
A Framework for Timed Concurrent

Constraint Programming with External

Functions 1

M. Alpuentea,2 B. Gramlichb,3 A. Villanuevaa,4

a DSIC, Technical University of Valencia
Valencia, Spain

b Faculty of Informatics
Vienna University of Technology

Vienna, Austria

Abstract

The timed concurrent constraint programming language (tccp in short) was introduced for modeling reactive
systems. This language allows one to model in a very intuitive way typical ingredients of these systems such
as timeouts, preemptions, etc. However, there is no natural way for modeling other desirable features such
as functional computations, for example for calculating arithmetic results. In fact, although it is certainly
possible to implement such kind of operations, each single step of the computation takes time in tccp, and
avoiding interferences with the intended overall behavior of the (reactive) system is quite involved.
In this paper, we propose an extension of tccp for modeling instantaneous computations which improves
the expressiveness of the language, in the sense that operations that are cumbersome to implement in pure
tccp, are executed by calling an efficient, external functional engine, while the tccp programmer can focus
on the pure, and usually more complex, reactive part of the system. We also describe a case study which
motivates the work, and discuss how the new capability presented here can also be used as a new tool for
developers from the verification point of view.

Keywords: Timed Concurrent Constraint language, Functional features, Case study

1 Introduction

The programming language Timed Concurrent Constraint Programming (tccp in

short) was introduced by F. de Boer et al. in [3] for modeling reactive systems,

i.e., concurrent systems which continuously interact with the user (and generally do

not terminate). tccp was defined as an extension of the ccp model introduced by

1 This work has been partially supported by the EU (FEDER) and the Spanish MEC under grants TIN2004-
7943-C04 and HA2006-0007, the ”ICT for EU-India Cross-Cultural Dissemination Project under grant
ALA/95/23/2003/077- 054”, and the Valencian Government under grant GV06/285.
2 Email: alpuente@dsic.upv.es
3 Email: gramlich@logic.at
4 Email: villanue@dsic.upv.es

Electronic Notes in Theoretical Computer Science 188 (2007) 143–155

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.05.043

mailto:alpuente@dsic.upv.es
mailto:gramlich@logic.at
mailto:villanue@dsic.upv.es
http://www.elsevier.com/locate/entcs

Saraswat in [12], which was ideally thought of as a simple but powerful model for

concurrency. The tccp language introduced two main modifications to the original

ccp model. On the one hand, an implicit notion of (discrete) time was included in

the semantics of tccp. On the other hand, a new conditional agent was introduced,

which is able to handle negative information that can be used to model timeouts

and preemptions.

In this paper, we propose an extension of tccp for modeling instantaneous func-

tions which allows us to simplify and speed up arithmetic calculations. Although it

is possible to implement arithmetic functions in tccp, the resulting implementation

of such functions is quite far from being intuitive. Moreover, these computations

consume unspecified amount of time, thus making the synchronization of processes

more difficult. For example, a given process might need some data that another

process is committed to compute, and this computation might take some time de-

pending on the data size. Thus, the calculation might slow down and eventually

disorder the overall execution of the system. We illustrate this problem by means

of an example in Section 3.

The new capability presented here can be used as a new tool for developers from

the verification point of view. It is well-known that verifying concurrent systems is

highly complex. In the context of tccp, where the synchronization among processes

is manually programmed, badly implemented calculations may cause synchroniza-

tion errors and even mask other communication anomalies which then become more

elusive to capture. In such cases, the possibility to perform an independent verifi-

cation for the reactive and the functional components of the system can be a very

helpful facility. External functions written in a functional language can be seen as

a specification of tccp function implementations and the programmer can check the

implementation of the whole tccp system by using the version with the external

functions. Assertions which use the external functions can also be introduced in

the tccp program, thus automatically verifying that they are satisfied during the

program execution.

In Section 2 we first introduce the tccp language, then in Section 3 we motivate

the proposed extension of the language by means of an example. We also provide the

semantics for the new construct. In Section 4 we illustrate the proposed extensions

by means of a representative example (the model of a coffee machine). We discuss

how we can use the new features to check tccp programs in Section 5. Finally, some

lines of further work and our conclusions are in Section 6.

2 The tccp language

The concurrent constraint programming framework (ccp) was defined as a simple

but powerful model for concurrent systems. Over the last decades, the model has

been extended in different ways, tccp being one of these extensions. tccp is a concur-

rent constraint language with a notion of time and a mechanism to capture negative

information. Similarly to other languages of the ccp family, tccp is parametric w.r.t.

an underlying constraint system. This implies that, at each time instant, there ex-

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155144

ists a global store which contains the information accumulated up to that specific

time instant.

The underlying constraint system determines the atomic propositions and con-

straints of the language. In the following we recall the essential aspects of tccp.

A tccp program P ::= D.A consists of a set of declarations D and an agent A.

A declaration D is defined as a set of declarations D.D or a clause of the form

D ::= p(x) :−A where x is a (possibly empty) list of variables, and A is an agent.

Finally, agents are defined as:

A ::= tell(c) |
∑

0<i<j

ask(ci) → Ai | now c then A else A | A||A | ∃xA | p(v)

The tell agent tell(c) adds the (atomic) constraint c to the global store. c must

be a constraint from the underlying constraint system.. The semantics of the agent

establishes that the constraint c is only available in the following time instant. In

other words, the execution of the tell agent takes one instant of time. The choice

agent
∑

0<i<j ask(ci) → Ai corresponds to non-deterministic choice. It executes

one of the branches Ai among theses whose guard ci is satisfied by the store at that

time. When a branch is taken, the execution of the corresponding Ai agent starts in

the following time instant. This means that also the execution of the choice agent

takes one instant of time. If no guard is entailed by the store, then the choice agent

suspends. In such cases, it is executed again in the following time instant.

Both the tell and the choice agents exist in the ccp paradigm (i.e., the model

without any notion of time). The only difference here is that their execution con-

sumes one time instant in tccp. The conditional agent now c then A1 else A2 is new

in tccp. This agent introduces the capability to capture negative information and,

thus, to model features such as timeouts or preemptions. The conditional agent

checks if the constraint c is satisfied by the store. In that case, the agent A1, cor-

responding to the then branch, is executed. Otherwise, the agent corresponding

to the else branch (A2) is run. It is important to remark that, in contrast to the

choice agent, the execution of the corresponding agent (A1 or A2) starts at the same

time instant as the conditional agent, i.e., at the same time instant as the guard

is checked. Note that another difference to the choice agent is the fact that the

conditional agent never suspends: The execution always continues either with the

then branch, or with the else one.

The ||-agent is the parallel agent, which is also defined in the ccp model. The

semantics of the parallel agent in ccp follows the interleaving approach whereas, in

the tccp language, parallelism is maximal parallelism. This means that each time

we have two or more parallel agents which can be executed, all of them are executed

concurrently, i.e., their execution starts at the same time instant. The semantics

for the hiding agent ∃xA coincides with the ccp version. This agent can be seen as

an existential quantification of variable x in agent A. In that way, we make variable

x local to agent A. Finally, p(v) is the procedure call agent. If there exists a clause

of the form p(x) :−A in the set of declarations, then the body A is executed in the

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155 145

following time instant.. Similarly to the choice and tell agents, also the procedure

call consumes time.

As said before, tccp is parametric w.r.t. a cylindric constraint system. Let

us briefly introduce the constraint system underlying the language. Intuitively, a

simple constraint system is a set of atomic constraints and an entailment relation

� which satisfies some specific properties. Formally:

Definition 2.1 (Simple Constraint System [12]) A simple constraint system

is a structure 〈C,�〉 where C is the set of atomic constraints and the entailment

relation �⊆ ℘(C) × C satisfies:

(i) u � C for all C ∈ u

(ii) u � C if u � C ′, ∀C ′ ∈ v, and v � C

The entailment relation can be extended to ℘(C)×℘(C) in the normal way. We

can obtain a cylindric constraint system, by adding an existential quantification

operator to a simple constraint system. Formally:

Definition 2.2 (Cylindric Constraint System [12]) A tuple 〈C,�,Var ,∃〉 is a

cylindric constraint system iff 〈C �〉 is a simple constraint system, Var is a denumer-

able set of variables and, for each x ∈ Var, there exists a function ∃x : ℘(C) → ℘(C)

such that, for each u, v ∈ ℘(C):

(i) u � ∃xu,

(ii) u � v then ∃xu � ∃xv,

(iii) ∃x(u ∪ ∃xv) = ∃xu ∪ ∃xv,

(iv) ∃x(∃yu) = ∃y(∃xu).

3 Instantaneous functions in tccp

Let us motivate our proposal by means of a simple example: A tccp program which

defines a deterministic arithmetic function. tccp was not specifically defined for

specifying this kind of programs but rather reactive systems, and for this reason the

code appears quite unnatural and clumsy.

We assume that the underlying constraint system supports Presburger Arith-

metic (that is, the first-order theory of the natural numbers with addition). Assume

also that no mechanism to ensure that a variable is non-free is provided in the con-

straint system. Also recall that in tccp there is no sequential composition agent.

Therefore, sequentialization must be achieved by explicit synchronization.

In the following program, the clause mult(N,M,Z,S) returns in Z the product

N*M. We manually synchronize the procedure calls by using an auxiliary variable S

which ensures that the arithmetic calculations (in the last line) are not attempted

before the recursive call has been successfully executed.

mult(N,M,Z,S) :-

now (M=1) then

(tell(Z=N) || tell(S=1))

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155146

else

∃M’,Z’,S’(tell(M’ is M - 1) ||

mult(N,M’,Z’,S’) ||

ask(S’=1) → (tell(Z is N+Z’) || tell(S=1)).

For example, the execution of the agent (goal) mult(3,3,Result,Sync) instan-

tiates, after a certain amount of time, variable Result to 9, and Sync to 1, which

signals the termination of the process. This particular execution takes 8 instants of

time, and what is more important, the time needed to finish a computation directly

depends on the input values of the call. A detailed trace of this execution can be

found in [2].

This is a very simple example, and we could have used an underlying constraint

system where the product operator was defined, but it is not realistic to assume

that we have a constraint system able to compute any function. In [14], the relation

between constraint systems and first-order logic is established. In that context,

a constraint system is defined as a pair (Σ,Δ), where Σ is a signature specifying

constants, functions and predicate symbols, and Δ is a consistent first-order theory

over Σ. The authors then define that c � d iff the formula c ⇒ d is true in all models

of Δ and, for operational reasons, they require � to be decidable. This restriction

also indicates which kind of constraint systems underlying tccp we can reasonably

assume and use.

Many complex arithmetical functions such as the factorial, square roots, etc.

impose strong dependencies among the data which can only be achieved in tccp by

a contrived sequentialization of processes as shown in the example above.

In the following, we present a declarative mechanism for supporting numerical

calculations in tccp (i.e., function calls have no side effects: Identical calls at different

points in time yield identical results). We propose a simple though practical classical

approach where the logic language is interfaced to an external functional language.

This has the advantage that the semantics of tccp can be easily adapted. More

sophisticated languages integrating functions and constraint exist such as Mercury

[13], Oz [15], Ciao [8], Curry [7], Toy [11], Gödel [10], Slam-sl [9], but none of them

extends the ask-tell paradigm with time.

3.1 The semantics of tccp with a function call agent

In Figure 1 we recall the original operational semantics of tccp. Let us add a new

function call agent in the syntax of the language. We write Y ← e to denote a

call e to an external function. External functions are not defined by explicit tccp

rules, but their semantics is determined by an external implementation which simply

requires e to be sufficiently instantiated. The interface to the external functional

engine consists of a binary predicate eval(e,V). The second argument must be a free

variable which is instantiated to the result v of the function call e after successful

execution. In that case, eval(e,V) becomes true. Then, in the following time instant,

the constraint Y = V is added to the store. We assume that this process takes a

constant amount of time: One time instant.

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155 147

r1 〈tell(c), s〉 −→ 〈stop, s c〉

r2 〈
∑n

i=0 ask(ci) → Ai, s〉 −→ 〈Aj , s〉 if 0 ≤ j ≤ n and s � cj

r3
〈A, s〉 −→ 〈A′, s′〉

〈now c then A elseB, s〉 −→ 〈A′, s′〉
if s � c

r4
〈B, s〉 −→ 〈B′, s′〉

〈now c then A else B, s〉 −→ 〈B′, s′〉
if s �� c

r5
〈A, s〉 �−→

〈now c then A else B, s〉 −→ 〈A, s〉
if s � c

r6
〈B, s〉 �−→

〈now c then A else B, s〉 −→ 〈B, s〉
if s �� c

r7
〈A, s〉 −→ 〈A′, s′〉 and 〈B, s〉 −→ 〈B′, s′′〉

〈A||B, s〉 −→ 〈A′||B′, s′ s′′〉

r8
〈A, s〉 −→ 〈A′, s′〉 and 〈B, s〉 �−→

〈A||B, s〉 −→ 〈A′||B, s′〉

r9
〈A, s1 ∃x s2〉 −→ 〈A′, s′〉

〈∃s1xA, s2〉 −→ 〈∃s′xA′, s2 ∃x s′〉

r10 〈p(x), s〉 −→ 〈A, s〉 if p(x) :−A ∈ D

Fig. 1. Original operational semantics of tccp

Below we provide the operational semantics for the function call agent 5 :

〈Y ← e, st〉 −→ 〈stop, st {Y = V}〉
if ∃ V.eval(e,V)

Note that the computed value v is only available in the store in the following time

instant. This is similar to what happens with the tell agent, that is, the execution

of the function call agent takes exactly one time unit.

We have reimplemented in Curry ([7]) our previous tccp interpreter which we had

written in Prolog. The new prototype includes the above construct for function calls.

The system can be found in http://www.dsic.upv.es/~villanue/tccp-func/.

We use Curry itself as the functional engine, external to the tccp interpreter. This

allows us to program functions in a natural way while making use of advanced fea-

tures such as type inference, higher-order features, partial application, equational

constraint solving, etc. However, we do not exploit the power of logical variables

in function calls which are available in Curry because we are only interested in de-

terministic computations. We represent all non-determinism within tccp. This is

compatible with the basic ask-tell principle and very similar to the classical connec-

tion of external functions to logic programs [5].

5 See [3] to recall the original semantics of tccp.

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155148

4 A Case Study

In this section we present a case study where the use of instantaneous functions

arises very naturally. The program models a coffee machine with the following

facilities:

• coins of 2d, 1d, 0.5d, 0.2d, 0.1d, 0.05d, 0.02d and 0.01d are accepted;

• the user can have some coffee (coffee), some milk coffee (mcoffee), only milk

(milk), some tea (tea), only a cup (cup) and he can also choose to cancel the

process (cancel);

• if the user makes a choice, but has not previously introduced enough money, the

machine requests more money; moreover, no drink is produced;

• if the user introduces more money than necessary, the machine returns the

change to the user;

• if the machine has not enough coins for returning the extra money to the

user (the difference between the price of the product and the total amount

introduced), then it does not supply the product, but it returns the whole

amount of money introduced by the user;

• the machine has different boxes for each kind of coin, thus it is able to concurrently

return a coin of each kind.

Next we explain the most important points in the specification of the coffee

machine. The complete code of this program can be found in [2]. First of all,

let us recall that streams are used in tccp to record the change of state. Each

single variable is associated to a stream (implemented as a logical list); that is, each

element of the list represents the value of the variable at a given time instant. This

allows us to handle imperative variables in the same way as logical lists are used in

concurrent logic languages. We write X = [Y |Z] for denoting a stream X recording

the current value Y of the considered variable and the stream Z of future values of

the same variable. Streams are also used in tccp as explicit communication channels

between tccp agents as illustrated in this section.

Now, we are ready to explain the clause which models the user behavior. In the

figure we only show a fragment and we write [...] to indicate that some code has

been omitted:

user(Free,Free’,Order,Cash,Cash’) :-

∃Free’’,Order’,Cash’’(

(ask(Free=[idle|Free’]) → ∃C (tell(Cash = [C|Cash’]) ||

insertCoin1(C,Cash’)) +

[...]

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155 149

ask(Free=[idle|Free’]) → tell(Order=[coffee|Order’]) +

ask(Free=[idle|Free’]) → tell(Order=[mcoffee|Order’]) +

[...]

ask(Free=[idle|Free’]) → tell(Order=[cancel|Order’]) +

ask(Free=[idle|Free’]) → tell(true)) ||

user(Free’,Free’’,Order’,Cash’,Cash’’)).

The user clause has five parameters:

• Free is a stream whose values can be either idle (when the machine is idle) or

busy (when the machine is processing an order).

• Free’ is an output stream parameter and corresponds to the tail of Free.

• Order is an output stream, whose head contains the selected order.

• Cash is a stream containing tuples with the money introduced by the user, clas-

sified by kinds of coins.

• Cash’ is the tail of Cash and corresponds to the updated money after the user

has introduced some more money.

The body of this clause is simply a non-deterministic choice between the different

actions that the user can perform, including the choice do nothing (the last one). In

case the user had introduced some money, the corresponding branch (depending on

the kind of coin) calls a devoted procedure insertCoin which records this amount.

insertCoin1(C,Cash) :-

∃ X1,X2,X3,X4,X5,X6,X7,X8 (

tell(C=c(X1,X2,X3,X4,X5,X6,X7,X8)) ||

ask(true)→ ∃X’(tell(X’ is X1+1) ||

tell(Cash=[c(X’,X2,X3,X4,X5,X6,X7,X8)|])))

In the insertCoin1 clause, the first tell agent stores in each Xi the number

of coins of each kind introduced up to that time instant. After that, first the

variable corresponding to the kind of coin introduced is updated, and then the

tuple storing the total number of coins is modified. In order to ensure that variable

Xi is instantiated before the update is done, a delay is forced by calling agent

ask(true).

The coffeeMachine procedure models the behavior of the coffee machine. The

Case argument is similar to the Cash one discussed above, and stores the total

number of coins in the machine case, that can be returned to the user.

The following program excerpt corresponds to the actions that the coffee machine

performs when the user presses the coffee button:
coffeeMachine(Free,Free’,Ordr,Ordr’,Cash,Case,Case’,Outpt,Chnge) :-

∃C,Inpt(tell(Case=[C|Case’]) ||
tell(Ordr=[|Ordr’]) ||
tell(Cash=[Inpt|]) ||
ask(Ordr=[coffee|]) →

∃ N(N ← paid(Inpt) ||
ask(true) →

now N≥0.3 then
∃ Chng(Chng ← change(0.3,C,Inpt) ||

tell(Free=[working|]) ||
tell(Outpt=[coffee|]) ||

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155150

tell(Change’=[Chng|]) ||
giveChange(Ordr’,Chng,Case,Case’))

else tell(Outpt=[moreMoney|])) +
ask(Ordr=[milk|]) →

∃ N(N ← paid(Inpt) ||
ask(true) →

now N≥0.35 then
∃ Chng(Chng ← change(0.35,C,Inpt) ||

tell(Free=[working|]) ||
tell(Outpt=[milk|]) ||
tell(Change’=[Chng|]) ||
giveChange(Ordr’,Chng,Case,Case’))

else tell(Outpt=[moreMoney|])) +
[...] +
ask(Ordr=[cancel|]) →

giveChange(Ordr’,Free,C,Case,Case’)) ||
coffeeMachine(Free’,Free’’,Ordr’,Ordr’’,Cash’,Case’,Case’’,Chnge’,Outpt’)

The structure of the declaration is as follows: Depending on the product chosen

by the user (which is recorded in the Order stream), the machine checks the stream

Cash to determine if enough money has been introduced. Here we use a function

paid to calculate the total amount of money introduced. This function is externally

implemented (in Curry) by simply adding the values of the different kinds of coins

recorded in stream Cash.

data Case = C Int Int Int Int Int Int Int Int

paid :: Case -> Int

paidC x1 x2 x3 x4 x5 x6 x7 x8 =

x1*2 + x2*1 + x3*0.5 + x4*0.2 + x5*0.1 + x6*0.05 + x7*0.02 + x8*0.01

Whenever the total amount is greater than the price of the product, we start

the process of supplying the product and (if necessary) returning the change, which

depends on the number of coins of each kind the machine has. Note that change is

again an external function, which represents the number of coins that the machine

must return to the user. The following code excerpt shows the implementation

of the change function, where Price represents the cost of the chosen product, C

the number of coins in the case of the machine, and Input the coins that have

been introduced by the user. The auxiliary function coinsFor calculates the total

amount of each kind of coin that the machine will give back to the user.

change :: Int -> Coins -> Coins -> Coins

change Price Input Case = coinsFor (Price - (paid Input)) Case

coinsFor :: Int -> Coins -> Coins

coinsFor x (C c1 c2 c3 c4 c5 c6)

| x >= 2 & c1 > 0 =

plus (C 1 0 0 0 0 0 0 0)

coinsFor (x-2) (C (c1-1) c2 c3 c4 c5 c6 c7 c8)

| x >= 1 & c2 > 0 =

plus (C 0 1 0 0 0 0 0 0)

coinsFor (x-1) (C c1 (c2-1) c3 c4 c5 c6 c7 c8)

[...]

| x >= 0.01 & c8 > 0 =

plus (C 0 0 0 0 0 0 0 1)

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155 151

coinsFor (x-0.01) (C c1 c2 c3 c4 c5 c6 c7 (c8-1))

| otherwise = (C -1 -1 -1 -1 -1 -1 -1)

plus :: Coins -> Coins -> Coins

plus (C x1 x2 x3 x4 x5 x6 x7 x8) (C y1 y2 y3 y4 y5 y6 y7 y8) =

C (x1+y1) (x2+y2) (x3+y3) (x4+y4) (x5+y5) (x6+y6) (x7+y7) (x8+y8)

Procedure giveChange returns the coins to the user and also updates the ma-

chine case. The coins are eventually returned in parallel whenever possible. Note

that this procedure uses the result calculated by the function change described

above. In case there are not enough coins for returning the required change, the

change function returns the value (C -1 -1 -1 -1 -1 -1 -1). In this way, this

situation could be detected by simply introducing a check about the returned value

Chng in the coffeeMachine process. However, for simplicity, we have not imple-

mented this checking in the current version of the code.

giveChange(Order,Change,Case,Case’) :-

∃D1,D2,D3,D4,D5,D6,D7,D8,X1,X2,X3,X4,X5,X6,X7,X8,C1,C2,C3,C4,C5,C6,C7,C8 (

tell(Change = c(D1,D2,D3,D4,D5,D6,D7,D8)) ||

tell(Case=[c(X1,X2,X3,X4,X5,X6,X7,X8)|Case’]) ||

ask(true) → (tell(C1 is X1-D1) || tell(C2 is X2-D2) ||

[...]

tell(C8 is X8-D8) ||

tell(Order=[no|]) || tell(Free=[idle|]))).

Finally, the system procedure synchronizes the machine and the user declara-

tions. Initially, the coffee machine has two coins of each class.

system(Case,Output) :- ∃ Free,Order,Cash,Cash’,Case’ (

tell(Free=[idle|]) ||

tell(Order = [no|]) ||

tell(Cash = [c(0,0,0,0,0,0,0,0)|Cash’]) ||

user(Free,Order,Cash,Cash’) ||

Case = [c(2,2,2,2,2,2,2,2)|Case’]) ||

coffeeMachine(Free,Order,Cash,Case,Case’,Output)).

5 Analysis and Run-time Verification

In this section we illustrate how instantaneous functions can be used in tccp to

verify some (static as well as dynamic) properties of the system.

Let us enumerate some properties that the user could be interested to check in

the model of the coffee machine:

(i) If an order is initiated and sufficient money has been introduced, then eventu-

ally the order is correctly completed (i.e., the product is supplied, the change

is correctly returned, the Case is consistently updated and the status of the

machine is reset); otherwise the machine returns the money.

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155152

(ii) If the user does not introduce enough money for the selected product, then no

action is performed unless the cancel button is pressed. In that case, inserted

coins are returned to the user.

Let us (partially) specify the former property above. Namely, that the Case is

correctly updated after the completion of an order. We have to check that the new

value of the machine case coincides with the amount Case + Cash - Change. In order

to verify this property, we introduce a new external function check that performs

the required computation.

check :: Coins -> Coins -> Coins -> Coins -> Bool

check (C x1 x2 x3 x4 x5 x6 x7 x8) (C y1 y2 y3 y4 y5 y6 y7 y8)

(C z1 z2 z3 z4 z5 z6 z7 z8) (C w1 w2 w3 w4 w5 w6 w7 w8) =

y1+w1-x1 == z1 && y2+w2-x2 == z2 && y3+w3-x3 == z3 &&

y4+w4-x4 == z4 && y5+w5-x5 == z5 && y6+w6-x6 == z6 &&

y7+w7-x7 == z7 && y8+w8-x8 == z8

Assume that the definition of the function call check(Change,C,C’,Cash) is

written in Curry and that the calls to this function are correctly sequentialized and

synchronized with the rest of the tccp code:

coffeeMachine(...) :-

[...]

ask(Order=[cancel|]) → giveChange(Order,Input,Case,Case’)) ||

check2(Change’,Case’,Case’’,Cash’) ||

coffeeMachine(Free’,Free’’,Order’,Order’’,Cash’,Case’,

Case’’,Change’, Output’))

[...]

check2(Change,Case,Case’,Cash) :-

∃B(B ← check(Change,Case,Case’,Cash) ||

ask(true) → now (B=0) then stop else skip.

These function calls in the program can be seen as a means to introduce in-

variants or assertions along the code. Such invariants are checked during system

execution, and the execution is interrupted in case one of the assertions is not sat-

isfied. Obviously, the invariants should not corrupt the behavior of the original

system, and it is the programmer who must take care of the synchronization.

It is also possible to program such checks at the program goal level, by using

shared variables to synchronize the main process with a dedicated monitor.

coffeeMachine(Free,Free’,Order,Order’,Cash,Case,Case’,Change,Output)

|| check2(Change,Case,Case’,Cash)

Regarding the dynamic properties, we can combine our methodology with the

constraint temporal logic defined in [4,1] which we illustrate as follows.

Consider again property (i) above. On one hand, we have to check that, when-

ever the coffee order is given to the machine, the latter eventually produces either

the coffee output or the moreMoney output. In the constraint temporal logic this

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155 153

can be written as:

�(Order = coffee→ �(Output = coffee ∨ Output = moreMoney))

More specifically, when the order coffee is given to the machine, and providing

that enough money has been introduced, then the machine must produce coffee

and returns the change. This can be specified as follows:

�(Order = coffee → money received→ (�(Output = coffee ∧

change returned)))

where money received and change returned are atomic predicates corresponding

to boolean properties that would have to be updated by the program at the appro-

priate time instant. Intuitively, money received should have to be updated each

time the system detects that the amount of money introduced is enough to serve

the chosen product. We could also check whether the machine’s state is working

whenever money received is true.

The second considered property checks the case when the user does not introduce

enough money. In such a case, if the cancel order is given, then the machine should

give back the whole amount of money introduced by the user up to that time instant.

This additional new dynamic property could be defined as follows:

�((Order = coffee ∧ ¬money received) →

((Output = idle ∧ ¬money received) U (

(Order = cancel ∧ �(change returned))

∨ money received)))

where change returned is another atomic predicate corresponding to the appro-

priate boolean property. The U operator denotes the classic until operator of the

temporal logic, defined also for the logic of [4].

We are currently improving our implementation by interfacing it with more

powerful external constraint solvers in Curry. As further work, we also plan to

develop a methodology to verify tccp code with external functions by adapting the

model checkers developed in [6].

6 Conclusions

In a timed concurrent system, where data are shared among the processes and one

process might wait for another to end, efficient synchronization policies are desired

that can detect the bottlenecks and speed up the execution of the system. As a

system with a support for time-dependent parallelism of the processes, tccp falls

into this category, and functional computations (especially arithmetic ones) turn

out to be actual bottlenecks in synchronizing the processes. Since tccp provides no

support for sequential computation, performing a simple arithmetic computation

may waste a considerable amount of time and also suspend the progress of all other

processes that require the result of this computation. In order to overcome these

drawbacks, we have developed a functional engine that can be plugged into the

tccp system. This significantly optimizes the performance of the system and brings

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155154

more usability to tccp. The case study presented in the paper shows the usefulness

of incorporating such aspects in tccp, especially in practical domains where it is

convenient to distinguish arithmetic computations from other parts of a problem

solving strategy.

References

[1] M. Alpuente, M.M. Gallardo, E. Pimentel, and A. Villanueva. A Real-Time Logic for tccp verification.
J. of Universal Computer Science, to appear, 2006.

[2] M. Alpuente, B. Gramlich, and A. Villanueva. Timed Concurrent Constraint programming with
External Functions. Technical Report DSIC-II/13/06, DSIC, Tech. Univ. Valencia, December 2006.
http://www.dsic.upv.es/˜villanue/agv06-tr.pdf.

[3] F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint Language. Information
and Computation, 161:45–83, 2000.

[4] F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Temporal Logic for reasoning about Timed Concurrent
Constraint Programs. In G. Smolka, editor, Proceedings of 8th International Symposium on Temporal
Representation and Reasoning, pages 227–233. IEEE Computer Society Press, 2001.

[5] S. Bonnier and J. Maluszynski. Towards a Clean Amalgamation of Logic Programs with External
Procedures. In Proceedings of the 5th Conference on Logic Programming & 5th Symposium on Logic
Programming, pages 311–326. MIT Press, 1988.

[6] M. Falaschi and A. Villanueva. Automatic Verification of Timed Concurrent Constraint programs.
Theory and Pract. of Logic Programm., to appear, 2006.

[7] M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2), March 2006. Available
at http://www.informatik.uni-kiel.de/˜curry.

[8] M. Hermenegildo. Some Methodological Issues in the Design of CIAO - A Generic, Parallel, Concurrent
Constraint System. In Proceedings of the International Conference on Principles and Practice of
Constraint Programming, volume 874 of LNCS, pages 123–133. Springer-Verlag, 1994.

[9] A. Herranz and J.J. Moreno-Navarro. Slam-sl tutorial. Technical report, Babel Group, School Of
Computer Science, Technical University of Madrid, 2001. Based on A. Herranz’s PhD. Thesis.

[10] P.M. Hill and J.W. Lloyd. The Gödel Programming Language. MIT Press, 1994. ISBN 0-262-08229-2.

[11] F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative System. In Proc.
of Int’l Conference on Rewriting Techniques and Applications, volume 1631 of LNCS, pages 244–247.
Springer-Verlag, 1999.

[12] V. A. Saraswat. Concurrent Constraint Programming Languages. The MIT Press, Cambridge, MA,
1993.

[13] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an efficient purely
declarative logic programming language. Journal of Logic Programming, 29:17–64, 1996.

[14] F. Valencia. Decidability of Infinite-State Timed CCP Processes and First-Oder LTL. Theoretical
Computer Science, 330(3):577–607, 2005.

[15] P. Van Roy, P. Brand, D. Duchier, S. Haridi, M. Henz, and C. Schulte. Logic programming in the
context of multiparadigm programming: the Oz experience. Theory and Practice of Logic Programming,
3(6):715–763, 2003.

M. Alpuente et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 143–155 155

	Introduction
	The tccp language
	Instantaneous functions in tccp
	The semantics of tccp with a function call agent

	A Case Study
	Analysis and Run-time Verification
	Conclusions
	References

