
Article Submitted to Journal of Symbolic Computation

Towards a Clausal Analysis
of Cut-Elimination∗

Matthias Baaz1 and Alexander Leitsch2

1Institut für Algebra und Computermathematik, TU-Vienna, Wiedner
Hauptstraße 8-10, 1040 Vienna, Austria

2Institut für Computersprachen, TU-Vienna, Favoritenstraße 9, 1040 Vienna,
Austria

Abstract

In this paper we show that a large class of cut-elimination methods can
be analyzed by clause terms representing sets of characteristic clauses ex-
tractable from the original proof. Every reduction step of a cut-elimination
procedure defines an operation on the corresponding clause term. Using
this formal framework we prove that the methods of Gentzen and Tait
and, more generally, every method based on a specific set of cut-reduction
rules R, yield a resolution proof which is subsumed by a resolution proof
of the characteristic clause set. As a consequence we obtain that CERES
(a resolution based method of cut-elimination) is never inferior to any
method based on R. On the other hand we show that CERES is not op-
timal in general; instead there exist cut-reduction rules which efficiently
simplify the set of characteristic clauses and thus produce much shorter
proofs. Further improvements and pruning methods could thus be ob-
tained by a structural (syntactic) analysis of the characteristic clause
terms.

1. Introduction

Cut elimination introduced by Gentzen (6) is one of the most famous procedures
of logic. The removal of cuts corresponds to the elimination of intermediate state-
ments (lemmas) from proofs rendering a proof which is analytic in the sense, that
all statements in the proof are subformulas of the result. Therefore, the proof
of a combinatorial statement is converted into a purely combinatorial proof. In
this way, Girard has shown, that the Fürstenberg-Weiss proof of Van der Waer-
den’s theorem on partitions can be transformed into Van der Waerden’s original

∗supported by the Austrian Research Fund (FWF), proj.nr. P16264-N05

1

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 2

elementary proof. Cut elimination is therefore an essential tool for the analysis
of proofs, especially to make implicit parameters explicit. Cut free derivations
allow for

• the extraction of Herbrand disjunctions, which can be used to establish
bounds on existential quantifiers (e.g. Luckhardt’s analysis of the Theorem
of Roth (9)).

• the construction of interpolants, which allow for the replacement of implicit
definitions by explicit definitions according to Beth’s Theorem.

• the calculation of generalized variants of the end formula (5).

This paper focuses on the computational properties of cut elimination in first
order logic and is based on the method of cut-elimination by resolution (CERES),
which is designed to refute the ancestral formulas of the cut formulas directly
by resolution and to compose the resolution derivation and the remaining proof
parts to a derivation with atomic cuts (4) (the presence of atomic cuts is not
harmful to the constructions mentioned in the last paragraph, and atomic cuts
can be eliminated with at most exponential expense). The main result of the
paper is the theorem, that cut-elimination by resolution provides a lower bound
for cut-elimination methods based on stepwise reduction of the cut formulas (e.g.
the well-known original method of Gentzen and the method of Schütte-Tait). The
method of proof consists in a symbolic representation of the ancestral clauses of
the cut formulas , and it is shown, that the clause set of the original derivation
subsumes the clause sets of the derivations with stepwise reduced cuts.

2. Definitions and Notation

Definition 2.1 (position): We define the positions within terms inductively:

• If t is a variable or a constant symbol then 0 is a position in t and t.0 = t

• Let t = f(t1, . . . , tn) then 0 is a position in t and t.0 = t. Let µ: (0, k1, . . . , kl)
be a position in a tj (for 1 ≤ j ≤ n) and tj.µ = s; then ν: (0, j, k1, . . . , kl)
is a position in t and t.ν = s.]

Positions serve the purpose to locate subterms in a term and to perform replace-
ments on subterms. A subterm s of t is just a term with t.ν = s for some position
ν in t. Let t.ν = s; then t[r]ν is the term t after replacement of s on position
ν by r, in particular t[r]ν .ν = r. Let P be a set of positions in t; then t[r]P is
defined from t by replacing all t.ν with ν ∈ P by r.
Positions in formulas can be defined in the same way (the simplest way is to
consider all formulas as terms).
Substitutions are defined as usual (functions from the set of variables to the set
of terms). If σ is a substitution with σ(xi) = ti for xi 6= ti (i = 1, . . . , n) and
σ(v) = v for v 6∈ {x1, . . . , xn} then we denote σ by {x1 ← t1, . . . , xn ← tn}.
Substitutions are written in postfix, i.e. we write Fσ instead of σ(F).

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 3

Let F be a term or a formula. We write F (x) to indicate (potential) free occur-
rences of the variable x in F . Let t be an arbitrary term, then F (x/t) stands for
F [t]P where P = {ν | F.ν = x}.

Definition 2.2 (complexity of formulas): If F is a formula in PL then
the complexity comp(F) is the number of logical symbols occurring in F . Formally
we define

comp(F) = 0 if F is an atomic formula,

comp(F) = 1 + comp(A) + comp(B) if F ≡ A ◦B for ◦ ∈ {∧,∨,→},
comp(F) = 1 + comp(A) if F ≡ ¬A or F ≡ (Qx)A for Q ∈ {∀,∃}.

Definition 2.3 (sequent): A sequent is an expression of the form Γ ` ∆
where Γ and ∆ are finite multisets of PL-formulas (i.e. two sequents Γ1 ` ∆1

and Γ2 ` ∆2 are considered equal if the multisets represented by Γ1 and by Γ2

are equal and those represented by ∆1,∆2 are also equal). ` is called the empty
sequent.]

Multiset union within the sequents is just denoted by comma: if S = Γ ` ∆
where Γ is the multiset union of Γ1, Γ2 and ∆ is the multiset union of ∆1, ∆2

then we write S = Γ1,Γ2 ` ∆1,∆2. If A is a formula then An denotes the multi-
set containing A n-times. E.g. we may write ` A3 for ` A,A,A.

Definition 2.4 (composition of sequents): If S = Γ ` ∆ and S ′ = Π ` Λ
we define the composition of S and S ′ by S ◦ S ′, where S ◦ S ′ = Γ,Π ` ∆,Λ.]

Definition 2.5 (subsequent): Let S, S ′ be sequents. We define S ′ v S if
there exists a sequent S ′′ with S ′ ◦ S ′′ = S and call S ′ a subsequent of S.]

Definition 2.6 (the calculus LK): In the rules of LK we always mark the
auxiliary formulas (i.e. the formulas in the premiss(es) used for the inference)
and the principal (i.e. the inferred) formula using different marking symbols.
Thus, in our definition, ∧-introduction to the right takes the form

Γ ` A+,∆ Γ ` ∆, B+

Γ ` A ∧B∗,∆

We usually avoid markings by putting the auxiliary formulas at the leftmost posi-
tion in the antecedent of sequents and in the rightmost position in the consequent
of sequents. The principal formula mostly is identifiable by the context. Thus the
rule above will be written as

Γ ` ∆, A Γ ` ∆, B

Γ ` ∆, A ∧B

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 4

Basically we use Gentzen’s version of LK (see (6)) adapted to the multiset struc-
ture for sequents. For simplification we do not include implication: as we consider
classical logic only there exists a polynomial cut-homomorphic transformation
translating arbitrary LK-proofs into proofs in negation normal form (see (3)).
By the definition via multisets we do not need the exchange rules.

• The logical rules for ∧-introduction:

A,Γ ` ∆

A ∧B,Γ ` ∆
∧ : l1

B,Γ ` ∆

A ∧B,Γ ` ∆
∧ : l2

Γ ` A Γ ` B
Γ ` ∆, A ∧B ∧ : r

• The logical rules for ∨-introduction:

A,Γ ` ∆ B,Γ ` ∆

A ∨B,Γ ` ∆
∨ : l

Γ ` ∆, A

Γ ` ∆, A ∨B ∨ : r1
Γ ` ∆, B

Γ ` ∆, A ∨B ∨ : r2

• The logical rules for ¬-introduction:

Γ ` ∆, A

¬A,Γ ` ∆
¬ : l

A,Γ ` ∆

Γ ` ∆,¬A ¬ : r

• The logical rules for ∀-introduction:

A(x/t),Γ ` ∆

(∀x)A(x),Γ ` ∆
∀ : l†

Γ ` ∆, A(x/y)

Γ ` ∆, (∀x)A(x)
∀ : r‡

• T conditions for ∃ : l are these for ∀ : r, and similarly for ∃ : r and ∀ : l):

A(x/y),Γ ` ∆

(∃x)A(x),Γ ` ∆
∃ : l

Γ ` ∆, A(x/t)

Γ ` ∆, (∃x)A(x)
∃ : r

• The structural rules of weakening (Π is an arbitrary multiset of formulas):

Γ ` ∆
Γ ` ∆,Π

w : r Γ ` ∆
Π,Γ ` ∆

w : l

• The structural rules of contraction (for i ∈ {1, . . . , k} the Ai are formulas
and ni ≥ 2):

An1
1 , . . . A

nk
k ,Γ ` ∆

A1, . . . Ak,Γ ` ∆
c : l

Γ ` ∆, An1
1 , . . . A

nk
k

Γ ` ∆, A1, . . . Ak,
c : r

• Let A be a formula and n,m ≥ 1. Then the cut rule is defined as

Γ ` ∆, Am An,Π ` Λ

Γ,Π ` ∆,Λ
cut(A)

If A does not occur in Π,∆ then the cut is called a mix.

†t is an arbitrary term containing only free variables.
‡y is a free variable which may not occur in Γ,∆. y is called an eigenvariable.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 5

Definition 2.7 (LK-derivation): An LK-derivation is defined as a directed
tree where the nodes are occurrences of sequents and the edges are defined accord-
ing to the rule applications in LK (they are directed from the root to the leaves).
The root is the occurrence of the end-sequent. The leaves must be occurrences of
atomic sequents. Note that we do not require the leaves being axiom sequents of
the form A ` A.
Let A be the set of sequents occurring at the leaves of an LK-derivation ψ and
S be the sequent occurring at the root (called the end-sequent). Then we say
that ψ is an LK-derivation of S from A (notation A `LK S). Note that, in
general, complete cut-elimination is only possible in LK-proofs, where the leaves
are axioms. But this causes no troubles as we are not interested in the elimination
of atomic cuts.
We write

(ψ)
S

to express that ψ is a derivation with end sequent S.]

Paths in an LK-derivation ψ, connecting sequent occurrences in ψ, are defined
in the traditional way; a branch in ψ is a path starting in the end sequent. We
use the terms “predecessor” and “successor” in the intuitive sense (i.e. contrary
to the direction of edges in the tree): If there exists a path from S1 to S2 then
S2 is called a predecessor of S1. The successor relation is defined in a analogous
way. E.g. every initial sequent is a predecessor of the end sequent.

Definition 2.8 (subderivation): A position ν in an LK-derivation is de-
fined in the same way as for terms (formally we may consider a derivation as a
term). Here the positions can be identified with the nodes in the derivation tree.
If there exists a position ν with ϕ.ν = ψ then we call ψ a subderivation of ϕ. In
the same way we write ϕ[ρ]ν for the deduction ϕ after the replacement of ϕ.ν by
ρ on the position ν in ϕ. The sequent occurring at the position ν is denoted by
S(ν).]

The depth of a position ν (denoted by depth(ν)) is defined as the depth of the
node ν in the derivation tree.

Definition 2.9 (regularity): An LK-derivation ϕ is called regular if the
following condition holds: Let µ, ν two independent nodes (i.e. both are not pre-
decessors of each other) and y be an eigenvariable occurring in ϕ.µ; then y does
not occur in ϕ.ν.]

There exists a straightforward transformation from LK-derivations into regular
ones. From now on we assume, without mentioning the fact explicitly, that all
LK-derivations we consider are regular.
The formulas in sequents on the branch of a deduction tree are connected by a
so-called ancestor relation. Indeed if A occurs in a sequent S and A is marked as

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 6

principal formula of an, let us say a binary, inference on the sequents S1, S2, then
the auxiliary formulas in S1, S2 are immediate ancestors of A (in S). If A occurs
in S1 and is not an auxiliary formula of an inference then A occurs also in S; in
this case A in S1 is also an immediate ancestor of A in S. The case of unary rules
is analogous. General ancestors are defined via reflexive and transitive closure of
the relation.

Let ν be a node in ϕ and let S ′ be a subsequent of S(µ) for a successor µ of ν).
Then we write S(ν, (S ′, µ)) for the subsequent of S consisting of formulas which
are ancestors of formulas in S ′ (at µ). Let Ω be a set of (S ′, µ) with S ′ v S(µ)
for successors µ of ν; then S(ν,Ω) is the composition of all S(ν, ω) for ω ∈ Ω.
S(ν,Ω) is just the subsequent of S consisting of ancestors of some of the formulas
in some successors µ.
If Ω consists just of the mix formulas of mixes which occur “below” ν then
S(ν,Ω) is the subsequent consisting of all formulas which are ancestors of a mix.
These subsequents are crucial for the definition of the characteristic set of clauses
and of the method CERES in Section 5.

Definition 2.10: The length of a proof ω is defined by the number of nodes in
ω and is denoted by l(ω).]

Gentzen’s famous proof of the cut-elimination property of LK is based on a
double induction on rank and grade of mixes.

Definition 2.11 (cut/mix derivation): Let ψ be an LK-derivation of the
form

(ψ1)
Γ1 ` ∆1

(ψ2)
Γ2 ` ∆2

Γ1,Γ
∗
2 ` ∆∗

1,∆2
cut(A)

Then ψ is called a cut-derivation. If the cut is a mix we speak about a mix-
derivation. Let ψ be a mix-derivation. Then we define the grade of ψ as comp(A);
the left-rank of ψ (rankl(ψ)) is the maximal number of nodes in a branch in ψ1

s.t. A occurs in the consequent of a predecessor of Γ1 ` ∆1. If A is ”produced”
in the last inference of ψ1 then the left-rank of ψ is 1. The right-rank (rankr(ψ))
is defined in an analogous way. The rank of ψ is the sum of right-rank and
left-rank, i.e. rank(ψ) = rankl(ψ) + rankr(ψ).]

Definition 2.12 (clause): A clause is an atomic sequent, i.e. a sequent of
the form Γ ` ∆, where Γ and ∆ are multisets of atoms.]

Definition 2.13 (resolvent): Let C = Γ ` ∆, Am and D = Bn,Π ` Λ s.t.
C and D are variable-disjoint, n,m ≥ 1, and σ be a most general unifier of
{A,B} (i.e. a most general substitution with Aσ = Bσ). Then the clause

Γσ,Πσ ` ∆σ,Λσ

is called a resolvent of C and D.]

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 7

Definition 2.14 (p-resolvent): Let C = Γ ` ∆, Am and D = An,Π ` Λ
with n,m ≥ 1. Then the clause

Γ,Π ` ∆,Λ

is called a p-resolvent of C and D.]

Remark: Note that the p-resolution rule is nothing else than atomic cut.]

Definition 2.15 (resolution deduction): A deduction tree having clauses
as leaves and resolution, contraction and weakening as rules is called a resolution
deduction. If, instead of resolution, we have p-resolution as (the only binary) rule
then we call the deduction a p-resolution deduction.]

Remark: A p-resolution deduction γ is an LK-deduction with atomic sequents
and structural rules only, i.e., the only rules in γ are cut, contraction and weak-
ening.]

Let Γ be a multiset of atoms; then set(Γ) denotes the set of atoms occurring in
Γ.

Definition 2.16 (subsumption): Let C: Γ ` ∆ and D: Π ` Λ be clauses.
Then C subsumes D (C ≤ss D) if there exists a substitution θ s.t.

set(Γ)θ ⊆ set(Π) and

set(∆)θ ⊆ set(Λ).]

We extend the relation ≤ss to sets of clauses C, D in the following way: C ≤ss D
if for all D ∈ D there exists a C ∈ C s.t. C ≤ss D.]

The subsumption relation can also be extended to resolution deductions.

Definition 2.17: Let γ and δ be resolution deductions. We define γ ≤ss δ by
induction on the number of nodes in δ:

If δ consists of a single node labelled with a clause D then γ ≤ss δ if γ
consists of a single node labelled with C and C ≤ss D.

Let δ be
(δ1)
D1

(δ2)
D2

D
R

and γ1 be a deduction of C1 with γ1 ≤ss δ1, γ2 be a deduction of C2 with
γ2 ≤ss δ2. Then we distinguish the following cases:

C1 ≤ss D: then γ1 ≤ss δ.
C2 ≤ss D: then γ2 ≤ss δ.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 8

Otherwise let C be resolvent of C1 and C2 and γ =

(γ1)
C1

(γ2)
C2

C
R

Then γ ≤ss δ.]

Proposition 2.1: Let C,D be sets of clauses with C ≤ss D and let δ be a
resolution deduction from D. Then there exists a resolution deduction γ from C
s.t. γ ≤ss δ.

Proof: By Lemma 4.2.1 in (8) and by Definition 2.17. 3

3. Cut-Reduction Rules

Traditional cut-elimination methods, like those of Gentzen (6) and Tait (14), can
be formalized as a reduction method consisting of rank- and grade reductions
on LK-deductions. The methods of Gentzen and Tait essentially differ in the
selection of a sub-derivation to be reduced. Both methods can be formalized
as refinements of a proof rewriting system based on a set of reduction rules R
defined in the Appendix. The set R is extracted from Gentzen’s proof of cut-
elimination. A refinement of R can be defined simply as a sub-relation of R.
Mathematically R is a set of pairs of LK-derivations.
As in Gentzen’s proof we assume that all cuts in a derivation are actually mixes.
This assumption does not affect the generality of our results. Indeed there is a
simple (and linear) transformation of cuts into mixes (a cut can be simulated by a
mix and at most two weakenings), which can be applied prior to cut-elimination.

Definition 3.1: Let > be a binary relation on LK-derivations. We say that
> is based on R if > ⊆ R. For (ψ, χ) ∈ R we write ψ >R χ and ψ > χ for
(ψ, χ) ∈ >.]

Definition 3.2 (reduction): Let ψ, χ be LK-derivations s.t. ψ >R χ for the
set of Rules R defined in the Appendix. Let ϕ be an LK-derivation with ϕ.ν = ψ
for a node ν in ϕ. Then we define ϕ >R ϕ[χ]ν (i.e. >R is closed under contexts).
]

The reduction relation defined by Gentzen’s proof is a a subrelation of R. Indeed
only mix-derivations which do not contain other non-atomic mixes may be re-
duced. Note that Gentzen’s and Tait’s methods are modified, as only non-atomic
mixes are eliminated.

Definition 3.3 (Gentzen reduction): We define ψ >G χ if ψ >R χ and
ψ is a mix-derivation with a single non-atomic mix only – which is the last
inference. >G is extended like >R: ϕ >G ϕ

′ if ϕ′ = ϕ[χ]ν and ϕ.ν >G χ.]

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 9

Obviously >G is based on R. In case of Tait reduction only sub-derivations with
formulas of maximal complexity may be reduced.

Definition 3.4 (Tait reduction): We define ϕ >T ϕ
′ if the following con-

ditions are fulfilled:

(1) There exists a node ν in ϕ s.t. ϕ.ν is a mix-derivation with a maximal mix
formula (i.e. if the mix formula of the last mix in ϕ.ν is A then comp(B) ≤
comp(A) for all other mix formulas B in ϕ).

(2) ϕ′ = ϕ[χ]ν for an LK-derivation χ with ϕ.ν >R χ.]

Like >G also >T is based on R. The end products of cut-reduction are LK-
derivations with atomic mixes only. These derivations are our normal forms.

Definition 3.5 (atomic-cut normal form): Let > be a cut-reduction rela-
tion based on R. Then an LK-deduction ψ is in atomic-cut normal form (ACNF)
w.r.t. > if there exists no χ s.t. ψ > χ. Let >∗ be the reflexive and transitive
closure of >. We say that ψ is an ACNF of ϕ if ψ is in ACNF and ϕ >∗ ψ. Any
method which transforms LK-proofs into ACNFs is called an AC-normalization.
]

It is easy to verify that for >R, >G and >T all normal forms are LK-proofs
without non-atomic cuts.

Remark: Let ψ be an LK-derivation of a sequent S from a set of sequents A and
ψ be in ACNF. If the set A is closed under cut then there exists also a cut-free
derivation of S from A.]

4. Clause Terms

In (4) we defined the concept of characteristic clause set corresponding to an
LK-proof. This set is the central tool for defining cut-elimination by resolution
(CERES). In our analysis in Section 6 we do not only need the set of clauses,
but also the way it is constructed. This leads us to the definition of clause terms
representing sets of clauses.

Definition 4.1 (clause term):

• (Finite) sets of clauses are clause terms.

• If X, Y are clause terms then X ⊕ Y is a clause term.

• If X, Y are clause terms then X ⊗ Y is a clause term.]

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 10

Definition 4.2: We define a mapping | | from clause terms to sets of clauses
in the following way:

|C| = C for sets of clauses C,
|X ⊕ Y | = |X| ∪ |Y |,
|X ⊗ Y | = |X| × |Y |,

where C × D = {C ◦D | C ∈ C, D ∈ D}.]

We define clause terms to be equivalent if the corresponding sets of clauses are
equal, i.e. X ∼ Y iff |X| = |Y |.
Clause terms are binary trees whose nodes are finite sets of clauses. There-
fore term occurrences are defined in the same way as for ordinary terms. When
speaking about occurrences in clause terms we only consider nodes in this term
tree, but not occurrences within the sets of clauses on the leaves. In contrast we
consider the internal structure of leaves in the concept of substitution:

Definition 4.3: Let θ be a substitution. We define the application of θ to clause
terms as follows:

Xθ = Cθ if X = C for sets of clauses C,
(X ⊕ Y)θ = Xθ ⊕ Y θ,
(X ⊗ Y)θ = Xθ ⊗ Y θ.]

There are four binary relations on clause terms which will play a important role
in the proof of our main result on cut-reduction.

Definition 4.4: Let X,Y be clause terms. We define

X ⊆ Y iff |X| ⊆ |Y |,
X v Y iff for all C ∈ |Y | there exists a D ∈ |X| s.t. D v C,

X ≤s Y iff there exists a substitution θ with Xθ = Y , §

X ≤ss Y iff |X| ≤ss |Y |.]

The operators ⊕ and ⊗ are compatible with the relations ⊆ and v. This is
formally proved in the following lemmas.

Lemma 4.1: Let X, Y, Z be clause terms and X ⊆ Y . Then

(1) X ⊕ Z ⊆ Y ⊕ Z,

(2) Z ⊕X ⊆ Z ⊕ Y ,

(3) X ⊗ Z ⊆ Y ⊗ Z,

(4) Z ⊗X ⊆ Z ⊗ Y .

§Note that ≤s is defined directly on the syntax of clause terms, and not via the semantics.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 11

Proof: (2) follows from (1) because ⊕ is commutative, i.e. X ⊕Z ∼ Z ⊕X. The
cases (3) and (4) are analogous. Thus we only prove (1) and (3).

(1) |X ⊕ Z| = |X| ∪ |Z| ⊆ |Y | ∪ |Z| = |Y ⊕ Z|.
(3) Let C ∈ |X⊗Z|. Then there exist clauses D,E with D ∈ |X|, E ∈ |Z| and

C = D ◦ E. Clearly D is also in |Y | and thus C ∈ |Y ⊗ Z|. 3

Lemma 4.2: Let X,Y, Z be clause terms and X v Y . Then

(1) X ⊕ Z v Y ⊕ Z,

(2) Z ⊕X v Z ⊕ Y ,

(3) X ⊗ Z v Y ⊗ Z,

(4) Z ⊗X v Z ⊗ Y ,

Proof: (1) and (2) are trivial, (3) and (4) are analogous. Thus we only prove (4):
Let C ∈ |Z ⊗ Y |. Then C ∈ |Z| × |Y | and there exist D ∈ |Z| and E ∈ |Y |
s.t. C = D ◦ E. By definition of v there exists an E ′ ∈ |X| with E ′ v E. This
implies D ◦ E ′ ∈ |Z ⊗X| and D ◦ E ′ v D ◦ E. So Z ⊗X v Z ⊗ Y . 3

We are now able to show that replacing subterms in a clause term preserves the
relations ⊆ and v.

Lemma 4.3: Let λ be an occurrence in a clause term X and Y � X.λ for
�∈ {⊆,v}. Then X[Y]λ � X.

Proof: We proceed by induction on the term-complexity (i.e. number of nodes)
of X.
If X is a set of clauses then λ is the top position and X.λ = X. Consequently
X[Y]λ = Y and thus X[Y]λ � X.
Let X be X1�X2 for � ∈ {⊕,⊗}. If λ is the top position in X then the lemma
trivially holds. Thus we may assume that λ is a position in X1 or in X2. We
consider the case that λ is in X1 (the other one is completely symmetric): then
there exists a position µ in X1 s.t. X.λ = X1.µ. By induction hypothesis we get
X1[Y]µ � X1. By the lemmas 4.1 and 4.2 we obtain

X1[Y]µ �X2 � X1 �X2.

But
X1[Y]µ �X2 = (X1 �X2)[Y]λ = X[Y]λ

and therefore X[Y]λ � X. 3

We will see in Section 6 that the relations ⊆,v and ≤s are preserved under
cut-reduction steps. Together they define a relation �:

Definition 4.5: Let X and Y two clause terms. We define X � Y if (at least)
one of the following properties is fulfilled:

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 12

(a) Y ⊆ X or

(b) X v Y or

(b) X ≤s Y .]

Remark: In general Y ≤s Z does not imply X[Y]λ ≤s X[Z]λ, i.e. ≤s is not
compatible with ⊕ and ⊗. Consider, for example, the terms

Y = {` P (x)}, Z = {` P (f(x))} and
X = {` Q(x)} ⊗ {` R(x)}, X.λ = {` Q(x)}.

Clearly Y ≤s Z. By replacement and evaluation we obtain

|X[Y]λ| = {` P (x), R(x)}, |X[Z]λ| = {` P (f(x)), R(x)}.

Obviously X[Y]λ 6≤s X[Z]λ.]

The transitive closure �∗ of � can be considered as a weak form of subsumption:

Proposition 4.1: Let X and Y be clause terms s.t. X �∗ Y . Then X ≤ss Y .

Proof: As the relation ≤ss is reflexive and transitive it suffices to show that � is
a subrelation of ≤ss.

a. Y ⊆ X: X ≤ss Y is trivial.

b. X v Y : For all C ∈ |Y | there exists a D ∈ |X| with D v C. But then
also D ≤ss C. The definition of the subsumption relation for sets yields
X ≤ss Y .

c. X ≤s Y : X ≤ss Y is trivial. 3

5. The Method CERES

In (4) we defined a method of cut-elimination which is based on specific clause
terms representing the derivation of the cut formulas in LK-proofs. Roughly
speaking we compute a clause term from an LK-proof ϕ of S which corresponds
to an unsatisfiable set of formulas, compute a resolution refutation of this set,
and finally construct an ACNF of ϕ. The method in (4) is very general and is
capable also of eliminating so-called pseudo-cuts. In this paper we are interested
in ordinary cuts and mixes only and thus give a slightly simplified version of the
method defined in (4). In particular we avoid the transformation of LK-proofs
into cut-free proofs with sequent extensions and define the clause term directly.
We restrict AC-normalization to derivations with skolemized end-sequents. It
is always possible to construct derivations of skolemized end-sequents from the
original ones without increase of length (see (1)). After AC-normalization the
derivation can be transformed into a derivation of the original (unskolemized)
sequent.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 13

Definition 5.1: Let SK be the set of all LK-derivations with skolemized end-
sequents. SK∅ is the set of all cut-free proofs in SK and, for all i ≥ 0, SKi is the
subset of SK containing all derivations with cut-formulas of formula complexity
≤ i.]

Our goal is to transform a derivation in SK into a derivation in SK0. The first
step in the corresponding procedure consists in the definition of a clause term
corresponding to the sub-derivations of an LK-derivation ending in a cut. In
particular we focus on derivations of the cut formulas themselves, i.e. on the
derivation of formulas having no successors in the end-sequent.

Definition 5.2 (characteristic term): Let ϕ be an LK-derivation of S
and let Ω be the set of all occurrences of cut formulas in ϕ. We define the char-
acteristic (clause) term Θ(ϕ) inductively:

Let ν be the occurrence of an initial sequent S ′ in ϕ. Let S ′′ be the subsequent
of S ′ consisting of all atoms which are ancestors of an occurrence in Ω, i.e.
S ′′ = S(ν,Ω). Then Θ(ϕ)/ν = {S ′′}.
Let us assume that the clause terms Θ(ϕ)/ν are already constructed for all
sequent–occurrences ν in ϕ with depth(ν) ≤ k. Now let ν be an occurrence with
depth(ν) = k + 1. We distinguish the following cases:

(a) ν is the consequent of µ, i.e. a unary rule applied to µ gives ν. Here we
simply define Θ(ϕ)/ν = Θ(ϕ)/µ.

(b) ν is the consequent of µ1 and µ2, i.e. a binary rule X applied to µ1 and µ2

gives ν.

(b1) The auxiliary formulas of X are ancestors of Ω, i.e. the formulas
occur in S(µ1,Ω), S(µ2,Ω). Then Θ(ϕ)/ν = Θ(ϕ)/µ1 ⊕Θ(ϕ)/µ2.

(b2) The auxiliary formulas of X are not ancestors of Ω. In this case we
define Θ(ϕ)/ν = Θ(ϕ)/µ1 ⊗Θ(ϕ)/µ2.

Note that, in a binary inference, either both auxiliary formulas are ancestors of
Ω or none of them.
Finally the characteristic term Θ(ϕ) is defined as Θ(ϕ)/ν where ν is the occur-
rence of the end-sequent.]

Remark: If ϕ is a cut-free proof then there are no occurrences of cut formulas in
ϕ and |Θ(ϕ)| = {`}.]

Definition 5.3 (characteristic clause set): Let ϕ be an LK-derivation
and Θ(ϕ) be the characteristic term of ϕ. Then CL(ϕ), for CL(ϕ) = |Θ(ϕ)|, is
called the characteristic clause set of ϕ.]

Example 5.1: Let ϕ be the derivation (for u, v free variables, a a constant
symbol)

ϕ1 ϕ2

(∀x)(P (x)→ Q(x)) ` (∃y)Q(y)
cut

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 14

where ϕ1 is the LK-derivation:

P (u)? ` Q(u)?, P (u)

¬P (u), P (u)? ` Q(u)?
¬ : r

Q(u), P (u)? ` Q(u)?

P (u)?,¬P (u) ∨Q(u) ` Q(u)?
∨ : l

¬P (u) ∨Q(u) ` ¬P (u)?, Q(u)?
¬ : r

¬P (u) ∨Q(u) ` (¬P (u) ∨Q(u))?, Q(u)?
∨ : r

¬P (u) ∨Q(u) ` (¬P (u) ∨Q(u))?, (¬P (u) ∨Q(u))?
∨ : r

¬P (u) ∨Q(u) ` (¬P (u) ∨Q(u))?
c : r

¬P (u) ∨Q(u) ` (∃y)(¬P (u) ∨Q(y))?
∃ : r

(∀x)(¬P (x) ∨Q(x)) ` (∃y)(¬P (u) ∨Q(y))?
∀ : l

(∀x)(¬P (x) ∨Q(x)) ` (∀x)(∃y)(¬P (x) ∨Q(y))?
∀ : r

and ϕ2 is:

` Q(v), P (a)?

¬P (a)? ` Q(v)
¬ : l

Q(v)? ` Q(v)

(¬P (a) ∨Q(v))? ` Q(v)
∨ : l

(¬P (a) ∨Q(v))? ` (∃y)Q(y)
∃ : r

(∃y)(¬P (a) ∨Q(y))? ` (∃y)Q(y)
∃ : l

(∀x)(∃y)(¬P (x) ∨Q(y))? ` (∃y)Q(y)
∀ : l

Let Ω be the set of the two occurrences of the cut formula in ϕ. The ancestors
of Ω are marked by ?. We compute the characteristic clause term Θ(ϕ):

From the ?-marks in ϕ we first get the clause terms corresponding to the initial
sequents:

X1 = {P (u) ` Q(u)}, X2 = {P (u) ` Q(u)}, X3 = {` P (a)}, X4 = {Q(v) `}.

The leftmost-uppermost inference in ϕ1 is unary and thus the clause term X1

corresponding to this position does not change. The first binary inference in ϕ1

(it is ∨ : l) takes place on non-ancestors of Ω – the auxiliary formulas of the
inference are not marked by ?. Consequently we obtain the term

Y1 = {P (u) ` Q(u)} ⊗ {P (u) ` Q(u)}.

The following inferences in ϕ1 are all unary and so we obtain

Θ(ϕ)/ν1 = Y1

for ν1 being the position of the end sequent of ϕ1 in ϕ.
Again the uppermost-leftmost inference in ϕ2 is unary and thus X3 does not
change. The first binary inference in ϕ2 takes place on ancestors of Ω (the aux-
iliary formulas are ?-ed) and we have to apply the ⊕ to X3, X4. So we get

Y2 = {` P (a)} ⊕ {Q(v) `}.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 15

Like in ϕ1 all following inferences in ϕ2 are unary leaving the clause term un-
changed. Let ν2 be the occurrence of the end-sequent of ϕ2 in ϕ. Then the corre-
sponding clause term is

Θ(ϕ)/ν2 = Y2.

The last inference (cut) in ϕ takes place on ancestors of Ω and we have to apply
⊕ again. This eventually yields the characteristic term

Θ(ϕ) = Y1 ⊕ Y2 =

({P (u) ` Q(u)} ⊗ {P (u) ` Q(u)})⊕ ({` P (a)} ⊕ {Q(v) `}).

For the characteristic clause set we obtain

CL(ϕ) = |Θ(ϕ)| = {P (u), P (u) ` Q(u), Q(u); ` P (a); Q(v) `}.]

It is easy to verify that the set of characteristic clauses CL(ϕ) constructed in the
example above is unsatisfiable. This is not merely a coincidence, but a general
principle expressed in the next proposition.

Proposition 5.1: Let ϕ be an LK-derivation. Then CL(ϕ) is unsatisfiable.

Proof: In (4). 3

Let ϕ be a deduction of S: Γ ` ∆ and CL(ϕ) be the characteristic clause set
of ϕ. Then CL(ϕ) is unsatisfiable and, by the completeness of resolution (see
(11), (8)), there exists a resolution refutation γ of CL(ϕ). By applying a ground
projection to γ we obtain a ground resolution refutation γ′ of CL(ϕ); by our
definition of resolution γ′ is also an AC-deduction of ` from (ground instances
of) CL(ϕ). This deduction γ′ may serve as a skeleton of an AC-deduction ψ of
Γ ` ∆ itself. The construction of ψ from γ′ is based on projections replacing ϕ by
cut-free deductions ϕ(C) of P̄ ,Γ ` ∆, Q̄ for clauses C : P̄ ` Q̄ in CL(ψ, α). We
merely give an informal description of the projections, for details we refer to (4).
Roughly speaking, the projections of the proof ϕ are obtained by skipping all
the inferences leading to a cut. As a “residue” we obtain a characteristic clause
in the end sequent. Thus a projection is a cut-free derivation of the end sequent
S + some atomic formulas in S. For the application of projections it is vital
to have a skolemized end sequent, otherwise eigenvariable conditions could be
violated.
Due to “automatic” contractions of side formulas in our version of LK the clauses
in CL(ϕ) and those appearing in the projections may differ in the multiplicity
of their atoms. This effect it inessential in the construction of the resolution
proofs and the corresponding ACNFs (indeed only the number of contracted
atom occurrences may differ).

Definition 5.4: A sequent P̄ ′ ` Q̄′ is called a contraction variant of P̄ ` Q̄ if
set(P̄ ′) = set(P̄) and set(Q̄′) = set(Q̄) (i.e. the sequents would be equal if defined
via sets instead of multisets).]

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 16

Lemma 5.1: Let ϕ be a deduction in SK of a sequent S : Γ ` ∆. Let C: P̄ ` Q̄
be a clause in CL(ϕ). Then there exists a deduction ϕ(C) of P̄ ′,Γ ` ∆, Q̄′ s.t.
P̄ ′ ` Q̄′ is a contraction variant of P̄ ` Q̄, ϕ(C) ∈ SK∅ and l(ϕ(C)) ≤ l(ϕ).

Proof: In (4). 3

The construction of ϕ(C) is illustrated below.

Example 5.2: Let ϕ be the proof of the sequent

S : (∀x)(P (x)→ Q(x)) ` (∃y)Q(y)

as defined in Example 5.1. We have shown that

CL(ϕ) = {P (u), P (u) ` Q(u), Q(u); ` P (a); Q(v) `}.

We now define ϕ(C1), the “projection” of ϕ to C1:P (u), P (u) ` Q(u), Q(u):
The problem can be reduced to a projection in ϕ1 because the last inference in ϕ
is a cut and

Θ(ϕ)/ν1 = {P (u), P (u) ` Q(u), Q(u)}.

By skipping all inferences in ϕ1 leading to the cut formulas we obtain the deduc-
tion

P (u) ` P (u), Q(u)

¬P (u), P (u) ` Q(u)
¬ : l

Q(u), P (u) ` Q(u)

P (u),¬P (u) ∨Q(u) ` Q(u)
∨ : l

P (u), (∀x)(¬P (x) ∨Q(x)) ` Q(u)
∀ : l

In order to obtain the end sequent we only need an additional weakening and
ϕ(C1) =

P (u) ` P (u), Q(u)

¬P (u), P (u) ` Q(u)
¬ : l

Q(u), P (u) ` Q(u)

P (u),¬P (u) ∨Q(u) ` Q(u)
∨ : l

P (u), (∀x)(¬P (x) ∨Q(x)) ` Q(u)
∀ : l

P (u), (∀x)(¬P (x) ∨Q(x)) ` (∃y)Q(y), Q(u)
w : r

For C2 = ` P (a) we obtain the projection ϕ(C2):

` P (a), Q(v)

` P (a), (∃y)Q(y)
∃ : r

(∀x)(¬P (x) ∨Q(x)) ` (∃y)Q(y), P (a)
w : l

Similarly we obtain ϕ(C3):

Q(v) ` Q(v)

Q(v) ` (∃y)Q(y)
∃ : r

(∀x)(¬P (x) ∨Q(x)), Q(v) ` (∃y)Q(y)
w : l

]

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 17

We have seen that, in the projections, only inferences on nonancestors of cuts
are performed. If the auxiliary formulas of a binary rule are ancestors of cuts
we have to apply weakening in order to obtain the required formulas from the
second premise.
Let ϕ be a proof of S s.t. ϕ ∈ SK and let γ be a resolution refutation of the
(unsatisfiable) set of clauses CL(ϕ). Then γ can be transformed into a deduction
ϕ(γ) of S s.t. ϕ(γ) ∈ SK0. ϕ(γ) is a proof with atomic cuts, thus an AC-normal
form of ϕ. ϕ(γ) is constructed from γ simply by replacing the resolution steps
by the corresponding proof projections. The construction of ϕ(γ) is the essential
part of the method CERES (the final elimination of atomic cuts is inessential).
The resolution refutation γ can be considered as the characteristic part of ϕ(γ)
representing the essential result of AC-normalization. Below we give an example
of a construction of ϕ(γ), for details we refer to (4) again.

Example 5.3: Let ϕ be the proof of

S: (∀x)(P (x)→ Q(x)) ` (∃y)Q(y)

as defined in Example 5.1 and in Example 5.2. Then

CL(ϕ) = {C1 : P (u), P (u) ` Q(u), Q(u); C2 : ` P (a); C3 : Q(v) `}.

First we define a resolution refutation δ of CL(ϕ):

` P (a) P (u), P (u) ` Q(u), Q(u)

` Q(a), Q(a)
R

Q(v) `
` R

and a corresponding ground refutation γ:

` P (a) P (a), P (a) ` Q(a), Q(a)

` Q(a), Q(a)
R

Q(a) `
` R

The ground substitution defining the ground projection is

σ : {u← a, v ← a}.
Let χ1 = ϕ(C1)σ, χ2 = ϕ(C2)σ and χ3 = ϕ(C3)σ. Moreover let us write B for
(∀x)(P (x)→ Q(x)) and C for (∃y)(P (a)→ Q(y)).
Then ϕ(γ) is of the form

(χ2)
B ` C,P (a)

(χ1)
P (a), B ` C,Q(a)

B,B ` C,C,Q(a)
cut

(χ3)
Q(a), B ` C

B,B,B ` C,C,C cut

B ` C,C,C c : l

B ` C c : r

]

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 18

If ψ a deduction in AC-normal form then there exists a “canonic” resolution
refutation RES(ψ) of the set of clauses CL(ψ). RES(ψ) is “the” resolution proof
corresponding to ψ. Indeed, as ψ is a deduction with atomic cuts only, the part
of ψ ending in the cut formulas is nothing else than a resolution refutation. For
the construction of RES(ψ) we need some technical definitions:

Definition 5.5: Let γ be a p-resolution deduction of a clause C from a set of
clauses C and let D be a clause. We define a p-resolution deduction γ(D) of
D ◦ C from {D} × C in the following way:

(1) construct a deduction γ′ by replacing all initial clauses S in γ by D◦S, and
leave the inference nodes unchanged.

(2) Apply contractions and weakenings to the end clause of γ′ (if necessary) in
order to obtain a deduction γ(D) of D ◦ C from {D} × C.]

Remark: Contractions may become necessary as the occurrence of D in clauses
may be multiplied by resolutions in γ′. Weakenings are required if atoms in D
are cut out by resolutions in γ′.]

Definition 5.6: Let γ be a p-resolution deduction of C from C and let δ be a
p-resolution deduction of D from D. We define a p-resolution deduction γ� δ of
C ◦D from C × D in the following way:

(1) construct a deduction η by replacing all initial clauses S in γ by the deduc-
tions δ(S) of D ◦ S, and leave the inference nodes in γ unchanged.

(2) Apply contractions and weakenings to the end clause of η (if necessary) in
order to obtain the deduction γ � δ of D ◦ C.]

Remark: γ � δ is indeed a p-deduction from C × D as the initial clauses are of
the form S ◦ S ′ for S ∈ C and S ′ ∈ D.]

If ψ is in ACNF then there exists something like a canonic resolution refutation
of CL(ψ). The definition of this refutation follows the steps of the definition of
the characteristic clause term.

Definition 5.7: Let ψ be an LK-derivation in ACNF, Ω be the set of occur-
rences of the (atomic) cut formulas in ψ and C = CL(ψ). For comfort we write
C/ν for the set of clauses |Θ(ψ)/ν| defined by the characteristic terms as in
Definition 5.2. Clearly C = C/ν0 for the root node ν0 in ψ.
We proceed inductively and define a p-resolution deduction γν for every deduction
node ν in ψ s.t. γν is a deduction of S(ν,Ω) from C/ν.
If ν is a leaf in ψ then we define γν as S(ν,Ω). By definition of C we have
Cν = S(ν,Ω). Clearly γν is p-resolution deduction of S(ν,Ω) from Cν.

(1) Let γµ be already defined for a node in µ in ψ s.t. γµ is a p-resolution
deduction of S(µ,Ω) from C/µ. Moreover let ξ be a unary inference in ψ
with premiss µ and conclusion ν. We distinguish two cases:

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 19

(1a) The auxiliary formulas of ξ are in S(µ,Ω).
Then ξ is a weakening or a contraction (note that the cuts are atomic!)
and we define γν =

γµ
S(ν,Ω)

ξ
.

(b) The auxiliary formulas of ξ are not in S(µ,Ω).
Then we define γν = γµ.

In both cases γν is a p-resolution deduction of S(ν,Ω) from Cµ. But by
definition of the characteristic clause term we have Cν = Cµ.

(2) Assume that γµi
are p-resolution deductions of S(µi,Ω) from Cµi

for i = 1, 2.
Let ν be an inference node in ψ with premisses µ1, µ2 and the corresponding
binary rule ξ. Again we distinguish two cases:

(2a) The auxiliary formulas of ξ are in S(µ1,Ω) and S(µ2,Ω).
Then ξ must be a cut (there are no other binary inferences leading to
Ω) and we define γν =

γµ1 γµ2

S(ν,Ω)
cut

By definition γν is a p-resolution deduction of S(ν,Ω) from Cµ1 ∪ Cµ2.
By definition of the characteristic term we have Cν = Cµ1 ∪ Cµ2 and,
therefore, γν is a p-resolution deduction of S(ν,Ω) from Cν.

(2b) The auxiliary formulas of ξ are not in S(µ1,Ω) and S(µ2,Ω).
In this case we define

γν = γµ1 � γµ2 .

By definition of � the deduction γν is a p-resolution deduction of
S(µ1,Ω) ◦ S(µ2,Ω) from Cµ1 × Cµ2. But S(ν,Ω) = S(µ1,Ω) ◦ S(µ2,Ω)
and, by definition of the characteristic term, Cν = Cµ1 × Cµ2.

Finally we define RES(ψ) = γν0 where ν0 is the root node in ψ.]

Remark: The root node does not contain any ancestors of cut occurrences Ω, i.e.
S(ν0,Ω) = ` and γν0 as defined above is also a refutation of CL(ψ).]

For an AC-deduction ψ the number of nodes in RES(ψ) may be exponential
in the number of nodes of ψ. But note that, in general, resolution refutations
of CL(ψ) are of nonelementary length (see (4)). Thus the proofs RES(ψ) for
AC-deductions ψ can be considered as “small”.

Proposition 5.2: Let ψ be an LK-derivation in ACNF. Then

l(RES(ψ)) ≤ l(ψ) ∗ 22∗l(ψ).

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 20

Proof: We show first that

l(RES(ψ)) ≤ 2l(ψ) ∗ |CL(ψ)|.

To this aim we proceed by induction on the definition of the γν in Definition 5.7,
i.e. we prove that for all nodes ν in ψ

(∗) l(γν) ≤ 2l(ψ.ν) ∗ |Cν |.

For leaves ν we have l(γν) = 1 and (∗) is trivial.
So let us assume that (∗) holds for the node µ and ν is the conclusion of a unary
inference with premiss µ. Then by definition of γν :

l(γν) = l(γµ) + 1,

Cν = Cµ,
l(ψ.ν) = l(ψ.µ) + 1 and by assumption on ν

l(γν) ≤ 2l(ψ.µ) ∗ |Cµ|+ 1 ≤ 2l(ψ.ν) ∗ |Cν |.

Assume that (∗) holds for nodes µ1, µ2 and ν is the conclusion of a binary
inference with premisses µ1, µ2.
If the inference takes place on ancestors of Ω then

l(γν) = l(γµ1) + l(γµ2) + 1,

Cν = Cµ1 ∪ Cµ2 ,

l(ψ.ν) = l(ψ.µ1) + l(ψ.µ2) + 1.

By the assumptions on µ1, µ2 we have

l(γµ1) ≤ 2l(ψ.µ1) ∗ |Cµ1|,
l(γµ2) ≤ 2l(ψ.µ2) ∗ |Cµ2|

and therefore

l(γν) = l(γµ1) + l(γµ2) + 1

≤ 2l(ψ.µ1) ∗ |Cµ1|+ 2l(ψ.µ2) ∗ |Cµ2 |+ 1

≤ 2l(ψ.µ1)+l(ψ.µ2) ∗ (|Cµ1|+ |Cµ2|) + 1

≤ 2l(ψ.ν) ∗ |Cν |.

If the inference takes place on non-ancestors of Ω then

l(γν) ≤ 2 ∗ l(γµ1) ∗ l(γµ2),

Cν = Cµ1 × Cµ2 ,

l(ψ.ν) = l(ψ.µ1) + l(ψ.µ2) + 1.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 21

and, by the assumptions on µ1, µ2,

l(γν) ≤ 2 ∗ l(γµ1) ∗ l(γµ2)

≤ 2 ∗ 2l(ψ.µ1) ∗ |Cµ1| ∗ 2l(ψ.µ2) ∗ |Cµ2 |
= 2l(ψ.µ1)+l(ψ.µ2)+1 ∗ |Cµ1| ∗ |Cµ2|
= 2l(ψ.ν) ∗ |Cν |.

Thus by induction and choosing the root node for ν we obtain

(I) l(RES(ψ)) ≤ 2l(ψ) ∗ |CL(ψ)|.

In (4) we have shown that

(II) |CL(ψ)| ≤ l(ψ) ∗ 2l(ψ).

Putting (I) and (II) together we eventually obtain

(I) l(RES(ψ)) ≤ l(ψ) ∗ 22∗l(ψ). 3

6. Characteristic Terms and Cut-Reduction

In this section we are proving our main result. The key lemma below shows that a
cut-reduction step on a derivation (based on the set R defined in the Appendix)
corresponds to a reduction step (w.r.t. �) on the corresponding clause term. As
the set R is a reduction set for mixes, we assume throughout this section that
all cuts in the derivations are also mixes.

Lemma 6.1: Let ϕ, ϕ′ be LK-derivations with ϕ >R ϕ′ for a cut reduction re-
lation >R based on R. Then Θ(ϕ) � Θ(ϕ′).

Proof: We construct a proof by cases on the definition of >R. To this aim we
consider sub-derivations ψ of ϕ of the form

(ρ,X)
Γ ` ∆

(σ, Y)
Π ` Λ

Γ,Π∗ ` ∆∗,Λ
mix (A)

where X = Θ(ϕ)/λ for the occurrence λ corresponding to the deduction ρ and
Y = Θ(ϕ)/µ for the occurrence µ corresponding to σ. By ν we denote the occur-
rence of ψ in ϕ. That means we do not only indicate the sub-derivations ending
in the mix, but also the corresponding clause terms. Note that by definition of
the characteristic term we have Θ(ϕ)/ν = X ⊕ Y .
If ψ >R χ then, by definition of the reduction relation >R, we get ϕ = ϕ[ψ]ν >R
ϕ[χ]ν . For the remaining part of the proof we denote ϕ[χ]ν by ϕ′. Our aim is to
prove that Θ(ϕ) � Θ(ϕ′).

(I) rank(ψ) = 2:

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 22

(Ia) ψ is of the form
(ρ′, X)
Γ ` ∆

Γ ` ∆, A
w : r (σ, Y)

Π ` Λ

Γ,Π∗ ` ∆,Λ
mix (A)

By definition of R we have ψ >R χ for χ =

(ρ′, X)
Γ ` ∆

Γ,Π∗ ` ∆,Λ
w : l, r

Therefore also ϕ[ψ]ν >R ϕ[χ]ν , i.e. ϕ >R ϕ′. But Θ(ϕ′)/ν = X and
Θ(ϕ)/ν = X ⊕ Y . Clearly X ⊕ Y �X and, by Lemma 4.3, Θ(ϕ) � Θ(ϕ′).

(Ib) A = ¬B and ψ is of the form

(ρ′, X)
B,Γ ` ∆

Γ ` ∆,¬B ¬ : r

(σ′, Y)
Π ` Λ, B

¬B,Π ` Λ
¬ : l

Γ,Π ` ∆,Λ
mix (A)

Then ψ >R χ for χ =

(σ′, Y)
Π ` Λ, B

(ρ′, X)
B,Γ ` ∆

Γ∗,Π ` ∆,Λ∗ mix (B)

Γ,Π ` ∆,Λ
w : l, r

Here we have

Θ(ϕ)/ν = X ⊕ Y,
Θ(ϕ′)/ν = Y ⊕X.

Clearly X⊕Y �Y ⊕X (we even have X⊕Y ∼ Y ⊕X) and by Lemma 4.3
we obtain Θ(ϕ) � Θ(ϕ′).

(Ic) A = B ∧ C and ψ is of the form

(ρ1, X1)
Γ ` ∆, B

(ρ2, X2)
Γ ` ∆, C

Γ ` ∆, B ∧ C ∧ : r

(σ′, Y)
B,Π ` Λ

B ∧ C,Π ` Λ
∧ : l

Γ,Π ` ∆,Λ
mix (A)

Then ψ >R χ for χ =

(ρ1, X1)
Γ ` ∆, B

(σ′, Y)
B,Π ` Λ

Γ,Π∗ ` ∆∗,Λ
mix (B)

Γ,Π ` ∆,Λ
w : l, r

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 23

In this case we have

Θ(ϕ)/ν = (X1 ⊕X2)⊕ Y,
Θ(ϕ′)/ν = X1 ⊕ Y.

Clearly X1 ⊕ Y ⊆ (X1 ⊕X2) ⊕ Y and thus (X1 ⊕X2) ⊕ Y �X1 ⊕ Y . By
application of Lemma 4.3 we obtain Θ(ϕ) � Θ(ϕ′).

The case where B ∧ C is inferred from C is completely symmetric.

(Ic) A = B ∨ C: symmetric to (Ib).

(Id) A = (∀x)B. Then ψ is of the form

(ρ′(x/y), X(x/y))
Γ ` ∆, B(x/y)

Γ ` ∆, (∀x)B(x)
∀ : r

(σ′, Y)
B(x/t),Π ` Λ

(∀x)B(x),Π ` Λ
∀ : l

Γ,Π ` ∆,Λ
mix (A)

ψ >R χ for

(ρ′(x/t), X(x/t))
Γ ` ∆, B(t)

(σ′, Y)
B(x/t),Π ` Λ

Γ,Π∗ ` ∆∗,Λ
mix (B(x/t)

Γ,Π ` ∆,Λ
w : l, r

By definition of the characteristic terms we have

Θ(ϕ)/ν = X(x/y)⊕ Y,
Θ(ϕ′)/ν = X(x/t)⊕ Y.

By assumption ϕ is regular and the variable y only occurs in the sub-
derivation ρ. Therefore

Θ(ϕ′)/ν = (X(x/y)⊕ Y){y ← t} and even

Θ(ϕ′) = Θ(ϕ){y ← t}.

But this means Θ(ϕ) ≤s Θ(ϕ′) and therefore Θ(ϕ) � Θ(ϕ′).

(Ie) A = (∃x)B: symmetric to (Id).

(II) rank(ψ) > 2.

We assume that rankr(ψ) > 1 (the case rankl(ψ) > 1 is symmetric).

(IIa) A occurs in Γ. Then ψ >R χ for χ =

(σ, Y)
Π ` Λ

Γ,Π∗ ` ∆∗,Λ
w : l, r; c : l

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 24

In this case

Θ(ϕ)/ν = X ⊕ Y,
Θ(ϕ′)/ν = Y.

Clearly X ⊕ Y � Y and by Lemma 4.3 Θ(ϕ) � Θ(ϕ′).

(IIb) A does not occur in Γ.

(IIb.1) ξ is one of the inferences w : l or c : l and ψ is of the form:

(X, ρ)
Γ ` ∆

(Y, σ′)
Σ ` Λ
Π ` Λ

ξ

Γ,Π∗ ` ∆∗,Λ
mix (A)

Then ψ >R χ for χ =

(X, ρ)
Γ ` ∆

(Y, σ′)
Σ ` Λ

Γ,Σ∗ ` ∆∗,Λ
mix (A)

Γ,Π∗ ` ∆∗,Λ
(ξ)

It is obvious that Θ(ϕ) = Θ(ϕ′) and so Θ(ϕ) � Θ(ϕ′).

(IIb.2) ξ is a unary inference, ξ 6∈ {w : l, c : l} and ψ is of the form

(X, ρ)
Γ ` ∆

(Y, σ′)
B,Π ` Λ1

C,Π ` Λ2
ξ

Γ, C∗,Π∗ ` ∆∗,Λ2
mix (A)

where C∗ = > for C = A and C∗ = C for C 6= A. First we define a
deduction τ :

(X, ρ)
Γ ` ∆

(Y, σ′)
B,Π ` Λ1

Γ, B∗,Π∗ ` ∆∗,Λ1
mix (A)

Γ, B,Π∗ ` ∆∗,Λ1
(w : l)

Γ, C,Π∗ ` ∆∗,Λ2
ξ

It is easy to see that

Θ(ϕ[τ]ν)/ν = X ⊕ Y and

Θ(ϕ) = Θ(ϕ[τ]ν).

Indeed changing the order of unary inferences does not affect characteristic
terms. If A 6= C then, by definition of >R, we define χ = τ and Θ(ϕ) =
Θ(ϕ′).

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 25

If A = C and A 6= B we have χ =

(X, ρ)
Γ ` ∆

(τ,X ⊕ Y)
Γ, A,Π∗ ` ∆∗,Λ2

Γ,Γ∗,Π∗ ` ∆∗,∆∗,Λ2
mix (A)

Γ,Π∗ ` ∆∗,Λ2
c : l, r

Now we have

Θ(ϕ)/ν = X ⊕ Y,
Θ(ϕ′)/ν = X ⊕ (X ⊕ Y).

But X⊕Y ∼ X⊕ (X⊕Y) and thus also X⊕Y �X⊕ (X⊕Y). Therefore,
using Lemma 4.3 again, we obtain Θ(ϕ) � Θ(ϕ′).

If A = B = C then Λ1 6= Λ2 and χ is defined as

(X, ρ)
Γ ` ∆

(Y, σ′)
A,Π ` Λ1

Γ,Π∗ ` ∆∗,Λ1
mix (A)

Γ,Π∗ ` ∆∗,Λ2
ξ

In this case, clearly, Θ(ϕ′) = Θ(ϕ) and thus Θ(ϕ) � Θ(ϕ′).

(IIb.3) The last inference in σ is a binary one.

(IIb.3.1) The last inference in σ is ∧ : r. Then ψ is of the form

(ρ,X)
Γ ` ∆

(σ1, Y1)
Π ` Λ, B

(σ2, Y2)
Π ` Λ, C

Π ` Λ, B ∧ C ∧ : r

Γ,Π∗ ` ∆∗,Λ, B ∧ C mix (A)

Clearly A occurs in Π and ψ reduces to the following proof χ via cross-cut:

(ρ,X)
Γ ` ∆

(σ1, Y1)
Π ` Λ, B

Γ,Π∗ ` ∆∗,Λ, B
mix (A)

(ρ,X)
Γ ` ∆

(σ2, Y2)
Π ` Λ, C

Γ,Π∗ ` ∆∗,Λ, C
mix (A)

Γ,Π∗ ` ∆∗,Λ, B ∧ C ∧ : r

Now we have to distinguish two cases:

case a: B ∧ C is ancestor of (another) mix in ϕ.

Then

Θ(ϕ)/ν = X ⊕ (Y1 ⊕ Y2),

Θ(ϕ′)/ν = (X ⊕ Y1)⊕ (X ⊕ Y2).

Clearly
X ⊕ (Y1 ⊕ Y2) ∼ (X ⊕ Y1)⊕ (X ⊕ Y2)

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 26

and therefore Θ(ϕ′) ∼ Θ(ϕ), thus Θ(ϕ) � Θ(ϕ′).

case b: B ∧ C is not an ancestor of a mix in ϕ.

Then

Θ(ϕ)/ν = X ⊕ (Y1 ⊗ Y2),

Θ(ϕ′)/ν = (X ⊕ Y1)⊗ (X ⊕ Y2).

But by using elementary properties of ∪ and × we obtain

X ⊕ (Y1 ⊗ Y2) v (X ⊕ Y1)⊗ (X ⊕ Y2)

That means Θ(ϕ)/ν v Θ(ϕ′)/ν and by application of Lemma 4.3 we again
get Θ(ϕ) v Θ(ϕ′), thus also Θ(ϕ) � Θ(ϕ′).

(IIb.3.2) The last inference in σ is ∨ : l. Then ψ is of the form

(ρ,X)
Γ ` ∆

(σ1, Y1)
B,Π ` Λ

(σ2, Y2)
C,Π ` Λ

B ∨ C,Π ` Λ
∨ : l

(B ∨ C)∗,Γ,Π∗ ` ∆∗,Λ
mix (A)

Note that A is in Π; for otherwise A = B ∨ C and rankr(ψ) = 1, contra-
dicting the assumption.

We first define the following deduction τ :

(ρ,X)
Γ ` ∆

(σ1, Y1)
B,Π ` Λ

B∗,Γ,Π∗ ` ∆∗,Λ
mix (A)

B,Γ,Π∗ ` ∆∗,Λ
w :∗

(ρ,X)
Γ ` ∆

(σ2, Y2)
C,Π ` Λ

C∗,Γ,Π∗ ` ∆∗,Λ
mix (A)

C,Γ,Π∗ ` ∆∗,Λ
w :∗

(B ∨ C),Γ,Π∗ ` ∆∗,Λ
∨ : l

As in IIb.3.1 we have to distinguish the case where B ∨C is an ancestor of
another mix in ϕ or not. So if we replace ψ by τ in ϕ we get either get

Θ(ϕ)/ν = X ⊕ (Y1 ⊕ Y2),

Θ(ϕ[τ]ν)/ν = (X ⊕ Y1)⊕ (X ⊕ Y2).

or

Θ(ϕ)/ν = X ⊕ (Y1 ⊗ Y2),

Θ(ϕ[τ]ν)/ν = (X ⊕ Y1)⊗ (X ⊕ Y2).

Thus the situation is analogous to (IIb.3.1) and we get Θ(ϕ) � Θ(ϕ[τ]ν).

If A 6= B ∨ C then χ = τ and therefore Θ(ϕ) � Θ(ϕ′).

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 27

If A = B ∨ C we define χ =

(ρ,X)
Γ ` ∆

(τ, (X ⊕ Y1)⊗ (X ⊕ Y2))
(B ∨ C),Γ,Π∗ ` ∆∗,Λ

Γ,Γ∗,Π∗ ` ∆∗,∆∗,Λ
mix (A)

Γ,Π∗ ` ∆∗,Λ
c :∗

In this case either

Θ(ϕ)/ν = X ⊕ (Y1 ⊕ Y2),

Θ(ϕ′)/ν = X ⊕ ((X ⊕ Y1)⊕ (X ⊕ Y2)).

or

Θ(ϕ)/ν = X ⊕ (Y1 ⊗ Y2),

Θ(ϕ′)/ν = X ⊕ ((X ⊕ Y1)⊗ (X ⊕ Y2)).

In the first case we obtain

Θ(ϕ)/ν ∼ Θ(ϕ′)/ν

and in the second one
Θ(ϕ)/ν v Θ(ϕ′)/ν

Once more Lemma 4.3 gives us Θ(ϕ) � Θ(ϕ′).

(IIb.3.3) The last inference in σ is a mix. Then ψ is of the form

(ρ,X)
Γ ` ∆

(σ1, Y1)
Π1 ` Λ1

(σ2, Y2)
Π2 ` Λ2

Π1,Π
+
2 ` Λ+

1 ,Λ2

mix (B)

Γ,Π∗
1,Π

+∗
2 ` ∆∗,Λ+

1 ,Λ2

mix (A)

If A occurs in Π1 and in Π2 then χ =

(ρ,X)
Γ ` ∆

(σ1, Y1)
Π1 ` Λ1

Γ,Π∗
1 ` ∆∗,Λ1

mix (A)

(ρ,X)
Γ ` ∆

(σ2, Y2)
Π2 ` Λ2

Γ,Π∗
2 ` ∆∗,Λ2

mix (A)

Γ,Γ+,Π∗
1,Π

+∗
2 ` ∆∗+,∆∗,Λ+

1 ,Λ2

mix (B)

Γ,Π∗
1,Π

+∗
2 ` ∆∗,Λ+

1 ,Λ2

c :∗, w :∗

In this case we have

Θ(ϕ)/ν = X ⊕ (Y1 ⊕ Y2),

Θ(ϕ′)/ν = (X ⊕ Y1)⊕ (X ⊕ Y2).

Clearly X ⊕ (Y1 ⊕ Y2) ∼ (X ⊕ Y1)⊕ (X ⊕ Y2) and so

X ⊕ (Y1 ⊕ Y2) � (X ⊕ Y1)⊕ (X ⊕ Y2).

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 28

By Lemma 4.3 we get Θ(ϕ) � Θ(ϕ′).

If A occurs in Π1 and not in Π2 then χ =

(ρ,X)
Γ ` ∆

(σ1, Y1)
Π1 ` Λ1

Γ,Π∗
1 ` ∆∗,Λ1

mix (A) (σ2, Y2)
Π2 ` Λ2

Γ,Π∗
1,Π

+
2 ` ∆∗,Λ+

1 ,Λ2

mix (B)

Here we have

Θ(ϕ)/ν = X ⊕ (Y1 ⊕ Y2),

Θ(ϕ′)/ν = (X ⊕ Y1)⊕ Y2.

and Θ(ϕ) � Θ(ϕ′) is trivial.

The case where A is in Π2, but not in Π1 is completely symmetric. 3

Theorem 6.1: Let ϕ be an LK-deduction and ψ be an ACNF of ϕ under a cut
reduction relation >R based on R. Then Θ(ϕ) ≤ss Θ(ψ).

Proof: ϕ >∗
R ψ. By Lemma 6.1 we get Θ(ϕ) �∗ Θ(ψ). By Proposition 4.1 we

obtain Θ(ϕ) ≤ss Θ(ψ). 3

Theorem 6.2: Let ϕ be an LK-derivation and ψ be an ACNF of ϕ under a cut
reduction relation >R based on R. Then there exists a resolution refutation γ of
CL(ϕ) s.t. γ ≤ss RES(ψ).

Proof: By Theorem 6.1 Θ(ϕ) ≤ss Θ(ψ) and therefore CL(ϕ) ≤ss CL(ψ). By
Definition 5.7, RES(ψ) is a resolution refutation of CL(ψ); by Proposition 2.1
there exists a resolution refutation γ of CL(ϕ) s.t. γ ≤ss RES(ψ). 3

Corollary 6.1: Let ϕ be an LK-derivation and ψ be an ACNF of ϕ under a
cut reduction relation >R based on R. Then there exists a resolution refutation
γ of CL(ϕ) s.t.

l(γ) ≤ l(RES(ψ)) ≤ l(ψ) ∗ 22∗l(ψ).

Proof: By Theorem 6.1 there exists a resolution refutation γ with γ ≤ss RES(ψ).
By definition of subsumption of proofs (see Definition 2.17) we have l(γ) ≤
l(RES(ψ)). Finally the result follows from Proposition 5.2. 3

Corollary 6.2: Let ϕ be an LK-derivation and ψ be an ACNF of ϕ under a
cut reduction relation >R based on R. Let χ be an ACNF of ϕ under CERES.
Then

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ) + 2.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 29

Proof: If γ is a resolution refutation of CL(ϕ) then a ACNF χ of ϕ can be obtained
by CERES using projection. As the LK-derivations in the projections are not
longer than ϕ itself we get l(χ) ≤ l(ϕ) ∗ l(γ) + 2 (the term “+2” comes from the
final contractions c : l, c : r). Then the inequality follows from Corollary 6.1. 3

Corollary 6.3: Let ϕ be an LK-derivation and ψ be an ACNF of ϕ under
Gentzen’s or Tait’s method. Let χ be an ACNF of ϕ under CERES. Then

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ) + 2.

Proof: Gentzen’s and Tait’s methods are reduction methods based on R. 3

In (4) we have shown that cut-elimination based on CERES may be much faster
that Gentzen’s and Tait’s method. The speed-up one can achieve is given by the
complexity of cut-elimination itself, which is nonelementary. On the other hand,
Corollary 6.3 shows that the computational expense of CERES is exponentially
(and thus elementarily) bounded by that of Gentzen’s or Tait’s method. This
shows that CERES is never “much slower” than the traditional methods, but
there are sequences of derivations where it is substantially faster. Indeed, in some
sense, Theorem 6.2 indicates that all cut-elimination methods based on R are
redundant w.r.t. CERES.

7. Beyond R: Stronger Pruning Methods

At the first glimpse it might appear that all cut-reduction methods based on a
set of rules yield characteristic terms which are subsumed by the characteristic
term of the original proof. However, Theorem 6.1 and Theorem 6.2 are not valid
in general. Below we will define a set of cut-reduction rules R′ for which the
theorems above are not valid.

Definition 7.1 (R′): Let R be the set of cut-reduction rules defined in the
Appendix. With the exception of the rule in case 3.121.232 (right-rank > 1, case
∨ : l) the rules in R′ are the same as those in R. We only modify the case where
the mix formula A is identical to B (which is one of the auxiliary formulas of the
∨ : l-inference). In this case the derivation ψ in case 3.121.232 is of the form:

(ρ)
Γ ` ∆

(σ1)
B,Π ` Λ

(σ2)
C,Π ` Λ

B ∨ C,Π ` Λ
∨ : l

Γ, B ∨ C,Π∗ ` ∆∗,Λ
mix (B)

We define ψ >R′ χ for χ =

(ρ)
Γ ` ∆

(σ1)
B,Π ` Λ

Γ,Π∗ ` ∆∗,Λ
mix (B)

Γ, B ∨ C,Π∗ ` ∆∗,Λ
w : l

]

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 30

Theorem 7.1: There exists an LK-derivation ϕ s.t. for all ACNFs ψ under
R′:

(1) Θ(ϕ) 6≤ss Θ(ψ),

(2) γ 6≤ss RES(ψ) for all resolution refutations γ of CL(ϕ).

Proof: In the LK-derivations below we mark all ancestors of mixes by ∗. Let
P,Q,R be arbitrary atomic formulas and ϕ be the derivation

` P ∗ ` P ∗

` (P ∧ P)∗
∧ : r

P, P ∗ ` P
P, (P ∧ P)∗ ` P ∧ : l

P ∧ P, (P ∧ P)∗ ` P ∧ : l

P ∗ ` Q∗ Q∗ ` P
P ∗ ` P mix (Q)

R,P ∗ ` P w : l

R, (P ∧ P)∗ ` P ∧ : l

(P ∧ P)∗, (P ∧ P) ∨R ` P ∨ : l

(P ∧ P) ∨R ` P mix (P ∧ P)

Then

Θ(ϕ) = ({` P} ⊕ {` P})⊕ (({P `} ⊗ ({P ` Q} ⊕ {Q `}),
CL(ϕ) = {` P ; P, P ` Q; P,Q `}.

There exists only one non-atomic mix in ϕ. By definition of R′ we get ϕ >R′ χ
(and this is the only one-step reduction) for χ =

` P ∗ ` P ∗

` (P ∧ P)∗
∧ : r

P ∗, P ∗ ` P
P ∗, (P ∧ P)∗ ` P ∧ : l

(P ∧ P)∗, (P ∧ P)∗ ` P ∧ : l

` P mix (P ∧ P)

(P ∧ P) ∨R ` P w : l

It is easy to see that the only ACNF of χ (under R and R′) is ψ for ψ =

` P ∗ P ∗, P ∗ ` P
` P mix (P)

(P ∧ P) ∨R ` P w : l

But

Θ(ψ) = {` P} ⊕ {P, P `},
CL(ψ) = {` P ; P, P `}.

There exists no clause C ∈ CL(ϕ) with C ≤ss P, P `, therefore CL(ϕ) 6≤ss CL(ψ)
and Θ(ϕ) 6≤ss Θ(ψ). This proves (1).
By definition of RES we obtain RES(ψ) =

` P P, P `
` cut

.

As CL(ϕ) 6≤ss {P, P `} there exists no refutation γ of CL(ϕ) with γ ≤ss RES(ψ).
This proves (2). 3

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 31

Remark: Our choice ofR′ was in fact a minimal one, aimed to falsify Theorem 6.1.
It is obvious that the principle can be extended to the case where A = C, and
to the symmetric situation of left-rank > 1 and ∧ : r. Indeed there are several
simple ways for further improving cut-elimination methods based onR. All these
stronger methods of pruning the proof trees during cut-reduction do not fulfil
the properties expressed in Theorem 6.1 and in Theorem 6.2.]

8. Conclusion

The main technical tool of this paper is the symbolic representation of clauses by
terms composed from clauses and the operators ⊕ and ⊗. This tool enables the
incorporation of information about the clauses extracted from proofs exceeding
pure extensionality. To deal with various forms of pruning in the clausal frame-
work even more information has to be included, i.e. the set of operators has to
be extended. The analysis of cut-elimination via ⊕ and ⊗ in this paper has much
in common with an approach of G. Mints to the construction of interpolants in
first-order intuitionistic logic (see (10)). Thus there is some evidence that the
use of abstract algebraic structures may lead to substantially new insights in the
nature of proofs. In this sense this paper can be considered as a step towards
an algebraic proof theory, which – like all reasonable algebraic approaches – has
to deal with partial representations of the objects, whose interest is discovered
rather than obvious from the first glance.

Acknowledgements:
We would like to thank Georg Moser and Agata Ciabattoni for their constructive
criticism and for several comments which resulted in an improvement of this
paper.

References

[1] Baaz, M. and Leitsch, A., On skolemization and proof complexity, Fun-
damenta Informaticae, (1994). 20, 353–379.

[2] Baaz, M. and Leitsch, A., Fast Cut-Elimination by Projection, Lecture
Notes in Computer Science, (1997). 1258, 18–33.

[3] Baaz, M. and Leitsch, A., Cut normal forms and proof complexity, Annals
of Pure and Applied Logic, (1999). 97, 127–177.

[4] Baaz, M. and Leitsch, A., Cut-Elimination and Redundancy-Elimination
by Resolution, Journal of Symbolic Computation, (2000). 29, 149–176.

[5] Baaz, M. and Zach, R., Generalizing theorems in real closed fields, Annals
of Pure and Applied Logic, (1995). 75, 3–23.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 32

[6] Gentzen, G., Untersuchungen über das logische Schließen, Mathematische
Zeitschrift , (1934). 39, 405–431.

[7] Girard, J.Y., Proof Theory and Logical Complexity , (1987). Bibliopolis,
Napoli,

[8] Leitsch, A., The Resolution Calculus , (1997). Springer, Berlin Heidelberg
New York,

[9] Luckhardt, H., Herbrand-Analysen zweier Beweise des Satzes von Roth:
polynomiale Anzahlschranken, The Journal of Symbolic Logic, (1989).
54, 234–263.

[10] Mints, G., Interpolation theorems for intuitionistic predicate logic, Annals
of Pure and Applied Logic, (2002). 113, 225–242.

[11] Robinson, J.A., A machine oriented logic based on the resolution principle,
Journal of the ACM , (1965). 12, 23–41.

[12] Schwichtenberg, H., Proof Theory: Some Applications of Cut-Elimination,
Handbook of Mathematical Logic, Barwise, J., (1989). North Holland,
867–895.

[13] Statman, R., Lower bounds on Herbrand’s theorem, Proc. of the
Amer. Math. Soc., (1979). 75, 104–107.

[14] Tait, W.W., Normal derivability in classical logic, The Syntax and Se-
mantics of Infinitary Languages , Barwise, J., (1968). Springer, 204–236.

[15] Takeuti, G., Proof Theory , (1987). North-Holland, Amsterdam, 2nd
edition,

9. Appendix

Below we list the transformation rules used in Gentzen’s proof of cut-elimination
in (6). Thereby we use the same numbers for labelling the subcases. As we do
not eliminate atomic cuts and our initial sequents are not necessarily of the form
A ` A some rules can be omitted. Moreover we need not consider the rules for
implication as our version of LK is →-free. If a mix-derivation ψ is transformed
to ψ′ then we define ψ > ψ′; note that ψ and ψ′ have the same endsequent.
Remember that the relation >R is the crucial tool in defining Gentzen- and Tait
reduction. In all reductions below ψ is a mix-derivation of the form

(ρ)
Γ ` ∆

(σ)
Π ` Λ

Γ,Π∗ ` ∆∗,Λ
mix (A)

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 33

where A is a non-atomic formula (i.e. comp(A) > 0).

3.11. rank(ψ) = 2.

3.113.1. the last inference in ρ is w : r:

(ρ′)
Γ ` ∆

Γ ` ∆, An
w : r (σ)

Π ` Λ

Γ,Π∗ ` ∆,Λ
mix (A)

transforms to
(ρ′)

Γ ` ∆
Γ,Π∗ ` ∆,Λ

w : l, r

3.113.2. the last inference in ψ2 is w : l: symmetric to 3.113.1.

The last inferences in ρ, σ are logical ones and the mix-formula is the principal
formula of these inferences:

3.113.31.

(ρ1)
Γ ` ∆, A

(ρ2)
Γ ` ∆, B

Γ ` ∆, A ∧B ∧ : r

(σ′)
A,Π ` Λ

A ∧B,Π ` Λ
∧ : l

Γ,Π ` ∆,Λ
mix (A ∧B)

transforms to
(ρ1)

Γ ` ∆, A
(σ′)

A,Π ` Λ

Γ,Π∗ ` ∆∗,Λ
mix (A)

Γ,Π ` ∆,Λ
w : l, r

For the other form of ∧ : l the transformation is straightforward.

3.113.32. The last inferences of ρ, σ are ∨ : r,∨ : l: symmetric to 3.113.31.

3.113.33.

(ρ′(x/y))
Γ ` ∆, B(x/y)

Γ ` ∆, (∀x)B(x)
∀ : r

(σ′)
B(x/t),Π ` Λ

(∀x)B(x),Π ` Λ
∀ : l

Γ,Π ` ∆,Λ
mix ((∀x)B)

transforms to

(ρ′(x/t))
Γ ` ∆, B(x/t)

(σ′)
B(x/t),Π ` Λ

Γ,Π∗ ` ∆∗,Λ
mix (B(x/t))

Γ,Π ` ∆,Λ
w : l, r

3.113.34. The last inferences in ρ, σ are ∃ : r,∃ : l: symmetric to 3.113.33.

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 34

3.113.35
(ρ′)

A,Γ ` ∆

Γ ` ∆,¬A ¬ : r

(σ′)
Π ` Λ, A

¬A,Π ` Λ
¬ : l

Γ,Π ` ∆,Λ
mix (¬A)

reduces to
(σ′)

Π ` Λ, A
(ρ′)

A,Γ ` ∆

Γ∗,Π ` ∆,Λ∗ mix (A)

Γ,Π ` ∆,Λ
w : l, r

3.12. rank(ψ) > 2:

3.121. rankr(ψ) > 1:

3.121.1. The mix formula occurs in the antecedent of the end-sequent of ρ.

(ρ)
Γ ` ∆

(σ)
Π ` Λ

Γ,Π∗ ` ∆∗,Λ
mix (A)

transforms to
(σ)

Π ` Λ
Γ,Π∗ ` ∆∗,Λ

w : l, r; c : l

3.121.2. The mix formula does not occur in the antecedent of the end-sequent
of ρ.

3.121.21. Let ξ be one of the rules w : l or c : l; then

(ρ)
Γ ` ∆

(σ′)
Σ ` Λ
Π ` Λ

ξ

Γ,Π∗ ` ∆∗,Λ
mix (A)

transforms to
(ρ)

Γ ` ∆
(σ′)

Σ ` Λ
Γ,Σ∗ ` ∆∗,Λ

mix (A)

Γ,Π∗ ` ∆∗,Λ
ξ

Note that ξ may be ”degenerated”, i.e. it can be skipped if the sequent does not
change.

3.121.22. Let ξ be an arbitrary unary rule (different from c : l, w : l) and let
C∗ be empty if C = A and C otherwise. The formulas B and C may be equal
or different or simply nonexisting. Let us assume that ψ is of the form

(ρ)
Γ ` ∆

(σ′)
B,Π ` Σ

C,Π ` Λ
ξ

Γ, C∗,Π∗ ` ∆∗,Λ
mix (A)

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 35

Let τ be the proof
(ρ)

Γ ` ∆
(σ′)

B,Π ` Σ

Γ, B∗,Π∗ ` ∆∗,Σ
mix (A)

Γ, B,Π∗ ` ∆∗,Σ
(w : l)

Γ, C,Π∗ ` ∆∗,Λ
ξ

3.121.221. A 6= C: then ψ transforms to τ .

3.121.222. A = C and A 6= B: in this case C is the principal formula of ξ. Then
ψ transforms to

(ρ)
Γ ` ∆

(τ)
Γ, A,Π∗ ` ∆∗,Λ

Γ,Γ∗,Π∗ ` ∆∗,∆∗,Λ
mix (A)

Γ,Π∗ ` ∆∗,Λ
c : l, r

3.121.223 A = B = C. Then Σ 6= Λ and ψ transforms to

(ρ)
Γ ` ∆

(σ′)
A,Π ` Σ

Γ,Π∗ ` ∆∗,Σ
mix (A)

Γ,Π∗ ` ∆∗,Λ
ξ

3.121.23. The last inference in σ is binary:

3.121.231. The case ∧ : r. Here

(ρ)
Γ ` ∆

(σ1)
Π ` Λ, B

(σ2)
Π ` Λ, C

Π,` Λ, B ∧ C ∧ : r

Γ,Π∗ ` ∆∗,Λ, B ∧ C mix (A)

transforms to

(ρ)
Γ ` ∆

(σ1)
Π ` Λ, B

Γ,Π∗ ` ∆∗,Λ, B
mix (A)

(ρ)
Γ ` ∆

(σ2)
Π ` Λ, C

Γ,Π∗ ` ∆∗,Λ, C
mix (A)

Γ,Π∗ ` ∆∗,Λ, B ∧ C ∧ : r

3.121.232. The case ∨ : l. Then ψ is of the form

(ρ)
Γ ` ∆

(σ1)
B,Π ` Λ

(σ2)
C,Π ` Λ

B ∨ C,Π ` Λ
∨ : l

Γ, (B ∨ C)∗,Π∗ ` ∆∗,Λ
mix (A)

M. Baaz and A. Leitsch: Clausal Analysis of Cut-Elimination 36

Again (B ∨ C)∗ is empty if A = B ∨ C and B ∨ C otherwise.
We first define the proof τ :

(ρ)
Γ ` ∆

(σ1)
B,Π ` Λ

B∗,Γ,Π∗ ` ∆∗,Λ
mix (A)

B,Γ,Π∗ ` ∆∗,Λ
ξ

(ρ)
Γ ` ∆

(σ2)
C,Π ` Λ

C∗,Γ,Π∗ ` ∆∗,Λ
mix (A)

C,Γ,Π∗ ` ∆∗,Λ
ξ

B ∨ C,Γ,Π∗ ` ∆∗,Λ
∨ : l

Note that, in case A = B or A = C, the inference ξ is w : l; otherwise ξ is the
identical transformation and can be dropped.
If (B ∨ C)∗ = B ∨ C then ψ transforms to τ .
If, on the other hand, (B ∨ C)∗ is empty (i.e. B ∨ C = A) then we transform ψ
to

(ρ)
Γ ` ∆ τ

Γ,Γ,Π∗ ` ∆∗,∆∗,Λ
mix (A)

Γ,Π∗ ` ∆∗,Λ
c : l, r

3.121.234. The last inference in σ is mix (B) for some formula B. Then ψ is of
the form

(ρ)
Γ ` ∆

(σ1)
Π1 ` Λ1

(σ2)
Π2 ` Λ2

Π1,Π2
+ ` Λ1

+,Λ2

mix (B)

Γ,Π1
∗,Π2

+∗ ` ∆∗,Λ1
+,Λ2

mix (A)

3.121.234.1 A occurs in Π1 and in Π2. Then ψ transforms to

(ρ)
Γ ` ∆

(σ1)
Π1 ` Λ1

Γ,Π1
∗ ` ∆∗,Λ1

mix (A)

(ρ)
Γ ` ∆

(σ2)
Π2 ` Λ2

Γ,Π2
∗ ` ∆∗,Λ2

mix (A)

Γ,Γ+,Π1
∗,Π2

+∗ ` ∆∗+,∆∗,Λ1
+,Λ2

mix (B)

Γ,Π1
∗,Π2

+∗ ` ∆∗,Λ1
+,Λ2

c : l, r

Note that, for A = B, we have Π∗+ = Π∗ and ∆∗+ = ∆∗; Π∗+ = Π+∗ holds in
all cases.

3.121.234.2 A occurs in Π1, but not in Π2. In this case we have Π2
+∗ = Π2

+

and we transform ψ to

(ρ)
Γ ` ∆

(σ1)
Π1 ` Λ1

Γ,Π1
∗ ` ∆∗,Λ1

mix (A) (σ2)
Π2 ` Λ2

Γ,Π1
∗,Π2

+ ` ∆∗,Λ1
+,Λ2

mix (B)

3.121.234.3 A is in Π2, but not in Π1: symmetric to 3.121.234.2.

3.122. rankr(ψ) = 1 and rankl(ψ) > 1: symmetric to 3.121.

