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1 Introduction

First-order theorem proving can be considered as a semi-decision procedure
for the validity problem of first-order logic. Most clausal theorem provers are
based on proof by contradiction and so are a semi-decision methods for un-
satisfiability. This point of view, though logically justified, led to a predom-
inant concentration on aspects of completeness. Due to the undecidability
of the satisfiability problem for clause logic, the investigation of termina-
tion and complexity of theorem provers appeared as a hopeless enterprise.
But already in the late sixties and in the seventies some few researchers
recognized the potential of theorem proving methods as decision procedures
[Joy76], [Mas68] for decidable classes of predicate logic. In the nineties these
early approaches were revived and extended to a systematic investigation of
resolution refinements as decision procedures [FLTZ93]. About at the same
time the first papers appeared addressing the potential of theorem provers in
the construction of Herbrand models [CZ91]. Indeed various complete theo-
rem provers show a substantially different behavior on satisfiable problems;
in particular investigation of aspects of termination and model building do
not only lead to better theorem provers but also to a mathematical compari-
son of different refinements. In [FLTZ93] terminating resolution refinements
were found for most of the well-known decision classes of first-order logic;
moreover the decidable classes were extended by the methods in a natural
way. For some of the classes extensions of the ordinary refinements were nec-
essary in order to achieve termination. In particular, in order to decide some
classes, it is necessary to add specific limited forms of instantiation which
are not based on most general unification. But even with this technique
resolution refinements failed to terminate on known decidable first-order
classes. The most prominent of these classes are Y3V-Horn and V3V-Krom,
the prenex classes with the prefix VIV and a Horn, respectively Krom, ma-
trix. Both classes are not finitely controllable (they do not possess the finite
model property) and thus there exists no trivial decision procedure based



on parallel processing of finite domain search and resolution refutation. A
closer look at the behavior of hyperresolution on AEA-Horn reveals that
the minimal Herbrand models cannot be represented by a finite set of atoms
(neither can they be compressed into finite models); on the other hand the
infinite set of atoms produced by hyperresolution can easily be described
in a finite way using a mathematical meta-formalism. This phenomenon
suggests to extend the power of theorem provers by integrating methods
of schematization into the object logic and into the inference machinery.
Powerful schematization methods for terms and for clause logic have been
investigated in several publications in the late eighties and in the nineties,
e.g. [Sal89], [Sal92], [Herm92], [ChHs90] (the list is incomplete). Most of
these publication focused on the unification problem for meta-formalisms,
but already [Sal89] suggested the use of meta-inference rules in theorem
proving; here the main challenge consists in the generation of cycle clauses
finitely representing the set of all clause powers. We use the ideas devel-
oped in these papers to define a meta-calculus for Krom-Horn logic, which
is simple and natural and terminates on the class VAVKrom N Horn. Note
that the class VIVKrom N Horn is not finitely controllable as well; more-
over prefixing an existential quantifier (creating a constant symbol in the
skolemized form) makes the class undecidable.The calculus does not only
decide the class but also yields a simple finite representation for Herbrand
models and extends the semantic expressivity of first-order provers in a gen-
uine and algorithmic way. Technically we reduce, modify and extend the
problems in V3¥Krom N Horn. The problem is extended to all Krom-Horn
clauses over the signature of a single one-place function symbol (class KH)
and containing at most two variables. At the same time we restrict KH1
to two-place predicate symbols. These transformations are justified by the
decision method defined in Dreben and Goldfarb’s book [DG79] but have
to be carried out in detail. Due to the special form of the arguments the
term structure of atoms and meta-atoms can be considerably simplified, as
indicated in the next section. The following analysis is based on this form.
The main points in this text are the following ones: first we show the finite
representability of the deductive closure via meta-clauses; in a second step
we prove that this finite set of meta-clauses is generated by the meta-term
calculus.



2 Basic Properties of XH;

Definition 2.1 K%H; is the class of all finite sets of clauses C fulfilling the
following conditions:

1. C is Krom and Horn,

2. there are no constant symbols in C,

3. at most one unary function symbol occurs in C,
4. all predicate symbols are binary,

5. every clause in C contains at most two variables.ff

As a clause set C € K1 contains at most one one-place function symbol
we can change the usual term notation to a more convenient one. E.g. we
write 7P (z,y) V P(z + 2,y + 1) for ~P(z,y) V P(f(f(z)), f(y)). Note that
the clause C' : =P(z,y) V P(z + 2,y + 1) can be iteratively resolved with
itself, which gives the sequence of clauses ~P(z,y) V P(z + 2n,y + n) for all
n > 1. This infinite set of clauses can be described by

—P(z,y) vV P(z +2(a+ 1),y +a+1)

where « is a numerical variable ranging over the natural numbers. Objects of
this type are henceforth called meta-clauses. For a more general definition of
meta-terms and the corresponding semantics see [Sal92]. Due to the specific
form of X#H; further simplications are possible. So we may replace =P(x,y+
1) V P(z,y) by =P(z,y) V P(z + 1,y) under preservation of sat-equivalence
(this holds only because there are no constant symbols). We may even use
the subtraction symbol and write = P(z,y)V P(z,y—1) for =P(z,y)VP(z+
1,y). As only the "difference” of the z and y component counts, we may
also replace =P(z,y) V P(x + 1,y + 1) by =P(z,y) V P(z,y); in fact the
clause =P(z,y) V P(z + 1,y + 1) can be deleted like a tautology without
affecting completeness. To sum up we use the following transformations:

-Plz+a,y+b)VPz+cy+d = -Plz,y)VP(xz+c—a,y+d-0»),
-P(z+a,y+b)VPy+cz+d = -Plz,y)VPy+c—bz+d-a),
-P(z,y)VPx+cy+d = -Pz,y)VPz,y+d--c),
-P(z,y) VPy+cz+d) = -P(z,y)VP(y,z+d-c

An informal justification for these transformations can be given via the effect
of rule clauses on facts of type A : P(z + m,z + n). Let



C=-P(z,y+1)V P(z,y) and D = ~P(z,y) V P(z + 1,y);

then the resolvent of A and C is P(z +m,z +n — 1), that of A and D is
P(z+m+1,z+n). These facts "behave” in the same way as the difference of
the f-towers is the same. Note that P(z+m,z—1) stands for P(z+m+1,z).
An exact description and justification of these transformations will be given
in a forthcoming paper. Only rule clauses with two variables can change
the difference of the components for facts of the type P(z + m,y + n); this
justifies the focus on the following clause types:

Definition 2.2 (clause types)

I. =P(z,y) V Q(z,y + ra+ p)
II. -P(z,y)V Q(y + ra+ p, )
II1. —=P(z,z +m)V Q(z,y)
IV. —=P(z,z +m)V Q(y,z)

V. =P(z,9) V Q(z,z + m)

VL —P(z,y) V Q(y,y +m)

i

Remark: r, k are number constants (for integers) and « is a variable rang-
ing over natural numbers. {

Definition 2.3 (deduction chain) Let C; : AV B and Cy : =C' V D be
clauses in Krom N Horn and let {B,C} be unifiable by m.g.u. ¢ then the
resolvent D : = Ao V Do is written as Cj o Cy or simply as C1Cs (A or D or
both may be O).

If P is afact and C},. .., Cy arerules in KromNHorn and D : ((...(PC)...)Cyp,
is defined then v : (P,C4,...,Cy) is called a deduction chain or simply a
chain. The (unit-) clause D is called the product of 7.4

Remark: Note that (CD)E = C(DFE) and resolution in Krom N Horn is
associative, thus ”almost” defining a semi-group (the product need not be
defined). Therefore (...(PC1)...)C,, is henceforth written as PCy -+ - Cp,.

Clause types IILIV:



If clauses of this type appear in a chain (P,Cy---C),) then the predicate
symbol @ can be deleted from all clauses and only the unit clause Q(z,y)
remains. If a negative Q-clause exists in the set of clauses C then C is
unsatisfiable. In particular a clause of this type can only appear finitely
many often in a deduction. The elimination of such predicate symbols can
be performed like the one-literal-rule in the Davis-Putnam procedure for
propositional logic.

Clause types V,VI:

Every deduction chain (P,C4,---,Cy) with C, of type V or VI yields a
product of the form Q(z,z +m) (via clause normalization). Thus the result
is the positive literal of an input clause.Clearly clauses of this form can only
appear a fixed number of times without being subsumed.

Therefore the remaing part concentrates on clause sets consisting of clauses
of type I and II only.

Definition 2.4 (meta-subsets, meta-equality) Let X and Y be meta-
clauses or sets of meta-clauses and S(X), S(Y) be the sets of (first-order)
clauses described by X and Y. Then we write X Cps YV if S(X) C S(Y)
and X = Y if S(X)=SY).

Type I-II clauses are not closed under resolution, although the resolvents C'D
can always be transformed into a finite set of I-II clauses D s.t. CD =y; D.
We delay the definition of this transformation, because it is not needed for
the representation lemmas, and - for the time being - we prefer CD being a
single clause instead of a set of clauses. We define the clause types Ia and
ITa which are are closed under resolution.

Definition 2.5 (types Ia,JIa) A clause C is of the form Ia if there exists
a predicate symbol P, integer constants k1, ..., k, and ¢ and meta-variables
a1, ...,0p, S.t.

C=-P(z,y) vV P(z,y + X kici + q).
C is of type Ila if
C =-P(z,y)VP(y+ X ki +q,).
f
Definition 2.6 (inverse) Let C be a clause of the form Ia and

C= _'P(zay) VP(a:,y + E?:l ki +Q)-



Then C~! is defined as
C ' ==P(z,y)V P(z,y — X7 kia; — q).
i

Remark: If C is a clause without meta-variables then CC~! = C~1C = Ip
if C is defined over the predicate symbol P and Ip = —~P(z,y) V P(z,y).4

3 Representing the Deductive Closure

Lemma 3.1 (closure lemma) Let Cy,Cy and D1,Dy be clauses over a
predicate symbol P s.t. C1,Co are of type Ia and D1, Ds are of type Ila.
Then the following properties are fulfilled:

(a) The products C;C;, D;Dj, C;D; and D;C; for i,j =1,2 are defined.
(b) C;D; and D;C; are of type Ila (i,j = 1,2).
(¢) C;C; and D;D; are of type Ia (i,j = 1,2).

Proof:
Let

K
C, = ﬂP(x,y)vP(x,y—I—Zkiai-l-p),
=1
L
Cy = =-P(z,y) VP(CB,y+Zliﬂi+Q)a
=1
M
D, = ﬁP(w,y)VP(y+Zmi7i+7",$),
=1
N
=1

It is enough to prove (b) and (c).
point (b): w.lLo.g we may investigate C1.D; and D;C};.

M K
CiD; = -P(z,y)VPy+ Zmﬂi +7r+ Zkiai +p, ),
i=1 =1



M K
DiCy = ~P(z,y)VPy+Y mivi+rz+ Y ki +p)
i=1 i=1
M K
= “P(%y)VP(y+Zmi%‘+T—Zki&z‘—Paiv)-

=1 =1
It is easy to get the form Ila by renaming the summation indices and meta-
variables.

point (c):
w.l.o.g. we only compute C1Cy and D1 D,.

K L

=1 i=1

N M
DDy = =P(z,y)VP(x+Y nii+sy+Y miyi+r)

=1 =1

M N
= =P(z,y) V P(z,y + Y myi+1— Y nid; —s).

Again it is easy to transform the products into the form Ia. <o

Lemma 3.2 (commutation lemma) Let C, D be clauses over a predicate
symbol P and mp = - P(z,y) V P(y,x). Then

(a) If C and D are of type Ia then CD = DC.
(b) If C is of type Ia then there exists a clause C’ of type Ia s.t. C = C'np.
(c) If C is of type Ia then npC = Cl7p

Proof:
point (a): Let

K

Cc = ﬁP(l'ay)VP(x?y_f_ZkZaZ—}_p)a
=1
L

D = =P(z,y)VP,y+ Y Lfi+q).
=1

Then

K L
CD = -P(z,y)VP(@,y+ kici+p+ > lifi+q),
=1 =1
- DC



as "+” is commutative.

point (b):
K
C = —P(z,y)VPy+ Z kici +p, ),
i=1
K
C’ = ﬁP(.’E,y) VP(.’I),'y + Zkzaz +p)7
=1
C'nrp = C.
point (c):
K

C = -P(z,y)VP,y+ ) ki +p),
im1

K
Crp = ﬂP(m,y)VP(y—i—Zkiai—kp,x),
i=1
K
mpC = ﬂP(w,y)VP(y,w+Zklaz+p),
=1

K
= _'P(‘Tay)vp(y_zkiai_pam)a
i=1

= C lrp.
&

Definition 3.1 (deductive closure) Let C be a set of clauses in Krom N
Horn over a set of two-place predicate symbols P, ..., P,. Then let

R(C) =CU{CD|C,D € C},

R™Y(C) = R(R!(C)) for i > 0.
The deductive closure is defined as

R*(C) = U1 {=Pi(2,y) V Pi(z,9)} UUien B (C).-
Notation: —P(z,y) V P(z,y) is denoted by Ip or shortly by I if no confu-
sion may arise. Similarly we may write 7 instead of 7p.

Remark: Type Ia-IIa clauses over a predicate symbol P define a monoid
with neutral element I. The clauses of type Ia form a commutative sub-
monoid. The clauses of type Ia without meta-variables even define an
Abelian group. f



Lemma 3.3 (first representation lemma) Let C be a set of type la-Ila
clauses over a predicate symbol P containing at least one clause of type Ila,
i.e. C is of the form

C={C,....,Cr}U{D1m,...,Dp7}

for C;, Dj of type Ia and m > 0. Moreover let D = {D,... Dy} and
C={C,-.-,Cn, O L., Cr YU {DiD; '}

Then
R*(C) = R*(C) UDR*(C)r.

Proof:
(a) R*(C) Cn R*(C) UDR*(C)n:
It is enough to prove that C Cj; R*(C)UDR*(C)r and that R*(C)UDR*(C)w
is deductively closed.
{Cy,...,Cn} Cur R*(C) UDR*(C)x is trivial.

A A~

We show that D;m Cpr R*(C) UDR*(C)n:

A~

By definition of R* we have I € R*(C) and therefore

Djm Cy DR*(C)r.

It remains to show that R*(C) UDR*(C)n is deductively closed:

A

Clearly R*(C) itself is deductively closed and consists of type Ia clauses only.

A A~

So let Ey € R*(C) and DjFEym € DR*(C)7m. Then
EleEgﬂ' == DjElEQ’/T

by point (a) of the commutation lemma. But E;E, € R*(C) and therefore

EleEQ’/T € DR*(C)W
We reverse the order of resolution:

D;EyrE; = D;EyE '

by the commutation lemma point (c) From sublemma, I gto be proved
afterwards) we know that E' € R*(C) implies E~! € R*(C). Therefore
EyE7 ! € R*(C) and so

D,;EyE;'n € DR*(C)7.

~

It remains to investigate resolutions within DR*(C):

~

Let D;Eym,DjEym € DR*(C)w. Applying the commutation lemma (point
(c)) twice we get

D;EynD;Eyt = D;E\D} ‘nEyr = D;E1 Dy Ey Lnm.

9



But 77 = I and therefore
DiE\wD;Eyw = D;E\D; ' Ey .

But now only type Ia clauses appear in the resolution product and the
elements can be permuted (commutation lemma point (a)). So we get

DiEyxD;Eym = D;D; ' E\E, .

By definition of C we have D,-Dj_1 € € and by sublemma I E; ' € R*(C), so
E1E;' € R*(C). This eventually gives

D;Eymo DjEym € R*(C).

This completes the proof of direction (a).

~ A~

(b) R*(C) UDR*(C)r Cpr R*(C):
(b1) R*(C) Cm R*(C):
Clearly it is sufficient to show € Cas R*(C).
{(Ch,...,Cn} C R*(C) is trivial.
We prove {Ci_l} Cum R*(C) for i € {1,...,n}. By definition of C and by
deductive closure of R*(C) we have

(Dl’fr)Ci(Dﬂr) S R*(C)
Iterated application of the commutation lemma gives

DinC;Dim = DlCi_lDl_lmr:
DiC;'DTY = DyDy'Co.

1

But {I} Cys {D1D; '} and therefore
{C;7'} € D1DTICTT € RY(0).

2

It remains to show that for 4,5 € {1,...,m} DiD]-_1 € R*(C).
Clearly D;nDjm € R*(C) by definition of C and by deductive closure.
But
DiwDjm = DiDj 'wm = DD
and D;D; ' € C by definition.

~

(b2) DR*(C)m Car R*(C): A
Let us consider D;Em with E € R*(C). Then E is of type Ia and, by (bl),
{E} Cp R*(C). Therefore the commutation lemma gives

DjE'7r =Fo (D] 071').

10



But D;m € C by definition of C and so Djm € R*(C). Finally, as R*(C) is
deductively closed, we obtain ED;m € R*(C).

(a) and (b) together yield R*(C) =a R*(C) UDR*(C)r. o

Sublemma I:
Let

¢ = {C,...,Cn, Gy ,...,C1 U U {DiD; 1)
i,j=1

s.t. the C; and the D; are of type Ia. Then for every E € R* (é) the element

~

E~'is in R*(C).

Proof: By induction on the length k of resolution products.
k=1: C{l € C by definition. Moreover

(C;7HY™t=¢; and (DZ-Dj_l)_l = D,;D; .

2

(IH) Assun}e that for every product E of clauses Fy,...,F, € C for | < k
E~!' € R*(C).

case k + 1: ) R
E = (Fy -+ Fy) o Fyy1. By (IH) (Fy--- F) ! € R*(C) and FJ; € R*(C).

~

Because R*(C) is deductively closed we have
F L (F---F,)~' € R*(C).
But B! is just Fi. 5 (Fy - Fy) ™' O

Example 3.1 Let C be the clause =P (z,y) V P(y + 2a + 3,z). Then C =
Dy for

Dy :ﬂP(m,y)VP(z,y+2a+3).

So let C = {C}. Then ¢ = {D; D'} and the first representation lemma
yields

R*(C) =m R*(C)UDR*(C)r.
But R*(C) =p {D1D;'}; indeed,

E =DD;'==P(z,y) V P(z,y + 2a — 28)

11



and F o E Cys E. Moreover

~

DR (C)m =m {D1E7} =m {~P(z,y) V P(y + 2a — 28 + 3,2) }.
Therefore
R*(C) =m {=P(z,y)V P(z,y+2a—28), ~P(z,y)V P(y+2a—28+3,z)}.

f

Lemma 3.4 (representation lemma II) Let C be a finite set of type-Ia
clauses over a (single) predicate symbol. Then there exists a finite set C, of
type-Ia clauses s.t. R*(C) = Cs.

Proof: By induction on |C| (the number of clauses in C).
(IB) [C| = 1:
Then C = {C} for a clause C of the form

n
C = =P(z,y)VP(z,y+ ) riai+p)
=1

for r;, p € Z and meta-variables ;. As C is a Krom-clause the self-resolvents
of C can be represented as clause powers, i.e.

R*({C}) = {C*|k >0} where

n
c* =y -P(z,y)VP(z,y+ Zriai + pk) for k > 1.
=1
Formally we have to distinguish between the number k£ and the number
constant k appearing in C*. But we prefer to write ”k” both times in order
to avoid overloading of the formalism. Let

n
D= _'P('Tay) VP(.’E,y + Zriai +p(/8+ 1))7
i=1

where 8 is meta-variable different from the «;. Then
R*(C) =m {Ip, D}

and we may define C, = {Ip,D}. Clearly D can be normalized to a type
Ia-clause D' for

n+1
D = -P(z,y) V P(z,y + Z ria; + p),
i=1

for r,+1 = p.

12



(IH) assume that for all C with 1 < |C| < m and containing type-Ia clauses
only there exist finite sets of type-Ia clauses C, with C, =7 R*(C).

case m + 1:
Let C ={C4,...,Cps1} and D = {C4,...,Cy} and let D be a element in
R*(C); then

D=C;- ..C]ilom+1 e Cif...cfpcmﬂcfﬂ...cgirll’
where CJ’: € D. Then D can be written as
_D - ElCm+1 e EpCm—I—lEp—l—l

where the E; are in R*(D) and (possibly) E; = I and/or E,;; = I. By the
commutation lemma D can be rewritten into the form

D = Ep--- Ep+lcfn+1-
In particular there exists an E € R*(D) with D = EC}, |. Therefore
R'(C) C B (D) o R*({Crnss})
and by R*(D) o R*({Crr41}) C R*(C) (trivially)
R*(C) = R*(D) o R*({Crt1})-
By (IH) there exist finite sets D, and {Cp,41}+ of Ia-clauses with
Dy, =m R*(D) and {Cmy1}e =v R*({Cm11}).

So we just define C, = Dy o {Cy1}«. Then C, =p R*(C) and C,, as a
product of finite sets of type-la clauses, is a finite set of type-la clauses. <

Lemma 3.5 (representation lemma III) Let C be a finite set of type-
Ia-IIa clauses over a (single) predicate symbol. Then there exists a finite set
C« of type Ila-1la clauses s.t. R* =y C,.

Proof: If C consists of type-Ia clauses only then we just apply representation
lemma II. So we may assume that

C = {01,...,Cn}U {D17T,...,Dm7'r}
for m > 0 and Cj, D; of type Ia. By representation lemma I we have

R*(C) = R*(C) UDR*(C)n

13



for

m
C = {C,...,Cn,Cr Y., C YU U {DiD; '}
ij=1
and D ={D1,...,Dp}.
But C consists of type-Ia clauses only and so, by representation lemma

I1, there exists a finite set C, of type Ia clauses with C, =3; R*(C). Therefore
we simply define

C., = é*UDOé*OW.

By the closure lemma C, is a finite set of type-la-Ila clauses and C, =)

R*(C). o

Theorem 3.1 (representation theorem) Let C be a finite set of type-
Ia-1la clauses. Then there exists a finite set C, of type-Ia-Ila clauses s.t.

C. =m R*(C).
Proof: By induction on [C|.
(IB) IC| =1:

Then C = {C} for a clause C of type Ia-Ila. If C is of the ”predicate
type” P — @ for P # @ then C does not resolve with itself and R*(C) =
{C,Ip,Ig}; here we simply define C, = R*(C).

If C is of predicate type P — P for a predicate symbol P then the set
C. exists by representation lemma III.

(IH) Assume that for all sets C of type-la-Ila clauses with 1 < |C| < n there
exist finite sets C, of type-Ia-Ila clauses with C, = R*(C).

case n + 1:
Let C = {C1,...,Cpt1} and D = C — {Cp41}. By (IH) there exists a finite
set of type-la-Ila clauses D with D, =) R*(D).

We distinguish the following cases:

(a) Cp41 is of predicate type P — @ s.t. neither P nor @) occurs in D.
We define C, = D, U {Cpt1}s-

(b) Cp41 is of predicate type P — @ s.t. P occurs in D, but @ does not.

14



Then Cp41 0 Cry1 and Cp4q o D are undefined. So we define
C* = D* U D* o Cn+1.
(¢) Cp41 is of predicate type P — @ s.t. @ occurs in D, but P does not.

This case is analogous to (b) and we define
C* = D* U Cn+1 o D*
(d) Cp41 is of predicate type P — @ s.t. both P and @ occur in D.

Let D € R*(C). Then D can be written as a product in the form
D = F1Cp1E2Cq 41+ EnyCpg1 By

for E1,...,Ept1 € R*(D) and (possibly) Ey = Ip and/or En 1 = Ig.

Then all clauses Fo,..., FE, must be of the predicate type @ — P,
otherwise the product is undefined. In particular the clauses C, 1 F; are of
predicate type P — P fori =2,...,m.

Let Do, p be the subset of D, describing all elements of predicate type
@ — P in R*(D). Then C,1Dgp is a finite set of type-Ia-Ila clauses of
predicate type P — P. By representation lemma III there exists a finite set
Xp_,p of type-la-Ila clauses with

Xp_p=m R (Crn1Dg—p)-

But then Xp_,p represents the subproduct Cy, 11 FE2Cy41--- Cpy1Ey, of D.
Let D_,p the subset of D, representing clauses of predicate type — P;
Dg-, is defined analogously. Then we define

Ci = DyUDLpXppChri1Dg-s.

By the arguments above R*(C) Cjs Cy; moreover C, is defined via product
and union from finite sets of type Ia-Ila clauses and thus is a finite set of
Ia-IIa clauses by the closure theorem.

It remains to show that C, Cps R*(C). But this is straightforward as
D. Cu R*(D), Dop Cu R*(D), Do Cum R*(D) and R*(D) Cu R*(C).
Moreover {Cp4+1} Cp R*(C) and, as R*(C) is deductively closed

D pXppCni1Do—s Cur R*(C).

15



Corollary 3.1 Let P be a finite set of facts and C be a finite sets of Ia-Ila
clauses. Then there exists a finite set of meta-facts Py s.t.

Ry (CUP) =y CUP..
(R;; denotes deductive closure under hyperresolution)
Proof: As C UP € Krom N Horn we have
Ry(CUP) = CUPoR*C).

By the representation theorem there exists a finite set C, of Ia-Ila clauses
with C, =p R*(C). But then also

PC, = PR*(C).

We define P, = PC,; then P, is a finite set of unit meta-clauses representing
PR*(C) and
Ry (CUP) =p CUP,.

Comment:

Actually it is not necessary to reduce the clause syntax to type I and type 11
clauses in order to obtain termination. Clearly the meta-clauses rerpesenting
clause powers can become very long, due to long linear combinations of meta-
term variables. Thus reduction of type Ia to type I via greatest common
divisor may be useful, but is not necessary for termination. A reduction to
the syntax type

n m
(*) =P(z,y) V P(z + Y _ ki +p,y + > 1B +q)
i1 j=1

where k;,l; are constants for natural numbers (instead of constants for inte-
gers) is possible too — without changing the algebraic properties. Similarly
we may exchange = and y in the positive literal and obtain a new version
of type-Ila clauses. Even for these new types all representation lemmas and
the representation theorem hold.
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4 Meta-Inference and Termination

The final aim is to prove that some refinement of meta-resolution terminates
on the class XHi. To this aim it is enough to show that, on satisfiable
sets, the inference machinery just produces the set of meta-clauses in the
representation theorem.

Definition 4.1 (meta-subsumption) Let C, D be meta-clauses. We de-
fine C' <4 D if there exists a substitution € over variables and meta-variables
and a subset D' of D s.t.

LIT(D') =y LIT(CH).

The relation <, is extended to sets of clauses in the standard way, i.e.
C <45 D if for all D € D there exists a C € C s.t. C <z D. If C <45 D and
D <45 C we write C =4 D. §f

Definition 4.2 (forward subsumption) Let C, D be sets of meta-clauses.
sf(C,D) is the subset of clauses in D which is not subsumed by C; more for-
mally

Sf(CaD) = {D €D | C Lss {D}}
i

Definition 4.3 (cycle operator) Let cycle(C) = {C} if C is not a cycle
clause and cycle(C) = C, otherwise.

Remark:

The concept of a cycle clause depends on the choice of the meta-term for-
malism and the calculus. Generally we denote any finite representation of
R*({C}) in some meta-term syntax by C,. If the rule-clauses are all Ia-ITa
clauses then every clause of predicate type P — P for some p.s. P ful-
fils an obvious cycle condition. Indeed, due to the representation lemmas
every ”potentially cyclic” clause C defines a finite set of meta-clauses C\,
representing R*({C}). #

Definition 4.4 (deduction operators) Let C be a set of Krom-Horn clauses;
then we define C, as the set of rule clauses in C. By Res(C) we denote the set

of all resolvents in C and by gy the operator of hyperresolution, i.e. gz (C)

is the set of all hyperresolvents definable in C. The following ”one-step”
operator creates hyperresovents, rule resolvents and cycles:

om(C) = ou(C)U Res(Cr) U cycle(Cy)-

17



From pps we get the two monotone operators Rjs and Rjyy,, where Ry, is
Ry refined under forward subsumption.

RM(C) = CU QM(C),

Ru,(C) = CUsf(C,om(C))-

The deductive closure under Rjys and Ry, is defined by R}, and R*Ms:
Ry (C) = |JRu(©),
i>0

(€)= JRi,©.

i>0

We say that (a monotone operator) R converges on C if there exists an i s.t.
RY(C) = R*™1(C) (this clearly implies R*(C) = R'(C)). We call R complete
if for all unsatisfiable C O € R*(C). {

The following result is trivial:
Theorem 4.1 (completeness) Ry, is complete.

Proof: Rpr(C) contains the set of clauses obtained by hyperresolution. But
hyperresolution is complete and so Rjs is complete. By definition of Ry,
we have R}, (C) <ss R%;(C) and therefore O € R},(C) implies O € R}, (C).

O

Remark:

The completeness of Rjys, holds not only for sets of ordinary first-order
clauses but for sets of meta-clauses as well — provided the meta-term for-
malism is capable of unification. This holds for much stronger meta-term
formalisms (e.g. for R-terms) as those we need here.

The main issue is to show termination of Rjs, on our class.

*¥¥¥ lemma corresponding to representation lemma IT ¥**

Lemma 4.1 Let C : {C1,...,Cr} be a set of Ia clauses over a predicate
symbol P. Then

m,(C) = Ry, (C) and (1)
M, (€) =55 (C1)x--(Cn)s (2)

Proof: 1t is sufficient to show
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() (C)x---(Cn)s € R} (C),
(b) (C1)s+--(Cn)x <ss wa(C) for all 7 > 0,
(c) RE,(C) <55 (C1)s+++(Ck)s for all k < n

By definition of the operator Ry we have R}/(C) = Ry, (C) for all 4
together with (b) above this gives

(C)s -+ (Cn)x <ss BEFH(C).

From (c) we get R}, (C) <ss (C1)«---(Cp)s« and by transitivity of <y
R, (C) <5 R371(C). But then

Ry, (C) = Ry, (C), (Ch)x -+ (Cn)x =55 Ry (C).

We first prove (a):
As all clauses C4,...,C), are of type Ia the sets (C1), -+ (Cy). are defined,
where

cycle(C) = {(C1)x,-- -, (Cn)+} C om(C).
By definition of Rj; this implies
(C1)«(C2)x € RY(C); -, (C1)x -+ (Cn)x C R(C).

(b) We show (C1)« -+ (Cn)« <ss R%;(C) by induction on i

1=0:

Let C; € C; then (Cj)« C (C1)« -+ (Cp)« because for all k (Ck)« = {I,,, C} }.
This also implies

(Cj)w =T} H(Cy)Ip 7 C(CL)s -+ (Ch)a

and therefore

(Cl)* e (Cn)* <ss {(Cl)*, ceey (Cn)*}
But for all i (C;). <ss C; and, finally,

(Cl)* T (Cn)* <ss C.

(IH) Assume (C1)s -+ (Cp)s <ss Ri,(C).

Let C € RYF(C) — Ryf(C); then either C = EC; or C = E, for some
E e Ry,(C), C; € C.
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C=ECj:
By induction hypothesis we have

(01)* e (Cn)* <ss B

and therefore
(Cl)* e (Cn)*C] Sss ECj

Now, for every k, (C)« consists of two Ia-clauses and the commutation
lemma can be applied. But then

(C1)x - (Cn)+Cj = (C)x -+ (Cj-1)4(C))+Cj(Cjz1)x - - (Cn)s-
By definition of the *-operator we have (C}). <5 (C;)«C; and so
(Cl)* et (Cn)* <ss (Cl)* T (Cn)*cj <ss ECj-

C=(E):
By induction hypothesis we have

(Cl)* T (Cn)* <ss B

For every C; (C;)« is a set of Ia-clauses. By definition of the *-operator and
by the commutation lemma we have G.F, <ss (G.Fy). for all Ia-clauses
G, F and therefore

(Cl)* Tt (On)* SSS ((Cl)* e (Cn)*)*
Moreover F <, G implies F* <,;; G* and
(Cl)* U (Cn)* <ss E*.

This concludes the proof of (b).

It remains to prove (c):
We have already seen that, for all k < n,

(C1)x-++ (Ck)« C RY(C).
But we also have R’j,[s (C) <ss R%,(C) and finally we see that

R?\/IS (C) <ss (Cl)* Tt (Ck)*
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Our next step is to prove termination of Rjs, on finite sets of Ia-Ila
clauses over a single predicate symbol. To this aim we need the following
technical lemma:

Lemma 4.2 Let Cy,...,Cy, D1,..., Dy, be Ia clauses over a predicate sym-
bol P and

C = {Ci,....Cn,C7,...,C "YU | DiD;
1,j<m
Then E € R;,(C) implies E~! € R3,(C).

Proof: We prove the result for R%,(C) by induction on i.

1 =0:

trivial as, by definition, E~! € C for every E € C.

(TH) Assume that for E € RY,(C) we have E~! € R},(C).

Now let E € R4-(C) — R%,(C). We distinguish two cases:

(a) E = E\E; for Ey1, E; € R:,(C).

Then (E1Ep)~! = E; 'E, L.
By induction hypothesis E; ', E;* € R3,(C) and, as R%,(C) is closed
under resolution, E~' = E['E; ! € R}, (C).

(b) E € F, for F € R:;(C).
By definition of the *-operator and the inverse of Ia-clauses we have
(F,)~t = (F~1), and, by induction hypothesis, F~! € R},(C). But
R3;(C) is closed under cycle and so (F.)~! = (F~1), € R},(C).

<

*¥¥¥ lemma corresponding to representation lemma IIT ***

Lemma 4.3 Let C be a (finite) set of Ia-Ila clauses over a predicate symbol
P . Then there ezists a p with R}, (C) = Ry, (C).

Proof: If C consists of Ia-clauses only then the result follows from Lemma, 4.1.
Thus we may assume that there are Ila clauses in C and, by definition of Ia
and IIa, C is of the form

C={C,...,C}U{Dy7m,...,Dyr}
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where the C;, D; are Ia clauses, m > 0 and m = wp. Let D = {D1,...,Dp,}.
Then D is a set of Ia clauses which plays a role in the syntactic form of
R}, (C). Indeed we will show

(I) Ri,(C) =ss R, (C) U R}, (C)Drr
for X
C={Cy,....Cn,C7,...,C "YU | DiDj
ij<m

Note that C is a set of Ta clauses and so the deductive closure Rj;,(C) can
be expressed via a resolution product of (a deductive closure of) Ia clauses
and Ila clauses.

Suppose now that we have already proven (I). Then, by Lemma 4.1,
there exists a number ¢ (in fact the number of clauses in C) with

R}, (C) = R}, (©)
and therefore
Riy, (6) U RS, (€YD = Rl (€) U RY,, (O)Dr,
which is a finite set of Ia-Ila clauses. Now by
Rig (€) o0 Rl (€)URL, (ODr
there exists a p such that
(I1) R, (€) <os Ry, (€) URY, (O)Dr.

On the other hand we have

(IT11) R%, (C)URY, (C)Dr <45 REFH(C).

But (I7) and (I11) together give R}, (C) <ss R’;\Zl (C) which implies R}, (C) =
RE (C).

It remains to prove (I):

~ ~

(a) B3, (C) <os Rig, () U Ry, (C)Dr:

Note that R}/(C) =ss R}y, (C); therefore it suffices to show by induction on
¢ that o o
Ry, (C) <ss Ry, (C) U R}y, (C)Drr.
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1 =0:

We have to prove that R},(C) <5 C UCDr.

R, (C) <ss {C’lA,...Cn} ist trivial by {Ci,...,Cr} C C. Now consider the
clauses C; 1 € €. Obviously the product of three clauses in C is in R2,(0),
in particular D17C;Dim € R2,(C). By the commutation lemma we may
tranform the product and obtain

Di7C;Dim = C; ' DDyt € R3/(C).

Note that m > 1 and so D7 is an element of C.
But D1 D! <5 Ip and so C; ' D1 DT <45 C;'. This clearly gives

R%,(C) <ss O

In order to show R}, (C) <gs C it remains to deal with the clauses DZ-DJ-_I.
Again the product D;wD;7 is in Rjs(C) and commutation lemma yields

DinDjm = DzDJ_1

Puting things together we obtain

~

R3/(C) <y C.

~

Now Dr C C and so CDr C Rpy(CUC). But then, by R%,(C) <ss C,
R3,(C) <ss CDx. In total we get

R*M(C) Sss é U éDT('

(IH) Assume that R}, (C) <,s R}, (C) UR}, (C)Dr.

Let E € Ryf1(C) U R (C) D

We distinguish two cases:

(1) E € RHC) — Ry, (C).

By definition of Ry we have E € cycle(R}, @) u Res(R),. ©)).
IfE € cycle(RéVIS (C)) then there exists a G € Ré\/ls (C) with E € G,. By
induction hypothesis there exists a clause H in R},(C) with H <, G.
But then H, € R},(C) and H, <5 G..
IfFE e Res(RﬁVIS (C)) then E = GGy for clauses Gy, Gy € was (€). By
induction hypothesis there are Hy, Hy € R},(C) with H; <,; G; and
Hj, <,s G3. But this implies H1Hy <43 G1G2. By H1Hy € R},(C) we
thus have R},(C) <qs E.
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(2) E € RYHC)Dr.
From case (1) we know that R},(C) < Rﬂ'j (C). Then there exists a
k with

R, (C) <55 RY1(C) and RE,(C)Dr <5 RE(C)Dr.
But by D C C we have Rk, (C)Dr C REF(C) and so
RiF(C) <o Ry HC)D.
This settles the case i + 1 and the direction (a).
It remains to show
(b) Ry, (C) U R}y, (C)Dr <45 Ry, (C)

Let us write R as abbreviation for the set R%,(C) U R%,(C)Dr.
Obviously (b) follows from the two properties (b1), (b2) below

(bl) R < C and
(b2) Ru(R) =R
Note that (b2) implies R},;(R) = R an thus by (bl) R <,s R},(C). But

R}, (C) =45 R};(C) and R =45 R}, (C) U Ry, (C)Dr.
(b1) is trivial as C UDr C R.
So it remains to prove (b2). By definition of R;; we have

Rpy(R) = RU Res(R) U cycle(R).

So we have to prove Res(R) C R and cycle(R) C R.

(b21) Res(R) C R:
Let Ey,E; € R. If E; and E, are both in R}, (C) then clearly E By €
R%,(C) C R.

So let E; € Ri/(C) and Ey € Ri(C)Dn. Then Ey = ED;m for an

~

E € R3;(C) and a D; € D. But then
E\Ey = El(EDﬂr) = (ElE)D,'Tr € RR[(CA)'DW

and F1Fy € R. Now consider the product FsF1; note that E; and Fy do
not commute in general as Fy is a [la-clause. By the commutation lemma
we have

EyE, = ED;nEy = EE] ' D;r.
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By Lemma 4.2 we get E; ! € R%,(C) and thus also EE; ' € R3,(C) and
EyFE, € R’M(C)Dﬂ'

If E; and B, are both in R%,(C)Dr then there are E,F € R%,(C) and
D;,D; € D with By = ED;m and E; = FD;m. Again the commutation
lemma yields

E\E, = EDinFDjm = EF'D;D; .

Now DiD;1 € C, and by Lemma 4.2 F~! € R}, (C). This eventually gives

~

E\E, € Ry, (C)CR

Note that in the last case F1FE9 = E9F; as the resolvent can be written as
a product of Ia clauses.

(b22) cycle(R) C R:
Let E € R; we compute F,.

A~ A

If B € R}(C) then also E. C R, (C) CR. )
If E € R};(C)Dr then E = FD;r for some F € R},(C) and D; € D. So
E, = (FD;7).. Now

(FDim). = (FF~").(DiD; '), U(FF1).(D;D; ). F D;.
It is enough to show that
(FF1).(DiD; ")« C Ry (C)
because then also
(FF1),(D;D;Y),FD;ixw C R%,(C)Dr

and (FD;7), C R.

By Lemma 4.2 we have F~! € R%,(C) and therefore FF~! € R%,(C). But
Ry is closed under cycle and so (FF~ '), C R;,(C) (note that FF~! may
be different from Ip if there are meta-terms in F'). D;D; 1 ¢ ¢ and thus
(D;D; ). C Ryr(C), finally resulting in

(FF1)(DiD; "), C Ry (©).
This concludes the proof of (b22). O

*** lemma corresponding to the representation theorem™***

Lemma 4.4 Let C be a (finite) set of la-Ila clauses. Then Ry, (C) is finite.
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Proof: By induction on [C|.

(IB) IC| = 1:

Then C = {C} where C is a Ia or a Ila clause. If C if of type P — Q for
different predicate symbols P and ) then C is not a cycle clause. Therefore
Res({C}) = 0 and cycle(C) = {C,Ip,Ig} (note that, as all clauses are rules,
on yields the empty set anyway). Thus trivially R}, (C) is finite. If C is of
type P — P then R}, (C) is finite by Lemma 4.3.

(TH) Assume that for all sets C of type Ia-ITa clauses with |C| <n R}, (C)
is finite.

case n + 1:

Let C = DU {Cpy1}, where D = {C},...,Cp}. By induction hypothesis
there exists a finite set of la-Ila clauses £ with £ = R}, (D).

We distinguish the following cases:

(a) Cp41 is of type P — @ where neither P nor @) occurs in in D.

In this case R}, (C) = Ry, (D)U R}y, ({Cnt1}). Then, by induction hypoth-
esis, R}, (C) = £ U F for some finite set of Ia-Ila clauses F.

(b) Cp41 is of type P — @ where P occurs in D but @ does not.
We show that
Ry, (C) =55 EUE{Cryi}s-

Clearly this subsumption equivalence yields a number j with R}, (C) =

R}, (C).
(b1) R;; (C) <o5 EUE{Crir}s:

Note that £ = R}, (D) and D C C, so R}, (C) <ss & is trivial. But Cp 41 €
C C R}, (C) and by R}, (C) <ss cycle(R}, (C)) we obtain R}, (C) <
{Ch+1}+. Moreover

R}k\/fs (€) <ss R}k\/lS (C)R}k\/[s (€) <ss E{Cni1}+-

(b2) EUE{Chy1}x <ss Ry, (€):

We prove the relation for R}, (C) by induction on i.
1=0:

E <ss D, {Crt1}x <55 Cny1 and Ip € &; thus clearly
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EUE{Cpir}e <ss C.

(TH-b2) EUE{Cpyr}s <ss Ry (C):

We hav to prove
EUE{Cpi1}e <ss Res(Rjy,(C)) U cycle(Ryy, (C)).

Let CD € Res(Rﬁws(C)) and F1,Ey € EUE{Cpi1}s s.t. By <4 C1 and
FEy <45 Cy. Then also E1FEs is defined and F1FEy <,, CD. So it is sufficient
to prove

SUE{Cn—H}* Sss EIEQ-

If Fy, Ey € € then, by £ <;s EE, we have £ < 5 E1F».

Now let Ey € &€, Ey € E{Cp+1}«. Then E1Ey € EE{Cp+1}+ and, by
E{Cni1}s <55 EE{Cpi1}s we get E{Cpi1}+ <ss E1E,. Note that C is of
type P — @ where @ is not in D and thus EsF; is only defined if Fs € £.
This shows

EUE{Cni1}s <ss Res(Ry (C)).

Now let C, C cycle(RY, (C)). By (IH-b2) there exists an E € £ UE{Cpi1}+
with £ <;; C. Then also E, <;z Ci. So it is enough to show that & U
E{Cn—i—l}* Sss E*

If E € € then, by £ <5 cycle(€), € <s5s Ey. If E € E{Cp41}« — € then
FE is not a cycle clause and

E, - {FCTH-laIPaIQaIR}

for some predicate symbol R in £ and F' € £. We see that, also in this
case €U E{Cpi1}x <ss Ev and s0 £ UE{Cpy1}s <ys cycle(Ry, (C)). This
concludes the proof of (b).

(¢) Cp41 is of type P — @ where @ occurs in D but P does not.
This case is completely symmetric to (b).
(d) Cpy1 is of type P — @ where both P and @ occur in D.

For any set of Ia-Ila clauses F we write Fp_,q for the subset of clauses in
F having type P — ). Moreover we define

Fro = U{Frae | Q e PS(F)},
For = U{Four | QePS(F)}
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Now Cy41 is of type P — @ and thus the set of clauses C),1€g—p is of
type P — P. By Lemma, 4.3 there exists a finite set of Ia-ITa clauses Xp s.t.

Xp = Ry (Cny1€q-p)-
We define
F = E,pXpChi1€g UE.
Then F is a finite set of Ia-Ila clauses. Our aim is to show
(*) Ry, (C) =45 F.

Then by definition of Ry, there exists a nuber p with R}, (C) = R}, (C),
which is exactly what we want to show. So it remains to prove (x).

(d1) R}, (C) <ss F-

Note that for all sets of clauses C1,Ca, R}, (C) <s5Co, Ry, (C) <ss Co implies
R} (C) <45 C1Ca. Using this property we can reduce R}, (C) <5 F to

1. R}, (C) <ss €,

2. R} (C) <ss E-p,
3. R}, (C) <ss Xp,
4. R} (C) <55 Cpy1 and
5. Ry (C) <s5 Eqgs-

The cases 1,2,4 and 5 are trivial. But 4 and R}, (C) <;s £gp imply
Ry, (C) <s5 Cn+1Eg—p and, as Ry, (C) is deductively closed, we have 3. So
the case (d1) is settled.

(d2) F <ss R}y, (C)-

The proof of (d2) can be reduced to proofs of (I), (I) and (III) below.

(I F < C,

(IT) F <ss5 Res(F),

(III) F <5 cycle(F).

(IT) + (III) guarantee that F <;s R}, (F); together with (I) this gives
F <ss Ry, (C).
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(I) is easy to show:

Clearly £ < s D and thus F <,; D. Moreover £p_,pXpCpi1€gsg C F,
Ip € Epp N Xp and Ig € Egg. But IpCpi1lg = Cp41 and therefore
F Sss Cn—l—l-

We prove (II):
Let F1, Ey € F. We have to show that F <,;; E1Es. If E1, Ey € £ then
F Sss & Sss E1E2-

So let us assume that that £y € £ and Fy € £,pA,Cpi1€Q—. Then there
are predicate symbols R, S, T with

Ey € Epss, Bo € Egr

Now
E\Ey € Erss5€spXpCnii€gor
and
ErspPXPCri1€oosr <55 ErR-5EsPAPCri1€g.
But also

ErspXpCriiosr C EpAXpCpii1€gs.

But £, pXpCri1Eg—s is a subset of F and therefore F <,; E;F».
The case By € E,pXpCr11€g—, By € E is completely symmetric.

Now let 1, FEs € 8—)PXPC7L+15Q_).
The resolution E; Fj5 is only defined if E; is of some type R — S and Ey of
type S — T and therefore

E\Ey € EppXpCri1EQ5EsspXPCri1€EQ T
Now

Eqp <ss EQssEssp

and therefore

ErspPXPCri1€Q-pXPCri1€got <ss E1Es.
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But

Xp = R} (Chi1€gp) and so
Xp <ss XpCpi1€gp.

This immediately yields
ErspPXPpXpCri1EQtr <55 ERPAPCH11EQPXPCL1EQT
and by Xp <;s XpXp
ErsprXpPCri1&got <55 E1Eo.

But £g—, pAXApCri1€g—T is a subset of £, pXpC,11E—s which, in turn, is a
subset of F. So F subsumes F; Ey and (II) is proved.

(IIT): We have to show F <, cycle(F).

Let E be a clause in F. If E is in £ then clearly £ <y, cycle(E) = E, and
FsubsumesE,. So the only interesting case is

E € EppXPCri1€gr

for some predicate symbol R. Then F = E1XCp1Es for By € g, p,
X € Xp and E5 € SQ_;R. Then

EE = E XCpi1EyEyXChy1Bs.

Note that F : FsF; is of type @ — P and C,11EX is of type P — P. The
cycle operator on F thus leads to

E, = E1X(Cpi1EX),Cpi1BEs U {Ig}.

We write E* for ElX(Cn+1EX)*Cn+1E2.

Now X € Xp and F € £g,p implies Xp <;5 Cpi1 EX by definition of
Xp. Let Y be an element in Xp with ¥ <;3 C,11EX. Then also Y, <y
(Crh+1EX)4. ButY, is a subset of Xp and Xp <;; X Xp; therefore we obtain

E1XpCpi1Ey <55 E* and more general
ErspPXpCri&osr <5 B

But ErpXPCri1€9—r C E5pXPCL11EQ— which is a subset of F. More-
over F <, Ir. Putting things together we finally obtain
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F <ss B

This concludes the proof of (III).
<

The following lemma, shows that, in computing a deductive closure of
rules and facts, it is sufficient to compute the closure of rules and apply the
resulting meta-clauses to facts afterwards.

Proposition 4.1 Let C be a set of Ia-Ila clauses and P be a set of facts.
Then

R*Ms (C U P) —ss PR*MS (C) U R*Ms (C)
Proof: The direction
R}, (CUP) <4 PRy, (C) U R, (C)

is trivial as PR}, (C) U R}, (C) is a subset of R}/(C). Thus it remains to
show that

PR}, (C)UR} (C) <& R (CUP).

But this property follows essentially from the invariance of PR}, (C) U
R}, (C) under Ryy; more precisely we have to prove the following four points:

(1) PR}, (C) UR;, (C) <45 CUP,

(2) PR;,, (C) URS, (C) is closed under oy,

(3) (PR;,,(C) UR;, (C))y is closed under Res,
(4) (PR}, (C)U R}, (C)), is closed under cycle.

(1) is trivial.

(3) is trivial too as the rule clauses in PR}, (C) U Ry, (C) are just Rj; (C)
an R}, (C) is closed under Res by definition.
In the same way also (4) is trivial as cycle just applies to R}, (C).

The only interesting case is (2):
There are no negative clauses in PR}, (C) U R}, (C), so og only defines
simple resolutions among facts and rules. Now let

P € PR}, (C) and ~P'V Q € R}, (C).
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Then C': Po—-P'VQ € PRy, (C)R},, (C). But
PRy, (C) <ss PRy, (C)Ry,(C),
and so PR}, (C) <, C. O

Remark:
Proposition 4.1 holds for all sets of facts, independent of their syntactic
structure.

Theorem 4.2 (termination theorem) Let C be a set of Ia-Ila clauses,
P be a set of facts and G be a set of goals. Then R}, (CUP UG) is finite.

Proof: (a) CUP UG is unsatisfiable:
Then, by the completeness of Ry, , there exists an ¢ with O € Ré\/[s (CUPUG).
But then, by definition of R,/,,

RiFN(CUPUG) Ri (CUPUG),
Ry (CUPUG) = Ry (CUPUG).

(b) CUP UG is satisfiable.
By definition of Rj; we have Rp;(D) = D U pp(D) where

ov (D) = o (D) U Res(D,) U cycle(Dy).

Note that o (P UG) = 0: As pg is the hyperresolution operator, P is a set
of facts and G consists of strictly negative clauses, oy (P U G) # () implies
o (PUG) = {O}; but this is impossible by the correctness of resolution and
by satisfiability of C UP U G. So there are no inferences whatsoever on the
set G and we obtain

Ry (CUPUG) = Ry, (CUP)UG.
By Proposition 4.1 we get
Ry (CUP) = PR}, (C) UR),(C).

By Lemma 4.4 R}, (C) is finite and therefore R}, (CUP UG) is a finite set
of clauses.
<

Corollary 4.1 R, decides the class of Krom-Horn clauses C, where the
rules are la-1la clauses and facts and goals are unrestricted.

Proof: obvious.
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