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Abstract. A parallel version of Lorenzen’s dialogue theoretic foundation for in-
tuitionistic logic is shown to be adequate for a number of important intermediate
logics. The soundness and completeness proofs proceed by relating hypersequent
derivations to winning strategies for parallel dialogue games. This also provides
a computational interpretation of hypersequents.

1 Introduction

In recent years hypersequent calculi have emerged as a flexible type of proof system
for a wide range of logics (see, e.g., [3, 5, 4]). These calculi share many favorable prop-
erties with Gentzen’s classic sequent calculiLK and LI . Most importantly, cuts are
eliminable and the logical rules are strictly analytic — i.e., they only refer to immedi-
ate subformulas of the introduced formula and are context independent. Consequently
these calculi are of relevance to automated reasoning. However, the relation between
hypersequent derivations and the semantics of the corresponding logics is much more
obscure than in the case of classical or intuitionistic sequents. Standard completeness
proofs forLK andLI show how to extract counter models for underivable formulas; it
is mainly this feature that allows to call (a particular formof) goal oriented proof search
in sequent calculi ‘semantic tableaux’. Unfortunately, the hypersequent calculi that have
been formulated for intermediate logics like Gödel-Dummett logicG∞, the logicLQ of
weak excluded middle, or finite-valued Gödel logics do not relate directly to a semantic
foundation of these logics. To address this concern, we showthat hypersequents bear a
close relation to an interesting foundational approach that constitutes an alternative to
standard Tarski-style semantics: dialogue games.

2 Lorenzen style dialogue games

Logical dialogue games come in many forms and versions, nowadays. Here, we do not
use more recent formulations in the style of Blass [2] or Abramsky [1]1, but rather refer
directly to Paul Lorenzen’s original idea (dating back to the late 1950s, see e.g., [15])
to identify logical validity of a formulaA with the existence of a winning strategy for

1 These more modern logical dialogue games differ considerably from the orginal ones of Loren-
zen and his school. In particular, parallelism is introduced already at the level of analyzing
single connectives. This feature of Blass/Abramsky style games makesthem useful for mod-
elling certain features of linear logic and related formalisms, but less well connected to the
well motivated foundational intentions of Lorenzen.



a proponentP in an idealized confrontational dialogue, in whichP tries to upholdA
against systematic doubts by anopponentO. Although the claim that this leads to an
alternative characterization — or even: ‘justification’ — of intuitionistic logicwas im-
plicit already in Lorenzen’s early essays, it took more thantwenty years until the first
rigorous, complete and error free proof of this central claim was published in [8]. Many
variants of Lorenzen’s original dialogue games have appeared in the literature since.
(Already Lorenzen and his collaborators defined different versions of the game. See,
eg., [9, 13] for further references.) Here, we define a version of dialogue games that are:
1) well suited for demonstrating the close relation to analytic Gentzen-type systems;
2) easily shown to be equivalent to other versions of dialogue games for intuitionistic
logic, that can be found in the literature; 3) straightforward to consider ‘in parallel’.

Notation. An atomic formula (atom)is either a propositional variable or⊥ (falsum).
As usual,compound formulasare built up from atoms using the connectives⊃, ∧, ∨;
¬A abbreviatesA⊃ ⊥. In addition to formulas, the special signs ?,l?, r? can be stated
in a dialogue by the playersP andO, as specified below.

Dialogue games are characterized by two sorts of rules: logical ones and structural
ones. Thelogical rulesdefine how to attack a compound formula and how to defend
against such an attack. They are summarized in the followingtable. (IfX is the propo-
nentP thenY refers to the opponentO, and vice versa.2)
Logical dialogue rules:

X: attack byY defense byX
A∧B l? orr? (Y chooses) A or B, accordingly
A∨B ? A or B (X chooses)
A⊃ B A B

We will see below thatO may also attackatoms(including⊥) by stating ‘?’.
A dialogueis a sequence ofmoves, which are either attacking or defending state-

ments, in accordance with the logical rules. Each dialogue refers to a finite multiset of
formulas that areinitially grantedby O, and to aninitial formula to be defended byP.

Moves can be viewed as state transitions. In any state of the dialogue the (multiset
of) formulas, that have been either initially granted or stated byO so far, are called
thegranted formulas(at this state). The last formula that has been stated byP and that
either already has been attacked or must be attacked inO’s next move is calledactive
formula. (Note that the active formula, in general, isnot the last formula stated byP;
sinceP may have stated formulasafter the active formula, that are not attacked byO.)
With each state of a dialogue we thus associate adialogue sequentΠ ` A, whereΠ
denotes the granted formulas andA the active formula.

We stipulate that each move carries the information (pointers) necessary to recon-
struct which formula is attacked or defended in which way in that move. However, we
do not care about the exact way in which this information is coded.

Structural rules(Rahmenregelnin the diction of Lorenzen and his school) regulate
the succession of moves. Quite a number of different systemsof structural rules have
been proposed in the literature (See e.g., [16, 9, 13]; in particular, [13] compares and

2 Note thatbothplayers may launch attacks as well as defending moves during the course of a
dialogue. For motivation and detailed exposition of these rules we refer to [9].



discusses different systems.). The following rules, together with the winning conditions
stated below, amount to a version of dialogues traditionally calledEi-dialogues (i.e.,
Felscher’sE-dialogues combined with the so-calledipse dixistirule; see, e.g., [13]).
Structural dialogue rules:
Start: The first move of the dialogue is carried out byO and consists in an attack on

the initial formula.
Alternate: Moves strictly alternate between playersO andP.
Atom: Atomic formulas, including⊥, may be stated by both players, but can neither

be attacked nor defended byP.
E: Each (but the first) move ofO reacts directly to the immediately preceding move

by P. I.e., if P attacks a granted formula thenO’s next move either defends this
formula or attacks the formula used byP to launch this attack. If, on the other
hand,P’s last move was a defending one thenO has to attack immediately the
formula stated byP in that defense move.

Winning conditions (for P):
W: The game ends withP winning if O has attacked a formula that has already been

granted (either initially or in a later move) byO.
W⊥: The game ends withP winning if O has granted⊥.

A dialogue treeτ for Π ` C is a rooted directed tree with nodes labelled by dialogue
sequents and edges corresponding to moves, such that each branch ofτ is a dialogue
with initially granted formulasΠ and initial formulaC. We thus identify the nodes of a
dialogue tree with states of a dialogue. We distinguishP-nodes andO-nodes, according
to whether it isP’s or O’s turn to move at the corresponding state.

A finite dialogue tree is awinning strategy(for P) if the following conditions hold:
1. EveryP-node has at most one successor node.
2. All leaf nodes areP-nodes in which the winning conditions forP are fulfilled.
3. Every O-node has a successor node for each move byO that is a permissible

continuation of the dialogue (according to the rules) at this stage.

Winning strategies for a player in a non-cooperative two-person game are more com-
monly described asfunctionsassigning a move for that player to each state of the game,
taking into account all possible moves of the opponent. Observe that our tree form of a
winning strategy just describes the corresponding function in a manner that makes the
step-wise evolution of permissible dialogues more explicit.

As already mentioned, a dialogue game may be viewed as a statetransition system,
where moves in a dialogue correspond to transitions betweenP-nodes andO-nodes. A
dialogue then is a possible trace in the system; and a winningstrategy can be obtained
by a systematic ‘unraveling’ of all possible traces.

To illustrate this point, consider the implicational fragment of the language; i.e.,
the set of formulas not containing∧ or ∨. Henceforth we use the following notation:
For every compound formulaF of form C⊃ D, Fp denotesC andFc denotesD. If F is
atomic thenFp is empty (andFc remains undefined).Fpp isCp if F =C⊃D. The figure,
below, represents all permissible moves in a dialogue for this fragment. By labelling a

transition withΠ
+
←↩ F we denote thatF is added to the multisetΠ of granted formulas.

A←C means thatC, as a result of the corresponding move, is the new active formula.



Dialogue as state transitions (⊃):
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The encircled labels denote the dialogue sequent at the corresponding state. The edges
from theP-node to the twoO-nodes correspond to the principal choice of playerP:
either to defend the active formula or to attack a compound formulaB from the granted
formulas. (The fact thatAc is undefined ifA is atomic means that in this case the tran-
sition from nodeP to nodeOα is not possible. This corresponds to the stipulation of
rule Atom, that atomic formulas cannot be defended byP. However, remember that the
dialogue is already in a winning state forP if the active formulaA is among the granted
formulasΠ.)

On the other hand, according to the structural ruleE, playerO has no choice but
to attack the last formula ofP if P’s last move was a defense (i.e., if the dialogue is in
stateOα). In stateOβ, however,O may either defend the attacked formula or attack the
formula used byP in launching the last attack (‘counter-attack’).

The winning conditions have to be checked at stateP only. If ⊥ ∈ Π or A∈ Π then
the game ends in that state withP winning.

Adding ∧ and∨ to the language amounts to adding further possible transitions
(between the nodesP andOα, andP andOβ, respectively).

Basic adequateness of dialogues

Proving the adequateness of dialogue games for intuitionistic logic consists in show-
ing that winning strategies can be transformed into (analytic) proofs of Gentzen’s well
known sequent calculusLI for intuitionistic logic, and vice versa.3

To this aim, we use the following variantLI ′ of LI :
Axioms: ⊥,Π −→C andA,Π −→ A
Logical rules:4

A,A∨B,Π −→C B,A∨B,Π −→C
A∨B,Π −→C

(∨, l)
Π −→ Ai

Π −→ A1∨A2
(∨i , r)

Ai ,A1∧A2,Π −→C
A1∧A2,Π −→C

(∧i , l)
Π −→ A Π −→ B

Π −→ A∧B
(∧, r)

3 Quite a few proofs of the adequateness of dialogue games for characterizing intuitionistic logic
can be found in the literature. Since we will build directly on such a proof — also in going
beyond intuitionistic logic — we have to present our own version of it, which draws on ideas
from [13, 14] and [8] but differs in a number of essential details.

4 Since⊥ is in the language, we do not have to consider empty right hand sides of sequents.



A⊃ B,Π −→ A B,A⊃ B,Π −→C
A⊃ B,Π −→C

(⊃, l)
A,Π −→ B

Π −→ A⊃ B
(⊃, r)

Structural rules: These are the usual weakening, contraction and cut rules.
It is straightforward to check thatLI ′ is sound and complete for intuitionistic logic.

As a corollary, the following holds:

Proposition 1. A,Γ −→ A⊃ B is provable inLI ′ only if Γ −→ A⊃ B is provable.

Theorem 1. Every winning strategyτ for Γ `C (i.e., for dialogues with initial formula
C, where playerO initially grants the formulas inΓ) can be transformed into anLI ′-
proof ofΓ −→C.

Proof. We prove by induction on the depthd of τ that for everyP-node ofτ there is an
LI ′-proof of the sequent corresponding to the dialogue sequentat this node. That this
implies the theorem is obvious for the cases whereC is either atomic, or a disjunction,
or a conjunction; because, in those cases, the dialogue sequent at theP-node(s) immedi-
ately succeeding the root node is (are) identical toΓ `C. In the case whereC = A⊃ B,
theP-node succeeding the root carriesA,Γ ` A⊃ B as dialogue sequent; and thus the
theorem follows from Proposition 1.

The base case,d = 1, follows from the fact that theP-node (or, in case ofC being a
conjunction, the twoP-nodes) succeeding the root is a (are) leaf node(s). This implies
that one of the winning conditions —C ∈ Γ or ⊥ ∈ Γ — must hold. Consequently, the
corresponding sequentΓ −→C is an axiom.

For d > 1 we have to distinguish cases according to the form of the active formula
that is defended or the (compound) formula that is attacked by P. To keep the proof
concise, we will only elaborate it for the implicational fragment of the language; it is
straightforward to augment the proof to cover also conjunctions and disjunctions.
1. P defendsA⊃ B: Let A,Π ` A⊃ B be the dialogue sequent at the currentP-node.

P moves from theP-node to theOα-node by statingB. O has to reply with a move
attackingB. We distinguish two cases:

(a) If B is an atom then the attack consists in stating ‘?’. Thus we return to aP-
node with dialogue sequentA,Π ` B. By the induction hypothesis there is an
LI ′-proof of A,Π −→ B, which can be extended to a proof ofA,Π −→ A⊃ B
by applying rule(⊃, r) and weakening.

(b) If B is of form Bp ⊃ Bc thenO has to attackB by addingBp to the granted
formulasΠ. Thus we return to aP-node with dialogue sequentA,Bp,Π ` B.
By the induction hypothesis there is anLI ′-proof of A,Bp,Π −→ B. By
Proposition 1 we obtain anLI ′-proof of A,Π −→ B. The required proof of
A,Π −→ A⊃ B is obtained by applying rule(⊃, r) and weakening.

2. P attacksD ⊃ E: Let D ⊃ E,Π ` A be the dialogue sequent at the currentP-node.
P’s attack consists in statingD. (The move refers to the edge from nodeP to node
Oβ in the state transition diagram, above.) The strategy then branches sinceO may
either defend the implication or attackD.
(a) If O chooses to attackD thenDp is added to the granted formulas ifD = Dp ⊃

Dc. If D is atomic the multiset of granted formulas remains unchanged. In any
case,D is the new active formula at the succeedingP-node. The corresponding
dialogue sequent is (1)Dp,D ⊃ E,Π ` D, whereDp is empty ifD is atomic.



(b) If, on the other hand,O chooses to defendD ⊃E then it has to grantE. The ac-
tive formula at the succeedingP-node remainsA. The corresponding dialogue
sequent is (2)E,D ⊃ E,Π ` A.

By the induction hypothesis there areLI ′-proofs of the sequents corresponding to
(1) and (2). By Proposition 1 we may removeDp from the left hand side of the
sequent corresponding to (1). Therefore we obtain a proof ofD ⊃ E,Π −→ A by
combining the two proofs with an application of rule(⊃, l). 2

Remark 1.For proving the soundness of dialogue games (by this we mean that winning
strategies only exist for intuitionistically valid sequents) it would in fact not have been
necessary to refer to formal derivations. It rather sufficesto check that intuitionistic
validity transfers from the leaves of a dialogue tree upwards to the root. However for the
following completeness proof the special format of the intuitionistic proofs is essential.

The ‘weakening friendly’ formulation of the axioms and rules ofLI ′ allows to elim-
inate applications of the weakening rule. (Weakenings inLI ′-proofs can be moved up-
wards to the axioms, where they are obviously redundant.) Also the contraction rule
becomes redundant if we disregard multiple occurrences of the same formula in the left
hand side of a sequent. Most importantly,LI ′ is complete also without cut. Let as refer
to a proof that does not contain any applications of structural rules asstrongly analytic.
The following proposition then sums up the just made observations.

Proposition 2. There is a strongly analytic proof inLI ′ for Γ−→C if and only ifΓ′ −→
C is provable inLI ′, whereΓ′ equalsΓ if taken as set (i.e., if multiple memberships of
the same element are discarded).

Theorem 2. Every strongly analyticLI ′-proof π of Γ −→C can be transformed into a
winning strategy forΓ `C.

Proof. We proceed by induction on the depth ofπ. Again, we show the theorem only
for the implicational fragment of the language.

If Γ −→ C is an axiom the winning strategy (consisting of two nodes) isobvious.
There are two cases to consider for the induction step.

1. π ends with an application of(⊃, r): The end sequent is of formΓ −→ A⊃ B.
By the induction hypothesis there is a winning strategyτ for A,Γ ` B. τ can
be extended to a winning strategy forΓ ` A ⊃ B as follows. We define a new
root node; i.e., anOα-node with dialogue sequentΓ ` A ⊃ B. To this root
we attach an edge that leads to a newP-node. The corresponding move ofO
consists in grantingA as an attack onA ⊃ B. Therefore the dialogue sequent at
the newP-node isA,Γ ` A ⊃ B. We now only have to add an edge from this
node to the root node ofτ. This edge corresponds toP statingB in defense ofA⊃B.

2. π ends with (⊃, l): The end sequent is of formA⊃ B,Γ −→C.
By the induction hypothesis there is a winning strategyτ1 for A⊃ B,Γ ` A, and a
winning strategyτ2 for B,A⊃ B,Γ `C. Let τ−1 be the tree, rooted in aP-node with
dialogue sequentA⊃ B,Cp,Ap,Γ ` A, that is obtained fromτ1 by removing its root



and addingCp to the granted formulas. We appeal to the general fact that a winning
strategy forΠ ` F is also a winning strategy forC,Π ` F . Similarly let τ−2 be the
tree obtained formτ2 that is rooted in aP-node with dialogue sequentB,Cp,A ⊃
B,Γ `C. The construction of the winning strategy forA⊃ B,Γ `C is illustrated in
the following picture that refers to the state transition diagram, presented above.

±°
²¯
Oα

±°
²¯
P

±°
²¯
Oβ

±°
²¯
P ±°

²¯
P

A⊃ B,Γ `C

Cp,A⊃ B,Γ `C

Cp,A⊃ B,Γ `C

Ap,Cp,A⊃ B,Γ ` A B,Cp,A⊃ B,Γ `C

?attack on C

?attack on A⊃ B

¡
¡¡ª

attack on A @
@@R

defense of A⊃ B

τ−1 τ−2
2

From now on we use the termI -dialoguesto denote the dialogues that have been
described in this section.

3 Hypersequent calculi for intermediate logics

Intermediate logics(when identified with the set of its valid formulas) include intu-
itionistic logic and are included in classical logic. To introduce communicating parallel
dialogues that are adequate for some well known intermediate logics we have to switch
from sequent tohypersequentcalculi.

Hypersequent calculi arise by generalizing standard sequent calculi to refer to whole
contexts of sequents instead of single sequents. In our context, a hypersequent is defined
as a finite, non-empty multiset ofLI ′-sequents, calledcomponents; written in form

Γ1 −→C1 | . . . | Γn −→Cn.

The symbol “|” is intended to denote disjunction at the meta-level.
Like ordinary sequent calculi, hypersequent calculi consist in axioms as well as

logical and structural rules. The latter are divided intointernal andexternal rules. The
internal structural rules deal with formulas within components, while the external ones
manipulate whole components of a hypersequent. The standard external structural
rules are external weakening and external contraction:

H

Π −→C | H
(EW)

Π −→C | Π −→C | H

Π −→C | H
(EC)

We can disregard(EW) by taking as axioms all hypersequent that contain anLI ′-axiom
as component.



The logical rules of the hypersequentHLI ′ for intuitionistic logic, are essentially
the same as inLI ′. The only difference is the presence of a side hypersequentH , repre-
senting a (possibly empty) hypersequent. For instance, thehypersequent version of the
LI ′-rule (⊃, l) is

A⊃ B,Π −→ A | H B,A⊃ B,Π −→C | H

A⊃ B,Π −→C | H
(⊃, l)

The hypersequent framework allows one to define analytic calculi for several impor-
tant intermediate logics. These include Gödel-Dummett logicG∞ (also calledLC ) [6,
11], finite-valued G̈odel logicsGn [11], and the logicLQ of weak excluded middle [12],
also called Jankov logic in reference to [12]. Adequate calculi are obtained by adding
just one structural rule, respectively, to the basic hypersequent calculusHLI ′, defined
above.

– The hypersequent calculusHLC ′ for G∞ is obtained fromHLI ′ by adding the fol-
lowing rule, a version of which has already been defined in [3]:

Π1,Π2 −→C1 | H Π1,Π2 −→C2 | H

Π1 −→C1 | Π2 −→C2 | H
(com)

– The hypersequent calculiHG′
k+1 for Gk+1, for all k ≥ 1, are obtained by adding

to HLI ′ the following rules, respectively, which (essentially) were defined in [4]:

H | Γ1,Γ2 −→ A1 H | Γ2,Γ3 −→ A2 . . . H | Γk,Γk+1 −→ Ak

H | Γ1 −→ A1 | . . . | Γk −→ Ak | Γk+1 −→⊥
(Gk+1)

Note thatG2 is nothing but classical logicCl.
– The hypersequent calculusHLQ ′ — a variant of which was defined in [5] — is

obtained fromHLI ′ by adding the following rule:

H | Γ,Π −→⊥

H | Γ −→⊥ | Π −→⊥
(lq)

Theorem 3. HLC′, HG′
n, andHLQ ′ are sound and complete for the logicsG∞, Gn,

andLQ , respectively.

Proof. Follows essentially from the soundness and cut-free completeness of the original
calculi proved in [3], [4], and [5], respectively. 2

4 Parallel dialogue games

To extend the close correspondence between strongly analytic sequent proofs and win-
ning strategies for Lorenzen style dialogues to the hypersequent level we ask the fol-
lowing: what happens to the winning powers ofP if we consider games where dialogues
may proceed in parallel? Of course, this question can only beanswered once we have
defined more precisely what we mean by ‘parallel dialogue games’. Many options are
open for exploration. Here, we investigate parallel versions of I -dialogue games, that
share the following features:



1. The logical and structural rules ofI -games remain unchanged. Indeed, ordinary
I -game dialogues appear as sub-case of the more general parallel framework.

2. The proponentP may initiate additionalI -dialogues by ‘cloning’ the dialogue se-
quent of one of the parallelI -dialogues, in which it is her turn to move.

3. To win a set of parallel dialogues the proponentP has to win at least one of the
component dialogues.

These items reflect basic decisions concerning ‘parallelization’. In particular, it should
be clear that we want to separate the level of individual dialogue moves strictly from
the initiation of new dialogues and the interaction betweendialogues. Moreover, we
like to considerP as the (sole) ‘scheduler’ of parallel dialogues. (These features should
be contrasted with alternative concepts of dialogue games,like the ones in [1, 2].)

Before exploring rules for the synchronization of paralleldialogues, we will in-
vestigate parallelI -dialogues as specified by conditions 1-3, alone. We will seethat
this results in a game that does not change the winning powersof P over the (single)
I -dialogue game.

Notation. A parallel I -dialogue (P-I -dialogue)is a sequence of nodes connected
by moves. Each nodeν is labelled by aglobal stateΣ(ν). A global state is a non-
empty finite set{Π1 `ι1 C1, . . . ,Πn `ιn Cn} of indexedI -dialogue sequents. Each index
ιk uniquely names one of then elements, calledcomponent dialogue sequentsor sim-
ply components, of the global state. In each of the components it is eitherP’s or O’s
turn to move. We will speak of aP-component or anO-component, accordingly. We
distinguishinternalandexternalmoves.

Internal moves combine singleI -dialogue moves for some (possibly also none
or all) of the components of the current global state. An internal move from global
state{Π1 `ι1 C1, . . . ,Πn `ιn Cn} to global state{Π′

1 `ι1 C′
1, . . . ,Π

′
n `ιn C′

n} consists in
a set of indexedI -dialogue moves{ιi1 : move1, . . . , ιim: movem}, such that the indices
ιi j , 1 ≤ j ≤ m, are pairwise distinct elements of{ι1, . . . , ιn}. Π′

k `ιk C′
k denotes the

component corresponding to the result ofmovek applied to the component indexed
by ιk if k∈ {i1, . . . , im}; otherwiseΠk = Π′

k andCk = C′
k.

External moves, in contrast to internal moves, may add or remove componentsof
a global state, but do not change the local status (P or O) of existing components.

For now, we define only one external move, calledfork.

fork is a move byP and consists in duplicating one of theP-components of the
current global state and assigning a new unique index to the added component.

Clearly, fork corresponds to item 2 in the above list of basic features of our parallel
dialogue games. We call the new index generated byfork a child of the original index
of the duplicated component.

The central condition in the definition of aP-I -dialogue is the following:

– each sequence ofI -dialogue moves, that arises by picking at most one element
ιi : movei from each of the consecutive internal moves, such that for all 1 ≤ i < n
eitherι[i +1] = ιi or ι[i +1] is child of ιi, forms anI -dialogue.

The initial global stateΣ(ν) — that is the state labelling the root nodeν of a P-I -
dialogue — consists only ofO-components. We speak of aP-I -dialoguefor Σ(ν).



Example 1.We exhibit aP-I -dialogue for¬a∨a, for some atoma. Remember that¬a
abbreviatesa⊃⊥:

¹¸
º·

Oα
1

¹¸
º·

P1

¹¸
º·
P1‖P2

¹¸
º·
Oα

1‖Oα
2

¹¸
º·
P1‖P2

¹¸
º·
Oα

1‖P2

¹¸
º·
P1‖P2

¹¸
º·

{`1 ¬a∨a}

¹¸
º·

{`1 ¬a∨a}

¹¸
º·

{`1 ¬a∨a, `2 ¬a∨a}

¹¸
º·

{`1 ¬a, `2 a}

¹¸
º·

{a`1 ¬a, `2 a}

¹¸
º·

{a`1 ⊥, `2 a}

¹¸
º·

{a`1 ⊥, `2 a}

?{1: ?[attack∨]}

?fork : 1

?{1: ¬a[defense ∨ l], 2: a[defense ∨ r]}

?{1: a[attack ⊃], 2: a[attack atom]}

?{1: ⊥ [defense ⊃]}

?{1: ?[attack atom]}

AlternativeP-I -dialogues for¬a∨a are possible; but it is easy to check that none
of these dialogues lead to a state where playerP is winning. However, we will see
below that a special synchronization rule, which is adequate for classical logic, allows
to extend this dialogue to a winning strategy for¬a∨a.

The parallel version of the dialogue game may be viewed as a finite collection of
state transition systems that are coordinated by referringto a global, discrete flow of
time. At each time step some (possibly also none or all) of thecomponent dialogues ad-
vance by one move. In afork-move the component dialogues remain in their individual
current states but a new dialogue, that copies the state of one of the old ones, is created.

Observe that our definition of aP-I -dialogue game allows for considerable flexibil-
ity in ‘implementing’ the involved parallelism. We may, forexample, require thatall
component dialogues have to advance at each time step; or, alternatively, that at most
k dialogues may advance simultaneously (even if there are more thank components.)
The latter option might, e.g., be understood as modeling a dialogue game whereP and
O, are not single persons, but rather consist of teams ofk players each, and where each
component dialogue is conducted by a different pair of opposite players. If, instead,
we stick with a single proponent and a single opponent (i.e.,k = 1) it seems natural
to ‘sequentialize’ by dove-tailing the components of parallel moves. This motivates the
following definition:

– A P-I -dialogue is calledsequentializedif every internal move is a singleton set.

In the proof of Theorem 1 it was essential that full cycles of moves in a winning
strategy — from aP-state to anO-state and back again to aP-state with an immediately



responding move ofO — correspond to a single inference step inLI ′. However, even in
sequentializedP-I -dialogues such cycles may be interrupted by internal movesreferring
to other components or by external moves. We therefore definea P-I -dialogue to be
normal if the following condition holds. Every internal move that contains aP-move
indexed withιk

– is immediately followed by another internal move with aιk-indexed element (O-
reply),

– or, else, is the last move in the component dialogue referredto by ιk.

Remark 2.In combination with structural ruleE (see Section 2), the conditions for
normality can be understood as the stipulation that the proponent of a parallel dialogue
game is the sole ‘scheduler’. In other words — althoughP has no control over choices
of O as long as they are immediate replies to her own previous move— P always
determines at which dialogue component the game is to be continued.

Theorem 4. Every finite P-I -dialogueδ for Σ can be translated into a sequentialized
normal P-I -dialogue forΣ ending in the same global state asδ.

Proof. Sequentialization is easily achieved by replacing every internal move
{ι1:move1, . . . , ιn: moven} by a sequence{ι1:move1}, . . . ,{ιn: moven} of internal
moves. (Observe that, by the definition of an internal move, the indicesιi are pairwise
different and therefore refer to different components of a global state.)

To obtain a normal dialogue, assume thatδ is already sequentialized.
Unless δ is already normal, it contains a subsequence of at least three
moves {ι1:move1},{ι2:move2} . . . ,{ιn: moven}, where ι1 = ιn, but ιi 6= ι1 for
all 2 ≤ i < n, and where moven is an I -dialogue move by O, that di-
rectly reacts tomove1 by P. Clearly, reordering the sequence of moves into
{ι1:move1},{ιn: moven},{ι2:move2}, . . ., {ι[n–1] : moven−1} results in the same fi-
nal global state. Note that — disregarding proper notation —the moves{ι2:move2} to
{ι[n−1] : moven−1} may actually also be external moves without affecting the result.
The claim follows by repeating this rearrangement of moves as often as possible. 2

Note [Important]. For the rest of the paper we will consider all parallel dialogues to
be sequentialized and normal. Sequentialization implies that, just like forI -dialogues,
we can speak ofP-moves andO-moves ofP-I -dialogues. (fork also is aP-move.) Since
the set parentheses are redundant in denoting moves of sequentialized dialogues, we
will omit them from now on.

A P-I -dialogue treeτ for Σ is a rooted, directed tree with global states as nodes
and edges labelled by (internal or external) moves such thateach branch ofτ is aP-I -
dialogue forΣ.

A finite P-I -dialogue tree is called awinning strategyif the following condition is
satisfied for every nodeν:
(p) eitherν has a single successor node, the edge to which is labelled by aP-move,
(o) or for eachO-move that is a permissible continuation of the dialogue at global state

Σ(ν) there is an edge leavingν that is labelled by this move,
(w) or ν is a leaf node and at least one of the components ofΣ(ν) fulfills the winning

conditions (forP).



Nodes satisfying (p) are calledP-nodes; and nodes satisfying (o) are calledO-nodes.
Observe that, by normality,P-moves andO-moves strictly alternate in each branch,
except for the initial segment (consisting of more than one consecutiveO-nodes, in
general) and external moves (which, in general, result in consecutiveP-nodes).

Theorem 5. Every winning strategyτ for sequentialized normal P-I -dialogues with
initial global state{Γ `C} can be transformed into anHLI ′-proof ofΓ −→C.

Proof. We show by induction on the depth ofτ that for everyP-node ofτ labelled with
global stateΣ, there is anHLI ′-proof of the corresponding hypersequent[Σ]. Since the
branches ofτ are normal and sequential dialogues, edges ofτ that correspond tointernal
movesare translated into corresponding inference steps using logical rules ofHLI ′,
exactly as in the proof of Theorem 1. Moreover, if the winningcondition is fulfilled for
one of the component dialogues, then the global state clearly corresponds to an axiom
of HLI ′.

It remains to show that alsofork translates into external contraction(EC): Suppose
©ν −→©ν′ is an edge ofτ corresponding to a lastfork-move of a branch ofτ. Then the
global state atΣ(ν′) is like Σ(ν) except for an additional dialogue sequentΓ`ιi A, where
the indexιi is not yet used atν, but where, for someι j, Γ `ι j A is an element ofΣ(ν).
Clearly, the requiredHLI ′-proof of [Σ(ν)] is obtained fromπν′ by adding an appropriate
application of(EC) as the last inference. 2

Again, we call cut-free proofs without applications of (internal or external) weak-
ening or internal contractionstrongly analytic.

Theorem 6. Every strongly analyticHLI ′-proof π of the hypersequentΓ −→C can be
transformed into a winning strategyτ for P-I -dialogues for{Γ −→C}.

Proof. Sinceπ is strongly analytic, there are no applications of internalstructural rules.
The logical rules ofHLI ′ translate into fullP–O–P-cycles of internal moves, exactly as
in the proof of Theorem 2. It remains to show that external weakenings correspond to
fork-moves forP-I -dialogues. It suffices to consider a sub-proof ofπ ending with the
inference

Π −→ D | Π −→ D | H

Π −→ D | H
(EC)

By induction hypothesis there exists a winning strategyτ′ for {Π `ι1 D}∪{Π `ι2 D}∪
〈H 〉, which has to be extended to one for{Π `ι1 D}∪〈H 〉, where〈H 〉 denotes the set
of dialogue sequents corresponding to the components ofH . This is easily achieved
by inserting a new edge corresponding to an appropriate instance of thefork-move
immediately after the initial (internalO-)move ofτ′. 2

5 Synchronizing dialogues

Synchronization betweenI -dialogues is formalized asmergingof two or more dialogues
into one according to the following general principle:P selects (for merging) some
P-components from the global state. The picked components are then merged into a



new dialogue in some straightforward way. For some synchronization rules, there are
different possible ways to merge the components picked byP. In those casesO may
choose one of them.

In [10] the following (two-part) synchronization rule for Gödel-Dummett logicG∞
was already discussed briefly:

lc– P-part: P picks two (indices of)P-componentsΠ1 `ι1 C1 andΠ2 `ι2 C2 from the
current global state and thus indicates thatΠ1∪Π2 will be the granted formulas
of the resulting merged dialogue sequent.

lc– O-part: In response to this externalP-move,O chooses eitherC1 or C2 as the
active formula of the merged component, which is indexed byι1 or ι2, corre-
spondingly.

Not only infinite valued G̈odel logic can be characterized by an appropriate parallel
dialogue game, but also each of then-valued G̈odel logicsGn. Here is the appropriate
synchronization rule, parameterized byn, wheren≥ 2:

gn – P-part: P picksn−1 P-componentsΠ1 `ι1 C1, . . .Πn−1 `ι[n−1] Cn−1, and aP-
component of formΠn `ιn ⊥ from the current global state for merging.

gn – O-part: O chooses one of the componentsΠ1∪Π2 `ι1 C1, Π2∪Π3 `ι2 C2, . . . or
Πn−1∪Πn `ι[n−1] Cn−1 as the merged component, that replaces the components
picked byP.

Note that for the case of two truth values, i.e., for classical logic, no proper choice is
left for O; henceg2 can be stated simpler as follows:

cl (= g2): If the global state contains aP-component of formΠ `ι ⊥ thenP may re-
move this component and addΠ to the granted formulas of anotherP-component
of the global state.

In other words, ifP detects that in one of the components she faces the task to defend
falsum, then she may cancel the correspondingI -dialogue while transferring its
currently granted formulas to anotherP-component of her choice.

Example 2.Rulecl allowsP to continue the parallel dialogue for¬a∨a in Example 1
as follows:

¹¸
º·
P1‖P2

¹¸
º·

P1

¹¸
º·

{a`1 ⊥, `2 a}

¹¸
º·

{a`1 a}¹¸
º·
P wins!

?cl : 1,2

Replacingcl by the following subtle variant, allows to characterize Jankov logic LQ ,
which allowsP to win every dialogue for a formula of form¬A∨¬¬A:

lq: If the global state contains aP-component of formΠ `ι ⊥ thenP may remove
this component and addΠ to the granted formulas of anotherP-component of
the global state, which also has⊥ as active formula.

We summarize the above synchronization rules and provide names to the resulting
systems of parallel dialogue games in the following table.



Parallel dialogue games extendingP-I-games:
(All dialogue sequents exhibited in the table areP-components)

System Rule Synchronization (external merging move)

P-G lc P wants to mergeΠ1 `ι1 C1 andΠ2 `ι2 C2
O chooses eitherΠ1∪Π2 `ι1 C1 or Π1∪Π2 `ι2 C2

P-Gn gn P wants to mergeΠ1 `ι1 C1, and . . .Πn−1 `ι[n−1] Cn−1, andΠn `ιn
O chooses eitherΠ1∪Π2 `ι1 C1, Π2∪Π3 `ι2 C2, . . . orΠn−1∪Πn `ι[n−1] Cn−1

P-Cl cl= g2 P mergesΠ `ι1 ⊥ andΓ `ι2 C into Π∪Γ `ι2 C
P-LQ lq P mergesΠ `ι1 ⊥ andΓ `ι2 ⊥ into Π∪Γ `ι2 ⊥

Let us call parallel dialogues that are defined exactly asP-I -dialogues, except for
including one of the ruleslc, gn, or lq, P-G-, P-Gn-, andP-LQ -dialogues, respectively.

Theorem 7. Every winning strategyτ for sequentialized normal P-G- (P-Gn-, or P-
LQ -)dialogues with initial global state{Γ `1 A} can be transformed into anHLC ′-
(HG′

n-, or HLQ ′-)proof π of the corresponding hypersequentΓ −→ A, and vice versa.

Proof. Given the proofs of Theorems 5 and 6, it remains to show that the synchro-
nization ruleslc, gn, andlq correspond to the hypersequent rules (com), (gn), and (lq),
respectively. We present the case forlc/(com); the other cases are similar or simpler.

(⇒). Suppose©ν0−→©ν is an edge ofτ which corresponds to an instance oflc.
The relevant part ofτ looks as follows. We useFp to denoteA if F is of form A⊃ B;
otherwiseFp is empty:

¹¸
º·

ν0

¹¸
º·

ν

¹¸
º·

ν′ ¹¸
º·

ν′′

¹¸
º·

Σ(ν0), {Cp,Π1 `ι1 C, Dp,Π2 `ι2 D} ⊆ Σ(ν0)

¹¸
º·

Σ(ν) = Σ(ν0)

¹¸
º·

Σ(ν′) ¹¸
º·

Σ(ν′′)

?lc [P-part]: ι1, ι2

@
@R

lc [O-response]:ι2¡
¡ª

lc [O-response]:ι1

where Σ(ν′) = Σ(ν) − {Cp,Π1 `ι1 C, Dp,Π2 `ι2 D} ∪ {Cp,Π1,Dp,Π2 `ι1 C} and
Σ(ν′′) = Σ(ν)−{Cp,Π1 `ι1 C, Dp,Π2 `ι2 D}∪{Cp,Π1,Dp,Π2 `ι2 D}. By induction
hypothesis there existHLC ′-proofs πν′ and πν′′ of the corresponding hypersequents
[Σ(ν′)] and[Σ(ν′′)], respectively. Clearly,πν′ andπν′′ can be joined by an application of
(com) to obtain the required proof of[Σ(ν0)].

(⇐) Supposeπ contains a subproof that ends in an application of the communica-
tion rule. (To make the proof more transparent we disregard side hypersequents.)

...
Π1,Π2 −→C

...
Π1,Π2 −→ D

Π1 −→C | Π2 −→ D
(com)

By induction hypothesis there exist winning strategiesτ1 andτ2 for {Π1,Π2 `ι1 C} and
{Π1,Π2 `ι2 D}, respectively, that are of following form:

±°
²¯
Oα

±°
²¯

P

±°
²¯
Oα

±°
²¯

P

±°
²

{̄Π1,Π2 `ι1 C} ±°
²

{̄Π1,Π2 `ι2 D}

±°
²

{̄Cp,Π1,Π2 `ι1 C} ±°
²

{̄Dp,Π1,Π2 `ι2 D}±°
²¯
τ′1

±°
²¯
τ′2

±°
²¯

µ1: ±°
²¯

µ2:
?1: attack on C ?2: attack on D



A winning strategy for{Π1 `ι1 C, Π2 `ι2 D} is obtained by attaching to

½¼
¾»
Oα

1‖Oα
2

½¼
¾»
P1‖Oα

2

½¼
¾»
P1‖P2

½¼
¾»

{Π1 `ι1 C, Π2 `ι2 D}

½¼
¾»

{Cp,Π1 `ι1 C, Π2 `ι2 D}

½¼
¾»

{Cp,Π1 `ι1 C, Dp,Π2 `ι2 D}

?1: attack onC

?2: attack onD

½¼
¾»

µ:

the nodes for the two parts of external movelc illustrated in case (⇒), above, where
nodeµ is identified with nodeν0. Finally, the sub-strategiesτ′1 andτ′2 are attached by
identifying nodeν′ with nodeµ1 and nodeν′′ with nodeµ2. 2
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