
On Strategies for

Inductive Theorem Proving

Bernhard Gramlich

TU Wien, Austria

Outline

I Background
I Basics about induction
I (A)TP versus (A)ITP
I Approaches to and assumptions about (A)ITP

I Strategies in (A)ITP
I Why are strategies so important for (A)ITP?
I Which are the relevant strategic issues?

I State-of-the-art
I Systems for Induction
I Successes and Failures

I Problems and Challenges
I Technical / Logical Problems
I Control Issues
I Software Engineering Issues

I Theses

I Conclusion

Basics about induction (1)

I What is inductive?
I proof techniques can be inductive (using some form of

well-founded induction) (syntactical, proof-theoretic)
I notion of validity of statements may be inductive (semantic)
I learning process may be inductive (another field!)

I Where does induction occur (in computer science)?
I almost everywhere!
I recursively defined data structures
I programs / specifications correspond to concrete (classes of)

models
I usually (implicitly) assumed: no junk
I properties of specifications / program verification: only models

of interest relevant (often: standard model)

Basics about induction (2)

I syntactically / proof-theoretically (well-founded induction)

∀x . [(∀y . [y < x ⇒ P(y)]) ⇒ P(x)]

∀x .P(x)

with < well-founded order (on domain of x)

I semantically / model-theoretically (inductive validity)
I ` F (derivable, deductive theorem) (assuming given axioms

and inference rules)
I F ` G (syntactic entailment)
I |= F (holds in all models of initial axioms)
I M |= F (holds in a particular (standard) model M of initial

axioms)
I K |= F (holds in a particular class of models of initial axioms)
I F |= G (semantic entailment)

Basics about induction (3)

I properties
I soundness: ` F ⇒ |= F
I completeness: |= F ⇒ ` F
I induction: semantic definition usually corresponds to infinitary

syntactic property, e.g.:

T (Σ)/=E
|= s = t ⇐⇒ ∀σ ∈ GSub : E ` sσ = tσ

I however: notion of inductive validity may also be mixed
I constructor theorems [Zhang’88]
I validity in all (maximal) consistent extensions

[Kapur/Musser’87]
I monotonic notions of inductive validity [Wirth/Gramlich’94]

I in these cases: tradeoff adequacy – complexity (e.g.: simple
correspondence between syntax and semantics may be lost)

I motivation: partiality / non-monotonicity phenomena

(A)TP versus (A)ITP (1)

theorem proving tasks considered

I TP = (general) theorem proving

I ATP = automated theorem proving

I ITP = inductive theorem proving

I AITP = automated inductive theorem proving

applications
I (A)TP

I mathematics (algebra, logic, axiomatization of structures, . . .)
I computer science (boolean reasoning, parameterized

specifications with loose semantics, specifications with no
excluded models)

I (A)ITP
I mathematics (logic, validity in standard models, model theory)
I computer science (abstract data types, specifications and

programs relying on natural semantics, verification of their
properties)

(A)TP versus (A)ITP (2)

what are the differences?

I ITh(E) ⊇ Th(E), ITh(E) 6⊆ Th(E) (otherwise: ω-complete)

I (A)TP: calculi sound and complete, Th(E) r.e., cut elim.

I (A)ITP: calculi sound but (necessarily) incomplete, ITh(E)
not r.e., no cut elimination

differences in terms of proof search space
I (A)TP

I search space (tree) finitely branching
I counterexamples (via model building) may help, but are not

essential
I proof search control challenging

I (A)ITP
I search space (tree) infinitely branching
I counterexamples are very much essential (to eliminate wrong

conjectures and cut useless branches)
I proof search control extremely challenging

Approaches to and assumptions about (A)ITP (1)

some features (logic and framework)

I first-order vs. higher-order

I full first-order vs. universal fragment

I unsorted vs. many-sorted vs. order-sorted

I notion of inductive validity

I constructor vs. destructor style induction

I fixed vs. lazy induction ordering (generation) [e.g. Protzen’94]

I based on resolution, natural deduction, . . . , saturation, . . .

I equational vs. non-equational

I explicit induction [e.g. Bundy’01] vs. implicit induction
(inductionless induction, proof by consistency) [e.g.
Comon’01]

Approaches to and assumptions about (A)ITP (2)

some features (system architecture, purpose, control)

I stand-alone tool vs. component in bigger system

I homogeneous vs. heterogeneous tool

I built-in theories vs. explicit handling

I subtools for specialized proof tasks (decision procedures . . .)

I intended functionality (yes/no vs. justifications, proof objects,
reuse, incrementality, modularity)

I general purpose reasoning system vs. specialized tool for
particular problem domain

I experimental tool vs. high-fidelity system (certification)

I post- vs. pre- vs. integrated development

I desired degree of automation / interaction

I proof search control architecture / concept / language

Approaches to and assumptions about (A)ITP (3)

setting here (for simplicity)

I Φ inductive consequence of E (first-order clauses), iff, for
every Herbrand interpretation H:

H |= E ⇒ H |= Φ

I axioms (specifications) E : Horn clauses with equality

I then unique (smallest) Herbrand interpretation IE of E exists

I moreover, for positive clauses c :

c inductive consequence of E iff IE |= c

however, also in other settings

I the analysis is essentially the same

I the basic problems are the same

I only their technical appearance is different

Outline

I Background
I Basics about induction
I (A)TP versus (A)ITP
I Approaches to and assumptions about (A)ITP

I Strategies in (A)ITP
I Why are strategies so important for (A)ITP?
I Which are the relevant strategic issues?

I State-of-the-art
I Systems for Induction
I Successes and Failures

I Problems and Challenges
I Technical / Logical Problems
I Control Issues
I Software Engineering Issues

I Theses

I Conclusion

Why are strategies so important for (A)ITP?

main reasons

I incompleteness of (inductive) proof methods

I structure and size of search space (infinitely branching in
several dimensions)

I recursive nature of inductive proof attempts

I difficulty of measuring progress
I control of search space

I what should be done (attempted) next?
I when should a proof attempt be considered to be failed

(hopeless)?
I what to do in this case?
I when should backtracking be applied?
I when and how to generalize?
I when and how to simplify (how far)?
I when and how to start induction (generate induction schema)?
I how to make induction hypothesis applicable (goal-directed)?
I when and how to perform case analysis?

Which are the relevant strategic issues? (1)

typical inductive proof structure
I try non-inductive methods

I inconsistency test, counterexample test
I ATP attempt (without induction)
I simplify as much as possible wrt. current database of

definitions and lemmas, . . .
I but: simplifiability may require inductive arguments!

I try induction
I analyze recursion structure in conjecture and involved functions
I generate candidate(s) for appropriate induction schemas based

on this analysis (involving some look-ahead)
I perform induction

I split into cases
I simplify
I make induction hypothesis applicable (cross-fertiziling, rippling

[Bundy et al’89+] . . .)

I generalize conjecture
I generate (auxiliary) lemma

Which are the relevant strategic issues? (2)

essential strategic control issues

I when to test for inconsistency? for the existence of
counterexamples?

I when to try ATP without induction?

I simplification infinitely branching/critical
I when?
I how? using which definitions / lemmas? in which order?
I (recursively) use induction to verify applicability of lemmmas?

C = D[lσ], l → r ⇐ c ∈ L, cσ?
I simplify to normal form?
I inverse simplification (expansion)? how far? non-termination!

I induction infinitely branching/critical
I compute and select appropriate induction scheme
I generate corresponding proof tasks

Which are the relevant strategic issues? (3)

essential strategic control issues (cont’d)
I case analysis infinitely branching/critical

I when? how? according to which criteria?
I many cases → less general, fewer cases → more general
I how to verify individual cases?

I generalization infinitely branching/critical
I when? how? syntactical/semantical? directly/indirectly?

e.g.: (A1 ∨ A2 ⇐ B1 ∧ B2)σ into A1 ⇐ B1

I using look-ahead?

I lemma generation / speculation infinitely branching/critical
I when? how? for what purpose?
I goal-directedness?
I does lemma suffice? or only help?
I organizational: top-down (relative ITP) or bottom-up (proofs

are final)

Which are the relevant strategic issues? (4)

organizational strategic issues (cont’d)
I concerning the data- and knowledge base (lemmas, . . .)

I in case of successful proof attempts
I which (intermediate) lemmas should be kept (stored)?
I in which form? in which order?
I as what kind of knowledge (rewrite, type, definition, . . .)?
I in structured (hierarchical / graph) form or flat (non-linked)?
I should knowledge base be modified (simplified) wrt. newly

proved inductive theorem?

I in case of failed proof attempts?

I concerning the control structure and knowledge base
I compute recursion analysis when introducing new definitions
I memory and history mechanism (e.g. for avoiding loops)
I overall proof search control structure
I layered model of proof search control (via strategies and

heuristics)

Outline

I Background
I Basics about induction
I (A)TP versus (A)ITP
I Approaches to and assumptions about (A)ITP

I Strategies in (A)ITP
I Why are strategies so important for (A)ITP?
I Which are the relevant strategic issues?

I State-of-the-art
I Systems for Induction
I Successes and Failures

I Problems and Challenges
I Technical / Logical Problems
I Control Issues
I Software Engineering Issues

I Theses

I Conclusion

State-of-the-art

assessment / comparison difficult

I no (regular) competition of (A)ITP systems

I no (widely accepted and used) benchmarks

I underlying logics and intended usage rather diverse

I amount of automation / interaction?

I usage typically requires quite considerable expertise

general observations

I full automation generally not (yet?) successful
I typical usage: (specification and) proof engineering with

I human guidance for modelling, proof structure / ideas, critical
I human guidance for lower-level control if necessary critical
I human failure analysis (with few automatic support) critical

I tradeoff automation – interaction (wrt. efficiency, success
rate, required expertise, flexibility of control, . . .)

Systems for Induction (1)

prominent systems (maintained)
I ACL2 (NQTHM successor) [Kaufmann/Manolios/Moore’02]

I efficient functional PL + ITP system
I impressive collection of non-trivial examples
I relatively high automation

I PVS [SRI]
I provides mechanized support for formal spec. and verification
I based on classical, typed higher-order logic
I partially automated, framework for decision procedures

I VSE/INKA [Hutter et al, DFKI]
I tool for supporting the formal software development process
I one focus: inductive proofs
I sophisticated search control strategies (during induction)

I ISABELLE/HOL [Nipkow/Paulson et al]
I generic theorem proving environment and proof assistant
I main application: formalization of math. proofs/ formal verif.
I very flexible, much interaction with expert user required

Systems for Induction (2)

other systems (some)
I RRL [Kapur/Zhang]

I rewrite-based, first-order
I different inductive proof techniques, high automation

I Oyster/CLAM [Bundy et al]
I tactic-based proof editor based on Martin-Löf constructive

type theory + proof planner
I meta language for constructing customized tactics for

individual conjectures, especially for rippling

I QuodLibet [Kühler/Wirth]
I specification language and ITP system for data types with

partial operations
I flexible control, user-oriented, with some automation

I PerfectDeveloper [Crocker;Escher Tech.]
I program development and verification tool for generating Java

or C++ programs
I Hoare-style pre-/post-condition approach, partially automated

Successes and Failures

successes
I computer supported specification and verification of complex

systems / relationships possible, e.g.
I prime factorization theorem
I undecidability of halting problem
I specification and verification of microprocessors

I often revealed errors in initial specifications / conjectures

failures

I in general low automation degree

I inductive specification and proof engineering is tedious and
difficult

I automatic support for failure analysis unsatisfactory

I building-in intelligence much more difficult than expected (by
optimists)

Outline

I Background
I Basics about induction
I (A)TP versus (A)ITP
I Approaches to and assumptions about (A)ITP

I Strategies in (A)ITP
I Why are strategies so important for (A)ITP?
I Which are the relevant strategic issues?

I State-of-the-art
I Systems for Induction
I Successes and Failures

I Problems and Challenges
I Technical / Logical Problems
I Control Issues
I Software Engineering Issues

I Theses

I Conclusion

Problems and Challenges (1)

Technical / Logical Problems

I building-in knowledge (when? how?)

I structuring / modularizing specifications and proof tasks

I extending decidable cases (classes)
I combining ITP system with tools for special purposes

I systems for particular data types / theories
I decision procedures for restricted theories
I combination mechanisms
I logical / operational interface?

I better methods for goal-directed reasoning

I better methods for look-ahead based reasoning

I generalization: when? why? how?

I generation of (auxiliary) lemmas: when? why? how?

I how to recognize, analyze and deal with failure?

I how to make ITP more robust (monotonic, semantic)?

Problems and Challenges (2)

Control Issues

I good strategies/heuristics are vital in ITP to generate and
deal with reasonable proof attempts

I basic question: what to do next, in view of the history, the
current data and the knowledge base?

I overall proof search model of an (A)ITP system
I is necessarily complex; must be flexible
I needs automation and interaction (for proof engineering)
I must allow/support interrupts, inspection, failure analysis and

relative proving
I should guarantee correctness requirements
I should be compatible with user interaction, navigation (in

search tree), information extraction, generation of proof objects
I must have different layers (for different types of reasoning)
I should allow the integration of/in other tools for subtasks/as

subsystem
I needs to integrate strategic/heuristic user input

Problems and Challenges (3)

Software Engineering Issues
I how to design/implement/apply a structured control concept

for proof search that
I is user-friendly, fully transparent, intelligible, flexible, extensible

and modifiable
I generates complete proof objects
I has a programmable strategy/heuristics language with clearly

defined semantics
I allows efficient proof engineering in real time
I allows unsafe reasoning (relative to unproved lemmas)
I allows a high degree of automation
I enables human user to quickly test/implement/model key ideas
I is able to integrate new tools / subtools (e.g. decision proc.)
I can easily be specialized to specific domains
I has an appropriate system for mainting / adapting / its

(large!) knowledge base

I HCI: how to do all this in a smart way as to interaction?

Outline

I Background
I Basics about induction
I (A)TP versus (A)ITP
I Approaches to and assumptions about (A)ITP

I Strategies in (A)ITP
I Why are strategies so important for (A)ITP?
I Which are the relevant strategic issues?

I State-of-the-art
I Systems for Induction
I Successes and Failures

I Problems and Challenges
I Technical / Logical Problems
I Control Issues
I Software Engineering Issues

I Theses

I Conclusion

Theses

I AITP in the near future will only be successful for
I very specialized domains (e.g., with fixed axiomatizations)
I for very restricted classes of conjectures

I substantial progress?
I increased robustness (more monotonic, semantics based)
I modularization, structuring and interaction of theories, proofs,

proof search
I appropriate framework(s) to model (and implement) strategic

proof search control
I expressive
I flexible: extensible, adaptable, programmable
I well-defined semantics
I layered (different levels)

I progress will take time, breakthroughs are unrealistic

Conclusion

I (A)ITP extremely important and ubiquituous as proof tasks

I (A)ITP hopeless without sophisticated strategic guidance

I (A)ITP will remain a very challenging specification and proof
engineering process

I necessary
I more foundational research (decidable case, decision

procedures, proof search models and architectures,
strategies/heuristics)

I more specialized (interesting) problem domains and (A)ITP
systems

I another point of view: (A)ITP as integrated combined
development (specification + verification) engineering that

I needs human guidance for high(er)-level decisions and key
ideas

I provides as much automatic support as possible

