Parallel Dialogue Games and Hypersequents
for Intermediate Logics

Christian G. Fernaller
Technische Universit Wien, Austria

Abstract. A parallel version of Lorenzen’s dialogue theoretic foundation for in-
tuitionistic logic is shown to be adequate for a number of important intermediate
logics. The soundness and completeness proofs proceed by relgtiegaquent
derivations to winning strategies for parallel dialogue games. This atsddas

a computational interpretation of hypersequents.

1 Introduction

In recent years hypersequent calculi have emerged as aldlayjie of proof system
for a wide range of logics (see, e.g., [3, 5, 4]). These casthdre many favorable prop-
erties with Gentzen’s classic sequent caldidi andLI. Most importantly, cuts are
eliminable and the logical rules are strictly analytic —,itbey only refer to immedi-
ate subformulas of the introduced formula and are conteld¢pendent. Consequently
these calculi are of relevance to automated reasoning. fawthe relation between
hypersequent derivations and the semantics of the comdspplogics is much more
obscure than in the case of classical or intuitionistic setg Standard completeness
proofs forLK andLl show how to extract counter models for underivable formutas
is mainly this feature that allows to call (a particular foofjygoal oriented proof search
in sequent calculi ‘semantic tableaux’. Unfortunatelg kiypersequent calculi that have
been formulated for intermediate logics liké@el-Dummett logicG., the logicLQ of
weak excluded middle, or finite-valued@el logics do not relate directly to a semantic
foundation of these logics. To address this concern, we shatshypersequents bear a
close relation to an interesting foundational approachdbastitutes an alternative to
standard Tarski-style semantics: dialogue games.

2 Lorenzen style dialogue games

Logical dialogue games come in many forms and versions, day&a Here, we do not
use more recent formulations in the style of Blass [2] or Atsky [1]}, but rather refer
directly to Paul Lorenzen’s original idea (dating back te thte 1950s, see e.g., [15])
to identify logical validity of a formulaA with the existence of a winning strategy for

1 These more modern logical dialogue games differ considerably fremrtiinal ones of Loren-
zen and his school. In particular, parallelism is introduced already at tké dé analyzing
single connectives. This feature of Blass/Abramsky style games ntiadsesuseful for mod-
elling certain features of linear logic and related formalisms, but less wahected to the
well motivated foundational intentions of Lorenzen.



a proponentP in an idealized confrontational dialogue, in whiBhtries to upholdA
against systematic doubts by apponentO. Although the claim that this leads to an
alternative characterization — or even: ‘justification’ -+otuitionistic logicwas im-
plicit already in Lorenzen’s early essays, it took more thaenty years until the first
rigorous, complete and error free proof of this centralralaias published in [8]. Many
variants of Lorenzen’s original dialogue games have apgukar the literature since.
(Already Lorenzen and his collaborators defined differaarsions of the game. See,
eg., [9, 13] for further references.) Here, we define a varefalialogue games that are:
1) well suited for demonstrating the close relation to ati@l¢entzen-type systems;
2) easily shown to be equivalent to other versions of diadogames for intuitionistic
logic, that can be found in the literature; 3) straightforevo consider ‘in parallel’.

Notation Anatomic formula (atomis either a propositional variable dr (falsun).
As usual,compound formulaare built up from atoms using the connectives/, V;
—A abbreviateA D 1. In addition to formulas, the special signd?,r? can be stated
in a dialogue by the playeRandO, as specified below.

Dialogue games are characterized by two sorts of rulescdbghnes and structural
ones. Thdogical rulesdefine how to attack a compound formula and how to defend
against such an attack. They are summarized in the folloteiblg. (If X is the propo-
nentP thenY refers to the oppone®, and vice versa)

Logical dialogue rules:

[ X: | attackbyY | defenseb)X |
AAB|1? orr? (Y chooses) A or B, accordingly
AVB ? AorB (X chooses
ADB A B

We will see below tha© may also attaclatoms(including L) by stating ‘?’.

A dialogueis a sequence ahoveswhich are either attacking or defending state-
ments, in accordance with the logical rules. Each dialogfers to a finite multiset of
formulas that arénitially grantedby O, and to arinitial formula to be defended bf.

Moves can be viewed as state transitions. In any state ofigth@gdie the (multiset
of) formulas, that have been either initially granted otexaby O so far, are called
thegranted formulagat this state). The last formula that has been stated d&yd that
either already has been attacked or must be attackésinext move is calledctive
formula (Note that the active formula, in general nist the last formula stated biy;
sinceP may have stated formuladter the active formula, that are not attacked®@y)
With each state of a dialogue we thus associatikatbbgue sequenfll - A, whereTll
denotes the granted formulas afithe active formula.

We stipulate that each move carries the information (positeecessary to recon-
struct which formula is attacked or defended in which wayhiat tmove. However, we
do not care about the exact way in which this information dezb

Structural rules(Rahmenregelin the diction of Lorenzen and his school) regulate
the succession of moves. Quite a number of different systéraguctural rules have
been proposed in the literature (See e.g., [16, 9, 13]; itiqudar, [13] compares and

2 Note thatboth players may launch attacks as well as defending moves during theeaufuss
dialogue. For motivation and detailed exposition of these rules we refét.to [



discusses different systems.). The following rules, togetvith the winning conditions

stated below, amount to a version of dialogues traditignedlled Ei-dialogues (i.e.,

Felscher'<E-dialogues combined with the so-callgxe dixistirule; see, e.g., [13]).

Structural dialogue rules:

Start: The first move of the dialogue is carried out ®yand consists in an attack on
the initial formula.

Alternate: Moves strictly alternate between play@sandP.

Atom: Atomic formulas, includingl, may be stated by both players, but can neither
be attacked nor defended By

E: Each (but the first) move dD reacts directly to the immediately preceding move
by P. l.e., if P attacks a granted formula théis next move either defends this
formula or attacks the formula used Byto launch this attack. If, on the other
hand,P’s last move was a defending one th@nhas to attack immediately the
formula stated by in that defense move.

Winning conditions (for P):
W: The game ends witR winning if O has attacked a formula that has already been

granted (either initially or in a later move) 6.
W.L: The game ends witR winning if O has granted..

A dialogue treet for I + C is a rooted directed tree with nodes labelled by dialogue
sequents and edges corresponding to moves, such that eamth lmft is a dialogue
with initially granted formulag1 and initial formulaC. We thus identify the nodes of a
dialogue tree with states of a dialogue. We distinglaiodes an®d-nodes, according
to whether it isP’s or O’s turn to move at the corresponding state.
A finite dialogue tree is avinning strategy(for P) if the following conditions hold:
1. EveryP-node has at most one successor node.
2. All leaf nodes aré-nodes in which the winning conditions f&rare fulfilled.
3. Every O-node has a successor node for each move©bihat is a permissible
continuation of the dialogue (according to the rules) &t #tage.

Winning strategies for a player in a non-cooperative twspe game are more com-
monly described afsinctionsassigning a move for that player to each state of the game,
taking into account all possible moves of the opponent. @esthat our tree form of a
winning strategy just describes the corresponding fundtica manner that makes the
step-wise evolution of permissible dialogues more explici

As already mentioned, a dialogue game may be viewed as drstasition system,
where moves in a dialogue correspond to transitions betWasrdes and-nodes. A
dialogue then is a possible trace in the system; and a wirstiagegy can be obtained
by a systematic ‘unraveling’ of all possible traces.

To illustrate this point, consider the implicational fragmh of the language; i.e.,
the set of formulas not containing or V. Henceforth we use the following notation:
For every compound formul of form C D, F, denote<C andF; denotedD. If F is
atomic therf, is empty (and~ remains undefinedl,, isC, if F =C > D. The figure,
below, represents all permissible moves in a dialogue fsrftagment. By labelling a

transition withM <> F we denote thaf is added to the multisél of granted formulas.
A «— C means tha€, as a result of the corresponding move, is the new activeuftarm



Dialogue as state transitions 0):

The encircled labels denote the dialogue sequent at thespmnding state. The edges
from the P-node to the twdD-nodes correspond to the principal choice of plaer
either to defend the active formula or to attack a compounuidita B from the granted
formulas. (The fact tha# is undefined ifA is atomic means that in this case the tran-
sition from nodeP to node™ is not possible. This corresponds to the stipulation of
rule Atom that atomic formulas cannot be defendedbyHowever, remember that the
dialogue is already in a winning state f@iif the active formulaA is among the granted
formulasl.)

On the other hand, according to the structural lglayerO has no choice but
to attack the last formula d? if P's last move was a defense (i.e., if the dialogue is in
stateO?). In stateO?, howeverO may either defend the attacked formula or attack the
formula used by in launching the last attack (‘counter-attack’).

The winning conditions have to be checked at skatmly. If L € M or A € N then
the game ends in that state wRtwinning.

Adding A and Vv to the language amounts to adding further possible transiti
(between the node®andO”, andP and(?, respectively).

Basic adequateness of dialogues

Proving the adequateness of dialogue games for intuitiomigjic consists in show-
ing that winning strategies can be transformed into (ai@lproofs of Gentzen’s well
known sequent calculud for intuitionistic logic, and vice versa.

To this aim, we use the following variaht’ of LI :

Axioms: 1,1 — CandA 1T — A

Logical rules:*
AAVBN —C BAVBN —C n— A

AVB.M—C (v.1) A vA, (V0T
A, AN~ T—C n—A N—B
ArAgn—c i) n—ag M0

3 Quite a few proofs of the adequateness of dialogue games for chimmgténtuitionistic logic
can be found in the literature. Since we will build directly on such a proof -e Egyoing
beyond intuitionistic logic — we have to present our own version of it, whigwdron ideas
from [13, 14] and [8] but differs in a number of essential details.

4 Since L is in the language, we do not have to consider empty right hand sidequefrsis.



ASBMN—A BAOBN—C _| AN —B
ASBM_-C > g =ass &0
Structural rules: These are the usual weakening, contraction and cut rules.

It is straightforward to check th&tl ’ is sound and complete for intuitionistic logic.
As a corollary, the following holds:

Proposition 1. A\l — AD Biis provable inLI ' only if [ — A D B is provable.

Theorem 1. Every winning strategy for I' - C (i.e., for dialogues with initial formula
C, where playelO initially grants the formulas i) can be transformed into ahl ’-
proof of — C.

Proof. We prove by induction on the depthof T that for everyP-node oft there is an
LI’-proof of the sequent corresponding to the dialogue secatehis node. That this
implies the theorem is obvious for the cases witis either atomic, or a disjunction,
or a conjunction; because, in those cases, the dialogueseafithe®-node(s) immedi-
ately succeeding the root node is (are) identicdl toC. In the case wher€ = AD B,

the P-node succeeding the root carrigd” - A D B as dialogue sequent; and thus the
theorem follows from Proposition 1.

The base casd,= 1, follows from the fact that thE-node (or, in case of being a
conjunction, the twdP-nodes) succeeding the root is a (are) leaf node(s). Thisamp
that one of the winning conditions - I or L € ' — must hold. Consequently, the
corresponding sequeht— C is an axiom.

Ford > 1 we have to distinguish cases according to the form of theeafdrmula
that is defended or the (compound) formula that is attacke®.blo keep the proof
concise, we will only elaborate it for the implicational graent of the language; it is
straightforward to augment the proof to cover also conjonstand disjunctions.

1. P defendsA D B: Let A/IT+ A D B be the dialogue sequent at the curréatode.

P moves from thd>-node to thed*-node by statindd. O has to reply with a move

attackingB. We distinguish two cases:

(a) If Bis an atom then the attack consists in stating ‘?’. Thus warmeio aP-
node with dialogue sequeAt 'l - B. By the induction hypothesis there is an
LI’-proof of A,[1 — B, which can be extended to a proofafll — AD> B
by applying rule(D,r) and weakening.

(b) If Bis of form B, O B thenO has to attackd by addingBy, to the granted
formulasll. Thus we return to &-node with dialogue sequedt, By, I - B.
By the induction hypothesis there is dn’-proof of A By, — B. By
Proposition 1 we obtain ahl’-proof of A,[1 — B. The required proof of
A, M — A D Bis obtained by applying rulé>,r) and weakening.

2. P attacksD D E: LetD D E, N F A be the dialogue sequent at the currésriode.
P’s attack consists in stating. (The move refers to the edge from ndéléo node
O in the state transition diagram, above.) The strategy thendhes sinc® may
either defend the implication or attatk
(a) If O chooses to attadR thenD,, is added to the granted formuladif= Dy, O

D¢. If D is atomic the multiset of granted formulas remains unchdnlgeany
caseD is the new active formula at the succeedifigode. The corresponding
dialogue sequentis (Dp,D D E,M I D, whereDy is empty ifD is atomic.



(b) If, on the other hand) chooses to deferid O E then it has to grari. The ac-
tive formula at the succeedirigtnode remain#\. The corresponding dialogue
sequentis RE,.D D E,MFA.

By the induction hypothesis there dr&’-proofs of the sequents corresponding to

(1) and (2). By Proposition 1 we may remoldg from the left hand side of the

sequent corresponding to (1). Therefore we obtain a pro@f of E,T — A by

combining the two proofs with an application of rule, ). |

Remark 1.For proving the soundness of dialogue games (by this we niaamtnning
strategies only exist for intuitionistically valid sequghit would in fact not have been
necessary to refer to formal derivations. It rather suffimesheck that intuitionistic
validity transfers from the leaves of a dialogue tree upwaodhe root. However for the
following completeness proof the special format of theiimtnistic proofs is essential.

The ‘weakening friendly’ formulation of the axioms and mi&f LI’ allows to elim-
inate applications of the weakening rule. (Weakeningds! faproofs can be moved up-
wards to the axioms, where they are obviously redundantd A&the contraction rule
becomes redundant if we disregard multiple occurrencdsecd@ame formula in the left
hand side of a sequent. Most importantly, is complete also without cut. Let as refer
to a proof that does not contain any applications of strattwules astrongly analytic
The following proposition then sums up the just made obgems.

Proposition 2. There is a strongly analytic proofinl ' for T — C if and only ifl’ —
C is provable inLI’, wherel” equalsr if taken as set (i.e., if multiple memberships of
the same element are discarded).

Theorem 2. Every strongly analytic¢.| "-proof mof T — C can be transformed into a
winning strategy fof” - C.

Proof. We proceed by induction on the depthmfAgain, we show the theorem only
for the implicational fragment of the language.

If ' — C is an axiom the winning strategy (consisting of two nodegjhgious.
There are two cases to consider for the induction step.

1. mends with an application of (D, r): The end sequent is of forlm— A D B.

By the induction hypothesis there is a winning strategfor A, - B. T can
be extended to a winning strategy fbr- A O B as follows. We define a new
root node; i.e., anO*-node with dialogue sequert - A D B. To this root
we attach an edge that leads to a newode. The corresponding move ©f
consists in grantingh as an attack o O B. Therefore the dialogue sequent at
the newP-node isA,I" - A D B. We now only have to add an edge from this
node to the root node af This edge corresponds®statingB in defense oA D B.

2. mends with (D,1): The end sequent is of forsh > B, — C.
By the induction hypothesis there is a winning strategyor A > B,I' - A, and a
winning strategyto for B,A> B,I' - C. Lett; be the tree, rooted in-node with
dialogue sequemt D B,Cp, Ap, T I A, that is obtained from; by removing its root



and addingC;, to the granted formulas. We appeal to the general fact thatzing
strategy for1 - F is also a winning strategy f&, M - F. Similarly lett, be the
tree obtained fornt, that is rooted in @-node with dialogue sequeB;Cp,A D
B, - C. The construction of the winning strategy #&rn B,I" - C s illustrated in
the following picture that refers to the state transitioagtam, presented above.

O

From now on we use the terindialoguesto denote the dialogues that have been
described in this section.

3 Hypersequent calculi for intermediate logics

Intermediate logicgwhen identified with the set of its valid formulas) includeu-
itionistic logic and are included in classical logic. Torduce communicating parallel
dialogues that are adequate for some well known intermetiigics we have to switch
from sequent thypersequertalculi.

Hypersequent calculi arise by generalizing standard seqadculi to refer to whole
contexts of sequents instead of single sequents. In ouexiathypersequent is defined
as a finite, non-empty multiset of '-sequents, calledomponentswritten in form

r1—>C1\|Fn—>Cn

The symbol 1" is intended to denote disjunction at the meta-level.

Like ordinary sequent calculi, hypersequent calculi cengi axioms as well as
logical and structural rules. The latter are divided imi@rnal andexternal rules The
internal structural rules deal with formulas within compats, while the external ones
manipulate whole components of a hypersequent. The stmoéernal structural
rules are external weakening and external contraction:

, M cln Clu
7 (EW) —C[MN—C]|

— (EC)
Nn—C|x Nn—C|x

We can disregar(EW) by taking as axioms all hypersequent that contaihldraxiom
as component.



The logical rules of the hypersequedtI ’ for intuitionistic logic, are essentially
the same as ihl . The only difference is the presence of a side hypersequentpre-
senting a (possibly empty) hypersequent. For instancehthersequent version of the
LI -rule (D,1) is

ADB,M—A|% BADBMN—Cl|x
ADB,M—C|#n

.1

The hypersequent framework allows one to define analytautidbr several impor-
tant intermediate logics. These includédgl-Dummett logids., (also called.C) [6,
11], finite-valued @del logicsGp [11], and the logid.Q of weak excluded middle [12],
also called Jankov logic in reference to [12]. Adequateldabire obtained by adding
just one structural rule, respectively, to the basic hygguent calculusiLIl ’, defined
above.

— The hypersequent calcultfL.C’ for G., is obtained fromnHLI ' by adding the fol-
lowing rule, a version of which has already been defined in [3]

M1,MNy —Cy |5 M,My — Co | 2

(com)
My —Cy M2 —Cof

— The hypersequent calciG’y 1 for Gy, 1, for all k > 1, are obtained by adding
to HLI ' the following rules, respectively, which (essentially)reglefined in [4]:

A [T, To— Ay o [To,T3— Ay ... o [T,y — A

(Git1)
H [T — A [ Tk— A Tk — L +

Note thatG; is nothing but classical logi€l.
— The hypersequent calculi_Q’ — a variant of which was defined in [5] — is
obtained fromHLI ’ by adding the following rule:
g |T,MT— L
|l —L|N— L

(I9)

Theorem 3. HLC/, HG',,, andHLQ' are sound and complete for the logiGs,, G,
andLQ, respectively.

Proof. Follows essentially from the soundness and cut-free caenpdss of the original
calculi proved in [3], [4], and [5], respectively. ]

4 Parallel dialogue games

To extend the close correspondence between strongly anséguent proofs and win-
ning strategies for Lorenzen style dialogues to the hyperset level we ask the fol-
lowing: what happens to the winning powerdRaf we consider games where dialogues
may proceed in parallel? Of course, this question can onlgnssvered once we have
defined more precisely what we mean by ‘parallel dialogueeganMany options are
open for exploration. Here, we investigate parallel varsiof |-dialogue games, that
share the following features:



1. The logical and structural rules tfgames remain unchanged. Indeed, ordinary
I-game dialogues appear as sub-case of the more generd¢ipfaaahework.

2. The proponenP may initiate additional -dialogues by ‘cloning’ the dialogue se-
qguent of one of the parallétdialogues, in which it is her turn to move.

3. To win a set of parallel dialogues the proponErttas to win at least one of the
component dialogues.

These items reflect basic decisions concerning ‘paradiéitin’. In particular, it should
be clear that we want to separate the level of individualodjaé moves strictly from
the initiation of new dialogues and the interaction betwd&togues. Moreover, we
like to considelP as the (sole) ‘scheduler’ of parallel dialogues. (Thestaufea should
be contrasted with alternative concepts of dialogue galikeshe ones in [1, 2].)

Before exploring rules for the synchronization of parad@logues, we will in-
vestigate parallel-dialogues as specified by conditions 1-3, alone. We will thed:
this results in a game that does not change the winning pasfd?sover the (single)
|-dialogue game.

Notation A parallel |-dialogue (Pt-dialogue)is a sequence of nodes connected
by moves. Each node is labelled by aglobal stateZ(v). A global state is a non-
empty finite se{M4 F1 Cq,...,Mn Fin Cq} of indexed -dialogue sequent&Each index
tk uniquely names one of theelements, calledomponent dialogue sequermissim-
ply componentsof the global state. In each of the components it is eiffigror O’s
turn to move. We will speak of -component or a®-component, accordingly. We
distinguishinternal andexternalmoves.

Internal moves combine singlel -dialogue moves for some (possibly also none
or all) of the components of the current global state. Anrimé move from global
state{lNM1 1 Cy,...,Mn Fin Cn} to global state{M) 1 Cy,..., M} Fin C} consists in
a set of indexed-dialogue movegiis: movey,...,lin: moven}, such that the indices
lij, 1< j < m, are pairwise distinct elements ¢f1,...,in}. M} F C, denotes the
component corresponding to the resultrebvei applied to the component indexed
by ikif ke {i1,...,im}; otherwiselT = M andCy = C;.

External moves in contrast to internal moves, may add or remove comporants
a global state, but do not change the local stausr(O) of existing components.

For now, we define only one external move, callexdk.

fork is a move byP and consists in duplicating one of tiRecomponents of th
current global state and assigning a new unique index todtechcomponent.

4%

Clearly, fork corresponds to item 2 in the above list of basic features ofpauallel
dialogue games. We call the new index generateébkiya child of the original index
of the duplicated component.

The central condition in the definition off&l -dialogue is the following:

— each sequence dfdialogue moves, that arises by picking at most one element
li : movej from each of the consecutive internal moves, such that fdr gli < n
eithert[i 4+ 1] =i or ([i + 1] is child of i, forms anl -dialogue.

Theinitial global statex(v) — that is the state labelling the root nodef a P-I-
dialogue — consists only @@-components. We speak ofal -dialoguefor Z(v).



Example 1.We exhibit aP-I-dialogue for-aV a, for some atona. Remember thata
abbreviateaa D L:

{F1-ava}
+{1: ?[attack V]}
{F1—-ava}
yfork: 1
P {F1—-ava, Fp -ava}
1{1: —a[defense V], 2: a[defense Vr]}
{F1-a, Fya}

+{1: afattack D], 2: afattack atoni}

{at1-a, 2 a}

+{1: L [defense D]}
@ {at1 1, Fpa}

+{1: ?[attack atoni}
{aF1 L, Foa}

Alternative P-I-dialogues for-aV a are possible; but it is easy to check that none
of these dialogues lead to a state where pldés winning. However, we will see
below that a special synchronization rule, which is adegtmt classical logic, allows
to extend this dialogue to a winning strategy f@aV a.

The parallel version of the dialogue game may be viewed asta finllection of
state transition systems that are coordinated by refetdrayglobal, discrete flow of
time. At each time step some (possibly also none or all) o€timeponent dialogues ad-
vance by one move. Infark-move the component dialogues remain in their individual
current states but a new dialogue, that copies the statecabfthe old ones, is created.

Observe that our definition of -1 -dialogue game allows for considerable flexibil-
ity in ‘implementing’ the involved parallelism. We may, fexample, require thall
component dialogues have to advance at each time steptarnatlvely, that at most
k dialogues may advance simultaneously (even if there are thank components.)
The latter option might, e.g., be understood as modelinglgiie game where and
O, are not single persons, but rather consist of teankgptdyers each, and where each
component dialogue is conducted by a different pair of opppqsayers. If, instead,
we stick with a single proponent and a single opponent f.es,1) it seems natural
to ‘sequentialize’ by dove-tailing the components of patahoves. This motivates the
following definition:

— A P-l-dialogue is calledequentializedf every internal move is a singleton set.

In the proof of Theorem 1 it was essential that full cycles aives in a winning
strategy — from &-state to arD-state and back again tdPastate with an immediately



responding move dd — correspond to a single inference stef.in. However, even in
sequentialize®-1-dialogues such cycles may be interrupted by internal mmfesring
to other components or by external moves. We therefore daff-dialogue to be
normal if the following condition holds. Every internal move thairtains aP-move
indexed withik

— is immediately followed by another internal move withkaindexed elementd-

reply),
— or, else, is the last move in the component dialogue refeaég (k.

Remark 2.In combination with structural rul& (see Section 2), the conditions for
normality can be understood as the stipulation that theqept of a parallel dialogue
game is the sole ‘scheduler’. In other words — altho&gtas no control over choices
of O as long as they are immediate replies to her own previous meve always
determines at which dialogue component the game is to bénceat

Theorem 4. Every finite Pt-dialogued for X can be translated into a sequentialized
normal P{-dialogue forZ ending in the same global state &s

Proof. Sequentialization is easily achieved by replacing everterival move
{t1:moves,...,In:moven} by a sequencetl:moves},...,{tn: movey} of internal
moves. (Observe that, by the definition of an internal mdwve,indicesi are pairwise
different and therefore refer to different components ofcdgl state.)

To obtain a normal dialogue, assume thatis already sequentialized.
Unless & is already normal, it contains a subsequence of at leaste thre
moves {11:move1},{12:movey} ..., {In: movey}, where1l = n, but 1i # 11 for
all 2 <i < n, and where move, is an I-dialogue move byO, that di-
rectly reacts tomove; by P. Clearly, reordering the sequence of moves into
{t1:moves},{in: moven},{12: moveyz},..., {t[n-1]: moven_1} results in the same fi-
nal global state. Note that — disregarding proper notatiothe-moves12: move, } to
{t[n—1]: move,_1} may actually also be external moves without affecting trseilte
The claim follows by repeating this rearrangement of mowesfeen as possible. O

Note [Important] For the rest of the paper we will consider all parallel digles to
be sequentialized and normal. Sequentialization imphas just like forl-dialogues,
we can speak dP-moves an®-moves ofP-I-dialogues.fork also is aP>-move.) Since
the set parentheses are redundant in denoting moves ofrdgidjued dialogues, we
will omit them from now on.

A P-l-dialogue treex for Z is a rooted, directed tree with global states as nodes
and edges labelled by (internal or external) moves suchethett branch of is aP-I-
dialogue forz.

A finite P-l-dialogue tree is called winning strategyif the following condition is
satisfied for every node:

(p) eitherv has a single successor node, the edge to which is labelledPhmave,
(o) orfor eachD-move that is a permissible continuation of the dialogudatia state

3(v) there is an edge leavingthat is labelled by this move,

(w) orv is a leaf node and at least one of the componen(of fulfills the winning
conditions (forP).



Nodes satisfying (p) are calld®nodes; and nodes satisfying (o) are cal&ehodes.
Observe that, by normalitfp-moves andO-moves strictly alternate in each branch,
except for the initial segment (consisting of more than ooesecutiveO-nodes, in
general) and external moves (which, in general, result irseoutiveP-nodes).

Theorem 5. Every winning strategy for sequentialized normal P-dialogues with
initial global state{l" - C} can be transformed into aidL| '-proof of [ — C.

Proof. We show by induction on the depth ofhat for everyP-node oft labelled with
global statez, there is arHLI '-proof of the corresponding hypersequéXit Since the
branches of are normal and sequential dialogues, edgadiwdt correspond tmternal
movesare translated into corresponding inference steps usigigdbrules ofHLI ’,
exactly as in the proof of Theorem 1. Moreover, if the winnamgndition is fulfilled for
one of the component dialogues, then the global state gleartesponds to an axiom
of HLI'.

It remains to show that aldork translates into external contractidBC): Suppose
V)— Wis an edge of corresponding to a lasbrk-move of a branch of. Then the
global state ax (V') is like Z(v) except for an additional dialogue sequEnt;; A, where
the indexii is not yet used at, but where, for somej, ' j Ais an element oE(V).
Clearly, the require#iL| '-proof of [Z(v)] is obtained fronT, by adding an appropriate
application of(EC) as the last inference. m|

Again, we call cut-free proofs without applications of @mtal or external) weak-
ening or internal contractiostrongly analytic

Theorem 6. Every strongly analyti¢iLI '-proof 1t of the hypersequeit — C can be
transformed into a winning strategyfor P-l-dialogues for{lr — C}.

Proof. Sincerttis strongly analytic, there are no applications of intestalctural rules.
The logical rules oHLI ' translate into fulP-O—P-cycles of internal moves, exactly as
in the proof of Theorem 2. It remains to show that externalkeaigs correspond to
fork-moves forP-1-dialogues. It suffices to consider a sub-proofrénding with the
inference

MNM—D|MN—D|x

MN—D|x

(EC)

By induction hypothesis there exists a winning stratédgpr {1 D} U{M 2D} U
(# ), which has to be extended to one fo1 -1 D} U (s ), where(s ) denotes the set
of dialogue sequents corresponding to the components.ofhis is easily achieved
by inserting a new edge corresponding to an appropriatannst of thefork-move
immediately after the initial (internad-)move oft’. |

5 Synchronizing dialogues

Synchronization betwedndialogues is formalized asergingof two or more dialogues
into one according to the following general principke:selects (for merging) some
P-components from the global state. The picked componeetshan merged into a



new dialogue in some straightforward way. For some synéhation rules, there are
different possible ways to merge the components picke®.by those case® may
choose one of them.

In [10] the following (two-part) synchronization rule ford@el-Dummett logiG..
was already discussed briefly:

lc— P-part: P picks two (indices ofP-component$l; ;1 C; andll; 2 C;, from the
current global state and thus indicates thiatJ I, will be the granted formulas
of the resulting merged dialogue sequent.

lc— O-part: In response to this externBmove, O chooses eithe€; or C, as the
active formula of the merged component, which is indexedlpr 12, corre-
spondingly.

Not only infinite valued @&del logic can be characterized by an appropriate parallel
dialogue game, but also each of thwalued QGdel logicsG,. Here is the appropriate
synchronization rule, parameterizediyywheren > 2:

g, — P-part. P picksn— 1 P-components$ly k1 Cy, ...M-1 Fin-1 Cn-1, and aP-
component of forni1, -, L from the current global state for merging.

g, —O-part: O chooses one of the componeRtsUM 1 Cq, M2UM3H2Cy, ... Or
Mn-1UMn Fn_1 Cn—1 as the merged component, that replaces the components
picked byP.

Note that for the case of two truth values, i.e., for clagdimgic, no proper choice i
left for O; henceg, can be stated simpler as follows:

cl (= 82): If the global state containsR-component of forni1 -, L thenP may re-
move this component and afiito the granted formulas of anothercomponent
of the global state.

(7]

In other words, ifP detects that in one of the components she faces the taskeandlef
falsum then she may cancel the correspondindialogue while transferring its
currently granted formulas to anothercomponent of her choice.

Example 2.Rulecl allowsP to continue the parallel dialogue fefaVv ain Example 1

as follows:
P {at1 L, Foa}

Replacingcl by the following subtle variant, allows to characterizektanlogic LQ,
which allowsP to win every dialogue for a formula of formAvV ——A:

lq: If the global state containsR-component of fornfl -, L thenP may remove
this component and add to the granted formulas of anothBrcomponent of
the global state, which also hasas active formula.

We summarize the above synchronization rules and provideesdo the resulting
systems of parallel dialogue games in the following table.



Parallel dialogue games extendingp-l-games:
(All dialogue sequents exhibited in the table Breomponents)

[Systen Rule [Synchronization (external merging move)

P-G Ic |Pwantsto mergé€lq 1 Cy andly -2 Co

O chooses eithdf{ UM 1 C1 or M1 UM 2 Co

P-Gn | 8, |Pwantsto mergélyt1Cq,and.. N1 I—,[n,l] Ch_1, andlMy kn

O chooses eithdfl; UMy 1 Cq, Mo UMN3 2 Cy, ...0rML_1 UMy '_l[nfl} Cho1
P-Cl |cl=g|Pmerged1t,1 L andlntCintoMUlr H,C

P-LQ | Ig |Pmergedlt,y Landl LintoMUl k- L

Let us call parallel dialogues that are defined exactifPdsdialogues, except for
including one of the rulek, gy, orlq, P-G-, P-Gp-, andP-LQ -dialogues, respectively.

Theorem 7. Every winning strategy for sequentialized normal & (P-Gg-, or P-
LQ-)dialogues with initial global stat§l" ; A} can be transformed into aHLC’-
(HG'p-, or HLQ'-)proof 1t of the corresponding hypersequént— A, and vice versa.

Proof. Given the proofs of Theorems 5 and 6, it remains to show thatstimchro-
nization ruledc, g, andlq correspond to the hypersequent rules (com,), @nd (Iq),
respectively. We present the case lfdcom); the other cases are similar or simpler.
(=). Supposegyy— () is an edge oft which corresponds to an instance lof
The relevant part of looks as follows. We usgp to denoteA if F is of form AD B;
otherwiseF, is empty:
Z(vo), {Cp,M1 1 C, Dp,Mz 2D} C Z(vo)

ylc [P-part]:11,12
%(v) = £(vo)

Ic [O-response]tl/ \Ic [O-response]i2
(V) @ (v

where Z(V') = Z(v) — {Cp,M1 k1 C, Dp, M2 k2 D} U{Cp,M1,Dp,M3 1 C} and
Z(V") =Z(v) —{Cp,M1 1 C, Dp,M2 2 D} U{Cp,M1,Dp, M2 2 D}. By induction
hypothesis there exisiLC’-proofs 1, and 1~ of the corresponding hypersequents
[Z(V")] and[Z(V")], respectively. Clearlyit,, andm,» can be joined by an application of
(com) to obtain the required proof ¢E(vg)].

(<) Supposet contains a subproof that ends in an application of the concaun
tion rule. (To make the proof more transparent we disregaeltsypersequents.)

My,My —C My,MNy — D
N —=C | M, — D
By induction hypothesis there exist winning strategigandt, for {14, 1 C} and
{MN1,MN> 2 D}, respectively, that are of following form:
{”17|'|2 F1C} {”17”2 2 D}
1:attackonC 2:attack on D
b (P){Cp, M1, M2 1 C} e: (P){Dp,M1.Mz 2 D}

/
T

(com)

/
T



A winning strategy fofM4 1 C, M» k2 D} is obtained by attaching to
OJ](_HOX {rll Fi C7 My 2 D}
1: attack onC

{Cp,M1H1C, Mo+ D}

2:attack onD

V8 {Cp,M1H1C, Dp,M2+2 D}

the nodes for the two parts of external mdeéllustrated in case=), above, where
nodep is identified with nodevo. Finally, the sub-strategie andt), are attached by
identifying nodev’ with nodep; and nodey” with nodes,. |
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