\exists y)(P(a) \rightarrow Q(y))$.

Then $\varphi(\gamma)=$

$$
\begin{aligned}
& \left(\chi_{2}\right) \quad\left(\chi_{1}\right) \\
& \begin{array}{r}
B \vdash C, P(a) \quad P(a), B \vdash C, Q(a) \\
\frac{B, B \vdash C, C, Q(a)}{} \text { cut } \begin{array}{c}
\left(\chi_{3}\right) \\
\frac{B(a), B, B \vdash C, C}{B \vdash C} \\
\end{array} \frac{B t}{} \text { contractions }
\end{array}
\end{aligned}
$$

The problem of Skolemization:

CERES: end-sequents must be skolemized. no projections with strong variables in endsequent.

example:

$$
\varphi=
$$

$\operatorname{CL}(\varphi)=\{\vdash Q \alpha ; Q \beta \vdash\}$.

Skolemization of Proofs

a. skolemization of formulas:

Definition 3 (strong and weak quantifiers) If ($\forall x$) occurs positively (negatively) in B then ($\forall x$) is called a strong (weak) quantifier. If ($\exists x$) occurs positively (negatively) in B then ($\exists x$) is called a weak (strong) quantifier.

Skolemization removes strong quantifiers.
structural skolemization operator $s k$:

Definition 4 (skolemization) $s k$ is a function which maps closed formulas into closed formulas; it is defined in the following way:
$s k(F)=F$
if F does not contain strong quantifiers,
$=\operatorname{sk}\left(F_{(Q y)}\left\{y \leftarrow f\left(x_{1}, \ldots, x_{n}\right)\right\}\right)$
if $(Q y)$ is in the scope of the weak quantifiers $\left(Q_{1} x_{1}\right), \ldots,\left(Q_{n} x_{n}\right)$.
where ($Q y$) is the first strong quantifier in F.
$F_{(Q y)}=F$ after omission of $(Q y)$.
$f \in F S \cup C S$ and f not in F.

b. skolemization of sequents:

Definition 5 Let S be the sequent

$$
A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{m}
$$

where A_{i}, B_{j} are closed and

$$
\left(A_{1}^{\prime} \wedge \ldots \wedge A_{n}^{\prime}\right) \rightarrow\left(B_{1}^{\prime} \vee \ldots \vee B_{m}^{\prime}\right)
$$

be the structural skolemization of $\left(A_{1} \wedge \ldots \wedge A_{n}\right) \rightarrow\left(B_{1} \vee \ldots \vee B_{m}\right)$. Then

$$
S^{\prime}: A_{1}^{\prime}, \ldots, A_{n}^{\prime} \vdash B_{1}^{\prime}, \ldots, B_{m}^{\prime}
$$

is called the skolemization of S.

Example: Let S be the sequent

$$
(\forall x)(\exists y) P(x, y) \vdash(\forall x)(\exists y) P(x, y)
$$

skolemization of S is S^{\prime} :

$$
(\forall x) P(x, f(x)) \vdash(\exists y) P(c, y)
$$

for $f \in \mathrm{FS}_{1}$ and $c \in \mathrm{CS}$.

Definition 6 Let φ be an arbitrary LK-proof. By $\|\varphi\|_{l}$ we denote the number of logical inferences and mixes (or cuts) in φ. Structural rules like weakening, contraction and permutation are not counted.

Proposition 1 Let φ be an LK-proof of S from an atomic axiom set \mathcal{A}. Then there exists a proof $s k(\varphi)$ of $s k(S)$ (the structural skolemization of S) from \mathcal{A} s.t. $\|s k(\varphi)\|_{l} \leq\|\varphi\|_{l}$.

Example: Let $\varphi=$

$$
\begin{gathered}
\frac{P(c, \alpha) \vdash P(c, \alpha) \quad Q(\alpha) \vdash Q(\alpha)}{P(c, \alpha), P(c, \alpha) \rightarrow Q(\alpha) \vdash Q(\alpha)} \rightarrow l+p: l \\
\frac{P(c, \alpha) \rightarrow Q(\alpha),(\forall x) P(c, x) \vdash Q(\alpha)}{P(\forall)} \exists: p: l \\
\frac{\partial(c, \alpha) \rightarrow Q(\alpha),(\forall x) P(c, x) \vdash(\exists y) Q(y)}{P(\exists y)(P(c, y) \rightarrow Q(y)),(\forall x) P(c, x) \vdash(\exists y) Q(y)} \exists: l \\
\frac{(\forall x) P(c, x),(\forall x)(\exists y)(P(x, y) \rightarrow Q(y)) \vdash(\exists y) Q(y)}{(\exists x)} \forall l+p: l
\end{gathered}
$$

Then $\operatorname{sk}(\varphi)=$

$$
\begin{aligned}
& \quad \frac{P(c, f(c)) \vdash P(c, f(c)) \quad Q(f(c)) \vdash Q(f(c))}{P(c, f(c)), P(c, f(c)) \rightarrow Q(f(c)) \vdash Q(f(c))} \rightarrow: l+p: l \\
& \frac{P(c, f(c)) \rightarrow Q(f(c)),(\forall x) P(c, x) \vdash Q(f(c))}{P(c, f(c)) \rightarrow Q(f(c)),(\forall x) P(c, x) \vdash(\exists y) Q(y)} \exists: r \\
& \frac{P(x) P(c, x),(\forall x)(P(x, f(x)) \rightarrow Q(f(x))) \vdash(\exists y) Q(y)}{P: l+p: l} \\
& \|\varphi\|_{l}=5 \text { and }\|s k(\varphi)\|_{l}=4 .
\end{aligned}
$$

Definition 7

- $\mathcal{S K}=$ set of all LK-derivations with skolemized end-sequents.
- $\mathcal{S K}_{\emptyset}=$ set of all cut-free proofs in $\mathcal{S K}$.
- $\mathcal{S K}^{i}=$ derivations in $\mathcal{S K}$ with cut-formulas of formula complexity $\leq i$. \sharp

Goal: reduction to derivations with only atomic cuts, i.e.
transform $\varphi \in \mathcal{S K}$ into $\psi \in \mathcal{S} \mathcal{K}^{0}$.
first step: construction of the characteristic C-term

Characteristic Terms:

Let φ be an LK-derivation of S and let Ω be the set of all occurrences of cut formulas in φ. We define the characteristic term $\Theta(\varphi)$ inductively:

Let ν be the occurrence of an initial sequent S^{\prime} in φ. Then

$$
\Theta(\varphi) / \nu=S(\nu, \Omega)
$$

where $S(\nu, \Omega)$ is the subsequent of S containing the ancestors of Ω.

Assume: $\Theta(\varphi) / \nu$ are already constructed for $\operatorname{depth}(\nu) \leq k$.
$\operatorname{depth}(\nu)=k+1:$
(a) ν is the consequent of μ :
$\Theta(\varphi) / \nu=\Theta(\varphi) / \mu$.
(b) ν is the consequent of μ_{1} and μ_{2} :
(b1) The auxiliary formulas of X are ancestors of Ω, i.e. the formulas occur in $S\left(\mu_{1}, \Omega\right), S\left(\mu_{2}, \Omega\right)$:
(+) $\Theta(\varphi) / \nu=\Theta(\varphi) / \mu_{1} \oplus \Theta(\varphi) / \mu_{2}$.
(b2) The auxiliary formulas of X are not ancestors of Ω :
(×) $\Theta(\varphi) / \nu=\Theta(\varphi) / \mu_{1} \otimes \Theta(\varphi) / \mu_{2}$.
$\Theta(\varphi)=\Theta(\varphi) / \nu$ where ν is the occurrence of the end-sequent.

Remark: If φ is a cut-free proof then there are no occurrences of cut formulas in φ and $\Theta(\varphi)$ is a product of $\{\vdash\}$. \sharp

Definition 8 (characteristic clause set)

 Let φ be an LK-derivation and $\Theta(\varphi)$ be the characteristic term of φ. Then $\operatorname{CL}(\varphi):|\Theta(\varphi)|$ is called the characteristic clause set of φ. $\#$
Proposition 2

Let φ be an LK-derivation. Then $\operatorname{CL}(\varphi)$ is unsatisfiable.

Projection:

Lemma 1

Let φ be a deduction in $\mathcal{S K}$ of a sequent S :
$\Gamma \vdash \triangle$. Let $C: \bar{P} \vdash \bar{Q}$ be a clause in $\operatorname{CL}(\varphi)$.
Then there exists a deduction
$\varphi(C)$ of $\bar{P}, \Gamma \vdash \Delta, \bar{Q}$
s.t.
$\varphi(C) \in \mathcal{S} \mathcal{K}_{\emptyset} \quad$ and $\quad l(\varphi(C)) \leq l(\varphi)$.

Projection of φ to C : construct $\varphi(C)$.

the remaining steps:

- Construct an R-refutation γ of $\mathrm{CL}(\varphi)$,
- insert the projections of φ into γ.
- add some contractions and obtain a proof with (only) atomic cuts.
(• eliminate the atomic cuts)

Complexity:

complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):
There exists a sequence of LK-proofs φ_{n} of sequents S_{n} s.t.

- $\left\|\varphi_{n}\right\| \leq 2^{k * n}$ and
- for all cut-free proofs ψ of φ_{n} :

$$
\begin{aligned}
& \|\psi\|>s(n) \text { where } \\
& s(0)=1, \quad s(n+1)=2^{s(n)} .
\end{aligned}
$$

There exists no cheap way of cut-elimination in principle!

CERES:

main point of complexity: resolution proof.
φ : LK-proof of S.
Let γ be a resolution refutation of $\mathrm{CL}(\varphi)$. Then there exists a proof ψ of S with (only) atomic cuts s.t.
$\|\psi\| \leq 2 *\|\gamma\| *\|\varphi\|$.
Moreover there exists a cut-free proof ψ^{\prime} of S s.t.
$\left\|\psi^{\prime}\right\| \leq 2^{d *\|\gamma\| *\|\varphi\|}$.

CERES is superior to Gentzen:

nonelementary speed-up of Gentzen by CERES:

- There exists a sequence of LK-proofs φ_{n} s.t.
$\left\|\varphi_{n}\right\| \leq 2^{k * n}$ and
all Gentzen-eliminations are of size $>s(n)$.

CERES produces $\leq 2^{m * n}$ symbols.

- There is no nonelementary speed-up of CERES by Gentzen!

Characteristic Clause Terms and Cut-Reduction

Definition 9

Let θ be a substitution. We define the application of θ to C-terms as follows:

$$
X \theta=\mathcal{C} \theta \text { if } X=\mathcal{C} \text { for sets of clauses } \mathcal{C},
$$

$(X \oplus Y) \theta=X \theta \oplus Y \theta$,
$(X \otimes Y) \theta=X \theta \times Y \theta$.

Definition 10

Let X, Y be C-terms. We define

$$
X \subseteq Y \text { iff }|X| \subseteq|Y|,
$$

$X \sqsubseteq Y$ iff for all $C \in|Y|$ there exists a $D \in|X|$ s.t. $D \sqsubseteq C$,
$X \leq_{s} Y$ iff there exists a substitution θ with $X \theta=Y$,

$$
X \leq_{s s} Y \text { iff }|X| \leq_{s s}|Y| .
$$

Remark:
\sqsubseteq is the subclause-relation:
$C \sqsubseteq D$ iff there exists an E s.t. $C \circ E=D$.
$\leq_{s s}$ is the subsumption relation.

Lemma 2 Let X, Y, Z be C-terms and $X \subseteq Y$. Then
(1) $X \oplus Z \subseteq Y \oplus Z$,
(2) $Z \oplus X \subseteq Z \oplus Y$,
(3) $X \otimes Z \subseteq Y \otimes Z$,
(4) $Z \otimes X \subseteq Z \otimes Y$.

Lemma 3 Let X, Y, Z be C-terms and $X \sqsubseteq Y$. Then
(1) $X \oplus Z \sqsubseteq Y \oplus Z$,
(2) $Z \oplus X \sqsubseteq Z \oplus Y$,
(3) $X \otimes Z \sqsubseteq Y \otimes Z$,
(4) $Z \otimes X \sqsubseteq Z \otimes Y$.

Replacing subterms in a clause term preserves the relations \subseteq and \sqsubseteq :

Lemma 4 Let λ be an occurrence in a C-term X and $Y \preceq X$. λ for $\preceq \in\{\subseteq, \sqsubseteq\}$. Then $X[Y]_{\lambda} \preceq$ X.

The point is:

\subseteq, \sqsubseteq and \leq_{s} are preserved under cut-reduction steps.

Together the define a relation \triangleright :
Definition 11 Let X and Y two C-terms. We define $X \triangleright Y$ if (at least) one of the following properties is fulfilled:
(a) $Y \subseteq X$ or
(b) $X \sqsubseteq Y$ or
(c) $X \leq_{s} Y . \sharp$

Remark: In general $Y \leq_{s} Z$ does not imply $X[Y]_{\lambda} \leq_{s} X[Z]_{\lambda}$, i.e. \leq_{s} is not compatible with \oplus and \otimes. Consider, for example, the terms

$$
\begin{aligned}
& Y=\{\vdash P(x)\}, Z=\{\vdash P(f(x))\} \text { and } \\
& X=\{\vdash Q(x)\} \otimes\{\vdash R(x)\}, \\
& X . \lambda=\{\vdash Q(x)\} .
\end{aligned}
$$

Clearly $Y \leq_{s} Z$. By replacement we obtain

$$
\begin{aligned}
& X[Y]_{\lambda}=\{\vdash P(x)\} \otimes\{\vdash R(x)\}, \\
& X[Z] \lambda=\{\vdash P(f(x))\} \otimes\{\vdash R(x)\} .
\end{aligned}
$$

Obviously $X[Y]_{\lambda} \mathbb{Z}_{s} X[Z]_{\lambda} . \sharp$

The reflexive transitive closure \triangleright^{*} of \triangleright can be considered as a
weak form of subsumption:

Proposition 3

Let X and Y be C-terms s.t.
$X \triangleright^{*} Y$. Then $X \leq_{s s} Y$.

Note: The subsumption relation $\leq_{s s}$ is defined on sets of clauses by
$\mathcal{C} \leq_{s s} \mathcal{D} \leftrightarrow$
for all $D \in \mathcal{D}$ there is a $C \in \mathcal{C}: C \leq_{s s} D$.
$\Gamma \vdash \Delta \leq_{s s} \Pi \vdash \wedge \leftrightarrow$
there exists a substitution θ s.t.
$\operatorname{set}(\Gamma \theta) \subseteq \operatorname{set}(\Pi), \operatorname{set}(\Delta \theta) \subseteq \operatorname{set}(\wedge)$.

Lemma 5 (main lemma)

Let $\varphi, \varphi^{\prime}$ be LK-derivations with $\varphi>\varphi^{\prime}$ for a cut reduction relation $>$ based on \mathcal{R}. Then $\Theta(\varphi) \triangleright \Theta\left(\varphi^{\prime}\right)$.
proof:
by cases according to the definitions of $>$ and \mathcal{R}.
$\mathcal{R}=$ set of cut-reduction rules extracted from Gentzen's proof (possibly extended by cut-projection rules).

Theorem 1
Let φ be an LK-deduction and ψ be a normal form of φ under a cut reduction relation $>$ based on \mathcal{R}. Then

$$
\Theta(\varphi) \leq_{s s} \Theta(\psi)
$$

Proof: Use Lemma 5 and the facts

- $\triangleright \subseteq \leq s s$,
- $\leq_{s s}$ is transitive.

Theorem 2

Let φ be an LK-derivation and ψ be a normal form of φ under a cut reduction relation $>_{\mathcal{R}}$ based on \mathcal{R}. Then there exists a resolution refutation γ of $\mathrm{CL}(\varphi)$ s.t.

$$
\gamma \leq_{s s} \operatorname{RES}(\psi)
$$

$\operatorname{RES}(\psi)=$ (standard) resolution refutation of CL (ψ).

Proof: $\Theta(\varphi) \leq_{s s} \Theta(\psi)$ and thus

$$
\operatorname{CL}(\varphi) \leq_{s s} \operatorname{CL}(\psi)
$$

By the subsumption principle, for every resolution refutation δ of $\mathrm{CL}(\psi)$ there exists a resolution refutation γ of $\operatorname{CL}(\varphi)$ with

$$
\gamma \leq_{s s} \delta
$$

Corollary 1

Let φ be an LK-derivation and ψ be a normal form of φ under a cut reduction relation $>_{\mathcal{R}}$ based on \mathcal{R}. Then there exists a resolution refutation γ of $\mathrm{CL}(\varphi)$ s.t.
$l(\gamma) \leq l(\operatorname{RES}(\psi)) \leq l(\psi) * 2^{2 * l(\psi)}$.
Proof: By Theorem 2 and the fact that $l(\operatorname{RES}(\psi))$ is at most exponential in $l(\psi)$.

Corollary 2

Let φ be an LK-derivation and ψ be a normaI form of φ under a cut reduction relation $>_{\mathcal{R}}$ based on \mathcal{R}. Then there exists a proof χ obtained from φ by CERES st.
$l(\chi) \leq l(\varphi) * l(\psi) * 2^{2 * l(\psi)}$.

Proof: χ is defined by inserting the projections of φ into a refutation γ of $\operatorname{CL}(\varphi)$.

Corollary 3

Let φ be an LK-derivation and ψ be a normal form of φ under Gentzen's or Tait's method (possibly extended by cut-projection rules). Then there exists a proof χ obtained from φ by CERES st.

$$
l(\chi) \leq l(\varphi) * l(\psi) * 2^{2 * l(\psi)}
$$

Proof: Gentzens and Tait's methods are based on \mathcal{R}.

Extensions of CERES:

(I) CERES-m.

For cut-elimination in Gentzen calculi for manyvalued logics.
easy:

- generalization of clause terms.
- many-valued resolution.
- proof projections.
delicate:
skolemization and re-skolemization.
crucial: full contraction and weakening.

(II) CERES-e.

For cut-elimination in proofs with equality.
approach:
axioms include $A \vdash A$ and $\vdash s=s$.
extend $\mathbf{L K}$ to $\mathbf{L K}=$ by paramodulation-type rules

$$
\frac{\Gamma \vdash \Delta, s=t \quad A[s], \Gamma^{\prime} \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime}, A[t] \vdash \Delta, \Delta^{\prime}}=: l
$$

example:

$$
\begin{gathered}
\stackrel{P(a) \vdash P(a) \quad Q(a) \vdash Q(a)}{P a=f(a, e)} \rightarrow: l \\
\frac{P(f(a, e)) \rightarrow Q(a), P(a) \vdash Q(a)}{(\forall y)(P(f(a, y)) \rightarrow Q(a)), P(a) \vdash Q(a)} \forall: l \\
(\forall x)(\forall y)(P(f(x, y)) \rightarrow Q(x)), P(a) \vdash Q(a)
\end{gathered}: l
$$

CERES-e:

- characteristic term: analogous
- projections: analogous
- skolemization: unproblematic.
- resolution \Rightarrow resolution + paramodulation.
very useful in handling mathematical proofs!

main goal:

- Cut-elimination in real mathematical proofs.

Experiments with proof transformations.

Cut-elimination in classical logic is

- not confluent:
construct different elementary proofs corresponding to a proof with lemmas.

Experiments: to be presented on Friday.

Cut Reduction Rules:

If a cut-derivation ψ is transformed to ψ^{\prime} then we define

$$
\psi>\psi^{\prime}
$$

where $\psi=$
3.11. rank $=2$.

The last inferences in ρ, σ are logical ones and the cut-formula is the principal formula of these inferences:
3.113.31.

transforms to

For the other form of $\wedge: l$ the transformation is straightforward.

3.113.33.

transforms to

$$
\frac{\stackrel{\left(\rho^{\prime}[t]\right)}{\vdash \Delta, B_{t}^{x} \quad B_{t}^{x}, \Pi \vdash \wedge \wedge}\left(\sigma^{\prime}\right)}{\stackrel{\Gamma, \Pi^{*} \vdash \Delta \Delta^{*}, \wedge}{\Gamma, \Pi \vdash \Delta, \Lambda} w:^{*}} \operatorname{cut}\left(B_{t}^{x}\right)
$$

3.113.34. The last inferences in ρ, σ are \exists : $r, \exists: l$: symmetric to 3.113.33.
3.12. rank >2 :
3.121. right-rank >1 :
3.121.2. The cut formula does not occur in the antecedent of the end-sequent of ρ.
3.121.23. The last inference in σ is binary: 3.121.231. The case $\wedge: r$. Here
transforms to
3.121.232. The case $\vee: l$. Then ψ is of the form
($B \vee C$)* is empty if $A=B \vee C$ and $B \vee C$ otherwise.
We first define the proof τ :

Note that, in case $A=B$ or $A=C$, the inference x is $w: l$; otherwise x is the identical transformation and can be dropped.
If $(B \vee C)^{*}=B \vee C$ then ψ transforms to τ.

If, on the other hand, $(B \vee C)^{*}$ is empty (i.e. $B \vee C=A$) then we transform ψ to

$$
\begin{aligned}
& \quad \begin{array}{c}
(\rho) \\
\Pi, \Pi^{*}, \Gamma^{*} \vdash \wedge^{*}, \Lambda^{*}, \Delta \\
\Pi, \Gamma^{*} \vdash \Lambda^{*}, \Delta
\end{array} \\
& \operatorname{cut}^{*}(A)
\end{aligned}
$$

3.121.233. The last inference in ψ_{2} is $\rightarrow: l$. Then ψ is of the form:

As in 3.121.232 $(B \rightarrow C)^{*}=B \rightarrow C$ for $B \rightarrow$ $C \neq A$ and $(B \rightarrow C)^{*}$ empty otherwise.
3.121.233.1. A occurs in Γ and in Δ. Again we define a proof τ :

If $(B \rightarrow C)^{*}=B \rightarrow C$ then, as in 3.121.232, ψ is transformed to $\tau+$ some additional contractions. Otherwise an additional cut with cut formula A is appended.
3.121.233.2 A occurs in Δ, but not in Γ. As in 3.121.233.1 we define a proof τ :

Again we distinguish the cases $B \rightarrow C=A$ and $B \rightarrow C \neq A$ and define the transformation of ψ exactly like in 3.121.233.1.

References:

M. Baaz, A. Leitsch: Cut-elimination and Re-dundancy-elimination by Resolution. Journal of Symbolic Computation, vol. 29, 149-176 (2000).
M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-elimination. Journal of Symbolic Computation (to appear).
M. Baaz, A. Leitsch: CERES in Many-valued Logics. Proc. LPAR 2004.
M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: Cut-elimination: Experiments with CERES. LPAR 2004.
M. Baaz, A. Leitsch, G. Moser: System Description: CutRes 01, cut-elimination by resolution. CADE-16, LNAI vol. 1632, 212-216 (1999).
C. Richter: System demonstration: CERES. V.A. Steklov Mathematical Institute, Russian Academy of Sciences, Moscow 2004.
web site: http://www.logic.at/ceres/

