On Strategies for
Inductive Theorem Proving

Bernhard Gramlich
TU Wien, Austria

Outline

» Background

» Basics about induction

» (A)TP versus (A)ITP

» Approaches to and assumptions about (A)ITP
Strategies in (A)ITP

» Why are strategies so important for (A)ITP?

» Which are the relevant strategic issues?
State-of-the-art

» Systems for Induction
» Successes and Failures

v

v

v

Problems and Challenges

» Technical / Logical Problems
» Control Issues
» Software Engineering Issues

Theses

Conclusion

v

v

Basics about induction (1)

» What is inductive?

» proof techniques can be inductive (using some form of
well-founded induction) (syntactical, proof-theoretic)

» notion of validity of statements may be inductive (semantic)

» learning process may be inductive (another field!)

» Where does induction occur (in computer science)?

» almost everywhere!

> recursively defined data structures

» programs / specifications correspond to concrete (classes of)
models

» usually (implicitly) assumed: no junk

» properties of specifications / program verification: only models
of interest relevant (often: standard model)

Basics about induction (2)

» syntactically / proof-theoretically (well-founded induction)

Y [(Vy. [y <x=Py)])= P(x)]
Vx.P(x)

with < well-founded order (on domain of x)

» semantically / model-theoretically (inductive validity)

» b F (derivable, deductive theorem) (assuming given axioms
and inference rules)
F F G (syntactic entailment)
E F (holds in all models of initial axioms)
M = F (holds in a particular (standard) model M of initial
axioms)
K = F (holds in a particular class of models of initial axioms)
F = G (semantic entailment)

\4

v

v

v

\4

Basics about induction (3)

> properties

>

>

>

soundness: - F = = F

completeness: = F = F F

induction: semantic definition usually corresponds to infinitary
syntactic property, e.g.:

T(X)/)=s Es=t < Vo€ GSub: Etso =to

however: notion of inductive validity may also be mixed

> constructor theorems [Zhang'88]

> validity in all (maximal) consistent extensions

[Kapur/Musser'87]

> monotonic notions of inductive validity [Wirth/Gramlich’94]
in these cases: tradeoff adequacy — complexity (e.g.: simple
correspondence between syntax and semantics may be lost)
motivation: partiality / non-monotonicity phenomena

(A)TP versus (A)ITP (1)

theorem proving tasks considered
» TP = (general) theorem proving
» ATP = automated theorem proving
» |TP = inductive theorem proving
» AITP = automated inductive theorem proving

applications
» (A)TP
» mathematics (algebra, logic, axiomatization of structures, . ..)
» computer science (boolean reasoning, parameterized
specifications with loose semantics, specifications with no
excluded models)
» (A)ITP
» mathematics (logic, validity in standard models, model theory)
» computer science (abstract data types, specifications and
programs relying on natural semantics, verification of their
properties)

(A)TP versus (A)ITP (2)

what are the differences?
» ITh(E) D Th(E), ITh(E) € Th(E) (otherwise: w-complete)
» (A)TP: calculi sound and complete, Th(E) r.e., cut elim.
» (A)ITP: calculi sound but (necessarily) incomplete, ITh(E)
not r.e., no cut elimination
differences in terms of proof search space
» (A)TP
» search space (tree) finitely branching
» counterexamples (via model building) may help, but are not

essential
proof search control challenging

search space (tree) infinitely branching
counterexamples are very much essential (to eliminate wrong
conjectures and cut useless branches)

» proof search control extremely challenging

Approaches to and assumptions about (A)ITP (1)

some features (logic and framework)
> first-order vs. higher-order
full first-order vs. universal fragment
unsorted vs. many-sorted vs. order-sorted
notion of inductive validity
constructor vs. destructor style induction
fixed vs. lazy induction ordering (generation) [e.g. Protzen'94]
based on resolution, natural deduction, ..., saturation, ...

equational vs. non-equational

vV v vV V. vV VvV VY

explicit induction [e.g. Bundy'01] vs. implicit induction
(inductionless induction, proof by consistency) [e.g.
Comon’01]

Approaches to and assumptions about (A)ITP (2)

some features (system architecture, purpose, control)

>

v VY v Vvv

vV v .vY

stand-alone tool vs. component in bigger system
homogeneous vs. heterogeneous tool

built-in theories vs. explicit handling

subtools for specialized proof tasks (decision procedures . ..)

intended functionality (yes/no vs. justifications, proof objects,
reuse, incrementality, modularity)

general purpose reasoning system vs. specialized tool for
particular problem domain

experimental tool vs. high-fidelity system (certification)
post- vs. pre- vs. integrated development
desired degree of automation / interaction

proof search control architecture / concept / language

Approaches to and assumptions about (A)ITP (3)

setting here (for simplicity)
» & inductive consequence of E (first-order clauses), iff, for
every Herbrand interpretation H:

HEE=>HEO®

» axioms (specifications) E: Horn clauses with equality
» then unique (smallest) Herbrand interpretation /g of E exists

» moreover, for positive clauses c:
¢ inductive consequence of E iff Ig = ¢

however, also in other settings
» the analysis is essentially the same
» the basic problems are the same

» only their technical appearance is different

Outline

» Background

» Basics about induction

» (A)TP versus (A)ITP

» Approaches to and assumptions about (A)ITP
Strategies in (A)ITP

» Why are strategies so important for (A)ITP?

» Which are the relevant strategic issues?
State-of-the-art

» Systems for Induction
» Successes and Failures

v

v

v

Problems and Challenges

» Technical / Logical Problems
» Control Issues
» Software Engineering Issues

Theses

Conclusion

v

v

Why are strategies so important for (A)ITP?

main reasons

>

>

incompleteness of (inductive) proof methods

structure and size of search space (infinitely branching in
several dimensions)

» recursive nature of inductive proof attempts

» difficulty of measuring progress

control of search space

>

>

vV vV vV vV VvV VY

what should be done (attempted) next?

when should a proof attempt be considered to be failed
(hopeless)?

what to do in this case?

when should backtracking be applied?

when and how to generalize?

when and how to simplify (how far)?

when and how to start induction (generate induction schema)?
how to make induction hypothesis applicable (goal-directed)?
when and how to perform case analysis?

Which are the relevant strategic issues? (1)

typical inductive proof structure
» try non-inductive methods
> inconsistency test, counterexample test
» ATP attempt (without induction)
» simplify as much as possible wrt. current database of
definitions and lemmas, ...
> but: simplifiability may require inductive arguments!
» try induction
» analyze recursion structure in conjecture and involved functions
» generate candidate(s) for appropriate induction schemas based
on this analysis (involving some look-ahead)
» perform induction
> split into cases
> simplify
> make induction hypothesis applicable (cross-fertiziling, rippling
[Bundy et al’89+] ...)
> generalize conjecture
» generate (auxiliary) lemma

Which are the relevant strategic issues? (2)

essential strategic control issues

» when to test for inconsistency? for the existence of
counterexamples?

» when to try ATP without induction?

» simplification infinitely branching/critical
» when?
» how? using which definitions / lemmas? in which order?
» (recursively) use induction to verify applicability of lemmmas?
C=Dl[lo], - r<cel, co?
> simplify to normal form?
» inverse simplification (expansion)? how far? non-termination!

» induction infinitely branching/critical

» compute and select appropriate induction scheme
» generate corresponding proof tasks

Which are the relevant strategic issues? (3)

essential strategic control issues (cont'd)
» case analysis infinitely branching/critical
» when? how? according to which criteria?
» many cases — less general, fewer cases — more general
> how to verify individual cases?
» generalization infinitely branching/critical
» when? how? syntactical /semantical? directly/indirectly?
e.g.: (Al VA<= B A BQ)O‘ into A; < B
» using look-ahead?
» lemma generation / speculation infinitely branching/critical
» when? how? for what purpose?
goal-directedness?
does lemma suffice? or only help?
organizational: top-down (relative ITP) or bottom-up (proofs
are final)

v

v

v

Which are the relevant strategic issues? (4)

organizational strategic issues (cont'd)

» concerning the data- and knowledge base (lemmas, ...)
> in case of successful proof attempts

> which (intermediate) lemmas should be kept (stored)?
in which form? in which order?
as what kind of knowledge (rewrite, type, definition, ...)?
in structured (hierarchical / graph) form or flat (non-linked)?
should knowledge base be modified (simplified) wrt. newly
proved inductive theorem?

>
>
>
>

> in case of failed proof attempts?
» concerning the control structure and knowledge base
» compute recursion analysis when introducing new definitions
» memory and history mechanism (e.g. for avoiding loops)
» overall proof search control structure
>

layered model of proof search control (via strategies and
heuristics)

Outline

» Background

» Basics about induction

» (A)TP versus (A)ITP

» Approaches to and assumptions about (A)ITP
Strategies in (A)ITP

» Why are strategies so important for (A)ITP?

» Which are the relevant strategic issues?
State-of-the-art

» Systems for Induction
» Successes and Failures

v

v

v

Problems and Challenges

» Technical / Logical Problems
» Control Issues
» Software Engineering Issues

Theses

Conclusion

v

v

State-of-the-art

assessment / comparison difficult

>

>

>

>

>

no (regular) competition of (A)ITP systems

no (widely accepted and used) benchmarks
underlying logics and intended usage rather diverse
amount of automation / interaction?

usage typically requires quite considerable expertise

general observations

>
>

|

full automation generally not (yet?) successful
typical usage: (specification and) proof engineering with
» human guidance for modelling, proof structure / ideas, critical
» human guidance for lower-level control if necessary critical
» human failure analysis (with few automatic support) critical
tradeoff automation — interaction (wrt. efficiency, success
rate, required expertise, flexibility of control, ...)

Systems for Induction (1)

prominent systems (maintained)
» ACL2 (NQTHM successor) [Kaufmann/Manolios/Moore'02]

» efficient functional PL 4 ITP system
» impressive collection of non-trivial examples
> relatively high automation

> PVS [SRI]

» provides mechanized support for formal spec. and verification
» based on classical, typed higher-order logic
> partially automated, framework for decision procedures

> VSE/INKA [Hutter et al, DFKI]

» tool for supporting the formal software development process
» one focus: inductive proofs
» sophisticated search control strategies (during induction)

» ISABELLE/HOL [Nipkow/Paulson et al]
» generic theorem proving environment and proof assistant

» main application: formalization of math. proofs/ formal verif.
» very flexible, much interaction with expert user required

Systems for Induction (2)

other systems (some)
» RRL [Kapur/Zhang]
> rewrite-based, first-order
» different inductive proof techniques, high automation
» Oyster/CLAM [Bundy et al]
> tactic-based proof editor based on Martin-L6f constructive
type theory + proof planner
» meta language for constructing customized tactics for
individual conjectures, especially for rippling
» QuodLibet [Kiihler/Wirth]
» specification language and ITP system for data types with
partial operations
> flexible control, user-oriented, with some automation

> PerfectDeveloper [Crocker;Escher Tech.]

» program development and verification tool for generating Java
or C++ programs

» Hoare-style pre-/post-condition approach, partially automated

Successes and Failures

successes
» computer supported specification and verification of complex
systems / relationships possible, e.g.

» prime factorization theorem
» undecidability of halting problem
» specification and verification of microprocessors

» often revealed errors in initial specifications / conjectures
failures

» in general low automation degree

» inductive specification and proof engineering is tedious and
difficult

» automatic support for failure analysis unsatisfactory

» building-in intelligence much more difficult than expected (by
optimists)

Outline

» Background

» Basics about induction

» (A)TP versus (A)ITP

» Approaches to and assumptions about (A)ITP
Strategies in (A)ITP

» Why are strategies so important for (A)ITP?

» Which are the relevant strategic issues?
State-of-the-art

» Systems for Induction
» Successes and Failures

v

v

v

Problems and Challenges

» Technical / Logical Problems
» Control Issues
» Software Engineering Issues

Theses

Conclusion

v

v

Problems and Challenges (1)

Technical / Logical Problems
» building-in knowledge (when? how?)

v

structuring / modularizing specifications and proof tasks

v

extending decidable cases (classes)
combining ITP system with tools for special purposes
» systems for particular data types / theories
» decision procedures for restricted theories
» combination mechanisms
» logical / operational interface?

v

better methods for goal-directed reasoning

better methods for look-ahead based reasoning
generalization: when? why? how?

generation of (auxiliary) lemmas: when? why? how?

how to recognize, analyze and deal with failure?

vV v v v VY

how to make ITP more robust (monotonic, semantic)?

Problems and Challenges (2)

Control Issues

» good strategies/heuristics are vital in ITP to generate and
deal with reasonable proof attempts

» basic question: what to do next, in view of the history, the
current data and the knowledge base?
» overall proof search model of an (A)ITP system

>

>

>

is necessarily complex; must be flexible

needs automation and interaction (for proof engineering)
must allow/support interrupts, inspection, failure analysis and
relative proving

» should guarantee correctness requirements
» should be compatible with user interaction, navigation (in

search tree), information extraction, generation of proof objects

» must have different layers (for different types of reasoning)
» should allow the integration of/in other tools for subtasks/as

subsystem
needs to integrate strategic/heuristic user input

Problems and Challenges (3)

Software Engineering Issues

» how to design/implement/apply a structured control concept
for proof search that

>

is user-friendly, fully transparent, intelligible, flexible, extensible
and modifiable

» generates complete proof objects
» has a programmable strategy/heuristics language with clearly

vV vV vV vV VY VvYY

defined semantics

allows efficient proof engineering in real time

allows unsafe reasoning (relative to unproved lemmas)

allows a high degree of automation

enables human user to quickly test/implement/model key ideas
is able to integrate new tools / subtools (e.g. decision proc.)
can easily be specialized to specific domains

has an appropriate system for mainting / adapting / its
(large!) knowledge base

» HCI: how to do all this in a smart way as to interaction?

Outline

» Background

» Basics about induction

» (A)TP versus (A)ITP

» Approaches to and assumptions about (A)ITP
Strategies in (A)ITP

» Why are strategies so important for (A)ITP?

» Which are the relevant strategic issues?
State-of-the-art

» Systems for Induction
» Successes and Failures

v

v

v

Problems and Challenges

» Technical / Logical Problems
» Control Issues
» Software Engineering Issues

Theses

Conclusion

v

v

Theses

» AITP in the near future will only be successful for

» very specialized domains (e.g., with fixed axiomatizations)
» for very restricted classes of conjectures

» substantial progress?

>

>

increased robustness (more monotonic, semantics based)
modularization, structuring and interaction of theories, proofs,
proof search

appropriate framework(s) to model (and implement) strategic
proof search control

expressive

flexible: extensible, adaptable, programmable

well-defined semantics

layered (different levels)

vVvyyy

progress will take time, breakthroughs are unrealistic

Conclusion

» (A)ITP extremely important and ubiquituous as proof tasks
» (A)ITP hopeless without sophisticated strategic guidance
>

(A)ITP will remain a very challenging specification and proof
engineering process

> necessary
» more foundational research (decidable case, decision
procedures, proof search models and architectures,
strategies/heuristics)
» more specialized (interesting) problem domains and (A)ITP
systems
» another point of view: (A)ITP as integrated combined
development (specification + verification) engineering that
> needs human guidance for high(er)-level decisions and key
ideas
> provides as much automatic support as possible

