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Abstract. We investigate the relative complexity of two different meth-
ods of cut-elimination in classical first-order logic, namely the methods
of Gentzen and Tait. We show that the methods are incomparable, in the
sense that both can give a nonelementary speed-up of the other one. More
precisely we construct two different sequences of LK-proofs with cuts
where cut-elimination for one method is elementary and nonelementary
for the other one. Moreover we show that there is also a nonelementary
difference in complexity for different deterministic versions of Gentzen’s
method.

1 Introduction

Gentzen’s fundamental paper introduced cut-elimination as a fundamental pro-
cedure to extract proof theoretic information from given derivations such as
Herbrand’s Theorem, called Mid-Sequent Theorem in this context. In traditional
proof theory, the general possibility to extract such informations is stressed, but
there is less interest in applying the procedures in concrete cases. This, how-
ever, becomes essential if proof theory is considered as a basis for an automated
analysis of proofs, which becomes important in connection with the develop-
ment of effective program solving software for mathematical applications such
as MATHEMATICA.

In this paper we compare the two most prominent cut-elimination proce-
dures for classical logic: Gentzen’s procedure and Tait’s procedure; we avoid to
call them ”algorithms” because of their highly indeterministic aspects. From a
procedural point of view, they are characterized by their different cut-selection
rule: Gentzen’s procedure selects a highest cut, while Tait’s procedure selects a
largest one (w.r.t. the number of connectives and quantifiers). The most impor-
tant logical feature of Gentzen’s procedure is, that — contrary to Tait’s method
— it transforms intuitionistic proofs into intuitionistic proofs (within LK) and
there is no possibility to take into account classical logic when intended. Tait’s



procedure, on the other hand, does not change the inner connections of the
derivation, it replaces cuts by smaller ones without reordering them.

In this paper, we use the sequence 7, of LK-proofs corresponding to Stat-
man’s worst-case sequence to compare Gentzen’s and Tait’s procedure. The se-
quence 7, is transformed twice: first into a sequence v, where Tait’s method
speeds up Gentzen’s nonelementarily, and second into a sequence ¢,, giving the
converse effect. As a complexity measure we take the total number of symbol
ocurrences in reduction sequences of cut-elimination (i.e. all symbol occurrences
in all proofs occurring during the cut-elimination procedure are measured). Both
methods are nondeterministic in nature. But also different deterministic versions
of one and the same method may differ quite strongly: we show that even two dif-
ferent deterministic versions of Gentzen’s method differ nonelementarily (w.r.t.
the total lengths of the corresponding reduction sequences).

Finally we would like to emphasize that the main goal of this paper is to
give a comparison of different cut-elimination methods. It is not our intention to
investigate, at the same time, the efficiency of calculi; for this reason we do not
work with improved or computationally optimized versions of LK, but rather
take a version of LK which is quite close to the original one.

2 Definitions and Notation

Definition 1 (complexity of formulas). If F' is a formula in PL then the
complezity comp(F) is the number of logical symbols occurring in F. Formally
we define

comp(F) =0 if F is an atom formula,
comp(F) =1+ comp(A) + comp(B) if F = Ao B for o € {\,V,—},
comp(F) =1+ comp(A) if F =—-A or F = (Qx)A for Q € {V,3}.

Definition 2 (sequent). A sequent is an expression of the form I' = A where
I" and A are finite multisets of PL-formulas (i.e. two sequents I1 + A; and
Iy + As are considered equal if the multisets represented by I'y and by I's are
equal and those represented by Ay, Ay are also equal).

Definition 3 (the calculus LK). The initial sequents are A + A for PL-
formulas A. In the rules of LK we always mark the auziliary formulas (i.e.
the formulas in the premis(ses) used for the inference) and the principal (i.e.
the infered) formula using different marking symbols. Thus, in our definition,
A-introduction to the right takes the form

NFAY,A Dk Ay, Bt
T, F AL ANBS A,

We usually avoid markings by putting the auziliary formulas at the leftmost
position in the antecedent of sequents and in the rightmost position in the con-
sequent of sequents. The principal formula mostly is identifiable by the context.
Thus the rule above will be written as



F1|—A1,A FQ"AQ,B
Fl,F2|—Al,A2,A/\B

Unlike Gentzen’s version of LK (see [5]) ours does not contain any “auto-
matic” contractions (in this paper we do not consider intuitionistic logic). Instead
we use the additive version of LK as in the book of Girard [6], combined with
multiset structure for the sequents (this is exactly the version of LK used in [3])
By the definition of sequents over multisets we don’t need the exchange rules. In
our notation I') A, Il and A serve as metavariables for multisets of formulas; F
is the separation symbol. For a complete list of the rules we refer to [3]; we only
give three logical and three structural rules here.

The logical rule V-introduction left:

AT+FA BIIFA
AVB,I,IIF A A

— The logical rules for V-introduction right:

I'FAA

TraAave vVt

I'+AB

Tra,4ave Vir?

The structural rules weakening left and right:

rea rea
Traav’ Arraw:

The cut rule:
I'-AA AIl-A

TIIFAA

cut

An LK-derivation is defined as a directed tree where the nodes are occur-
rences of sequents and the edges are defined according to the rule applications in
LK. Let A be the set of sequents occurring at the leaf nodes of an LK-derivation
¥ and S be the sequent occurring at the root (called the end-sequent). Then we
say that ¢ is an LK-derivation of S from A (notation A Frx S). If A is a
set of initial sequents then we call ¢ an LK-proof of S. Note that, in general,
cut-elimination is only possible in LK-proofs.

We write

(¥)

S

to express that 1 is a proof with end sequent S.
Paths in an LK-derivation v, connecting sequent occurrences in 1, are de-
fined in the traditional way; a branch in v is a path starting in the end sequent.



We use the terms “predecessor” and “successor” in the intuitive sense (i.e. con-
trary to the direction of edges in the tree): If there exists a path from S; to
So then Ss is called a predecessor of Si. The successor relation is defined in a
analogous way. E.g. every initial sequent is a predecessor of the end sequent.

Definition 4. The length of a proof w is defined by the number of symbol oc-
currences in w and is denoted by l(w).

The famous proof of the cut-elimination property of LK is based on a double
induction on rank and grade of a modified form of cut, namely the mix.

Definition 5 (mix). Let I' - IT and A F A two sequents and A be a formula
which occurs in II and in A; let IT*, A* be IT, A without occurrences of A. Then

the rule
I'EIoD AFA

LA F I, A ™M@
is called a mixz on A. Frequently we label the rule by miz(A) to indicate that the
miz is on A.

Definition 6. Let ¢ be an LK-proof and v be a subderivation of the form

(¢1) (1h2)
nt+-A Ink A

I, Iy - A7 Ay

miz(A)

Then we call v o miz-derivation in ¢; if the miz is a cut we speak about a
cut-derivation. We define the grade of 1 as comp(A); the left-rank of ¢ is the
mazimal number of nodes in a branch in Y1 s.t. A occurs in the consequent of
a predecessor of I1 F Aq. If A is "produced” in the last inference of Y1 then the
left-rank of ¢ is 1. The right-rank is defined in an analogous way. The rank of
Y is the sum of right-rank and left-rank.

The cut-elimination method of Gentzen can be formalized as a reduction
method consisting of rank- and grade reductions on LK-proofs. But also Tait’s
method can be defined in this way, but with another selection of a cut-derivation
in the proof. In a slight abuse of language we speak about cut-reduction, even if
the cuts are actually mixes.

Definition 7 (cut-reduction rule). In Gentzen’s proof a miz-derivation 1) is
selected in an LK -proof ¢ and replaced by a derivation v’ (with the same end-
sequent) s.t. the corresponding miz-derivation(s) in ' has either lower grade or
lower rank than 1. These replacements can be interpreted as a reduction rela-
tion on LK -proofs. Following the lines of Gentzen’s proof of the cut-elimination
property in [5] we give a formal definition of the relation > on LK -proofs in the
Appendiz.

Using > we can define two proof reduction relations, >q for Gentzen reduc-
tion and >7 for Tait reduction. Let ¢ be a proof and let 1) be a mix-derivation
in ¢ occurring at position \ (we write ¢ = ¢[]x); assume that ¢ > '.



If X is an occurrence of an uppermost mix in ¢ then we define P[Y]n >a
O[Y']x. If X is an occurrence of a mix with maximal grade in ¢ then we define

B[L]n >T P[Y' 1.

Definition 8 (cut-reduction sequence). Let >, be one of the reduction re-
lations >1,>¢g and ¢ be an LK-proof. Then a sequence n: ¢1,...,¢n is called
a cut-reduction sequence on ¢ w.r.t. >, if the following conditions are fulfilled

— ¢1 = ¢ and
— @ > Ppy1 fork=1,.n—1.

If ¢, is cut-free then n is called a cut-elimination sequence on ¢ w.r.t. >,.

Note that > is more liberal than the direct intepretation of Gentzen’s induc-
tion proof as a nondeterministic algorithm. But in the speed-up by Gentzen’s
over Tait’s procedure we use the ”traditional” Gentzen procedure (where one
uppermost cut is eliminated before other uppermost cuts are transformed); this
makes our results even stronger. >7 had to be adapted anyway, as the calculus
in Tait’s paper [9] is not LK.

Definition 9. Let e : N> —» IN be the following function

e(0,m) =m
e(n+1,m) = 2¢(m™).

A function f : IN* — IN™ for k,m > 1 is called elementary if there exists
an n € IN and a Turing machine T computing f s.t. the computing time of
T on input (ly,...,1,) is less or equal e(n,|(l1,...,1l)|) where | | denotes the
mazimum norm on IN".

The function s : IN — IN is defined as s(n) = e(n,1) for n € IN.

Note that the functions e and s are nonelementary.

Definition 10 (NE-improvement). Let n be a cut-elimination sequence. We
denote by ||n|| the number of all symbol occurrences in n (i.e. the symbolic length
of n). Let >, and >, be two cut-reduction relations (e.g. >t and >g). We
say that >, NE-improves >, (NE stands for nonelementarily) if there exists a
sequence of LK-proofs (v, )new with the following properties:

1. There exists an elementary function f s.t. for all n there exists a cut-
elimination sequence 1, on v, w.r.t. >, with ||n,|| < f(n),

2. For all elementary functions g there exists an m € IN s.t. for all n with
n > m and for all cut-elimination sequences 6 on v, w.r.t. >,: ||0|| > g(n).

3 The Proof Sequence of R. Statman

In [8] Richard Statman proved the remarkable result, that there are sequences of
formulas having short proofs, but a nonelementarily increasing Herbrand com-
plexity. More formally, there exists a sequence (Sy)new of sequents having LK-
proofs (vn)nemw with I(7y,) < n2%" for some constant a, but the Herbrand com-
plexity of Sy, is > s(n)/2 (see Definition 9). As S, consists of prenex formulas (in



fact of universal closures), Herbrand complexity is a lower bound on the length
of a cut-free proof. Putting things together we obtain a sequence (yp)nemw of
LK-proofs of (Sy,)nen with the following properties:

— There exist a constant a with I(y,) < n2°",
— for all cut-free proofs ¢ of S, [(¥) > 1s(n).

This yields that every method of cut-elimination on (7,),en must be of nonele-
mentary expense. OQur aim is to use 7, in constructing new proofs ¢, in which
the =, are in some sense "redundant”; this redundancy may be ”detected” by
one cut-elimination method (behaving elementarily on ¢,), but not by the other
one (having thus nonelementary expense on ¢,,).

For his result on Herbrand complexity Statman defines a sequence of prob-
lems in combinatory logic (expressing iterated exponentiation) together with an
elegant sequence of short proofs. The detailed formalization of the short proofs
in LK can be found in [1]. What we need here is the overall structure of the
proofs v,, in particular the positions of the cuts; on the other hand we do not
need atomic initial sequents like in [1].

The sequence S, is of the form A,, - D,, where A,, consists of a fixed sequence
of closed equations + a linear number of equality axioms of at most exponential
length. Instances of the formulas H; defined below form the cut formulas in -,
where p is a constant symbol:

Hi(y) = (Vo1)pr1 = p(yz1),
Hiy1(y) = (Voip1) (Hi(ig1) = Hi(yzit)).

From the definition of the H; it is easy to derive I(H;) < 2% for all 4 and some
constant b; moreover comp(H;) < 2¢+1.
The sequence 7, is of the form

(x1)
6n H2(Tn)7H1(Q) F Hl(an)

Hy(q) - Hi(q) Iopy1, Hi(q) F Hi(Thq) cut
An F Hl(an)

cut

where §,, is

(6n—1) (x2)
(12) Iyp1y b H3(Tro1) H3(Tn-1), H2(T) - Hy(Ty) ;
Iy, F Hy(T) Iyn_1), H2(T) F H>(Ty) .

Ton - Ha(T),) o

T is a combinator defined from the basic combinators S,B,C,I by T =
(SB)((CB)I) and T;;; = T;T; T fulfils the equation (Ty)z = y(yz). ¢ is a
constant symbol and I, I, I's are subsequences of A,,. For details we refer to
[1]. The proofs ; and x; are cutfree proofs with a fixed number of sequents;
their length, however, is exponential as the formulas H; grow in size exponen-
tially. The cuts are hierarchically located in a linear structure: there is only one



uppermost cut, i.e. all cuts occur below this cut; every cut has all other cuts as
his predecessor or as his successor.

We give some informal description of the proofs v; and x;, for greater detail
we refer to [1].

First we describe the proof ;2 for ¢ > 1; the case 1, is quite similar. By
definition of the formulas H; we have to show

(VTit2)(Hit1(Tir2) = Hiy1(Tzi42)).

Using the definition of H;i;(y) for some variable y we first prove (in a fixed
number of steps) from H;yq(y) that

(Vzit1)(Hi(ziv1) = Hi(y(yziv1)))

holds. Then use an equational proof of y(yz;11) = (Ty)z;+1 and insert it into
the consequent of the upper implication via appropriate equational axioms. This
way we obtain the formula

(Vaiy1) (Hi(2it1) = Hi((Ty)zig1))
which is just H;1+1(Ty). So we have a derivation of
Hiy1(y) = Hipa(Ty).
By using y as eigenvariable and applying V-introduction we obtain
(Voir2) (Hip1(Tit2) = Hiy1(T2it2))

which is H;12(T). This eventually gives the proof ;4.

The proofs x;:
We prove the sequent

Hit1(Thoiv1), Hi(T) F Hi(Tp_i12)

b
’ Hi(T) - Hi(T) Hi(Tp_iy2) b Hi(Tp_iy2)
H;i(T) = Hi(Tn—iy2), Hi(T) - Hiy(Tn_iy2)
(Voip1) (Hi(@iv1) = Hi(Tniz1mi41)), Hi(T) F Hi(Tpiy2)

which consists of 4 sequents only; the length of x; is exponential in i.

Roughly described, the elimination of the uppermost cut is only exponential
and the elimination of a further cut below increases the degree of exponentiation.
As there are linearly many cut formulas

—:1

V:l

H, (q)7H2(T)7 s >Hn+2(T) and HH(T2)7 s 7H2(Tn)

the resulting total expense is nonelementary.



4 Comparing the Methods of Gentzen and Tait

Our first result expresses the fact that a cut-elimination method selecting max-
imal cuts can be nonelementarily faster than methods selecting an uppermost
cut.

Theorem 1. Tait’s method can give o nonelementary speed-up of Gentzen’s
method or more formally: >7 NE-improves >¢.

Proof. Let 7, be Statman’s sequence defined in Section 3. We know that the
maximal complexity of cut formulas in 7, is less than 2"*3. Let g(n) = 2"+3
and the formulas A; be defined as

Ag = A for an atom formula A
Az’+1 = _|Az' for ¢ € IN.

For every n € IN we set E,, = Ay,). Then clearly comp(E,) = g(n) and thus
is greater than the cut-complexity of ~,,. We will build F,, into a more complex
formula, making this formula the main formula of a cut. For every n € IN let ¢,
be the LK-proof:

(Vn) E,F-E, AFA .
EnFE, AobDy E,.— AE,FA " .
E, A FD,ANE, T Dn/\En,En—>AI—AA't
[617)

E,Ay,E, > AFA

By definition of +,, the proofs v, and v, contain only a linear number of
sequents, where the size of each sequent is less or equal than n2°" for some
constant independent of n. Consequently there exists a constant d s.t. [(¢,) <
n?2%" for all n.

We now construct a cut-elimination sequence on v, based on Tait’s cut-
reduction >7. As comp(E,) is greater than the cut-complexity of ~,, and
comp(D,, A E,) > comp(E,), the most complex cut formula in v, is D, A E,,.
This formula is selected by Tait’s method and we obtain v, > v}, (via rule
3.113.31 in the appendix) for the proof ¢, below

E.FE, AFA
E.+-E, B E,— AFA
E,,E,—>AF A .

By A B, s AF AW

—: 1
cut

!, contains only one single cut with cut formula E,. Now the left hand side
of the cut consists of an atomic sequent only making rule 3.111. applicable.
Moreover the cut with formula E,, is the only one in 4},. So reduction can be
applied via > and we obtain ¢!, > ! for !

E,FE, AFA
E,,E,—»>AF A .
By A B, 5> AF AW

—:1




Therefore 0, : ¥n, ¥, ) is a cut-elimination sequence based on >7. It is easy
to see that the lengths of the proofs decrease in every reduction step. So we
obtain

[l < m®297%2.

In the second part of the proof we show that every cut-elimination sequence on
¥, based on the relation >¢g is of nonelementary length in n.

Note that every cut in 7, lies above the cut with cut formula D,, A E,,. There-
fore, in Gentzen’s method, we have to eliminate all cuts in +,, before eliminating
the cut with D, A E,. So every cut-elimination sequence on 1, based on >g
must contain a proof of the form

(v E,-E, ArA
EnbEy AnFDy . Bn o A B, FA T
B A DoAE, " DoAE, B, AFAN

Ep A En = AF A cut

where v, is a cut-free proof of A,, + D,,. But according to Statman’s result we
have I(v;) > %3 ). Clearly the length of 77 is a lower bound on the length of
every cut-elimination sequence on 9, based on >¢. Thus for all cut-elimination
sequences 6 on 1, w.r.t. >g we obtain

s(n)
ol > 252,
<

A nonelementary speed-up is possible also the other way around. In this case
it is an advantage to select the cuts from upwards instead by formula complexity.

Theorem 2. Gentzen’s method can give a nonelementary speed-up of Tait’s
method or more formally: >g NE-improves >.

Proof. Consider Statman’s sequence 7, defined in Section 3. Locate the upper-
most proof d; in v,; note that d; is identical to 9n1. In 7, we first replace the
proof &1 (or ¥p41) of I'hy1 b Hyy1(T) by the proof 6; below:

() (Ynt1)
PA-P w:r F]-'_Hn-f-l(T) 1
PA-PFQ =~ QI FH,.(T)""

PA-P,T} F Hopr (T) cut

The subproof w is a proof of P A P - of constant length. Furthermore we use
the same inductive definition in defining & as that of d; in Section 3. Finally
we obtain a proof ¢, in place of v,. Note that ¢, differs from 7, only by an
additional (atomic) cut and the formula P A =P in the antecedents of sequents.
Clearly

Un) < U(vn) +en



for some constant c.

Our aim is to define a cut-elimination sequence on ¢, w.r.t. > which is of
elementary complexity. Let Sy be the end sequent of the proof J,. We first
investigate cut-elimination on the proof §,; the remaining two cuts are eliminated
in a similar way. To this aim we prove by induction on k:

(¥) There exists a cut-elimination sequence Sk,l, .. .,Sk,m of Sk w.r.t. >¢g with
the following properties:
(2) U(bp) <I(b) fori=1,...,m,
(3) bk.m is of the form
(w)
PA-PLE N
T w :

Induction basis k = 1:

In ; there is only one cut (with the formula Q) where the cut formula is in-
troduced by weakening. Thus by definition of >, using the rule 3.113.1, we get
31 >a 31,2 where 31,2 is the proof

(w)
PA-PF o
PA=P, It }_Hn+1(T) -

Clearly 2 < I(6,) and 1(51,2) < 1(81). Moreover 51,2 is of the form (3). This gives
(%) for k = 1.

(TH) Assume that (*) holds for k.

By definition, 3k+1 is of the form

(wn—k-l-l)
Dopy1 F Hoop11(T)  pre

cut
PA=P, Iyjq1y F Hyopp1(Thar)
for py:
(5%) (Xn—k+1)
PAAP Iop - Hy pq2(T) Hp o pg2(Tw), Hy g1 (T) F Hy g1 (Trogn) cut
PA=P, Iog, Hy 1 (T) F Hy g1 (Thga)
By (IH) there exists a cut-elimination sequence Sk,l, .. .,Sk,m on 8 w.rt. >g

fulfilling (1), (2) and (3). In particular we have l(Sk,m) < 1(8;) and Sk,m is of the
form




All formulas in Sy, except P A =P, are introduced by weakening in Sk,m. In
particular this holds for the formula H,, j42(T)) which is a cut formula in
3k+1. After cut-elimination on 5k the proof py, is transformed (via >¢) into a
proof pg:

(6k,m) (ank+1)
PA=P o - Hy py2(Tr) Hp o py2(Th), Hy k1 (T) F Hy g1 (Thyr)

PA=P, Iog, Hy 1 (T) F Hy— g1 (Thga)

cut

Now the (only) cut in py, is with the cut formula Hy, 42 (T}) which is introduced
by w : r in dj, . By using iterated reduction of left-rank via the symmetric
versions of 3.121.21 and 3.121.22 in the appendix, the cut is eliminated and the

proof x,_r+1 ”disappears” and the result is again of the form

(w)
PA—-P w *
P AP, Doy Hp o1 (T) - Hypy1 (Teg)

The proof above is the result of a cut-elimination sequence py 1, ..., pk,p ON Pg
w.r.t. >g. But then also d;41 is further reduced to a proof where py, is replaced
by pr.p; in this proof there is only one cut left (with the formula Hy,_j1(T) and
we may play the ”weakening game” once more. Finally we obtain a proof Sk,r of
the form

(w)

PA—-P w *
P AP, Iyryr) b Hnka1 (Tho)

The conditions (1) and (2) are obviously fulfilled. This eventually gives (x).

After the reduction of ¢, to ¢, [Sns] A, Where ) is the position of 5, and &L’s is the
result of a Gentzen cut-elimination sequence on Sn, there are only two cuts left.
Again these cuts are swallowed by the proofs beginning with w and followed by
a sequence of weakenings. Putting things together we obtain a cut-elimination
sequence

Mn * ¢n,17-- '7¢n,q
on ¢, w.r.t. >g with the properties:
(1) U¢n,i) <1U(¢n) and
(2) ¢ < Uen)-

But then
17n]] < U(dn)? < nt2°m.

for an appropriate constant c. Therefore 7, is a Gentzen cut-elimination sequence
on ¢, of elementary complexity.

For the other direction consider Tait’s reduction method on the sequence ¢,,.
The cut formulas in ¢, fall into two categories;

— the new cut formula Q with comp(Q) = 0 and



— the old cut formulas from -,,.

Now let  be an arbitrary cut-elimination sequence on ¢, w.r.t. >7. By definition
of >7 only cuts with maximal cut formulas can be selected in a reduction step
w.r.t. >7. Therefore, there exists a constant & s.t. £ > 1 and n contains a proof ¢
with cut-complexity k. As the new cut in ¢,, with cut formula @ is of complexity
0, it is still present in ).

A straightforward proof transformation gives a proof x s.t. v, >7 x, the
cut-complexity of x is k, and I(x) < I(¥) (in some sense the Tait procedure does
not “notice” the new atomic cut). But every cut-free proof of 7, has a length
> 8(2—") and cut-elimination of cuts with (fixed) complexity k is elementary [7].

More precisely there exists an elementary function f and a cut-elimination
sequence 6 on x w.r.t. >7 s.t. [|8]] < f(I(x)). This is only possible if there is no
elementary bound on [(x) in terms of n (otherwise we would get cut-free proofs
of 7, of length elementarily in n). But then there is no elementary bound on
1(v) in terms of n. Putting things together we obtain that for every elementary
function f and for every cut-elimination sequence n on ¢,

[In]] > f(n) almost everywhere .
o

Theorem 2 shows that there exist cut elimination sequences 7, on ¢, w.r.t.
>a s.t. ||9n]| is elementarily bounded in n; however this does not mean that
every cut-elimination sequence on ¢, w.r.t. >g is elementary. In fact >q is
highly ”unstable” in its different deterministic versions. Consider the subproof
51 in the proof of Theorem 2:

() (Ynt1)
ppr-p . _Tnr F Hea(T) vl
PA-PFQ Q, L1k Hypr (T) 7

cut

P AP, Fn-i—l = Hn-‘rl(T)
If, in >, we focus on the weakening (w : ) in the right part of the cut and
apply rule 3.113.2 (appendix) we obtain §; >¢ u, where p is the proof

(¢n+1)
Loy F Hpy(T)

PA=P, I b Hoya(T)

w:l

But p contains the whole proof ¥,+1. In the course of cut-elimination 9,1 is
built into the produced proofs exactly as in the cut-elimination procedure on 7,
itself. The resulting cut-free proof is in fact longer than ~; (the corresponding
cut-free proof of the n-th element of Statman’s sequence) and thus is of nonele-
mentary length! This tells us that there are different deterministic versions a;
and as of >¢ s.t. a; gives a nonelementary speed-up of as on the input set

(¢n)n€1N-



In the introduction of additional cuts into Statman’s proof sequence we use
the weakening rule. Similar constructions can be carried out in versions of the
Gentzen calculus without weakening. What we need is just a sequence of short
LK-proofs of valid sequents containing ”simple” redundant (in our case atomic)
formulas on both sides serving as cut formulas. Note that LK without any
redundancy (working with minimally valid sequents only) is not complete.

5 Conclusion

The main results of this paper hint to a more general theory of algorithmic
cut elimination encompassing not only algorithmic specifications of Gentzen’s
and Tait’s procedures but also approaches as cut projection [2] and the resolu-
tion based method CERES [4] . From a more proof theoretic point of view, the
sequences of proofs arising from the different stages of cut-elimination can be
considered as a specific analysis of the proof which extends the information ob-
tainable from the cut-free final stage. Different cut-elimination algorithms stress
different aspects of the proof, e.g. constructive content (Gentzen’s procedure) or
connectivity (Tait’s procedure).
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6 Appendix

Below we list the transformation rules used in Gentzen’s proof of cut-elimination
in [5]. Thereby we use the same numbers for labelling the subcases. Note that our



rules slightly differ from that of Gentzen as we use the purely additive version of
LK. If a mix-derivation ) is transformed to 1)’ then we define 1) > 1)'; remember
that the relation > is the crucial tool in defining Gentzen- and Tait reduction.
In all reductions below %) is a mix-derivation of the form

(1) (¢2)
NkeEA Ik A,

TLIG FALA, ™2
3.11. rank = 2.
3.111. ¢ = A+ A:
AFA A(Qf—z)/l
“Aara M)
transforms to
(12)
_AFA
A A FACS
3.112. ¢ = AF A: analogous to 3.111.
3.113.1. the last inference in v is w : r:
(Xl)
TEA .. ()
'-AA m+-A
I +F A A miz(4)
transforms to
(x1)

_rea i
LI +aAY:
3.113.2. the last inference in 99 is w : I: symmetric to 3.113.1.

The last inferences in 1)y, 99 are logical ones and the mix-formula is the principal
formula of these inferences:

3.113.31.
(x1) (x2) (x3)
LFOLA bk 6,8 ATy Oy o
I+ ANB VT AANB.IsF :
1,15 F 61,05, AN AB,I5F O miz(A A B)

I, 15,15 F 01,0,03

transforms to
(x1) (x3)
IFO6,A AT3F 063

]—‘171—'3’," F @L@ii
0,105,153 01,05,05 Y

miz(A)

*




For the other form of A : [ the transformation is straightforward.
3.113.32. The last inferences of 11,12 are V : 7,V : I: symmetric to 3.113.31.

3.113.33.
(x1[a]) (x2)
I -6y, B BT, - Oy
Ty TRy
Fl = @1, (V.Z')B (VZ’)B,FQ = @2 .
.- 0.0, miz((Vz)B)

transforms to

(xat]) (x2)
N F6O,BF B L6,

I, Iy 67,0 .

N, F6,,0, Y
3.113.34. The last inferences in 11,12 are 3 : r,3 : I: symmetric to 3.113.33.
3.113.35

(x1) (x2)
AnLFO,  IhFO, A

nro,-4 " SALFo, ﬁfl( "
I, I+ 6,,0, T

reduces to
(x2) (x1)
ILhEO0,,A AT F6O;

I}, I F 0,605
N, F6,0, Y

miz(A)

3.113.36.
(x1) (x2) (x3)
ALFOLB _ THO,A BAFA
Nn+ro,A-B " ASBI,AFO,4
NI,AF6,,0,4

—:1
miz(A — B)

reduces to
(x1) (x3)
(x2) AIT+F61,B B,AFA

oA A, A"+ 05, A
I}, LA F6;,0t,4
0, [LAFO.,0,4 Y-

miz(B)
miz(A)

3.12. rank > 2:
3.121. right-rank > 1:

3.121.1. The mix formula occurs in the antecedent of the end-sequent of /.

(1) ()
I+ AR A

T,aF 5,4 M)



transforms to

(¢2)
oA .

A FZ AW ¢

3.121.2. The mix formula does not occur in the antecedent of the end-sequent
of ’(bl .
3.121.21. Let 7 be one of the rules w : [ or ¢: [; then

(x1)
(1) AbA
oLy kA . A
e o4 ™
transforms to
(Y1) (x1)
narExy AkA . A
AT 54 ™
Io Fz- A"

Note that » may be ”degenerated”, i.e. it can be skipped if the sequent does not
change.

3.121.22. Let r be an arbitrary unary rule (different from ¢ : [,w : 1) and let

C* be empty if C = A and C otherwise. The formulas B and C may be equal
or different or simply nonexisting. Let us assume that 1) is of the form

(x1)
() B, Ik 2

I+-5 CTF
I,0*,T* F 2%, 0,

miz(A)

Let 7 be the proof

(1) (x1)
ovx BIFo

II,B* T+ 2, (%
II,B,T*F 5%, ( ;”
II,C,T* + %, (2

miz(A)

*

3.121.221. A # C': then ¢ transforms to 7.

3.121.222. A = C and A # B: in this case C' is the principal formula of 7. Then
1) transforms to
(1) (1)
OFY AT X0
011, T F 5%, 5%, '*””(A)
Io,7*F 2%, 0, €




3.121.223 A = B = C. Then ()1 # (25 and 1 transforms to
(v1) (x1)

InI+-x AT ()
ILr* v xX*

I F 5 0

miz(A)

3.121.23. The last inference in 15 is binary:
3.121.231. The case A : r. Here

(x1) (x2)
(¢1) Flf—@hB FQ"@Q,C
IvY T,ILF61,0,,BAC
O,I, I3 F5,0,,0,,BAC

AT
miz(A)

transforms to

(¢1) (x1) (1) (x1)
I+r% IF6,B OFS kO, C

I,I7F 5*,6.,B miz(4) 7 [T F3*%,0,,C A"f“(A)
IO,I7,I; F 5%,2%,61,6, BAC 77
I,I7,T; F£%,0,,0,,BAC  ©°T
3.121.232. The case V : [. Then ¥ is of the form
(x1) (x2)
(1/)1) B, IO, C I,k 06, )
I+ BvC I, I,+-06,,0, mm:(A)
o,(BvCOY, I, I+ X* 01,0,
Again (BV C)* is empty if A= BV C and BV C otherwise.
We first define the proof 7:
(%1;1) (Xll—)@ (dﬁ) o (XL)@
I+ B,TI; nmrEx I:
1 L miz(A) "2 22 iz(A)

B II,I; F 2*, 0, C* I F 2%, 0,
B,I,I;F %0, * C,II,IT; F 5*,0,
BV C, I, Iy, I3 F 5%, 5*,01,0,

Note that, in case A = B or A = C, the inference z is w : [; otherwise z is the
identical transformation and can be dropped.
If (BV C)* = BV C then 1 transforms to
T *
II,BVC, Iy, T3 5%,0,,0, ¢

If, on the other hand, (B V C)* is empty (i.e. BV C = A) then we transform )

to
(1)
-y r miz(A)

I, IT*, Iy, [} F 5%, 5%, 5%, 01,0,
I,T7 T3 - 5%,04, 6,

c:*



3.121.233. The last inference in 92 is —: [. Then ¥ is of the form:

(x1) (x2)
@) TFO,B CAFA

I+rY BoSCOLAFGOA _:mlx
T, (B= Oy, 5, A F 56,4

(4)

As in 3.121.232 (B - C)* = B — C for B - C # A and (B — C)* empty
otherwise.

3.121.233.1. A occurs in I" and in A. Again we define a proof 7:

(1) (x2)
(¢1) (x1) -y CArA

n+x r-e,B ... C,IAFZA miz(A)
oTrrse8 ™AW T arza”
B O OA S, 0,54

If (B - C)* = B — C then, as in 3.121.232, ¢ is transformed to 7 + some
additional contractions. Otherwise an additional mix with mix formula A is
appended.

3.121.233.2 A occurs in A, but not in I'. As in 3.121.233.1 we define a proof 7:

(1) (x2)
IFY CAFA

(1) CLILAF 374
rve,B CIAFz* A"
BoCLILAFO 54 !

miz(A)

Again we distinguish the cases B - C = A and B — C # A and define the
transformation of ¢ exactly like in 3.121.233.1.

3.121.233.3 A occurs in I', but not in A: analogous to 3.121.233.2.

3.121.234. The last inference in 15 is miz(B) for some formula B. Then 1 is
of the form

(x1) (x2)
(%111) F1|—61 FQ[‘@Q

nv-x In,It+ef,6,
I, T}, I F 2%, 07,0,
3.121.234.1 A occurs in I3 and in I. Then ¢ transforms to

(1) (x1) (1) (x2)
nIr-XY INkE6; . Y IhE0O,
miz(A)

I, T} F X% 6, II,T} F X% 0,
I, I+, Ty, L - 2t o+t oF, 0,
LIy, I - 2%,0,0,

miz(B)
miz(A)

miz(A)
miz(B)

ct w:




Note that, for A = B, we have I';T = I'y and X*t = X*; Iyt = I™* holds in
all cases.

3.121.234.2 A occurs in I3, but not in I5. In this case we have Fj* =I5 and
we transform 9 to

v,
I+rs Nre, . (x2)
orrse, ™AW pYe,

miz(B
H3F1*3F2+|_E*36f_a92 ( )

3.121.234.3 A is in I3, but not in I : symmetric to 3.121.234.2.
3.122. right-rank = 1 and left-rank > 1: symmetric to 3.121.



