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Abstract. Two popular approaches to formalize adequate reasoning with vague
propositions are usually deemed incompatible: On the one hand, there is super-
valuation with respect to precisification spaces, which consist in collections of
classical interpretations that represent admissible ways of making vague atomic
statements precise. On the other hand, t-norm based fuzzy logics model truth
functional reasoning, where reals in the unit interval [0,1] are interpreted as de-
grees of truth. We show that both types of reasoning can be combined within a
single logic SŁ, that extends both: Łukasiewicz logic Ł and (classical) S5, where
the modality corresponds to ‘. . . is true in all complete precisifications’. Our main
result consists in a game theoretic interpretation of SŁ, building on ideas already
introduced by Robin Giles in the 1970s to obtain a characterization of Ł in terms
of a Lorenzen style dialogue game combined with bets on the results of binary
experiments that may show dispersion. In our case the experiments are replaced
by random evaluations with respect to a given probability distribution over per-
missible precisifications.

1 Introduction

Providing adequate logical calculi for systematic reasoning about vague information is
a major challenge in the intersection of logic, AI, and computer science. Many differ-
ent models of reasoning with vague notions are on the market. In fact, the literature on
so-called theories of vagueness is almost unsurmountable large and still fast growing.
(We refer to the book [20], the reader [21], and the more recent collection [1] for fur-
ther references.) Still, one can single out two quite different approaches as particularly
popular—albeit popular in different communities. On the one hand, there is fuzzy logic
‘in Zadeh’s narrow sense’ (see, e.g., [15, 17]) focusing on the study of truth functional
logics, based on a (potential) continuum of degrees of truth, usually identified with the
real closed unit interval [0,1]. On the other hand, there is the concept of supervalua-
tion (see, e.g., [11, 20, 27]), which maintains that vague statements have to be evaluated
with respect to all their admissible precisifications. The slogan ‘truth is supertruth’ in
the latter context entails the thesis that a logical formula built up from vague atomic
propositions is true if and only if it is true in each of its (classical) precisifications.
Whereas this is often understood as a vindication of classical logic (even) in contexts of
vague information1, all degree based fuzzy logics agree upon the rejection of the logical

1 One should mention that the extent to which supervaluation leads to classical validity and
consequence relations is hotly debated. See, in particular [22] for proofs that compactness,



validity of tertium non datur (A∨¬A). Consequently it is not surprising that supervalua-
tion and degree based reasoning, respectively, are deemed fundamentally incompatible.

We think that a formal assessment, relating the scope and limits of both types of
logical reasoning with each other, is essential for judging their adequateness for ap-
plications in information processing (as argued in [9]). As a first step towards such an
evaluation we seek to identify a common formal framework for degree based logics
and supervaluation. The main purpose of this paper is to show that supervaluation as
well as t-norm based fuzzy logics can be interpreted as referring to classical precisi-
fications at different levels of formula evaluation. The resulting semantic framework
allows to combine both forms of reasoning within a single logic. The main tool for
achieving an appropriate mathematical analysis of corresponding analytic reasoning is
borrowed from the dialogue based characterization of infinite-valued Łukasiewicz logic
developed by Robin Giles in the 1970s [13, 14]. In particular, our extension of Giles’s
game for Ł will lead us to a tableau style calculus for the evaluation of formulas over
precisification spaces.

We like to emphasize that it is not the purpose of this work to (just) introduce yet
another modal extension of a particular fuzzy logic. Rather we seek to derive an ad-
equate logic for the combination of supervaluation and degree based reasoning from
first principles about the formalization of vague notions and propositions. Still, a short
comparison with similar extensions of fuzzy logics will be presented in Section 5.

We also point out that throughout the paper we only deal with propositional logics.

2 Supervaluation, Sorites, and t-norm based fuzzy logics

The use of supervaluation to obtain a semantics for languages that accommodate (also)
vague propositions was introduced by Kit Fine in [11] and has remained an important
point of reference for investigations into logic and vagueness ever since (see, e.g., [20,
27, 28, 9]. The main idea is to evaluate propositions not simply with respect to classical
interpretations—i.e., assignments of the truth values 0 (‘false’) and 1 (‘true’) to atomic
statements—but rather with respect to a whole space Π of (possibly) partial interpre-
tations. For every partial interpretation I in Π , Π is required to contain also a classical
interpretation I′ that extends I. I′ is called an admissible (complete) precisification of I.
A proposition is called supertrue in Π if it evaluates to 1 in all admissible precisifica-
tions, i.e., in all classical (i.e., complete) interpretations contained in Π .

Example 1. To illustrate supervaluation let us briefly describe how the famous Sorites
paradox (see, e.g, [20, 28, 3]) is solved in this context. Suppose that hi stands for the
proposition “i (properly arranged) sand-corns make a heap of sand”. Let us further agree
that h1 is false (i.e., a single sand-corn is not a heap of sand) but that h10000 is true. The
paradox consists in the fact that also the proposition hi ⊃ hi−1—read: “If i sand-corns
make a heap then also i−1 sand-corns make a heap”—seems to be true for each i > 1.
However, from these implicative propositions and h10000 we can derive h1 using modus
ponens only. In other words, classical logic is at variance with the above mentioned,

upwards and downwards Löwenheim-Skolem, and recursive axiomatizability fail for ‘natural’
supervaluation based consequence relations.



seemingly innocent intuitions. Using supervaluation we can easily accommodate the
intuition that h1 is definitely false while h10000 is definitely true by assigning 0 to h1 and
1 to h10000 in each admissible precisification in a corresponding space Π . On the other
hand, at least one statement hi, where 1 < i < 10000 is taken to be vague, i.e., neither
definitely false nor definitely true. This means that for some i the space Π contains ad-
missible precisifications I and I′ such that hi evaluates to 0 in I, but to 1 in I′. Assuming
further that h j is true in an admissible precisification, whenever already hi is true there
for some i < j, we obtain that there is an i such that hi ⊃ hi−1 is not true in all interpre-
tations contained in Π . In other words: while h10000 is supertrue and h1 is superfalse, at
least one statement of the form hi ⊃ hi−1 is neither supertrue nor superfalse.

Note that the inference from h10000 to h1 is blocked since the conclusion of modus
ponens is guaranteed to be supertrue only if both premises are supertrue. In fact, super-
valuationists like to identify truth with supertruth and thus feel justified in claiming to
have ‘saved’ classical logic also in context of vague propositions. (See, e.g., [20].)

Note, that no reference to (strictly) partial interpretations is needed to determine
which propositions are supertrue. The partial interpretations represent additional infor-
mation that is used to model the semantics of modal operators like ‘definitely’ or ‘in-
definitely’. However, we will not investigate such operators here and thus may simplify
the notion of a space Π by assuming that Π contains admissible complete precisifi-
cations, i.e., classical interpretations only. We will use the term ‘precisification space’
henceforth for such structures.

One complaint about the above analysis of the Sorites paradox focuses on the fact
that we seem to have good reasons to insist that ‘taking away one sand-corn from a
heap does not result in a non-heap’ formalized as hi ⊃ hi−1 is, if not simply true, at least
almost true for all i > 1. Supervaluation itself does not accommodate this intuition. In
contrast, fuzzy logics ‘in Zadeh’s narrow sense’ are often claimed to solve the Sorites
paradox while respecting all mentioned intuitions. Indeed, in fuzzy logics one may as-
sign an intermediary truth value, close to 1 to all instances of hi ⊃ hi−1. Using a properly
generalized (from {0,1} to [0,1]) truth function for implication and generalized modus
ponens, respectively, one may still block the inference from h10000 to h1, even if h10000
is interpreted as definitely true (1) and h0 as as definitely false 0. (For a detailed analysis
of Sorites in the context of t-norm based fuzzy logics we refer to [18].)

Supervaluation and fuzzy logics can be viewed as capturing contrasting, but indi-
vidually coherent intuitions about the role of logical connectives in vague statements.
Consider a sentence like

(*) “The sky is blue and is not blue”.

When formalized as b&¬b, (*) is superfalse in all precisification spaces, since either b
or ¬b is evaluated to 0 in each precisification. This fits Kit Fine’s motivation in [11] to
capture ‘penumbral connections’ that prevent any mono-colored object from having two
colors at the same time. According to Fine’s intuition the statement “The sky is blue”
absolutely contradicts the statement “The sky is not blue”, even if neither statement is
definitely true or definitely false. Consequently (*) is judged as definitely false, although
admittedly composed of vague sub-statements. On the other hand, by asserting (*) one
may intend to convey the information that both component statements are true only to



some degree, different from 1 but also from 0. Under this reading and certain ‘natural’
choices of truth functions for & and ¬ the statement b&¬b is not definitely false, but
receives some intermediary truth value.

We are motivated by the fact that, although supervaluation is usually deemed in-
compatible with fuzzy logics, one may (and should) uncover a substantial amount of
common ground between both approaches to reasoning under vagueness. This common
ground becomes visible if one relates the (in general intermediary) truth value of an
atomic proposition p as stipulated in fuzzy logics to the ‘density’ of those interpreta-
tions in a precisification space Π that assign 1 to p.

Example 2. Let h1, . . . ,h10000 be as in Example 1 and let these hi be the only
atomic propositions taken into consideration. We define a corresponding precisification
space Π as follows: Π consists in the set of all classical interpretations I, that fulfill the
following conditions, which model ‘penumbral connections’ in the sense of [11]. (We
write I(p) for the value ∈ {0,1} that is assigned to proposition p in I).

1. I(h1) = 0 and I(h10000) = 1
2. i ≤ j implies I(hi)≤ I(h j) for all i, j ∈ {1, . . . ,10000}

The first condition makes h1 superfalse and h10000 supertrue in Π . The second condition
captures the assumption that, if some precisification declares i sand-corns to form a
heap, then, for all j ≥ i, j sand-corns also form a heap under the same precisification.
Note that supervaluation leaves the semantic status of all statements hi ⊃ hi−1, where
1 < i≤ 10000, undecided. However, we can observe that I(hi ⊃ hi−1) = 1 in all but one
of the, in total, 99999 interpretations I in Π , whenever 1 < i≤ 10000. It is thus tempting
to say that Π itself (but not supervaluation!) respects the intuition that hi ⊃ hi−1—
informally read as “taking away one sand-corn from a heap still leaves a heap”—is (at
least) ‘almost true’. Once one accepts the idea that truth may come in degrees, it seems
natural to identify what could be called the ‘global truth value of hi with respect to Π ’
with the fraction of admissible precisifications I ∈ S where I(hi) = 1. We thus obtain

i−1
99999 as global truth value of hi, here.

Following this example we will use global truth values ∈ [0,1] to make informa-
tion explicit that is implicit in precisification spaces, but is not used in supervaluation.
A simple way to extract a global truth value for an atomic proposition p from a given
precisification space Π is suggested by Example 2: just divide the number of interpre-
tations I in Π that assign 1 to p by the total number of interpretations in Π . This is
feasible if Π is represented by a finite set or multiset of interpretations. (For related
ideas underlying the so-called ‘voting semantics’ of fuzzy logics, we refer to [26, 12].)
More generally, since we view the interpretations in Π as corresponding to different
ways of making all atomic propositions precise, it seems natural not just to count those
precisifications, but to endow Π with a probability measure µ on the σ -algebra formed
by all subsets of precisifications in Π , where µ is intended to represent the relative
plausibility (or ‘frequency in non-deterministic evaluations’) of different precisifica-
tions. Suppose, e.g., that in refining Example 2 we want to model the intuition that a
‘cut-off’ point n between heaps and non-heaps—i.e., an n where I(hn) 6= I(hn+1)—is
more plausibly assumed to be near n = 100 than near n = 9500. Then we may take



µ(J∼100) to be higher than µ(J∼9500), where J∼n denotes the set of all interpreta-
tions I where the ‘cut-off’ point is near n, in the sense that I(hn−c) = 0 but I(hn+c) = 1
for some fixed smallish c, say c = 10.

Note that if we insist on truth functional semantics, then we cannot simply extend
the above method for extracting truth values from Π from atomic propositions to logi-
cally complex propositions. E.g., in general, the fraction of interpretations I in a finite
precisification space Π for which I(p&q) = 1 is not uniquely determined by the frac-
tions of interpretations that assign 1 to p and q, respectively.

Obviously, the question arises which truth functions should be used for the basic
logical connectives. For this we follow Hájek (and many others) in making the following
‘design choices’ (see, e.g., [15, 17]):

1. The truth function for conjunction is a continuous, commutative, associative, and
monotonically non-decreasing function ∗ : [0,1]2 7→ [0,1], where 0 ∗ x = 0 as well
as 1∗ x = x. In other words: ∗ is a continuous t-norm.

2. The residuum ⇒∗ of the t-norm ∗—i.e., the unique function ⇒∗: [0,1]2 7→ [0,1]
satisfying x⇒∗ y = sup{z | x∗ z≤ y}—serves as the truth function for implication.

3. The truth function for negation is defined as λx[x ⇒∗ 0].

Given a continuous t-norm ∗ with residuum ⇒∗, one obtains a fuzzy logic L(∗) based
on a language with binary connectives ⊃ (implication), & (strong conjunction), con-
stant ⊥ (falsum), and defined connectives ¬A =def A ⊃ ⊥, A ∧ B =def A&(A ⊃ B),
A∨B =def ((A ⊃ B) ⊃ B)∧ ((B ⊃ A) ⊃ A) (negation, weak conjunction and disjunc-
tion, respectively) as follows. A valuation for L(∗) is a function v assigning to each
propositional variable a truth value from the real unit interval [0,1], uniquely extended
to v∗ for formulas by:

v∗(A&B) = v∗(A)∗ v∗(B), v∗(A ⊃ B) = v∗(A)⇒∗ v∗(B), v∗(⊥) = 0

Formula F is valid in L(∗) iff v∗(F) = 1 for all valuations v∗ pertaining to the t-norm ∗.
Three fundamental continuous t-norms and their residua are:

t-norm associated residuum
Łukasiewicz x∗Ły = sup{0,x+ y−1} x⇒Ły = inf{1,1− x+ y}

Gödel x∗Gy = inf{x,y} x ⇒G y =
{

1 if x ≤ y
y otherwise

Product x∗Py = x · y x ⇒P y =
{

1 if x ≤ y
y/x otherwise

Any continuous t-norm is obtained by an ordinal sum construction based on these three
(see, [25, 15]). The logics L(∗Ł), L(∗G), and L(∗P), are called Łukasiewicz logic Ł,
Gödel logic G, and Product logic P, respectively.

The mentioned logics have different features that render them adequate for different
forms of applications. E.g., Gödel logic G, is the only t-norm based logic, where the
truth value of every formula A only depends on the relative order of truth values of
atomic subformulas of A, but not on the absolute values of these subformulas. However,
Example 2 suggests another desideratum, that we formulate as an additional design
choice:



4. Small changes in v∗(A) or v∗(B) result in, at most, small changes in v∗(A ⊃ B).
More precisely: the truth function ⇒∗ for implication is continuous.

Design choices 1-4 jointly determine a unique logic:

Proposition 1. Ł is the only logic of type L(∗), where ⇒∗ is continuous.

Proof. Let x,y,u ∈ [0,1]. For any continuous t-norm ∗ we have (see [16]):

– If x < u ≤ y and u = u∗u is idempotent then (y ⇒∗ x) = x .
– If y ≤ x then (y ⇒∗ x) = 1.

Putting y = u in these inequalities we get for idempotent u:

– (u ⇒∗ x) = x for x < u
– (u ⇒∗ x) = 1 for x ≥ u

It follows that ⇒∗ is not continuous at (u,u) if u is idempotent and 0 < u < 1. By the
ordinal sum representation of [25] each continuous t-norm is the generalized sum of
order isomorphic copies of the Łukasiewicz and product t-norms. In this construction
boundaries of an interval are mapped to idempotent elements. It follows that the only
continuous t-norms with no idempotent elements except 0 and 1 are given by a single
interval whose boundaries are mapped to 0 and 1. The corresponding t-norms are order
isomorphic to Łukasiewicz or product t-norm respectively.

The residuum x ⇒∗ y of product t-norm is not continuous at (0,0). Hence the
only continuous t-norms with continuous implication are order isomorphic to the
Lukasiewicz t-norm. The unique corresponding logic is Łukasiewicz logic Ł. 3

Note that we have used the same symbols for classical conjunction, negation, and
implication as for their respective counterparts in t-norm based fuzzy logics. In princi-
ple, one might keep the classical logical vocabulary apart from the logical vocabulary
for fuzzy logics in defining a logic that combines supervaluation with t-norm based
valuations. However, the results in Section 3, below, can be seen as a justification of
our choice of a unified logical syntax for the logic SŁ that extends Łukasiewicz logic,
but incorporates also classical logic. The crucial link between classical and ∗Ł- based
valuation over precisification spaces is obtained by making the concept of supertruth
explicit also in our language. For this we introduce the (unary) connective S—read: “It
is supertrue that . . . ”—which will play the role of an S5-like modal operator. Modal
extensions of fuzzy logics have already been studied in other contexts; see, e.g., chapter
8 of [15] and [8]. However SŁ is different from the modal extensions of Ł studied by
Hájek, Godo, Esteva, Montagna, and others, since it combines classical reasoning with
many-valued reasoning in a different way, as will get clear below. (See also Section 5.)

Formulas of SŁ are built up from the propositional variables p ∈ V = {p1, p2, . . .}
and the constant ⊥ using the connectives & and ⊃. The additional connectives ¬, ∧,
and ∨ are defined as explained above. In accordance with our earlier (informal) se-
mantic considerations, a precisification space is formalized as a triple 〈W,e,µ〉, where
W = {π1,π2, . . .} is a non-empty (countable) set, whose elements πi are called precisi-
fication points, e is a mapping W ×V 7→ {0,1}, and µ is a probability measure on the
σ -algebra formed by all subsets of W . Given a precisification space Π = 〈W,e,µ〉 a



local truth value ‖A‖π is defined for every formula A and every precisification point
π ∈W inductively by

‖p‖π = e(π, p), for p ∈V (1)
‖⊥‖π = 0 (2)

‖A&B‖π =
{

1 if ‖A‖π = 1 and ‖B‖π = 1
0 otherwise (3)

‖A ⊃ B‖π =
{

1 if ‖A‖π = 1 and ‖B‖π = 0
0 otherwise (4)

‖SA‖π =
{

1 if ∀σ ∈W : ‖A‖σ = 1
0 otherwise (5)

Local truth values are classical and do not depend on the underlying t-norm ∗Ł. In
contrast, the global truth value ‖A‖Π of a formula A is defined by

‖p‖Π = µ({π ∈W |e(π, p) = 1}), for p ∈V (6)
‖⊥‖Π = 0 (7)

‖A&B‖Π = ‖A‖Π∗Ł‖B‖Π (8)
‖A ⊃ B‖Π = ‖A‖Π⇒Ł‖B‖Π (9)
‖SA‖Π = ‖SA‖π for any π ∈W (10)

Note that ‖SA‖π is the same value (either 0 or 1) for all π ∈W . In other words: ‘local’
supertruth is in fact already global; which justifies the above clause for ‖SA‖Π . Also
observe that we could have used clauses 8 and 9 also to define ‖A&B‖π and ‖A ⊃ B‖π

since the (global) t-norm based truth functions coincide with the (local) classical ones,
when restricted to {0,1}. (However that might have obscured their intended meaning.)

A formula A is called valid in SŁ if ‖A‖Π = 1 for all precisification spaces Π . We
identify a logic with the set of its valid formulas. Note that for any atom p the formula
Sp ⊃ p is valid, but that SA ⊃ A is not valid in general for compound formulas A. In
other words, SŁ is not closed under substitution.

Proposition 2. SŁ restricted to formulas without occurrences of S coincides with Ł.
On the other hand {A | SA ∈ SŁ} coincides with S5.

Proof. The first part of the claim follows immediately from clauses 7, 8 and 9, above;
and the fact that all values v(pi)∈ [0,1] for some propositional variable pi ∈ {p1, . . . pn}
can be obtained as µ({π ∈W |e(π, p) = 1}) for a suitable precisification space 〈W,e,µ〉
where W and e correspond to all 2n assignments of 0 or 1 to the pi.

The second part follows from clauses 1-5 and 10 using the well known fact that
in any Kripke model 〈W,R,e〉 for S5—where W is the set of possible worlds, R is
the accessibility relation, and e the mapping that assigns 0 or 1 to each propositional
variable in each world—R can be assumed to be the total relation W ×W . 3

We have the following finite model property.

Proposition 3. A formula F is valid in SŁ if and only if F is valid in all those precisi-
fication spaces 〈W,e,µ〉 where W is finite.



Proof. Let Π = 〈W,e,µ〉 and let VF = {p1, . . . , pn} be the propositional variables oc-
curring in F . Moreover, let BF be the set of all classical truth value assignments
I : VF 7→ {0,1}. We write I = e(π) if ∀p ∈VF : I(p) = e(π, p) and define a new precisi-
fication space Π f = 〈W f ,e′,µ ′〉 as follows:

– Wf = {I ∈BF | ∃π ∈W : I = e(π)}
– e′(I, p) = e(π, p), where I = e(π)
– µ ′({I}) = µ({π | I = e(π)}), which uniquely extends to all subsets of Wf .

It is straightforward to check that ‖F‖Π = ‖F‖Π f . Thus we have shown that in eval-
uating F it suffices to consider precisification spaces with at most 2p(F) precisification
points, where p(F) is the number of different propositional variables occurring in F . 3

3 Reasoning via dialogue games

We have defined the logic SŁ in an attempt to relate supervaluation and ‘fuzzy valua-
tion’ in a common framework based on precisification spaces. But we have not yet said
anything about proof systems or—more generally—about formal reasoning in this con-
text. We conjecture that a Hilbert-style calculus for SŁ can be obtained by extending
any system for Ł with the following axioms

A1 : S(A∨¬A) A2 : SA∨¬SA
A3 : S(A ⊃ B)⊃ (SA ⊃ SB) A4 : Sp ⊃ p, for atoms p
A5 : SA ⊃ SSA A6 : SSA ⊃ SA

and the Necessitation Rule
A

SA for supertruth. However, mainly due to space constraints,
we defer a corresponding soundness and completeness proof to an extended version of
this paper and concentrate on an analysis of SŁ that seems more revealing with respect
to its intended semantics and also more important from a computational point of view.
Building on an extension of (a variant of) Robin Giles’s dialogue and betting game
for Ł (see [13, 14, 10]) we provide a game based characterization of SŁ. Our game
will be seen to correspond to a tableau style system for analytic reasoning over given
precisification spaces. It consists of two largely independent building blocks:

(1) Betting for random verifications. Assume that two players—let’s say me and
you—agree to pay 1C to the opponent player for each assertion of an atomic statement,
which is false according to a randomly chosen admissible precisification. More for-
mally, given a precisification space Π = 〈W,e,µ〉 the risk value 〈p〉Π associated with
a propositional variable p is defined as 〈p〉Π = µ({π ∈W |e(π, p) = 0}); moreover we
define 〈⊥〉Π = 1. Note that 〈p〉Π corresponds to the probability (as determined by µ)
of having to pay 1C, when asserting p.

Let p1, p2, . . ., q1,q2, . . . denote atomic statements, i.e., propositional variables or⊥.
By [p1, . . . , pm q1, . . . ,qn] we denote an elementary state in the game, where I assert
each of the qi in the multiset {q1, . . . ,qn} of atomic statements and you, likewise, assert
each atomic statement pi ∈ {p1, . . . , pm}. To illustrate this notions consider the elemen-
tary state [p q,q]. According to the outlined arrangement, we have to evaluate p once,



and q twice in randomly chosen precisifications. If, e.g., all three evaluations result in 0
then I owe you 2C and you owe me 1C, implying a total loss of 1C for me.

The risk associated with a multiset P = {p1, . . . , pm} of atomic formulas is defined
as 〈p1, . . . , pm〉Π = ∑

m
i=1〈pi〉Π . The risk 〈〉Π associated with the empty multiset is 0.

Note that 〈P〉Π thus denotes the average amount of money that I expect to have to pay
to you according to the above arrangements if I have asserted the atomic formulas in P.
The risk associated with an elementary state [p1, . . . , pm q1, . . . ,qn] is calculated from
my point of view. Therefore the condition 〈p1, . . . , pm〉Π ≥ 〈q1, . . . ,qn〉Π , which we will
call success condition, expresses that I do not expect any loss (but possibly some gain)
when betting on the truth of atomic statements as explained above. Returning to our
example of the elementary state [p q,q], I expect an average loss of 0.5C with respect
to Π = 〈W,e,µ〉, where µ is the uniform contribution over a finite set of precisification
points W with |{π ∈W | e(π,r) = 1}| = |{π ∈W | e(π,r) = 0}| for r = p and r = q,
implying 〈p〉Π = 〈q〉Π = 0.5. If for some alternative precisification space Π ′ we have
〈p〉Π ′ = 0.8 and 〈q〉Π ′ = 0.3 then my average loss is negative; more precisely, I can
expect a gain of 0.2C in average.

(2) A dialogue game for the analysis of complex formulas. We follow Giles and
Paul Lorenzen (see, e.g., [23]) in constraining the meaning of connectives by reference
to rules of a dialogue game that proceeds by systematically reducing arguments about
compound formulas to arguments about their subformulas.

For the sake of clarity, we first assume that formulas are built up from propositional
variables and ⊥ using the connectives ⊃ and S only. (Note that in Ł, and therefore also
in SŁ, one can define strong conjunction and consequently also all other connectives
using A&B =def (A ⊃ (B ⊃ ⊥)) ⊃ ⊥). However, we will present a more direct analysis
of conjunction and disjunction, below.)

The dialogue rule for implication can be stated as follows (cf. [13, 14]):

(R⊃) If I assert A ⊃ B then, whenever you choose to attack this statement by asserting
A, I have to assert also B. (And vice versa, i.e., for the roles of me and you switched.)

Note that a player may also choose not to attack the opponent’s assertions of A ⊃ B.
This rule reflects the idea that the meaning of implication entails the principle that an
assertion of “If A then B.” obliges one to assert also B if the opponent in a dialogue
grants (i.e., asserts) A.

The dialogue rule for the supertruth modality involves a relativization to specific
precisification points:

(RS) If I assert SA then I also have to assert that A holds at any precisification point π

that you may choose. (And vice versa, i.e., for the roles of me and you switched.)

Let us henceforth use Aπ as shorthand for ‘A holds at the precisification point π’ and
speak of A as a formula indexed by π , accordingly. Note that using rule (RS) entails
that we have to deal with indexed formulas also in rule (R⊃). However, we don’t have
to change the rule itself, which will turn out to be adequate independently of the kind
of evaluation—degree based or supervaluation based—that we aim at in a particular
context. Rather, we only need to stipulate that in applying (R⊃) the precisification point



index of A ⊃ B (if there is any) is inherited by the subformulas A and B. If, on the
other hand, we apply rule (RS) to an already indexed formula (SA)ρ then the index ρ

is overwritten by whatever index π is chosen by the opponent player; i.e., we have
to continue with the assertion Aπ . Of course, we also have to account for indices of
formulas in elementary states. This is achieved in the obvious way: we simply augment
the definition of risk (with respect to Π = 〈W,e,µ〉) by 〈pπ〉Π = 1− e(π, p). In other
words, the probability of having to pay 1C for claiming that p holds at the precisification
point π is 0 if p is true at π and 1 if p is false at π .

To simplify notations we will use the special global index ε (6∈W ) to indicate that
a formula is not referring to a particular precisification point. Thus every formula is
indexed now, but Aε means that A is asserted ‘globally’, i.e., without reference to a
particular precisification.

We use [Aπ1
1 , . . . ,Aπm

m Bρ1
1 , . . . ,Bρn

n ] to denote an arbitrary (not necessarily elemen-
tary) state of the game, where {Aπ1

1 , . . . ,Aπm
m } is the multiset of formulas that are cur-

rently asserted by you, and {Bρ1
1 , . . . ,Bρn

n } is the multiset of formulas that are currently
asserted by me. (Note that this implies, that we don’t care about the order in which
formulas are asserted.)

A move initiated by me (m-move) in state [Γ ∆ ] consists in my picking of some
non-atomic formula Aπ from the multiset Γ and proceeding as follows:

– If Aπ = (A1 ⊃ A2)π then I may either attack by asserting Aπ
1 in order to force you

to assert Aπ
2 in accordance with (R⊃), or admit Aπ . In the first case the successor

state is [Γ ′,Aπ
2 ∆ ,Aπ

1 ], in the second case it is [Γ ′ ∆ ], where Γ ′ = Γ −{Aπ}.
– If Aπ = SBπ then I choose an arbitrary σ ∈W thus forcing you to assert Bσ . The

successor state is [Γ ′,Bσ ∆ ], where Γ ′ = Γ −{Aπ}.

A move intiated by you (y-move) is symmetric, i.e., with the roles of me and you
interchanged. A run of the game consists in a sequence of states, each resulting
from a move in the immediately preceding state, and ending in an elementary state
[pπ1

1 , . . . , pπm
m qρ1

1 , . . . ,qρn
n ]. I succeed in this run if this final state fulfills the success

condition, i.e., if

n

∑
j=1
〈qρ j

j 〉Π −
m

∑
i=1
〈pπi

i 〉Π ≤ 0. (11)

The term at the left hand side of inequality 11 is my expected loss at this state. In other
words, I succeed if my expected loss is 0 or even negative, i.e., in fact a gain.

As mentioned above, other connectives can be reduced to implication and falsum.
However, using the corresponding definitions directly hardly results in dialogue rules
that are as natural as (R⊃). In the following we will formulate dialogue rules only from
my point of view, with the implicit understanding that the corresponding rule for you is
completely symmetric. For conjunction two candidate rules seem natural:

(R∧) If I assert A1 ∧A2 then I have to assert also Ai for any i ∈ {1,2} that you may
choose.

(R∧′) If I assert A1∧′ A2 then I have to assert also A1 as well as A2.

Rule (R∧) is dual to the following natural candidate for a disjunction rule:



(R∨) If I assert A1 ∨A2 then I have to assert also Ai for some i ∈ {1,2} that I myself
may choose.

Moreover it is clear how (R∧) generalizes to a rule for universal quantification. Note
that the modality S can be seen as a kind of universal quantifier over corresponding
classical propositions at all precisification points; which is reflected in the form of the
rules (R∧) and (RS), respectively.

It follows already from results in [13, 14] that rules (R∧) and (R∨) are adequate for
weak conjunction and disjunction in Ł, respectively. ∧ and ∨ are also called ‘lattice
connectives’ in the context of fuzzy logics, since their truth functions are given by

v∗(A∧B) = inf{v∗(A),v∗(B)} and v∗(A∨B) = sup{v∗(A),v∗(B)}.

The question arises, whether we can use the remaining rule (R∧′) to characterize strong
disjunction (&). However, rule (R∧′) is inadequate in the context of our betting scheme
for random evaluation in a precisification space. The reason for this is that we have to
make sure that for any (not necessarily atomic) assertion we make, we risk a maximal
loss of 1C. It is easy to see that rules (R⊃), (R∧), (R∨), and (RS) comply with this
constraint; however if I assert p∧′ q and we play according to (R∧′), then I end up
with an expected loss of 2C, in case both p and q are superfalse. There is a simply
way to redress this situation to obtain a rule that is adequate for (&): Allow any player
who asserts A1&A2 to hedge her possible loss by asserting ⊥ instead; which of course
corresponds to the obligation to pay 1C (but not more) in the resulting final state. We
thus obtain:

(R&) If I assert A1&A2 then I either have to assert also A1 as well as A2, or else I have
to assert ⊥.

All discussed rules induce definitions of corresponding moves in the game, analo-
gously to the case of (R⊃) and (RS), illustrated above.

4 Adequacy of the game

To prove that the game presented in Section 3 indeed characterizes logic SŁ, we have
to analyse all possible runs of the game starting with some arbitrarily complex assertion
by myself. A strategy for me will be a tree-like structure, where a branch represents a
possible run resulting from particular choices made by myself, taking into account all
of your possible choices in (y- or m-moves) that are compatible with the rules. We will
only have to look at strategies for me and thus call a strategy winning if I succeed in all
corresponding runs (according to condition 11).

Remember that by Proposition 3 we can assume that the set W of the underlying
precisification space Π = 〈W,e,µ〉 is finite. The construction of strategies can be
viewed as systematic proof search in an analytic tableau calculus with the following
rules:



[Γ ∆ ,(A1 ⊃ A2)π ]
[Γ ,Aπ

1 ∆ ,Aπ
2 ] [Γ ∆ ]

(⊃y)
[Γ ,(A1 ⊃ A2)π ∆ ]

[Γ ,Aπ
2 ∆ ,Aπ

1 ]
(⊃1

m)
[Γ ,(A1 ⊃ A2)π ∆ ]

[Γ ∆ ]
(⊃2

m)

[Γ ∆ ,(A1&A2)π ]
[Γ ∆ ,Aπ

1 ,Aπ
2 ]

(&1
y)

[Γ ∆ ,(A1&A2)π ]
[Γ ∆ ,⊥π ]

(&2
y)

[Γ ,(A1&A2)π ∆ ]
[Γ ,Aπ

1 ,Aπ
2 ∆ ] [Γ ,⊥π ∆ ]

(&m)

[Γ ∆ ,(A1∧A2)π ]
[Γ ∆ ,Aπ

1 ] [Γ ∆ ,Aπ
2 ]

(∧y)
[Γ ,(A1∧A2)π ∆ ]

[Γ ,Aπ
1 ∆ ]

(∧1
m)

[Γ ,(A1∧A2)π ∆ ]
[Γ ,Aπ

2 ∆ ]
(∧2

m)

[Γ ∆ ,(A1∨A2)π ]
[Γ ∆ ,Aπ

1 ]
(∨1

y)
[Γ ∆ ,(A1∨A2)π ]

[Γ ∆ ,Aπ
2 ]

(∨2
y)

[Γ ,(A1∨A2)π ∆ ]
[Γ ,Aπ

1 ∆ ] [Γ ,Aπ
2 ∆ ]

(∨m)

[Γ ∆ ,(SA)π ]
[Γ ∆ ,Aπ1 ] . . . [Γ ∆ ,Aπn ]

(Sy)
[Γ ,(SA)π ∆ ]

[Γ ,Aρ ∆ ]
(Sm)

In all rules π can denote any index, including the global index ε . In rule (Sy) we assume
that W = {π1, . . . ,πm} and in rule (Sm) the index ρ can be any element of W . Note that,
in accordance with the definition of a strategy for me, your choices in the moves induce
branching, whereas for my choices a single successor state that is compatible with the
dialogue rules is chosen.

The finiteness assumption for W is not needed in proving the following theorem.

Theorem 1. A formula F is valid in SŁ if and only if for every precisification space Π

I have a winning strategy for the game starting in state [ F ].

Proof. Note that every run of the game is finite. For every final elementary state
[pπ1

1 , . . . , pπm
m qρ1

1 , . . . ,qρn
n ] the success condition says that we have to compute the

risk ∑
n
j=1〈q

ρ j
j 〉Π −∑

m
i=1〈p

πi
i 〉Π , where 〈rπ〉Π = µ({ρ ∈W |e(ρ,r) = 0}) if π = ε and

〈rπ〉Π = 1− e(π,r) otherwise, and check whether the resulting value (in the following
denoted by 〈pπ1

1 , . . . , pπm
m qρ1

1 , . . . ,qρn
n 〉Π ) is ≤ 0 to determine whether I ‘win’ the game.

To obtain my minimal final risk (i.e., my minimal expected loss) that I can enforce in
any given state S by playing according to an optimal strategy, we have to take into ac-
count the supremum over all risks associated with the successor states to S that you can
enforce by a choice that you may have in a (y- or m-)move S. On the other hand, for
any of my choices I can enforce the infimum of risks of corresponding successor states.
In other words, we prove that we can extend the definition of my expected loss from
elementary states to arbitrary states such that the following conditions are satisfied:

〈Γ ,(A ⊃ B)π
∆〉Π = inf{〈Γ ∆〉Π ,〈Γ ,Bπ Aπ ,∆〉Π} (12)

〈Γ ,(A&B)π
∆〉Π = sup{〈Γ ,Aπ ,Bπ

∆〉Π ,〈Γ ,⊥π
∆〉Π} (13)

〈Γ ,(A∧B)π
∆〉Π = inf{〈Γ ,Aπ

∆〉Π ,〈Γ ,Bπ
∆〉Π} (14)

〈Γ ,(A∨B)π
∆〉Π = sup{〈Γ ,Aπ

∆〉Π ,〈Γ ,Bπ
∆〉Π} (15)

for assertions by you and, for my own assertions:

〈Γ (A ⊃ B)π ,∆〉Π = sup{〈Γ ,Aπ Bπ ,∆〉Π ,〈Γ ∆〉Π} (16)
〈Γ (A&B)π ,∆〉Π = inf{〈Γ Aπ ,Bπ ,∆〉Π ,〈Γ ⊥,∆〉Π} (17)
〈Γ (A∧B)π ,∆〉Π = sup{〈Γ Aπ ,∆〉Π ,〈Γ Bπ ,∆〉Π} (18)
〈Γ (A∨B)π ,∆〉Π = inf{〈Γ Aπ ,∆〉Π ,〈Γ Bπ ,∆〉Π} (19)



Furthermore we have

〈Γ (SA)π ,∆〉Π = sup
ρ∈W

{〈Γ Aρ ,∆〉Π} (20)

〈Γ ,(SA)π
∆〉Π = inf

ρ∈W
{〈Γ ,Aρ

∆〉Π} (21)

We have to check that 〈· ·〉Π is well-defined; i.e., that conditions 12-21 together with the
definition of my expected loss (risk) for elementary states indeed can be simultaneously
fulfilled and guarantee uniqueness. To this aim consider the following generalisation of
the truth function for SŁ to multisets Γ of indexed formulas:

‖Γ ‖Π =def ∑
Aπ∈Γ ,π 6=ε

‖A‖π + ∑
Aε∈Γ

‖A‖Π .

Note that
‖A‖Π = ‖{Aε}‖Π = 1 iff 〈 Aε〉Π ≤ 0.

In words: A is valid in SŁ iff my risk in the game starting with my assertion of A is
non-positive. Moreover, for elementary states we have

〈pπ1
1 , . . . , pπm

m qρ1
1 , . . . ,qρn

n 〉Π = n−m+‖pπ1
1 , . . . , pπm

m ‖Π −‖qρ1
1 , . . . ,qρn

n ‖Π .

We generalize the risk function to arbitrary states by

〈Γ ∆〉∗Π =def |∆ |− |Γ |+‖Γ ‖Π −‖∆‖Π

and check that it satisfies conditions 12-21. We only spell out two cases. To avoid case
distinctions let ‖A‖ε =def ‖A‖Π . For condition 12 we have

〈Γ ,(A ⊃ B)π ∆〉∗
Π

= |∆ |− |Γ |−1+‖Γ ‖Π +‖(A ⊃ B)‖π −‖∆‖Π

= 〈Γ ∆〉∗
Π
−1+‖(A ⊃ B)‖π = 〈Γ ∆〉∗

Π
−1+(‖A‖π⇒Ł‖B‖π)

= 〈Γ ∆〉∗
Π
−1+ inf{1,1−‖A‖π +‖B‖π}= 〈Γ ∆〉∗

Π
−1+ inf{1,1+ 〈Bπ Aπ〉∗

Π
}

= 〈Γ ∆〉∗
Π

+ inf{0,〈Bπ Aπ〉∗
Π
}= inf{〈Γ ∆〉∗

Π
,〈Γ ,Bπ Aπ ,∆〉∗

Π
}

For condition 20 we have

〈Γ (SA)π ,∆〉∗
Π

= |∆ |+1−|Γ |+‖Γ ‖Π −‖∆‖Π −‖SA‖π

= 〈Γ ∆〉∗
Π

+1−‖SA‖π = 〈Γ ∆〉∗
Π

+1− infρ∈W{‖A‖ρ}
= 〈Γ ∆〉∗

Π
+ supρ∈W{‖A‖ρ}= supρ∈W{〈Γ ,Aρ ∆〉∗

Π
} 3

Remark 1. It already follows from a well known general theorem (‘saddle point theo-
rem’) about finite games with perfect information that conditions 12-21 uniquely extend
any given risk assignment from final states to arbitrary states. However, our proof above
yields more information, namely that the extended risk function indeed matches the se-
mantics of logic SŁ, as defined in Section 2.

By a regulation we mean an assignment of game states to labels ‘you move next’ and ‘I
move next’ that constrain the possible runs of the game in the obvious way. A regulation
is consistent if the label ‘you (I) move next’ is only assigned to states where such a move
is possible, i.e., where I (you) have asserted a non-atomic formula. As a simple but nice
corollary to our proof of Theorem 1, we obtain:



Corollary 1. The total expected loss 〈Γ ∆〉∗
Π

that I can enforce in a game over Π

starting in state [Γ ∆ ] only depends on Γ , ∆ , and Π . In particular, it is the same for
every consistent regulation that may be imposed on the game.

5 Remarks on related work

Various kinds of modal extensions of fuzzy logics have been considered in the literature.
E.g., chapter 8 of the central monograph [15] presents the family S5(L) for t-norm
based fuzzy logics L by letting the truth value e(w, p) assigned to a proposition p at a
world w∈W of a Kripke model range over [0,1] instead of {0,1}. The truth function for
the modality 2 is given by ‖2A‖w = infv∈W ‖A‖v. Of course, 2, thus defined, behaves
quite differently from supertruth S. In particular 2A∨¬2A is not valid. On the other
hand, 4A∨¬4A is valid for the widely used ‘definiteness’ operator 4 as axiomatized
in [2]. However also 4 over Ł is quite different from S in SŁ, as can be seen by
considering the distribution axiom 4(A∨B) ⊃ (4A∨4B) of [2]: Replacing 4 by S
yields a formula that is not valid in SŁ. For the same reason the modal extensions of
logic MTL considered in [5] are not able to express ‘supertruth’.

Yet another type of natural extension of fuzzy logics arises when one considers the
propositional operator Pr for ‘It is probable that . . . ’. In [15, 19, 8] model structures that
are essentially like our precisification spaces are used to specify the semantics of Pr.
More exactly, one defines ‖Pr(A)‖w = µ({w∈W | e(w,A)= 1}), which implies that, for
atomic propositions p, Pr(p) is treated like p itself in SŁ. However, supertruth S cannot
be expressed using Pr, already for the simple reason that the syntax of the mentioned
‘fuzzy probability logics’ does not allow for nesting of Pr. Moreover, classical and
degree based connectives are separated at the syntactic level; whereas our dialogue
game based analysis justifies the syntactic identification of both types of connectives in
the context of precisification spaces.

Our way to define evaluation over a precisification space is also related to ideas of
Dorothy Egdington [7]. However, while Edgington also refers to ‘truth on proportions
of precisifications’, she insists on evaluations that are not truth functional.

Finally we mention that some of the ideas underlying our presentation of SŁ are
already—at least implicitly—present in [10]. However no corresponding formal defini-
tions or results have been presented there.

6 Conclusion and future work

We have presented an analysis of logical reasoning with vague propositions that in-
corporates two seemingly different approaches to semantics: supervaluation and degree
based valuation. The resulting logic SŁ has been characterized as the set of those for-
mulas which a player can assert in a natural dialogue+betting game over precisification
spaces, without having to expect a loss of money.

The agenda for related future work includes the ‘lifting’ of our tableau style evalu-
ation system to a hypersequent calculus, that abstracts away from particular underlying
precisification spaces. This will lead to a proof system related to the calculi in [24] and
in [4], and should be a good basis for exploring also other t-norm based evaluations



over precisification spaces. Moreover we want to investigate the extension of SŁ by
further modal operators that seem relevant in modelling propositional attitudes arising
in contexts of vagueness.
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