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Abstract

Intuitionistic logic and intuitionistic type systems are commonly used as frame-
works for the specification of natural deduction proof systems. In this paper we
show how to use classical linear logic as a logical framework to specify sequent
calculus proof systems and to establish some simple consequences of encoded
sequent calculus proof systems. In particular, derivability of an inference rule
from a set of inference rules can be decided by bounded (linear) logic program-
ming search on the encoded rules. We also present two simple and decidable
conditions that guarantee that the cut rule and non-atomic initial rules can be
eliminated.
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cut elimination

1. Introduction

Intuitionistic logic with quantification at (non-predicate) higher-order types
[1, 2, 3] and dependently typed λ-calculi [4, 5, 6] can be used as meta-logics to
specify proof systems for a range of object logics. A major advantage of using a
“logical” or “type-theoretical” framework to specify a proof system is that they
support levels of abstraction that facilitate writing declarative specifications of
object-logic proof systems. For example, if the framework contains λ-binding,
α, β, η-conversions, and higher-order quantification, then these can be used to
encode all formula-level and proof-level bindings and the associated notions of
equality and substitution. Similarly, these frameworks provide context man-
agement (via eigenvariables and hypothetical assumptions) that an object-level
specification can exploit directly. Furthermore, implementations of such frame-
works using unification and backtracking search can provide partial or complete
implementations of natural deduction specifications [7, 8, 9]. Intuitionistic lin-
ear logic and a dependently typed λ-calculus with linear types have also been
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used as more expressive frameworks for the specification of a wider range of
natural deduction proof systems [10, 11].

In this paper, we shall move from a meta-logical framework based on intu-
itionistic principles to one based on classical principles, particularly, those found
within linear logic. The availability of classical principles in the framework al-
lows us to capture directly the dualities that are present within the sequent
calculi, such as De Morgan dualities, left/right duality, and the cut rule/initial
rule duality. While intuitionistic linear logic can be used to encode sequent
calculus [12], the associated dualities are not directly expressible in an intu-
itionistic framework. A linear logic meta-logic allows us to write simple linear
logic formulas that capture the relationship between specification of left and
right-introduction rules for an object-level logical connective. We show that
if those formulas are, in fact, theorems of linear logic then the cut rule and
non-atomic initial inference rules can be eliminated. Furthermore, we prove
that if those linear logic formulas have proofs then they have short proofs: this
makes it possible to show that this sufficient condition for cut-elimination and
non-atomic initial-elimination is decidable.

This paper is structured as follows. Linear logic and a focused proof system
for it are presented in Section 2. The general approach to specifying sequent
calculus inference rules in linear logic is described in Section 3 and illustrated
with examples in Section 4. Section 5 provides a decision procedure that deter-
mines if one set of inference rules entails another set. Sections 6 and 7 shows
how linear logic can be used to provide simple and direct proofs of a number
of properties of a specified sequent system, such as the elimination of cuts and
non-atomic initial rules. Finally, we describe some related work in Section 8
and conclude in Section 9. This paper collects together most of the results from
three conference papers [13, 14, 15] by the authors.

2. Linear logic

By the name LL we shall mean the logic that results from merging the logical
connectives and proof rules of linear logic [16] with the term and quantificational
structure of Church’s Simple Theory of Types [17]. More precisely, simple types
are either primitive types, of which o is a reserved primitive type denoting for-
mulas, or functional types that are written using an infix arrow τ → τ ′. A type
is a predicate type if it is of the form τ1 → · · · → τn → o, where n ≥ 0. The
order of a type is a count of the number of occurrences of → that appear to the
left of a →: for example, primitive types are of order 0; o → o and o → o → o
are of order 1; and (i → o) → o is of order 2. Terms are simply typed λ-terms
and we identify two terms up to the usual α, β, and η-conversions. A term is
λ-normal if it contains no β and no η redexes. All terms are λ-convertible to
a term in λ-normal form, and such a term is unique up to α-conversion. The
substitution notation B[t/x] denotes the λ-normal form of the β-redex (λx.B)t.
A formula is a term of type o.

The logical connectives for LL are those of linear logic: these can be divided
into the following groups: the multiplicative version of conjunction, true, disjunc-
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tion, and false, which are written as ⊗, 1, O, ⊥, respectively; and the additive
version of these connectives, which are written as &, >, ⊕, 0, respectively; the
exponentials ! and ? and the (typed) universal and existential quantifiers ∀τ and
∃τ . In the quantifiers, the syntactic variable τ can range over all non-predicate
types: ∀τ and ∃τ both have type (τ → o) → o. The expressions ∀τλx.B and
∃τλx.B are abbreviated as the more usual ∀τx.B and ∃τx.B. The subscript τ
is often dropped when it is not important or it can be determined from context.
Negation is a logical connective that has only atomic scope: if B is a general
formula then B⊥ denotes the result of moving negations inward until it has only
atomic scope (such formulas are in negation normal form). For convenience, the
expressions A −◦ B, A ⇒ B, and A ≡ B are defined as, respectively, A⊥OB,
(!A)−◦B, and (A−◦B) & (B −◦A).

We write `LL ∆ to denote entailment in the usual sense of linear logic [16]
(we provide an explicit proof system for linear logic in Section 2.1).

2.1. A focused proof system for linear logic

In [18], Andreoli introduced a normal form of cut-free proofs in linear logic
that plays an important role in our ability to use linear logic to specify inference
rules. This normal form of proof is given by a focused proof system that is or-
ganized around providing two “phases” of proof construction, one for invertible
inference rules and one for not-necessarily-invertible inference rules.

The connectives of linear logic can be divided into two classes. The negative
connectives have invertible introduction rules: these connectives are O, ⊥, &,
>, ∀, and ?. The positive connectives are the de Morgan duals of the nega-
tive connectives, namely, ⊕, 0, ⊗, 1, ∃, and !. A formula is positive if it is a
negated atom or its top-level logical connective is positive. Similarly, a formula
is negative if it is an atom or its top-level logical connective is negative.

The one-sided version of the focused proof system LLF is given in Figure 1
(the variable y in the [∀] rule is restricted so that it is not free in any formula of its
conclusion). A literal is either an atomic formula or a negated atomic formula.
In LLF, there are two kinds of sequents: Ψ; ∆ ⇑ L and Ψ; ∆ ⇓ F , where Ψ is a set
of formulas, ∆ is a multiset of formulas, L is a list of formulas, and F is a formula.
The inference rules with ⇑ in the premises and conclusion are the invertible rules.
A sequence of these rules, reading them bottom-up, deals with the “don’t-care
non-determinism” of proof search: in this negative phase of proof construction,
no backtracking on the selection of inference rules is necessary. The inference
rules with ⇓ in the conclusion are the non-invertible rules. A sequence of these
rules, reading them bottom-up, deals with the “don’t-know non-determinism” of
proof search: in this positive phase of proof construction, choices within inference
rules can lead to failures for which one may need to backtrack. The negative
phase ends (reading proofs bottom-up) when all formulas in L are “processed”:
that is, when L is the empty list. The positive phase begins by choosing (via one
of the decide rules [D1] or [D2]) a formula F on which to focus. Positive rules
are applied to F until either a negated atom is encountered (and the proof must
end using an initial rule [I1] or [I2]) or a negative subformula is encountered
(and the proof switches to the negative phase). This means that focused proofs
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Negative rules

Ψ; ∆ ⇑ L
Ψ; ∆ ⇑ ⊥, L

[⊥]
Ψ; ∆ ⇑ F,G,L
Ψ; ∆ ⇑ FOG,L

[O]
Ψ, F ; ∆ ⇑ L
Ψ; ∆ ⇑ ?F,L

[?]

Ψ; ∆ ⇑ >, L
[>]

Ψ; ∆ ⇑ F,L Ψ; ∆ ⇑ G,L
Ψ; ∆ ⇑ F &G,L

[&]
Ψ; ∆ ⇑ F [y/x], L

Ψ; ∆ ⇑ ∀x.F, L
[∀]

Positive rules

Ψ; · ⇓ 1
[1]

Ψ; ∆1 ⇓ F Ψ; ∆2 ⇓ G
Ψ; ∆1,∆2 ⇓ F ⊗G

[⊗]
Ψ; · ⇑ F
Ψ; · ⇓ !F

[!]

Ψ; ∆ ⇓ F1

Ψ; ∆ ⇓ F1 ⊕ F2
[⊕l]

Ψ; ∆ ⇓ F2

Ψ; ∆ ⇓ F1 ⊕ F2
[⊕r]

Ψ; ∆ ⇓ F [t/x]

Ψ; ∆ ⇓ ∃x.F
[∃]

Identity, Decide, and Reaction rules

Ψ;A ⇓ A⊥
[I1]

Ψ, A; · ⇓ A⊥
[I2]

Ψ; ∆ ⇓ F
Ψ; ∆, F ⇑ ·

[D1]
Ψ, F ; ∆ ⇓ F
Ψ, F ; ∆ ⇑ ·

[D2]

In [I1] and [I2], A is atomic; in [D1] and [D2], F is not an atom.

Ψ; ∆, F ⇑ L
Ψ; ∆ ⇑ F,L

[R ⇑] provided that F is positive or an atom

Ψ; ∆ ⇑ F
Ψ; ∆ ⇓ F

[R ⇓] provided that F is negative

Figure 1: Focused proof search in linear logic LLF.

can be seen (bottom-up) as a sequence of alternations between negative and
positive phases.

An earlier precursor to this style of focused proof construction was the work
on uniform proofs that was used to provide a proof theory foundations for logic
programming. In the terminology of uniform proofs [19, 20], goal-reduction
corresponds to the negative phase and backchaining corresponds to the positive
phase.

The following theorem is proved by Andreoli in [18].

Theorem 1. If B is a linear logic formula, then `LL B if and only if the
sequent ;⇑ B is provable in LLF (Figure 1).

Given that we are using a one-sided sequent calculus throughout this paper
for linear logic, we modify the usual definition of logical entailment as follows.

Definition 2. Let X be a finite set of linear logic formulas. A formula C is
entailed by X if the sequent X ; · ⇑ C has an LLF proof. Similarly, A entails
B with respect to the set X if the sequent X ; · ⇑ A⊥, B has an LLF proof.
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Furthermore, we say that A and B are equivalent with respect to X if A entails
B and B entails A both with respect to X or, equivalently, A ≡ B is entailed
by X .

Focusing provides a rather immediate and natural operational semantics to
proof search. Consider, for example, the sequent Ψ; ∆ ⇑ · where the formula
A⊥ ⊗B⊥ ⊗ (CODOE) is a member of Ψ, where A, B, C, D, and E are atomic
formulas, and where Ψ does not contain any atomic formulas. One way to
proceed in attempting a proof of this sequent is to select (via [D2]) this formula
as focus: this yields the sequent

Ψ; ∆ ⇓ A⊥ ⊗B⊥ ⊗ (CODOE).

By applying two occurrences of [⊗], this sequent reduces to proving the three
sequents

Ψ; ∆1 ⇓ A⊥ Ψ; ∆2 ⇓ B⊥ Ψ; ∆′ ⇓ CODOE,

where ∆ is the multiset union of ∆1, ∆2, and ∆′. Notice that the first two of
these sequents are provable if and only if they are instances of the [I1], in which
case, ∆1 is {A} and ∆2 is {B}. Finally, the third sequent above is provable
if and only if Ψ; ∆′, C,D,E ⇑ · is provable. Thus, the selection of the formula
A⊥ ⊗B⊥ ⊗ (CODOE) for focus yields the “big-step” inference rule

Ψ; ∆′, C,D,E ⇑ ·
Ψ;A,B,∆′ ⇑ ·

In other words, selecting this particular formula for focused proof construction
is only possible if A and B are currently in the context and if the result of
replacing them with C, D, and E is also provable. More generally, selecting the
formula A⊥1 ⊗ · · · ⊗A⊥n ⊗ (B1O · · ·OBm) (where n+m > 0 and A’s and B’s are
atomic) for focus yields the big-step rule

Ψ; ∆, B1, . . . , Bm ⇑ ·
Ψ; ∆, A1, . . . , An ⇑ ·

which can be interpreted as multiset rewriting: within a given multiset contain-
ing the multiset {A1, . . . , An}, replace that sub-multiset with {B1, . . . , Bm}.

For a second example, consider proving the sequent Ψ; ∆ ⇑ · by focusing on
the formula

A3 ⊗ !A4 ⊗A5 ⊗A⊥1 ⊗A⊥2 ,

which is assumed to be a member of Ψ (once again, we will assume that Ψ does
not contain any atomic formulas). Here, A1, . . . , A5 are atomic formulas. This
focusing phase is only successful if ∆ is the multiset union of {A1, A2} and two
multisets ∆′ and ∆′′ and the sequents

Ψ; ∆′, A3 ⇑ · Ψ;A4 ⇑ · Ψ; ∆′′, A5 ⇑
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are all provable. Focusing on this particular formula provides the big-step in-
ference rule

Ψ; ∆′, A3 ⇑ · Ψ;A4 ⇑ · Ψ; ∆′′, A5 ⇑
Ψ;A1, A2,∆′,∆′′ ⇑ ·

The use of the ! exponential allows one to control, to some extent, how the linear
context ∆ is divided during the search for a proof.

2.2. Bipoles

The correspondence between focusing on a formula and an induced big-step
inference rule is particularly interesting when the focused formula is a bipole
[21].

Definition 3. A monopole formula is a linear logic formula that is built up from
atoms and occurrences of the negative connectives, with the restriction that ?
has atomic scope. A bipole is a formula built from monopoles and negated atoms
using only positive connectives, with the additional restriction that ! can only
be applied to a monopole. We shall also insist that a bipole is either a negated
atom or has a top-level positive connective.

The last restriction on bipoles forces them to be different from monopoles:
bipoles are always positive formulas. If M is a monopole then M ⊗ 1 is a bipole
that is logically equivalent to it. Using the linear logic distributive properties,
monopoles are equivalent to formulas of the form

∀x1 . . . ∀xp[&i=1,...,nOj=1,...,mi
Bi,j ],

where the Bi,j are either atoms or the result of applying ? to an atomic formula.
Similarly, bipoles can be rewritten as formulas of the form

∃x1 . . . ∃xp[⊕i=1,...,n ⊗j=1,...,mi Ci,j ],

where Ci,j are either negated atoms, monopole formulas, or the result of apply-
ing ! to a monopole formula. Notice that the units >, 0, ⊥, and 1 are 0-ary
versions of &, ⊕, O, and ⊗, respectively.

Given this normal representation of bipoles and according to the focusing
discipline, it turns out that, once introduced, a bipole is completely decomposed
into its atomic subformulas, a fact illustrated by the following bipole derivation.

· · ·

· · ·
Ψ′; Γ′ ⇑ ·

Ψ; Γ′ ⇑Oj=1,...,mi?Ai,j

[O, ?]
· · ·

Ψ; Γ′ ⇑ ∀x1 . . .∀xp[&i=1,...,nOj=1,...,mi?Ai,j ]
[∀,&]

Ψ; Γ′ ⇓ ! ∀x1 . . .∀xp[&i=1,...,nOj=1,...,mi?Ai,j ]
[!]

· · ·
Ψ; Γ ⇓ ∃x1 . . .∃xt[⊕i=1,...,k ⊗j=1,...,qi Ci,j ]

[∃,⊕,⊗]

Here Ai,j is atomic for all i, j. If the connective ! is not present, then the rule !
is replaced by the rule R ⇓. Notice that the derivation above contains a single
positive and a single negative phase. This two phase decomposition will enable
the adequate capturing of the application of an object-level inference rule by
the meta-level logic.
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3. Encoding sequent systems

We now consider the logic LL as a “meta-logic” and the formulas of a first-
order logic as the “object-logic” and then illustrate how sets of bipoles in lin-
ear logic can be used to encode sequent calculi proof systems for the object-
logic. Let obj be the type of object-level formulas and let b·c and d·e be two
meta-level predicates, both of type obj → o. Object-level sequents of the form
B1, . . . , Bn −→ C1, . . . , Cm (where n,m ≥ 0) are encoded as the linear logic
formula

bB1cO · · ·ObBncOdC1eO · · ·OdCme

or, equivalently, as the multiset {bB1c, . . . , bBnc, dC1e, . . . , dCme} within the
LLF proof system. The b·c and d·e predicates identify which object-level for-
mulas appear on which side of the sequent arrow. A useful mnemonic: the
predicate that is used to mark left-hand-side formulas b·c is written with an L
and its mirror image.

3.1. Encoding inference rules

Let Q be the set {b·c, d·e}: that is, Q contains the two predicates of LL that
are central to our specification of object-level proof systems. The constants
denoting object-level logical connectives have types of order 0, 1, or 2. Typical
examples of object-level constants at various orders are: true and false are of
order 0; conjunction, disjunction, and implication are of order 1; and universal
and existential quantifiers are given using constants of order 2. We shall also
assume that object-level quantification is first-order and over one domain, de-
noted at the meta-level by d. This is a simplifying assumption only: supporting
multi-sorted object-level quantification is no challenge in this setting.

Definition 4. An introduction clause is a closed bipole formula of the form

∃x1 . . . ∃xn[(q(�(x1, . . . , xn)))⊥ ⊗ F ]

where � is an object-level connective of arity n (n ≥ 0) and q ∈ Q. Furthermore,
F does not contain negated atoms and an atom occurring in F is either of the
form p(xi) or p(xi(y)) where p ∈ Q and 1 ≤ i ≤ n. In the first case, xi has
type obj while in the second case xi has type d → obj and y is a variable (of
type d) quantified (universally or existentially) in F (in particular, y is not in
{x1, . . . , xn}).

In general, focusing on the introduction clause above replaces an atom
q(�(t1, . . . , tn)) with the formula F [t1/x1, . . . , tn/xn]. Since this formula is a
bipole, it will be immediately decomposed into its atomic subformulas, hence
capturing in one meta-level step of derivation the one object-level step of ap-
plying an inference rule.

Consider, for example, the specification of the logical inference rules for
object-level conjunction, represented here as the infix constant ∧ of type obj→
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obj→ obj. The additive version of the inference rules for this connective is the
following

∆, A −→ Γ

∆, A ∧B −→ Γ
∧ L1

∆, B −→ Γ

∆, A ∧B −→ Γ
∧ L2

∆ −→ Γ, A ∆ −→ Γ, B

∆ −→ Γ, A ∧B
∧ R.

These three inference rules can be specified in linear logic using the clauses

(∧L) ∃A,B(bA∧Bc⊥⊗(bAc⊕bBc)). (∧R) ∃A,B(dA∧Be⊥⊗(dAe&dBe)).

Thus, these additive rules make use of two (dual) meta-level additive connec-
tives: & and ⊕. The multiplicative version of the introduction rules for ∧ is
usually specified as follows:

∆, A,B −→ Γ

∆, A ∧B −→ Γ
∧ L ∆1 −→ Γ1, A ∆2 −→ Γ2, B

∆1,∆2 −→ Γ1,Γ2, A ∧B
∧ R.

These two inference rules can be specified by the following clauses

(∧L) ∃A,B(bA∧Bc⊥⊗(bAcObBc)). (∧R) ∃A,B(dA∧Be⊥⊗(dAe⊗dBe)).

Thus, these multiplicative rules make use of two (dual) meta-level multiplicative
connectives: ⊗ and O.

The introduction rules for implications are often written multiplicatively as

∆1 −→ Γ1, A ∆2 −→ Γ2, B

∆1,∆2, A ⊃ B −→ Γ1,Γ2
⊃ L

∆, A −→ Γ, B

∆ −→ Γ, A ⊃ B
⊃ R

These two inference rules can be specified as the following clauses

(⊃ L) ∃A,B(bA ⊃ Bc⊥⊗ (dAe⊗bBc)). (⊃ R) ∃A,B(dA ⊃ Be⊥⊗ (bAcOdBe)).

The quantification of higher-order types that is available in our meta-logic
makes it a simple matter to encode inference rules for object-level quantifiers.
In fact, the usual left and right introduction rules for the object-level universal
quantifier can be written as

(∀L) ∃B(b∀Bc⊥ ⊗ ∃xbBxc). (∀R) ∃B(d∀Be⊥ ⊗ ∀xdBxe).

Here, the symbol ∀ is used for both meta-level and object-level quantification: at
the object-level ∀ has the type (d→ obj)→ obj. Thus the variable B above has
the type d→ obj. These quantifier rules make use of two meta-level quantifiers.

3.2. Encoding weakening and contraction

There are at least three ways to treat the structural rules of weakening and
contraction. One method encodes them directly as the bipoles

(WeakL) ∃B(bBc⊥⊗ ⊥). (ContL) ∃B(bBc⊥ ⊗ (bBcObBc)).

(WeakR) ∃B(dBe⊥⊗ ⊥). (ContR) ∃B(dBe⊥ ⊗ (dBeOdBe)).
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To illustrate how focusing on the (ContL) formula yields a contraction rule for
the encoded proof system, consider the following derivation (here, we assume
that the formula (ContL) is a member of the set Ψ):

Ψ; bBc ⇓ bBc⊥
[I1]

Ψ; Γ, bBc, bBc ⇑ ·
Ψ; Γ ⇑ bBc, bBc

[R ⇑]× 2

Ψ; Γ ⇑ bBcObBc
[O]

Ψ; Γ ⇓ bBcObBc
[R ⇑]

Ψ; Γ, bBc ⇓ bBc⊥ ⊗ (bBcObBc)
[⊗]

Ψ; Γ, bBc ⇑ ·
[D2], [∃]

Another treatment of the structural rules involves making direct use of linear
logic exponentials. For example, consider an intuitionistic proof system with
sequents having exactly one right-hand formula and where formulas on the left
can be contracted and weakened. A natural encoding of a sequent in such a
system is the LL formula

?bB1cO · · ·O?bBncOdCe

or the LLF sequent Ψ, bB1c, . . . , bBnc; dCe ⇑, where Ψ contains the LL encoding
of inference rules as bipoles. Notice that, by using linear logic exponentials in
this way, we can capture directly only two kinds of context maintenance: either
both weakening and contraction are available or neither is available.

Focusing on a bipole representing an introduction rule typically reads-out an
atomic formula from the context and then writes back some formulas. If that
atomic formula is marked with a ? (or resides in the left-most context in an LLF
sequent) then that formula is not deleted but it is maintained. Of the formulas
written into the context, some or all of them might need to be marked by ? as
well. One way to do this is to prefix formulas in the body of the introduction
rule with ?. For example, the left-introduction for implication can be written
as

∃A,B(dA ⊃ Be⊥ ⊗ (?bAcOdBe)).

With such a clause, the newly inserted bAc will be marked by ? and, as a result
of focusing, it will find its way into the context where formulas are implicitly
marked with ?.

Instead of doing this marking in the body of every introduction rule, we
could adopt the following bipoles into the specification of our proof system.

(Neg) ∃B(dBe⊥ ⊗ ?dBe) (Pos) ∃B(bBc⊥ ⊗ ?bBc).

With these assumptions, the structural rules of weakening and contraction can
be specified so that they both apply to all left-hand or all right-hand formulas.
In the following, the clauses Neg and Pos will be called our structural clauses.
Notice that a consequence of Neg is the equivalence of dBe and ?dBe and a
consequent of Pos is the equivalence of bBc and ?bBc.
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Linear logic and the LLF proof system distinguishes between two kinds of
formulas: linear formulas, on which no structural rule is applicable and un-
bounded formulas on which structural rules are applicable. This distinction
corresponds to the difference between the two left-most contexts in LLF se-
quents. Thus, when encoding object-level sequents ∆ −→ Γ, the contexts ∆
and Γ are either multisets or sets of formulas. As a result, non-commutative
logics and their sequent calculus, which use lists as contexts, cannot be described
in the framework we have described here. Similarly, the exponentials used in
light linear logics [22] do not fit our framework. On the other hand, it is simple
to generalize our framework here to include the so called subexponentials [23]
in order to strengthen the expressiveness of LLF and to permit the encoding of
more proof systems [24].

3.3. The initial and cut rules

The initial rule, which asserts that the sequent B −→ B is provable, can be
specified by the clause

(Init) ∃B(bBc⊥ ⊗ dBe⊥),

Operationally, focusing on this clause must lead to a complete LLF proof in
just one phase, involving the one occurrence of both [∃] and [⊗] as well as two
occurrences of initial rules (either [I1] or [I2]).

The cut rule, which is usually written multiplicatively as the inference rule

∆1 −→ Γ1, B ∆2, B −→ Γ2

∆1,∆2 −→ Γ1,Γ2
Cut .

can be specified by the clause

(Cut) ∃B(dBe ⊗ bBc),

Operationally, focusing on this clause splits the multiset context of an LLF
sequent into two parts: in one split a left-appearing copy of B is placed and
into the other split a right-appearing copy of B is placed. The resulting two
sequents remain to be proved.

The Init and Cut clauses together prove that b·c and d·e are duals of each
other: that is, they entail the equivalence ∀B(bBc⊥ ≡ dBe). The duality en-
forced by the cut and initial rules, made concise by the use of negation, is also
stressed and similarly expressed in the Calculus of Structures [25].

3.4. Adequacy of encodings

The application of an inference rule in an object-level proof system is con-
sidered to be an atomic step. At the meta-level, however, such an inference rule
might be encoded using an introduction clause containing several meta-logical
connectives. It is important to qualify, in our setting, how well inference at the
meta-level matches inference in the object-logic. Following [26], we will iden-
tify three levels of adequacy of encodings. The least restrictive level is based
on relative completeness: that is, at this level, the set of provable sequents is
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the same – an object-level sequent has a proof if and only if the correspond-
ing meta-level sequent has a proof. The second level of adequacy is based on
full completeness of proofs: that is, the proofs of an object-level sequent are in
one-to-one correspondence with the meta-level proofs of the encodings of the
object sequent. Finally, the most restrictive level of adequacy is based on full
completeness of derivations: that is, the object-level derivations (partial proofs,
such as inference rules themselves) are in one-to-one correspondence Focusing
is the critical device that allows us to state and prove such adequacy results.

Example 5. The additive version of the right-introduction for conjunction was
given in Section 3.1 as

(∧R) ∃A,B(dA ∧Be⊥ ⊗ (dAe& dBe)).

To see the sense in which that clause encodes the object-level right-introduction
of conjunction, consider the object-level sequent

D1, . . . , Dn −→ A ∧B,C1, . . . , Cm

Let Ψ be some collection of linear logic formulas that includes the (∧R) clause
and let ∆ be the multiset of formulas {bB1c, . . . , bBnc, dC1e, . . . , dCme}. Con-
sider the following focused derivation:

Ψ; dA ∧Be ⇓ dA ∧Be⊥
[I1]

Ψ; ∆, dAe ⇑ ·
Ψ; ∆ ⇑ dAe

[R ⇑]
Ψ; ∆, dBe ⇑ ·
Ψ; ∆ ⇑ dBe

[R ⇑]

Ψ; ∆ ⇑ dAe& dBe
[&]

Ψ; ∆ ⇓ dAe& dBe
[R ⇓]

Ψ; ∆, dA ∧Be ⇓ dA ∧Be⊥ ⊗ (dAe& dBe)
[⊗]

Ψ; ∆, dA ∧Be ⇓ ∃A,B.dA ∧Be⊥ ⊗ (dAe& dBe)
[∃]× 2

Ψ; ∆, dA ∧Be ⇑ ·
[D2]

Thus, the process of selecting the (∧R) clause and completing the positive and
negative phases can be seen as replacing the need to prove the above object-
level sequent with that of the two sequents B1, . . . , Bn −→ A,C1, . . . , Cm and
B1, . . . , Bn −→ B,C1, . . . , Cm.

3.5. Advantages of such encodings

The encoding of an object-level proof system into theories in linear logic
has certain advantages over inference figures (in the style of, say, Gentzen).
For example, the LL specifications do not deal with context explicitly and
instead they concern only the formulas that are directly involved in the in-
ference rule. The distinction between making the inference rule additive or
multiplicative is achieved in inference figures by explicitly presenting contexts
and either splitting or copying them. The representation through linear logic
clauses achieves the same distinction using meta-level additive or multiplicative
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connectives. The meta-logic can also be used to handle object-level quantifica-
tion directly: object-level instantiation of quantifiers is achieved by meta-level
β-reductions and object-level eigenvariable conditions are handled by the cor-
responding condition built into the meta-logic. Similarly, the structural rules
of contraction and weakening can be captured together using ?. Furthermore,
encoding conventional inference figures as formulas has the advantage that the
latter are easier to formally manipulate than the former.

Another advantage of this style of encoding is that a logic programming
implementation of linear logic could provide a prototype implementation of any
encoded object-logic. Some examples from Section 4 were implemented in the
system TATU and are available at http://www.logic.at/people/giselle/

tatu/.
There are some disadvantages to using linear logic as a meta-theory: in

particular, proof systems containing non-commutative connectives or modal op-
erators probably cannot be captured.

4. Some example specifications

We now present the linear logic encoding of a number of different kinds of
sequent calculus proof systems as well as a natural deduction proof system.

4.1. Linear, classical, and intuitionistic logics

Figures 2, 3 and 4 present the linear logic specifications of LL, LK, and
LM, respectively, for the well-known proof systems for linear, classical, and
minimal logics (all clauses are implicitly existentially quantified). Object-level
linear logic will be encoded reusing the same symbols that appear at the meta-
level, namely, !, ?, ⊗, O, ⊥, 1, &, ⊕, 0, > −◦, ∀, ∃ and negation (·)⊥ for atoms.
Classical logic is encoded using ∧, ∨, ⇒, fc, tc, ∀c, and ∃c for conjunction, dis-
junction, implication, false, true, and universal and existential quantification,
respectively, while minimal logic is encoded with ∩, ∪, ⊃, ∀i, and ∃i for con-
junction, disjunction, implication, and universal and existential quantification,
respectively. As before, we use the type d to denote object-level individuals
and obj to denote object-level formulas (our object-logics will all be first-order).
All binary connectives have type obj → obj → obj and will be written infix.
Object-level constants representing quantification are all of the second order
type (d→ obj)→ obj: we abbreviate expressions such as ∀i(λx.B) as ∀ixB.

The following adequacy theorems can be proved by structural induction over
proof structures. Here, LK and LM proof systems are given by Gentzen [27]1

and LL is given by Girard [16].

1Note that we are not considering Gentzen’s interchange rule since contexts are represented
either by sets or multisets of formulas.
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(−◦L) bA−◦Bc⊥ ⊗ (dAe ⊗ bBc). (−◦R) dA−◦Be⊥ ⊗ (bAcOdBe).
(⊗L) bA⊗Bc⊥ ⊗ (bAcObBc). (⊗R) dA⊗Be⊥ ⊗ (dAe ⊗ dBe).
(&L1) bA&Bc⊥ ⊗ bAc. (&R) dA&Be⊥ ⊗ (dAe& dBe).
(&L2) bA&Bc⊥ ⊗ bBc. (⊕R1) dA⊕Be⊥ ⊗ dAe.
(⊕L) bA⊕Bc⊥ ⊗ (bAc& bBc). (⊕R2) dA⊕Be⊥ ⊗ dBe.
(OL) bAOBc⊥ ⊗ (bAc ⊗ bBc). (OR) dAOBe⊥ ⊗ (dAeOdBe).
(!L) b!Bc⊥ ⊗ ?bBc. (!R) d!Be⊥ ⊗ !dBe.
(?L) b?Bc⊥ ⊗ !bBc. (?R) d?Be⊥ ⊗ ?dBe.
(∀lL) b∀lBc⊥ ⊗ ∃xbBxc. (∀lR) d∀lBe ⊗ ∀xdBxe.
(∃lL) b∃lBc⊥ ⊗ ∀xbBxc. (∃lR) d∃lBe⊥ ⊗ ∃xdBxe.
(1L) b1c⊥ ⊗ ⊥ . (1R) d1e⊥ ⊗ !>.

(⊥ L) b⊥c⊥ ⊗ !>. (⊥ R) d⊥e⊥ ⊗ ⊥ .
(0L) b0c⊥ ⊗ >. (>R) d>e⊥ ⊗ >.

Figure 2: Specification LL of object-level linear logic.

(⇒L) bA⇒ Bc⊥ ⊗ (dAe ⊗ bBc). (⇒R) dA⇒ Be⊥ ⊗ (bAcOdBe).
(∧L) bA ∧Bc⊥ ⊗ (bAc ⊕ bBc). (∧R) dA ∧Be⊥ ⊗ (dAe& dBe).
(∨L) bA ∨Bc⊥ ⊗ (bAc& bBc). (∨R) dA ∨Be⊥ ⊗ (dAe ⊕ dBe).
(∀cL) b∀cBc⊥ ⊗ ∃xbBxc. (∀cR) d∀cBe⊥ ⊗ ∀xdBxe.
(∃cL) b∃cBc⊥ ⊗ ∀xbBxc. (∃cR) d∃cBe⊥ ⊗ ∃xdBxe.
(fcL) bfcc⊥ ⊗ >. (tcR) dtce⊥ ⊗ >.

Figure 3: Specification LK classical logic.

(⊃L) bA ⊃ Bc⊥ ⊗ (dAe ⊗ bBc). (⊃ R) dA ⊃ Be⊥ ⊗ (bAcOdBe).
(∩L) bA ∩Bc⊥ ⊗ (bAc ⊕ bBc). (∩R) dA ∩Be⊥ ⊗ (dAe& dBe).
(∪L) bA ∪Bc⊥ ⊗ (bAc& bBc). (∪R) dA ∪Be⊥ ⊗ (dAe ⊕ dBe).
(∀iL) b∀iBc⊥ ⊗ ∃xbBxc. (∀iR) d∀iBe⊥ ⊗ ∀xdBxe.
(∃iL) b∃iBc⊥ ⊗ ∀xbBxc. (∃iR) d∃iBe⊥ ⊗ ∃xdBxe.

Figure 4: Specification LM minimal logic

APos = ∃A(bAc⊥ ⊗ ?bAc ⊗ atomic(A)). Pos = ∃B(bBc⊥ ⊗ ?bBc).
ANeg = ∃A(dAe⊥ ⊗ ?dAe ⊗ atomic(A)). Neg = ∃B(dBe⊥ ⊗ ?dBe).
AInit = ∃A(bAc⊥ ⊗ dAe⊥ ⊗ atomic(A)). Init = ∃B(bBc⊥ ⊗ dBe⊥).
ACut = ∃A(bAc ⊗ dAe ⊗ atomic(A)). Cut = ∃B(bBc ⊗ dBe)

Figure 5: Some named formulas.
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Proposition 6. The sequent −→ B has a linear logic proof if and only if the
sequent

LL,Cut, Init; dBe ⇓
is provable in linear logic; has an LK proof if and only if

LK,Cut, Init,Pos,Neg; dBe ⇓

is provable in linear logic; and has an LM proof if and only if

LM,Cut, Init,Pos; dBe ⇓

is provable in linear logic.

While this proposition states that these proof system encodings are adequate
at the level of relative completeness (see Section 3.4), the direct proofs of these
statements easily show that the actual adequacy result is at the level of full
completeness of proofs. As the next example illustrates, adequacy at the level
of full completeness of derivations is not achieved by these specifications: going
for this further precision in specification rules is illustrated in Section 4.2 and
in [26]. The additional structure provided by full completeness of derivations is
not needed for most of the goals of this paper.

Example 7. [LM] The encoding of (⊃L) in Figure 4 is not at the level of full
completeness for LM derivations. For example, let Ψ be the classical context
{bDc, bA ⊃ Bc}, for object-level formulas A, B, and D and consider proving the
sequent LM,Cut, Init,Pos,Ψ; dCe ⇑, which encodes the intuitionistic sequent
D,A ⊃ B −→ C in LM. Focusing on (⊃L) and then reducing the resulting
positive and negative phases leads to two different sets of sequents: these two
different reductions encode the two object-level inference rules

D −→ A,C D,B −→
D,A ⊃ B −→ C

and
D −→ A D,B −→ C

D,A ⊃ B −→ C
.

Within LM, the first inference rule is not allowed since its left-most premise
contains two right-hand-side formulas. Thus, of the two possible reductions
that arise from focusing on the encoding of (⊃L), one is not allowed in LM.
While full adequacy for derivations fails for this encoding of LM, full adequacy
for proofs does hold for LM: notice that a meta-level sequent containing two
right-hand-side formulas (such as dAe, dCe) is never entailed by LM.

Example 8. [LJ] In order to specify the well known proof system LJ [27] for
intuitionistic logic (obtaining the system LJ), we add to LM the clauses

(fiL) bfic⊥ ⊗ >. (tiR) dtie⊥ ⊗ >.

It is then possible to prove an adequacy result for LJ as stated in Proposition 6,
but only at the level of “relative completeness”2. In fact, the sequent Φ; · ⇓

2Note that the proof of such a proposition is not by simple structural induction.
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d(ti ⊃ fi) ⊃ Ae, where Φ = {LJ,Cut, Init,Pos}, is provable for any object level
formula A, but the proof

Φ; dAe, dtie ⇑ · Φ; bfic ⇑ ·
Φ; b(ti ⊃ fi)c, dAe ⇑ ·
Φ; d(ti ⊃ fi) ⊃ Ae ⇑ ·

does not have any correspondent in LJ.
In order to achieve adequacy at the level of “full completeness of derivations”,

we substitute LJ’s implication left and cut clauses by

(⊃L) bA ⊃ Bc⊥ ⊗ (!dAe ⊗ bBc). (Cut) bBc ⊗ !dBe.

respectively. The bang preceding the right formulas forces any other formula ap-
pearing in the right-hand-side of the conclusion to move to the correct premise.
This placement of right formulas is illustrated by the following derivation, where
Θ = {LJ,Cut, Init,Pos,Ψ} and Ψ is as in Example 7.

Θ; dAe ⇑ ·
Θ; · ⇓ !dAe

Θ, bBc; dCe ⇑ ·
Θ; dCe ⇑ bBc
Θ; dCe ⇓ bBc

Θ; dCe ⇓ !dAe ⊗ bBc
Θ; dCe ⇑ ·

In the rest of the paper, we will call LJ the system LM plus the clauses for the
units, since the results stated here only depend on the least level of adequacy.

Since the introduction clauses for LJ and LK are identical except for a sys-
tematic renaming of logical constants, the distinction between the intuitionistic
(LJ) and classical (LK) proof systems is that the former assumes Pos while the
latter assumes both Pos and Neg. The following equivalences are provable using
some of the named formulas in Figure 5.

1. Cut and Init prove the equivalence dBe ≡ bBc⊥.
2. Cut, Init, Pos and Neg prove the following equivalences: dBe ≡ bBc⊥,

?bBc ≡ bBc, ?dBe ≡ dBe, ?dBe ≡ (?bBc)⊥, ?dBe ≡ !dBe, ?bBc ≡ !bBc,
!bBc ≡ bBc, and ?dBe ≡ dBe.

3. Cut, Init and Pos prove the equivalences dBe ≡ (?bBc)⊥, dBe ≡ !dBe,
bBc ≡ ?bBc, and dBe ≡ bBc⊥.

Thus, the cut and initial rules imply that b·c and d·e are duals of each other. In
the cases of LJ and LK, however, that duality also forces the collapse of some
of exponential modalities. In particular, linear logic has 7 distinct modalities
derived from the exponentials [28], namely, !, ?, ? !, ! ?, ! ? !, ? ! ?, and the empty
sequence of exponentials. However, it is straightforward to show that, in the
LK theory, all those modals are equivalent when applied to either a b·c-atom or
a d·e-atom. It is also easy to see that, in the LJ theory, these modals collapse
to four when applied to either the d·e-atoms or the b·c-atoms.
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(⇒ L) bA⇒ Bc⊥ ⊗ (dAe& bBc). (⇒ R) dA⇒ Be⊥ ⊗ (bAcOdBe).
(∧L) bA ∧Bc⊥ ⊗ (bAcObBc). (∧R) dA ∧Be⊥ ⊗ (dAe& dBe).
(∨R) dA ∨Be⊥ ⊗ (dAeOdBe). (∨L) bA ∨Bc⊥ ⊗ (bAc& bBc).
(fcL) bfcc⊥ ⊗ >.

Figure 6: Specification of G3c.

Example 9. The G3c proof system of [29] provides inference rules for proposi-
tional classical logic that are all invertible. A linear logic encoding of that proof
system is given in Figure 6. The invertibility of the encoded rules follows imme-
diately from the fact that the only logical connectives used in the introduction
rules—&, O, >—are negative and, hence, their introduction rules in linear logic
are invertible.

4.2. Three focused proof systems: ILU, LKQ, LKT

We now present the specification of three proof systems that are “focused”,
meaning that after certain introduction rules are applied, the next introduction
rule (in a bottom-up reading) can be constrained significantly. For the sake of
presenting these examples, we shall consider the fragments of intuitionistic and
classical logics that involve just implication and universal quantification.

Figure 7 contains a variant of the ILU proof system given in [28] in which
quantification is limited to first-order and the structural rules of contraction
and weakening are not explicitly given but are built into the other inference
rules. Figure 8 contains the linear logic theory ILU that encodes ILU. The
sequents in this proof system have the form Π; Γ −→ A, where Γ and Π denote
multisets, and Π contains at most one formula. Such sequents are encoded at
the meta-level as the sequent ILU, bΓc; bΠc, dAe ⇑ ·, where bΓc and dΓe denote
the multiset of formulas resulting from applying the corresponding predicate to
all formulas in Γ. Proofs in ILU are focused in the sense that the left rules
(⊃L) and (∀iL) can only be applied to formulas in the left linear context Π.
This restriction, which is enforced using exponentials in the encoding, constrains
proof search significantly.

Observe that this specification does not have a “Pos” rule as in LJ. Instead,
the exponential ? is applied to some left-atoms (as in the clauses ⊃ R and Mid-
cut) whenever they should have a classical behavior. All the other left-atoms
behave linearly and these formulas maintain the “stoup” (the member of Π when
it is non-empty). A notable feature of this specification is that the exponential
! is used in the body of the two left-rules and in the Mid-cut in order to ensure
that only the stoup is selected and not some other left-atom.

ILU has adequacy at the level of full completeness of proofs but not at the
level of full completeness of derivations since the use of the clause Head-cut
could place more than one formula in the left linear context. Cut-free proofs
have, however, adequacy on the level of full completeness of derivations. Note

16



B;B,Γ −→ A

·;B,Γ −→ A
D

A; Γ −→ A
initial

A[t/x]; Γ −→ B

∀ixA; Γ −→ B
∀iL

·; Γ −→ A B; Γ −→ C

A ⊃ B; Γ −→ C
⊃L Π; Γ, A −→ B

Π; Γ −→ A ⊃ B
⊃R Π; Γ −→ A[y/x]

Π; Γ −→ ∀ixA
∀iR

Π; Γ −→ A A; Γ −→ B

Π; Γ −→ B
head-cut

·; Γ −→ A Π;A,Γ −→ B

Π; Γ −→ B
mid-cut

Figure 7: The sequent calculus ILU

(⊃L) bA ⊃ Bc⊥ ⊗ !dAe ⊗ bBc. (⊃ R) dA ⊃ Be⊥ ⊗ (?bAcOdBe).
(∀iL) b∀iBc⊥ ⊗ !bBxc. (∀iR) d∀iBe⊥ ⊗ ∀xdBxe.

(Head-cut) dAe ⊗ bAc. (Init) bAc⊥ ⊗ dAe⊥.
(Mid-cut) !dAe ⊗ ?bAc.

Figure 8: Specification ILU

that the Head-cut and Init rules of ILU prove the equivalence dBe ≡ bBc⊥: no
additional equivalences between linear logic exponential modals can be proved.

Two sequent calculi, LKQ and LKT, which provide focused proof systems
for classical logic, are also presented in [28]. Sequents of the calculus LKQ,
written as Γ −→ ∆; Π, are encoded as linear logic formulas dΠeO?bΓcO?d∆e
where Π represents a multiset containing at most one formula. The specification
for LKQ is presented in Figure 9. Sequents of the LKT proof system, written
as Π; Γ −→ ∆, are encoded as bΠcO?bΓcO?d∆e, where again Π is a multiset
containing at most one formula (see Figure 10 for the specification of LKT).
Observe that LKT is a classical equivalent of ILU; that is, the intuitionistic
calculus is obtained from LKT by the usual restriction of having exactly one
formula on the right side of the sequent.

The linear logic encodings of the LKQ and LKT proof systems are designed
to be adequate at the demanding level of full completeness for deviations. Recent
work [24] has demonstrated that it is possible to extend the expressive strength
of linear logic (to include the so called subexponentials) so that more proof
systems, such as ILU, can also be captured at this more demanding level of
adequacy.

4.3. A more ad hoc example

In a final example, we present the encoding a proof system that deviates from
the previous ones in several ways. An optimized version of (the implicational
fragment of) LM, called IIL∗, is presented in [30] (see also [31]). The proof
system for IIL∗ is given in Figure 11: in those inference rules, the syntactic
variable p is used to range over atomic formulas. Notice that IIL∗ does not
contain contraction or cut rules, and weakening is only allowed at the leaves
of a proof; that is, when the Init rule is applied (to atomic formulas). A key
property of IIL∗ is that the principal formula is not duplicated in the premises
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A,Γ −→ ∆;A
initial

Γ −→ ∆;A

Γ −→ ∆, A;
D

Γ −→ ∆;A B,Γ −→ ∆; ·
Γ, A⇒ B −→ ∆; · ⇒L

Γ, A[x/t] −→ ∆; ·
Γ, ∀cxA −→ Γ; · ∀cL

Γ −→ ∆, A[x/y]; ·
Γ −→ ∆;∀cxA

∀cR
Γ, A −→ ∆, B; ·
Γ −→ ∆;A⇒ B

⇒R

Γ −→ ∆;A A,Γ −→ ∆; Π

Γ −→ ∆; Π
tail-cut

Γ −→ ∆, A; Π A,Γ −→ ∆; ·
Γ −→ ∆; Π

mid-cut

(⇒L) bA⇒ Bc⊥ ⊗ !(dAe ⊗ ?bBc). (⇒R) dA⇒ Be⊥ ⊗ !(?bAcO?dBe).
(∀cL) b∀cBc⊥ ⊗ ! ?bBxc. (∀cR) d∀cBe⊥ ⊗ !∀x?dBxe.
(Cut) !dAe ⊗ ?bAc. (Init) bAc⊥ ⊗ dAe⊥.

?dAe ⊗ ! ?bAc.

Figure 9: The sequent calculus for LKQ and its encoding as LKQ

A; Γ −→ ∆, A
initial

A; Γ −→ ∆

·;A,Γ −→ ∆
D

·; Γ −→ ∆, A B; Γ −→ ∆

A⇒ B; Γ −→ ∆
⇒L

A[x/t]; Γ −→ ∆

∀cxA; Γ −→ ∆
∀cL

Π; Γ −→ ∆, A[x/y]

Π; Γ −→ ∆,∀cxA
∀cR

Π; Γ, A −→ ∆, B

Π; Γ −→ ∆, A⇒ B
⇒R

Π; Γ −→ ∆, A A; Γ −→ ∆

Π; Γ −→ ∆
head-cut

·; Γ −→ ∆, A Π;A,Γ −→ ∆

Π; Γ −→ ∆
mid-cut

(⇒L) bA⇒ Bc⊥ ⊗ ! ?dAe ⊗ bBc. (⇒R) dA⇒ Be⊥ ⊗ ?bAcO?dBe.
(∀cL) b∀cBc⊥ ⊗ !bBxc. (∀cR) d∀cBe⊥ ⊗ ∀x?dBxe.
(Cut) ?dAe ⊗ !bAc. (Init) bAc⊥ ⊗ dAe⊥.

! ?dAe ⊗ ?bAc.

Figure 10: The sequent calculus for LKT and its encoding as LKT

of any of the rules. This suggests the encoding bΓcOdDe for the IIL∗ sequent
Γ −→ D. The linear logic encoding of IIL∗ is also given in Figure 11: there
the predicate atomic(·) (of type obj → o) is assumed to be defined to hold for
all these atomic formulas. The encodings of the Init and ⊃L rules are different
from what we have seen so far: the Init rule uses the additive truth > to
allow weakening (via “erasing”), and the ⊃L1 and ⊃L2 rules use the additive
conjunction & to copy the left context and uses a “two headed clause” in order
to avoid copying the right context and to place it in the correct sequent of the
premise.

The resulting logic specification is not composed of introduction clauses as
formally defined in Definition 4. In fact, it is impossible to specify IIL∗ in our
setting using only “one-headed” clauses since it is necessary to have two different
linear contexts for encoding the system: one for the formulas on the left and
one for the ones on the right side of the sequent. Linear logic allows only for one
linear and one classical context, a shortcoming that can be overcome by using
subexponentials [23, 32].
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Γ, p −→ p
Init

Γ, A −→ B

Γ −→ A ⊃ B
⊃R Γ −→ p Γ, B −→ C

Γ, p ⊃ B −→ C
⊃L1

Γ, B ⊃ C −→ A ⊃ B Γ, C −→ D

Γ, (A ⊃ B) ⊃ C −→ D
⊃L2

(Init) bAc⊥ ⊗ dAe⊥ ⊗ atomic(A)⊗>.
(⊃ R) dA ⊃ Be⊥ ⊗ (bAcOdBe).
(⊃L1) bA ⊃ Bc⊥ ⊗ dCe⊥ ⊗ atomic(A)⊗ (dAe& (bBcOdCe)).
(⊃L2) b(A ⊃ B) ⊃ Cc⊥ ⊗ dDe⊥ ⊗((bB ⊃ CcOdA ⊃ Be) & (bCcOdDe)).

Figure 11: The sequent calculus proof system IIL∗ and its encoding IIL* in linear logic.

4.4. Natural deduction

To illustrate an application of using meta-level reasoning to draw conclusions
about proof systems for an object-logic, we show how a specification for natural
deduction can be derived from a specification of sequent calculus for intuitionis-
tic logic. For simplicity, we consider the fragment of minimal logic involving only
⊃, ∩, and ∀i (disjunction and existential quantification are similarly addressed
in [20]).

Given the equivalences arising from the cut, initial, and structural rules in
LM listed in Section 4, the specification for (⊃L) is logically equivalent to the
following formulas.

(bBc ⊗ dAe)⊗ bA ⊃ Bc⊥ ≡ (dBe⊥ ⊗ dAe)⊗ dA ⊃ Be
≡ (dA ⊃ Be ⊗ dAe)⊗ dBe⊥

The later can be recognized as a specification of the ⊃ elimination rule. Simi-
larly, the specification for (⊃ R) is equivalent to the following formulas, which
encode the introduction rule for implication.

(bAcOdBe)⊗ dA ⊃ Be⊥ ≡ (dAe⊥OdBe)⊗ dA ⊃ Be⊥
≡ ((! dAe)⊥OdBe)⊗ dA ⊃ Be⊥
≡ (! dAe −◦ dBe)⊗ dA ⊃ Be⊥

Continuing in such a manner, we can systematically replace all occurrences of b·c
with occurrences of d·e, resulting in the specification in Figure 12. The clauses
in this figure, named NM, can easily be seen as specifying the introduction
and elimination rules for this particular fragment of minimal logic. The usual
specification of natural deduction rules for minimal logic [2, 5] has intuition-
istic implications replacing the top-level linear implications in Figure 12, but
as observed in [10], the choice of which implication to use for these top-level
occurrences does not change the set of provable atomic formulas.

As a result of this natural connection between clauses in LM and NM, the
following propositions have direct proofs (see [20] for details).
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(⊃ I) dA ⊃ Be⊥ ⊗ (!dAe −◦ dBe). (⊃ E) dBe⊥ ⊗ dAe ⊗ dA ⊃ Be.
(∀iI) d∀iBe⊥ ⊗ ∀xdBxe. (∀iE) dBxe⊥ ⊗ d∀iBe.
(∩I) dA ∩Be⊥ ⊗ (dAe& dBe). (∩E1) dAe⊥ ⊗ dA ∩Be.

(∩E2) dBe⊥ ⊗ dA ∩Be.

Figure 12: Specification of the NM natural deduction calculus.

Proposition 10. Let LM denote the set of formulas containing Cut, Init, Pos
and introduction rules for ⊃, ∩, and ∀i. Let NM be the set of formulas displayed
in Figure 12. Then !LM ≡ ![(&NM) & Init & Cut].

Proposition 11. If B is an object-level formula, then NM; dBe ⇓ if and only
if LM; dBe ⇓.

A consequence of the last proposition and the adequacy of the encodings
of LM and NM is the mutual relative completeness of natural deduction and
sequent calculus: B has a sequent calculus proof if and only if it has a natural
deduction proof.

More about using linear logic to specify natural deduction-style proof sys-
tems can be found in [26].

4.5. Relating Meta-level Formulas and Object-level Rules

So far, we have shown how to use linear logic formulas of the form

∃x1 . . . ∃xn[(q(�(x1, . . . , xn)))⊥ ⊗ F ]

to formally define introduction rules. We have argued that when F is a bipole
(with some other restrictions, see Definition 4), then focusing on such a formula
yields an inference rule of the encoded logic. For example, if n = 3 and the body
of the introduction rule is dx1e ⊗ (bx2c & dx3e), then that linear logic formula
determines the big-step rule

Ψ; Γ1 ⇓ dx1e Ψ; Γ2 ⇑ bx2c Ψ; Γ2 ⇑ dx3e
Ψ; Γ1,Γ2 ⇓ dx1e ⊗ (bx2c& dx3e)

.

It is a simple matter to show that every introduction clause corresponds to a
specification of a sequent calculus introduction rule. The following example
illustrates that if a clause has a body that is not a bipole, then the meta-level
can take steps that are not available at the object-level and, as a result, the
meta-level encoding of inference rules might not be adequate.

Example 12. Consider the following non-bipolar formulas.

d�(A,B,C)e⊥ ⊗ (dAe& (dBe ⊗ dCe)) b�(A,B,C)c⊥ ⊗ (bAc ⊕ (bBcObCc))
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The following inference rules are the natural candidates encoded by these for-
mulas.

Γ1,Γ2 ` ∆1,∆2, A Γ1 ` ∆1, B Γ2 ` ∆2, C

Γ1,Γ2 ` ∆1,∆2, �(A,B,C)

Γ, A ` ∆

Γ, �(A,B,C) ` ∆

Γ, B,C ` ∆

Γ, �(A,B,C) ` ∆

If Ψ is the set of formulas that contains Init and the two non-bipolar formulas
above, then the LLF sequent

Ψ;⇑ d�(A,B,C)e, b�(A,B,C)c

has essentially two LLF proofs: one focusing on just the Init rule and another
in which both non-bipolar formulas are focused on prior to focusing on Init. On
the other hand, there is only one proof of the object-level sequent �(A,B,C) `
�(A,B,C), namely, the proof that is just the initial rule. In other words, the
initial rule cannot be restricted to just atomic formulas. Thus, the linear logic
encoding of these inference rules is not adequate at the level of proofs.

In Sections 6 and 7 we identify additional properties (cut and initial coher-
ence) that “sensible” introduction clauses should satisfy beyond the requirement
to be bipoles.

5. Entailments between cut-free proof system theories

A proof system theory is a finite set of linear logic formulas all of which are
either Init, Cut, Neg, or Pos of Figure 5 or an introduction clause as given by
Definition 4 in Section 3.1. Such a proof system theory is cut-free if it does
not contain the formula Cut. In this section, we consider cut-free proof system
theories exclusively.

Let {C1, . . . , Cn} and {D1, . . . , Dm} be two (cut-free) proof system theories.
We wish to determine whether or not the LLF sequent

C1, . . . , Cn; · ⇑ &m
i=1D

⊥
i (∗)

is provable. Notice that if this sequent is provable then any formula entailed by
{D1, . . . , Dm} is also entailed by {C1, . . . , Cn}. Notice also that (∗) is provable
in LLF iff C1, . . . , Cn; · ⇑ D⊥i is provable for all i = 1, . . . ,m.

We now show that determining if C1, . . . , Cn; · ⇑ D⊥i is a decidable problem.
Proposition 13 proves the decidability of this entailment when Di is either Init,
Neg, or Pos, and Proposition 16 proves the decidability of this entailment when
Di is an introduction rule.

Proposition 13. If ∆ is a (cut-free) proof system theory and D is either Init,
Neg, or Pos, then ∆; · ⇑ D⊥ has an LLF proof if and only if D ∈ ∆.
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Proof The “if” direction is immediate. To show the converse, we illustrate
the case when D is initial, since the cases when D is Neg or Pos are similar and
simpler. The sequent ∆; · ⇑ ∀B(bBcOdBe) is provable if and only if ∆; bxc, dxe ⇑
· is provable (for an eigenvariable x). We now prove the following claim: if (i)
Γ1 is a multiset subset of the multiset {bxc, dxe} and (ii) Γ2 is a subset of the
set {bxc, dxe} and (iii) Γ1 ∪ Γ2 = {bxc, dxe} then the sequent ∆,Γ2; Γ1 ⇑ · is
provable in LLF if and only if Init is a member of ∆. The “if” part of this claim
is trivial to show. For the converse, we proceed by induction by showing that
for all natural numbers n, if Γ1 and Γ2 satisfy the three conditions above and
∆,Γ2; Γ1 ⇑ · has a proof in LLF of height n or less, then Init is a member of
∆. Let Ξ be an LLF proof of ∆,Γ2; Γ1 ⇑ · of height n + 1 and consider the
last inference rule of Ξ: that rule is a decide rule ([D1] or [D2]). If the decided
formula is the Init formula, then the proof can be completed. It is not possible
for the decide rule to select an introduction rule since it would be impossible
to complete the resulting ⇓ proof phase. The restrictions on the decide rules
(Figure 1) do not allow selecting either bxc or dxe. Thus, the only remaining
cases to consider select either Pos or Neg: in both of these cases, Ξ has a proper
subproof for which the inductive assumption can be applied.

In other words, a structural or initial clause is derivable from a proof system
if and only if it is present in that proof system. The following two definitions
are used to prove our next theorem.

Definition 14. Let Π be a proof in LLF. The depth of Π is the maximum
number of decide rules (either [D1] or [D2]) along any path in Π from the root.

Definition 15. A premise atom is an atomic formula of the form q(t), where q
is a meta-level predicate and t is a term of type obj with a variable as its head
symbol. A conclusion atom is an atomic formula of the form q(�(x1, . . . , xn)),
where q is a meta-level predicate, � is an object-level connective of arity n, and
x1, . . . , xn is a list of distinct variables.

Theorem 16. Let ∆ be a (cut-free) proof system theory and let D be an intro-
duction clause. It is decidable whether or not the sequent ∆; · ⇑ D⊥ is provable.

Proof Let D = ∃X.(q(�(X1, . . . , Xn))⊥ ⊗ F ). Since F is a bipole without
negated atoms, D⊥ is equivalent to a formula of the form

∀X∀Y . [&i=1,...,n[q(�(X1, . . . , Xn))O(Oj=1,...,mi
Fi,j)]]

where Fi,j are either negated monopoles or the application of ? to a negated
monopole. Given the definition of monopoles (Definition 3), such negated
monopoles are constructed from negated atoms, ! applied to negated atoms,
and the positive connectives. A component of D⊥ is a formula C such that
either C or ?C is a substitution instance of Fi,j (for some i, j). The structure
of LLF proofs implies that ∆; · ⇑ D⊥ has a proof if and only if a collection of
sequents is provable: those sequents are all of the form

∆′; q(�(x1, . . . , xn)),Ψ ⇑ ·, (∗∗)
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where ∆′ is ∆ plus possibly some components of D⊥ and Ψ is a multiset of
components of D⊥. Thus, decidability of proving ∆; · ⇑ D⊥ reduces to the
decidability of proving sequents of the form (∗∗).

On proving such a sequent, it is easy to see that it is not possible to start
with the rule [D1]. In fact, by the restriction on [D1], the focus cannot be
q(�(x1, . . . , xn)) so it must be a component of D⊥. Since these formulas are
composed of only positive connectives or negated atoms, that positive phase
must terminate with either [I1] or [I2] or [!]. None of these cases are possible,
however: the initial rules are not possible since atoms are members of neither
∆′ nor Ψ and no component can contain the negation of q(�(x1, . . . , xn)) since
� does not occur in the body of an introduction rule. Similarly, the last rule
cannot be [!] since the linear context to the left of ⇓ is not empty (it contains
q(�(x1, . . . , xn))). Thus, a proof of a sequent of the form (∗∗) must end with
a [D2] rule and that decide rule can select either a structural rule Neg or Pos
or an introduction clause (selecting Init is not possible). We consider these two
cases below.

Case 1: The sequent (∗∗) is proved as a consequence of a [D2] on an intro-
duction rule, which has the structure

∃X.[q(�(X1, . . . , Xn))⊥ ⊗ C(X1, . . . , Xn)].

Here C(X1, . . . , Xn) is a bipole (restricted to not contain negated atoms). When
the positive and then negative phases finish (reading the proof bottom-up) the
resulting frontier of sequents will be of the form ∆′′; Ψ′ ⇑ ·, where ∆′′ and
Ψ′ extend ∆′ and Ψ, respectively, by the possible addition of premise atoms.
Proofs of such sequents are now rather simple: they can involve deciding on
structural clauses or a component of D⊥. The application of structural rules
can be limited to the number of atomic formulas in Ψ′ and selecting a component
for focus must immediately yield a proof of depth 1 or 2 (since a component
might contain an expression of the form !A⊥, for atomic A, the focus can be
lost before the !A is again selected for focus). Thus, the depth of such a proof
can be limited to v + 3, where v is the number of atomic formulas in Ψ′.

Case 2: In the case that a structural clause is selected for focus at the root of
Π, the result of that focus is the sequent ∆′, q(�(x1, . . . , xn)); Ψ ⇑ ·. In this case,
the atom q(�(x1, . . . , xn)) persists in all the premises and can enable focusing
on an introduction rule repeated. The following three observations hold in this
situation.

i. Selecting an introduction rule for focus transforms the sequent

∆′′, q(�(x1, . . . , xn)); Ψ′ ⇑ · to ∆′′′, q(�(x1, . . . , xn)); Ψ′′ ⇑ ·

where ∆′′′ and Ψ′′ extend ∆′′ and Ψ′, respectively, with premise atoms.

ii. Selecting Pos or Neg for focus transforms the sequent

∆′′, q(�(x1, . . . , xn)); Ψ′, A ⇑ · to ∆′′, q(�(x1, . . . , xn)), A; Ψ′ ⇑ ·.
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iii. If ∆′′′, q(�(x1, . . . , xn)); Ψ′′ ⇑ · is proved by selecting a component C from
either the classical or linear context, then the number of atoms in Ψ′′ is
bounded by the number of atoms in C.

Thus, by (i), selecting an introduction rule can make the side formula con-
texts increase; by (ii), selecting a structural rule moves an atom from the
bounded to unbounded context; and by (iii) selecting a component ends the
proof only if the classical context is not too big. Also, notice that while multi-
plicity of occurrences matters in the multiset Ψ′′, it does not matter in the set
∆′′′. Thus, the search for a loop-free proof of ∆′, q(�(x1, . . . , xn)); Ψ ⇑ · must
always terminate.

It is easy to see that the sequent3 LK ` LJ can be proved with an LLF
proof of depth 2. Here we are assuming also that the same symbols are used for
the same object-logical connectives in these two theories.

Theorem 16 is concerned with the derivability of inference rules: this is dif-
ferent from determining whether or not an inference is admissible. Determining
admissibility generally requires inductive arguments and, hence, is harder to
determine than derivability. In Section 6, we address the admissibility of cut in
object-level proof systems.

6. Cut-elimination for cut-coherent systems

We now present a necessary condition for characterizing systems having the
cut-elimination property.

Definition 17. A canonical clause is an introduction clause restricted so that,
for every pair of atoms of the form bT c and dSe in a body, the head variable
of T differs from the head variable of S. A canonical proof system theory is
a set X of bipoles such that (i) the Init and Cut clauses are members of X ,
(ii) structural clauses (Pos and Neg) may be members of X , and (iii) all other
clauses in X are canonical (introduction) clauses.

Definition 18. Let X be a canonical proof system theory and � an object-level
connective of arity n ≥ 0. Furthermore, let the formulas

∃x̄(b�(x̄)c⊥ ⊗ Fl) and ∃x̄(d�(x̄)e⊥ ⊗ Fr)

be the left and right introduction rules for �: here, the free variables of Fl
and Fr are in the list of variables x̄. The object-level connective � has cut-
coherent introduction rules if the sequent Cut; · ⇑ ∀x̄(F⊥l OF⊥r ) is provable in
LLF. A canonical proof system theory is called cut-coherent if all object-level
connectives have cut-coherent introduction rules.

3Meaning that the set of clauses specifying the LK rules entails the conjunction of the
clauses specifying LJ rules in LLF. Observe that this result implies that every formula provable
in LJ is provable in LK.
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Example 19. The cut-coherence of the LJ specification is established by prov-
ing all the following linear logic sequents.

(⊃) Cut; · ⇑ ∀A∀B[(dAe⊥ObBc⊥)O(bAc⊥ ⊗ dBe⊥)]
(∩) Cut; · ⇑ ∀A∀B[(bAc⊥ & bBc⊥)O(dAe⊥ ⊕ dBe⊥)]
(∪) Cut; · ⇑ ∀A∀B[(bAc⊥ ⊕ bBc⊥)O(dAe⊥ & dBe⊥)]
(∀i) Cut; · ⇑ ∀B[∀xbBxc⊥O∃xdBxe⊥]
(∃i) Cut; · ⇑ ∀B[∃xbBxc⊥O∀xdBxe⊥]
(fi) Cut; · ⇑ 0⊥O>⊥
(ti) Cut; · ⇑ >⊥O0⊥

All these sequents have simple linear proofs. In general, deciding whether or
not canonical systems are cut-coherent involves a simple algorithm (see Theo-
rem 22).

The two following theorems imply that if the specification X is a cut-coherent
proof system theory then the cut inference rule can be eliminated from the
object-level proof system that X encodes.

Theorem 20. Let the disjoint union X ∪{Cut} be a cut-coherent proof system
and let Γ and ∆ be a multiset and set, respectively, of atomic formulas. If
X ,Cut,Γ; ∆ ⇑ · is provable, then X ,ACut,Γ; ∆ ⇑ · is provable.

Proof The proof of this theorem follows the usual line of removing cuts on
general formulas for cuts on atomic formulas for first-order logic. In particular,
we can permute phases in LLF just as we might permute inference rules in the
encoded proof system.

Let Ξ be a cut-free LLF proof of the sequent X ,Cut,Γ; ∆ ⇑ ·. If [D2] is used
to focus on the Cut formula in this proof, then the premise of that decide rule
is the conclusion of an [∃] infer rule. Let B be the substitution term used to
instantiate the existential quantifier. We say that this occurrence of the [D2]
inference rule is an object-level cut which has cut formula B. We also define a
measure on formulas and proofs as follows: |B| is the natural number denoting
the number of occurrences of object-level logical connectives in B and |Ξ| is the
multiset of natural numbers |B| for every occurrence of an object-level cut in
Ξ with cut formula B. Multisets of natural numbers are well ordered using the
usual lifting to multisets of the less-than ordering on the natural numbers [33].

Let Π be a derivation of X ,Cut,Γ; ∆ ⇑ ·. If all object-level cut formulas
occurring in Π are atomic, then we can change the proof Π to be a proof of
X ,ACut,Γ; ∆ ⇑ ·. Thus, assume that Π has a non-atomic cut-formula and
consider the highest occurrence of a [D2] rule that selects such a non-atomic
cut-formula. By mimicking the usual arguments for permuting inference rules,
we can assume that this cut is a principle cut in which the cut-formula is the
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non-atomic formula �(B1, . . . , Bn): that is, Π contains a subproof of the form

Π1

X ,Cut,Ψ; ∆1 ⇓ Fl[B̄/x̄]

X ,Cut,Ψ; ∆1, b�(B̄)c ⇑ ·
[D2,∃,⊗, I1]

X ,Cut,Ψ; ∆1 ⇓ b�(B̄)c
[R ⇓, R ⇑]

Π2

X ,Cut,Ψ; ∆2 ⇓ Fr[B̄/x̄]

X ,Cut,Ψ; ∆2, d�(B̄)e ⇑ ·
[D2,∃,⊗, I1]

X ,Cut,Ψ; ∆2 ⇓ d�(B̄)e
[R ⇓, R ⇑]

X ,Cut,Ψ; ∆1,∆2 ⇓ b�(B̄)c ⊗ d�(B̄)e
[⊗]

X ,Cut,Ψ; ∆1,∆2 ⇑ ·
[D2,∃]

where Ψ (respectively ∆1 and ∆2) is a set (are multisets) of atomic formulas, and
Π1,Π2 do not contain object-level non-atomic cuts (the expression B̄ denotes the
list B1, . . . , Bn and the expression [B̄/x̄] denotes the simultaneous substitution
of Bi for xi for i = 1, . . . , n). Here there are three occurrences of the [D2]
inference rule: one occurrence encodes the object-level cut and the other two
encode the left and right introduction rules for the � connective.

Since X is a cut-coherent proof system theory the sequent

Cut; · ⇑ ∀x̄(F⊥l OF⊥r )

is provable. By instantiating eigenvariables in that proof, we have a proof for
Cut; · ⇑ Fl[B̄/x̄]⊥, Fr[B̄/x̄]⊥. Thus, the following three sequents all have cut-
free linear logic proofs (using the soundness direction of Theorem 1)

` ?X , ?Cut, ?Ψ,∆1, Fl[B̄/x̄] ` ?X , ?Cut, ?Ψ,∆2, Fr[B̄/x̄]
` ?Cut, Fl[B̄/x̄]⊥, Fr[B̄/x̄]⊥

By using two instances of linear logic cut, we can conclude that

` ?X , ?Cut, ?Ψ,∆1,∆2

has a proof with cut. Applying the cut-elimination process for linear logic will
yield a cut-free linear logic proof of the same sequent: the elimination process
might instantiate eigenvariables of the proof with arbitrary terms but since the
only eigenvariables in these proofs are of type d, the sizes of object-level cut for-
mulas in the resulting cut-free proof does not increase. Using the completeness
direction of Theorem 1 (completeness is proved by permuting inference rules),
we know that

X ,Cut,Ψ; ∆1,∆2 ⇑ ·

has a proof of smaller measure since we have removed a cut on the formula
�(B1, . . . , Bn) but replaced with possibly many cuts on smaller formulas.

We can repeatedly perform this rewriting of object-level cuts into linear logic
cuts and smaller object-level cuts: the multiset ordering on proofs will force this
rewriting process to terminate.

Theorem 21. Let the disjoint union X ∪{Cut} be a cut-coherent proof system
and let Γo −→ ∆o be an object-level sequent. If X ,ACut; · ⇑ bΓoc, d∆oe is
provable, then X ; · ⇑ bΓoc, d∆oe is provable.
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Proof The usual proof that permutes an atomic cut up in a proof can be
applied here. Any occurrence of an instance of [D2] on the ACut formula can
be moved up in a proof until it can either be dropped entirely or until one of the
premises is proved by an instance of [D2] on the Init: in that case, the proof of
the other premise is used as the proof for the conclusion of the cut inference.

We show now that it is decidable to check whether or not a proof system
encoding is cut-coherent.

Theorem 22. Determining whether or not a canonical proof system is cut-
coherent is decidable. In particular, determining if the cut clause proves the
duality of the introduction rules for a given connective can be achieved by proof
search in LLF bounded by the depth v + 3 where v is the maximum number of
premise atoms in the bodies of the introduction clauses.

Proof Let P be a cut-coherent proof system theory and let the formulas

∃x̄(b�(x1, . . . , xi)c⊥ ⊗ Fl) and ∃x̄(d�(x1, . . . , xi)e⊥ ⊗ Fr)

be the introduction rules for the object level connective �. By cut-coherence,
Cut; · ⇑ ∀x̄(F⊥l OF⊥r ) has a proof Π in LLF. The structure of LLF proofs implies
that such a sequent is provable if and only if sequents of the form Cut,Γ; ∆ ⇑ ·
are provable, where Γ is a set and ∆ is a multiset of components of F⊥l and
F⊥r (see Theorem 16). In particular, Γ is a set and ∆ is a multiset of negated
monopoles. Hence deciding the provability of Cut; · ⇑ ∀x̄(F⊥l OF⊥r ) reduces to
determining the decidability of the provability of such sequents.

In any LLF proof of the sequent Cut,Γ; ∆ ⇑ ·, the action of selecting the Cut
clause as the focus formula will simply add atoms to the linear context, hence
the number of such actions can be limited to the number v of atomic formulas
in ∆∪Γ. Furthermore, selecting a component for focus must immediately yield
a proof of deep 1 or 2. Thus, the depth of such a proof can be limited to v + 3.

As an example, it is possible to prove cut-coherence for LJ by bounding
proof search at depth 4 during proof search for the formulas in Example 19.

7. Coherent systems

The notion of cut-coherence implies that non-atomic cuts can be replaced
by simpler ones: hence, all cuts can removed or reduced to just atomic cuts. A
separate argument allows us to also remove atomic cuts. We now consider the
dual problem of replacing non-atomic initial rules with atomic initial rules.

Example 23. Consider the sequent system

Γ, A ` ∆, A
Initial

Γ1 ` ∆1, A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
Cut

Γ ` ∆, A

Γ ` ∆, �(A,B,C)
(�R1)

Γ ` ∆, B Γ ` ∆, C

Γ ` ∆, �(A,B,C)
(�R2)

Γ, A ` ∆ Γ, B ` ∆

Γ, �(A,B,C) ` ∆
(�L1)

Γ, A ` ∆ Γ, C ` ∆

Γ, �(A,B,C) ` ∆
(�L2)
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These rules for the connective �(A,B,C) are specified by the clauses

d�(A,B,C)e⊥ ⊗ (dAe ⊕ (dBe& dCe))

b�(A,B,C)c⊥ ⊗ (bAc& bBc)⊕ (bAc& bCc)

It is easy to see that

Cut; · ⇑ ∀X,Y, Z.((dXe⊥&(dY e⊥⊕dZe⊥))O((bXc⊥⊕bY c⊥)&(bXc⊥⊕bZc⊥)))

is provable and hence the system above is cut-coherent. The initial rule, how-
ever, cannot be reduced to just atomic initial rules since the sequent �(A,B,C) `
�(A,B,C) would not be provable anymore. As we will see below, this failure is
reflected by the fact that the sequent

Init; · ⇑ ∀X,Y, Z.((dXe ⊕ (dY e& dZe))O((bXc& bY c)⊕ (bXc& bZc)))

is not provable.

We now introduce a condition on the meta-level specification of the left and
right introductions rules for a connective that guarantees that non-atomic initial
rules can be eliminated.

Definition 24. Let X be a canonical proof system and � an object-level con-
nective of arity n ≥ 0. Furthermore, let the formulas

∃x̄(b�(x1, . . . , xn)c⊥ ⊗ Fl) and ∃x̄(d�(x1, . . . , xn)e⊥ ⊗ Fr)

be the left and right introduction clauses for �. The object-level connective �
has initial-coherent introduction rules if

Init;⇑ ∀x̄(FlOFr)

is provable in LLF. A canonical system is called initial-coherent if all object-level
connectives have initial-coherent introduction rules.

It is a simple matter to show that a bounded proof search in LLF yields
a decision procedure for determining whether or not an object-level connective
has initial-coherent introduction rules: the only occurrences of contractions are
with the formula Init (whose selection as a focus must immediately end proof
search) and with possibly (premise) atoms, which can never be selected for
focus. It is also easy to see that initial-coherence does not imply cut-coherence.
For example, a canonical proof theory containing the left and right introduction
clauses for the object level connective �:

b�(A,B)c⊥ ⊗ bAc and d�(A,B)e⊥ ⊗ (dAe ⊕ dBe).

is initial-coherent but not cut-coherent. In general, we take both of these co-
herence properties together.
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Definition 25. A cut-coherent theory that is also initial-coherent is called a
coherent theory.

Recall that the notation A ≡ B is an abbreviation of (A −◦ B) & (B −◦ A).
If Fl and Fr are the bodies of the left and right introduction rules for the
same connective from a coherent proof theory, then Cut, Init;⇑ ∀x̄(F⊥l ≡ Fr) is
provable (see Proposition 26). Thus in coherent systems, the body of the left
and the right introduction clauses are essentially de Morgan duals of each other.
Another way to see this is to first let ng be the following function on linear logic
formulas.

1. ng(bBc) = dBe, ng(dBe) = bBc;
2. ng(0) = >, ng(>) = 0, ng(⊥) = 1, ng(1) =⊥;

3. ng(C ? D) = ng(C) ?̄ ng(D), where ? is a binary linear logic connective
and ?̄ its dual;

4. ng(•C) = •̄ ng(C), where • is an unary linear logic connective (i.e., the
exponentials and quantifiers) and •̄ its dual.

Thus the ng(·) function computes the de Morgan dual of its argument as well as
switching between b·c and d·e. We will say that the left and right bodies of an
introduction clause (Fl and Fr respectively) are duals if ·; · ⇑ ∀x̄(Fl ≡ ng(Fr))
is provable.

The next proposition shows that coherence implies this duality for left and
right inference rules.

Proposition 26. Let X be a coherent proof theory and let � be an object-level
connective of arity n ≥ 0 with left and right introduction rules

∃x̄(b�(x1, . . . , xn)c⊥ ⊗ Fl) and ∃x̄(d�(x1, . . . , xn)e⊥ ⊗ Fr).

Then Fr and Fl are duals.

Proof From the definition of cut-coherent, Fl entails F⊥r in a theory contain-
ing Cut. Similarly, from the definition of initial-coherence, F⊥r entails Fl in a
theory containing Init. Thus, the equivalence F⊥r ≡ Fl is provable in a theory
containing Cut and Init. As noted in Section 4, such a theory also entails that
b·c⊥ ≡ d·e. Thus it follows that Fr and Fl are duals.

Finally, the next theorem states that, in coherent systems, the initial rule
can be restricted to its atomic version. For this theorem, we need to axiomatize
the meta-level predicate atomic(·). Given that our object-logic is first-order,
this axiomatization can be achieved by collecting into the theory ∆ all formulas
of the form ∃x̄.(atomic(p(x1, . . . , xn)))⊥ for every predicate of the object logic
(here, n is the arity of the predicate p).

Theorem 27. Given an object level formula B, let Init(B) denote the formula
bBc⊥ ⊗ dBe⊥, let AInit be the formula presented in Figure 5, and let ∆ be the
theory that axiomatizes the meta-level predicate atomic(·). If X is a coherent
proof theory, then the sequent X ,AInit,∆; · ⇑ (Init(B))⊥ is provable.
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Proof The proof is by induction on the structure of B. If B is atomic, then
the result follows trivially. Suppose B = �(B1, . . . , Bs) for some object level
connective � of arity s ≥ 0 with coherent introduction clauses

∃x̄.[b�(x̄)c⊥ ⊗ Fl] and ∃x̄.[d�(x̄)e⊥ ⊗ Fr]

Observe that, since Fr and Fl are bipoles and duals, one is purely positive and
the other purely negative, and the exponential ! has atomic scope. Hence the
negative formula is equivalent to a formula of the form

∀X̄[&i=1,...,nOj=1,...,miFi,j ]

where the Fi,j are either atomic, or the exponential ? applied to an atomic
formula, while the positive formula is equivalent to

∃X̄[⊕i=1,...,n ⊗j=1,...,mi ng(Fi,j)].

Thus, for proving the sequent X ,AInit,∆; · ⇑ Fr[B̄/x̄], Fl[B̄/x̄] it is sufficient to

prove X ,AInit,∆; · ⇑ F̃i,j [B̄/x̄], ng(F̃i,j [B̄/x̄]), for all i, j, where B̄ denotes the

list B1, . . . , Bs and F̃i,j represents an instance of Fi,j . Hence, the result follows
by the inductive hypothesis.

8. Related work

In [34, 20], the first author illustrated how linear logic could be used to
capture sequent calculus proof systems. The dissertation of the second author
[35] and the series of conference papers [14, 13, 15] expanded on this theme. The
current paper collects together most of the results of those previous publications.

Multiset rewriting can be modeled on either the right-hand side of the se-
quent arrow, as it is done in this paper, or on the left-hand side, in which
case, such modeling can be captured within intuitionistic linear logic. In [12],
Pfenning made such a transition and specified a number of sequent calculus
proof systems within a fragment of intuitionistic logic. He was then able to
provide new proofs of cut elimination for those logics based on those specifi-
cations. Those proofs are also obtainable using the automated analysis of the
Elf [6] implementation of dependent typed λ-calculus. Later, Cervesato and
Pfenning [11] developed the linear logical framework LLF and extended their
earlier work to the specification of sequent calculus proof systems for linear
logic. In each of these cases, the induction proofs were conducted not in the
specification language but in informal and formal external languages. Since in-
tuitionistic linear logic contains neither the linear logic unit ⊥ nor the linear
logic negation (·)⊥, their specification language cannot state directly the vari-
ous dualities (see Section 4) that play a central role in our treatment of sequent
calculus. None-the-less, similar specifications can be written using the focused
intuitionistic proof system LJF [36]: in particular, A. S. Henriksen [37] showed
that LJF can be used to encode all of the proof systems that were encoded using
LLF in [26].
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McDowell and Miller [38] have proposed a two-level logic approach to reason-
ing about proof systems. One level of logic described a sequent calculus proof
system (using a restricted intuitionistic logic) and a second level of logic used
inductive principles to prove that cut-elimination holds of the sequent calcu-
lus specifications. The theorem prover Abella [39] provides an implementation
of this two-level logic framework. Our work here could be used to allow for
the flexible specification of a range of sequent calculus systems in that theorem
prover.

In the setting of classical, propositional logics that use only additive mainte-
nance of context, Avron has provided some necessary and sufficient conditions
for sequent calculus specification to satisfy the cut elimination theorem [40].
That work introduced the notion of coherence and it is that condition that we
extend in Section 6.

In [41], Ciabattoni et al. introduced a systematic procedure to relate large
classes of linear logic formulas with equivalent structural inference rules in se-
quent and hypersequent calculi. In that work, the classes Ni and Pi are defined
so that Ni ⊂ Ni+1, Ni ⊂ Pi+1, Pi ⊂ Pi+1, Pi ⊂ Ni+1 and Pi is built using
positive connectives, while Ni is built using negative ones. Although the defini-
tion is over intuitionistic linear logic without exponentials, it is straightforward
to extend these classes to the whole linear logic using monopoles and bipoles.
In fact, monopoles are in N1 while bipoles are in P2, both with the restriction
that ? must have atomic scope.

In [41] there are two main results concerning this classification: 1) every
axiom in N2 is equivalent to a finite set of structural rules; 2) every axiom in
P3 is equivalent to a finite set of hyperstructural rules. It turns out that, in our
approach, we can completely characterize a sub-set of formulas in P2.

Necessary and sufficient conditions for reductive cut elimination for single
conclusion sequent systems is given by Ciabattoni and Terui in [42]. Their
setting can capture a range of propositional logics, including LJ , intuitionis-
tic linear logic extended with knotted structural rules, and the Full Lambek
Calculi. As in Avron’s work, Ciabattoni and Terui present neither a decision
procedure for determining if a proof system falls into their framework nor any
automation of the proof of cut elimination. In [41], Ciabattoni, Galatos, and
Terui present a systematic procedure to transform large classes of axioms into
equivalent structural rules in sequent and hypersequent calculi: a general proof
of cut elimination for hypersequents is also given. In that paper, a hierarchy of
formulas in intuitionistic linear logic without exponentials is given.

As we discussed in Section 3.4, the adequacy of the encoding of a proof
system can be defined into three levels. In this paper we are interested in
providing a framework that guarantees the admissibility of the cut and the (non-
atomic) initial rules. Since these theorems generally refer to provability, we have
concerned ourselves with only the most shallow level of adequacy, namely, the
level of relative completeness. It is, of course, desirable to see if deeper levels of
adequacy can be captured via linear logic specification. Nigam and Miller in [26]
showed that it is possible to capture a wider range of proof systems (sequent,
natural deduction, tableaux, etc) by a generalization of the style of specifications
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presented in this paper. And in [32] Nigam, Pimentel and Reis proposed using
focused linear logic with subexponentials as the meta-logic for specifying proof
systems, together with a generalization of the notion of coherence presented in
this paper. But it is worthy noticing that, while subexpontentials allow for the
specification of systems at the level of full completeness of derivations, finding
general conditions for verifying properties becomes a tricky task. In fact, the
finer is the specification, the harder is the verification.

9. Conclusion and future work

We have argued here that the use of linear logic as a meta-logic for the
specification of sequent calculi allows us to use some of the meta-theory of linear
logic to draw conclusions about the object-level proof systems. For example,
the notion of duality within coherent proof systems is basically the notion of
de Morgan duals in linear logic. The proof of Lemma 20, used to prove object-
level cut-elimination, makes a critical use of meta-level cut-elimination. We
also showed that for coherent proof systems, the question of whether or not one
proof system’s encoding entails another proof system’s encoding is decidable.

There are certainly numerous directions for future work related to what has
been presented here. For example, most sequent calculi remain complete when
restricting to atomically closed initial sequents. Checking the completeness of
such a restriction should certainly be handled using techniques such as those
for proving that coherent proofs systems satisfy cut-elimination. Also, there
have been various proposals for non-commutative variants of classical linear
logic [43, 44, 45]: it would be interesting to see if these can be used to capture
non-commutative object-level logics in a similar manner as done here.

Finally, while we addressed the question of whether or not an inference rule
is derivable from other inference rules, it would be interesting and useful to
study the question of whether or not an inference rule is admissible in another
proof system.
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