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Abstract

We take up the challenge to extract particular truth functions for fuzzy quantifiers from a game

semantic framework. To this aim, we start with a fresh look at Hintikka’s evaluation game for
classical first order logic and show that randomizing payoffs in that classical game results in a

characterization of so-called weak  Lukasiewicz logic. A further step of generalization, considering

more than one formula as available for attack at a given state of the game, leads to Giles’s game
for full  Lukasiewicz logic. Finally we extend this framework to random choices of witnesses for

quantified statements. This allows us to characterize two families of extensions of  Lukasiewicz logic
with different semi-fuzzy proportionality quantifiers that include candidate models for vague natural

language quantifiers like about half.
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1 Introduction

Fuzzy quantification combines the theory of generalized quantifiers [39] with degree
based reasoning. As we will explain in Section 2, largely following Glöckner’s mono-
graph [20], modeling vague natural language quantifiers like many, few, about half,
etc, faces a number of challenges. These problems are alleviated if one focuses on so-
called monadic semi-fuzzy proportionality quantifiers, as we will do here. ‘Monadic’
means that, like for the familiar universal and existential quantifier, we identify the
range of a quantifier with the current universe of discourse (domain).1 ‘Semi-fuzzy’
means that the scope of the quantifier is crisp; i.e., for any element of the domain it
is assumed to be clear whether the predicate expressed by the scope of the quantifier
applies or not; degrees of truth only emerge from the vagueness of the quantifier itself.
‘Proportionality’ refers to the fact that the truth value of the quantified sentence only
depends on the proportion of elements of the domain that satisfy the scope of the
quantifier.

1However, since binary quantifiers, where the range is expressed by a separate formula, are central from a

linguistic point of view, we will make a few remarks on lifting our model from monadic to binary quantification in

Section 5.

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–27 0000 © Oxford University Press



2 Randomized Game Semantics for Semi-Fuzzy Quantifiers

Even the limited realm of monadic semi-fuzzy proportionality quantifiers calls for
further semantic principles—beyond insisting on the real unit interval as sets of truth
values—to guide the search for linguistically adequate models that fit the framework
of deductive fuzzy logics in the sense of Hájek [21, 22, 10]. We argue that game
semantics is appropriate for this purpose. We start in Section 3 with the familiar
(Henkin-)Hintikka evaluation game for classical first order logic and show that ran-
domizing payoffs in that classical game results in a characterization of so-called weak
 Lukasiewicz logic. A further step leads to Giles’s game for full  Lukasiewicz logic in
Section 4: at each state in such a game not just a single formula, but multisets of
formulas asserted by the two players are available for attack. Giles’s approach is then
generalized in Section 5 by applying the concept of randomization also to the choice
of witnesses for quantified formulas. This will allow us to characterize different types
of semi-fuzzy proportionality quantifiers by variations of the basic game rules. We
pick out two families of such quantifiers: blind choice quantifiers, which have linear
truth functions, are investigated in Section 6; deliberate choice quantifiers, with more
complex truth functions, are introduced in Section 7. We conclude in Section 8 by
assessing our results with respect to the challenges outlined in Section 2. This will
also provide a good occasion to hint at topics for further research triggered by the
new approach to fuzzy quantification explored in this paper.

2 Fuzzy models of natural language quantifiers

Lotfi A. Zadeh, in a series of papers starting from the mid-1970s (see the collection [43]
and further references there) developed a ‘fuzzy logic’ approach to natural language
semantics. In particular the paper entitled ‘A computational approach to fuzzy quan-
tifiers in natural language’ [44] has become an important point of reference. A wealth
of ideas and methods for modeling reasoning with quantifiers like few, most, about a
half, about ten, etc, with tools from fuzzy set theory are offered there. The essential
feature of Zadeh’s approach is the association of truth functions over the real unit
interval [0, 1] with such quantifiers.2 For our purposes it suffices to remind the reader
that pictures like the following (lifted from Figure 3 in [44]) nicely illustrate the gist
of fuzzy quantifiers of the here relevant type.

In Figure 1, the value v on the x-axis refers to the proportion of domain elements
satisfying the property expressed by the scope of the quantifier, whereas µ on the
y-axis refers to the degree of truth of the resulting quantified statement. Such propor-
tional quantifiers (including about a half, at most roughly a third, etc) are called ‘fuzzy
quantifiers of the second kind’ in [44], to be distinguished from absolute quantifiers,
like about ten or at least (roughly) a thousand, which Zadeh calls ‘fuzzy quantifiers

2Interestingly Zadeh, right at the beginning of [44], refers to the work of Montague [32], Barwise and Cooper [3],

Peterson [40] and others that had recently provided a new paradigm in linguistic research on semantics. We need not

discuss the complex reasons for the well known fact that linguists largely choose to reject or ignore Zadeh’s approach

to natural language semantics. We think that sound methodological principles distract linguists from models that

insist on a multitude of truth values and on a corresponding truth functional semantics. This in particular remains

the case also when vagueness, ambiguity, and massive context dependence of certain quantifier expressions are taken

into account. On the other hand, it is undeniable that the tools offered by fuzzy logic have been found valuable in

many engineering applications involving or at least inspired by natural language processing. In this view, the lack

of interaction between linguists and fuzzy logicians reflects different aims and a corresponding contrast of methods

more than any ill-will on either side. We nevertheless think that an increased awareness of the various aims and

tools employed in modeling vague language for various purposes might benefit fuzzy logicians as well as linguists.

However this is a topic outside the scope of the current paper. ([14, 16] and the collection [6] document our own

engagement in this debate.)
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A computational approach to fuzzy quantifiers in natural languages 

respectively. Furthermore, from (2.7) it follows that, if B C C, then 
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If Q is a fuzzy quantifier of the second kind, the antonym of Q, ant Q, is defined by [89] 
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A graphic illustration of (3.39) is shown in Fig. 3. 
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where by U’s we mean the elements of the universe of discourse U, and most is assumed to be 
monotone nondecreasing. 

Specifically, by identifying A in (3.25) with U in (3.40), B in (3.25) with A in (3.40), C in 
(3.25) with B in (3.40), and noting that 
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Fig. 3. The fuzz! quantifier few as an antonym of mosl. 

Fig. 1. reproduced from [44].

of the first kind’. Interestingly, most and many appear in both of Zadeh’s lists of
examples of quantifiers of these two kinds. The implied ambiguity in the reading
of many has been independently discussed by linguists. In particular, Partee [38]
reviews arguments for and against the ambiguity between a proportional and an ab-
solute reading of many and argues in favor of such an ambiguity herself. Here, we
will focus solely on proportional quantifiers, or rather on corresponding readings of
quantifiers, leaving the discussion of models of (vague) absolute quantifiers to another
occasion.

Zadeh is aware of the fact that linguistic adequateness requires to consider not only
unary, but also binary quantifiers. In other words, one wants to model statements
like About half of the students failed and Most children are curious rather than just
statements like Most [persons constituting the domain of discourse] are anxious. We
will refer to the first argument of a binary quantifier as its range and to the second
argument as its scope. However for the class of quantifiers that we are interested in
here, lifting models where the range coincides with the domain of discourse (unary
quantifiers) to restricted ranges (binary quantifiers) is straightforward. We will com-
ment on that feature briefly in Section 5, but otherwise focus on unary quantifiers for
the sake of clearness.

To motivate our own models of a particular class of fuzzy quantifiers, we point out
some worries about Zadeh’s approach. We emphasize that the relevant features are
not just present in [44], but rather are fairly typical of the fuzzy logic approach in
general, as reviewed in more detail in [20].

Problems with fully fuzzy quantification. Following Liu and Kerre [28], one
can distinguish four types of unary quantification with respect to their involvement
of membership degrees and degrees of truth:

Type I: the quantifier is precise and its scope is crisp;

Type II: the quantifier is precise, but may have a fuzzy scope;

Type III: the quantifier is fuzzy, but its scope is crisp;

Type IV: the quantifier as well as its scope are fuzzy.

The extension of the classical universal and existential quantifiers (∀ and ∃) from
Type I to Type II by returning as truth value the infimum and supremum, respectively,
of the membership degrees of the fuzzy set corresponding to the scope, is standard
in first order fuzzy logics. However, many, about half, etc, require models of at
least Type III, which we will call semi-fuzzy in this paper. Actually Zadeh aims
at fully fuzzy, i.e. type IV quantification. But severe concerns about the linguistic
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adequateness of Zadeh’s Type IV models have been raised in the literature on fuzzy
quantifiers. To indicate at least one concrete problem, consider the statement About
half of the guests are hungry. As already indicated, we will identify the set of guests
with the universe of discourse and may thus consider about half as a unary fuzzy
quantifier applied to the fuzzy predicate hungry. Following Zadeh, the truth value
of the statement should only depend on some cardinality measure of the fuzzy set of
hungry guests. If the later set is in fact crisp and exactly half of the guests are hungry
(membership degree 1) and the other half are not hungry (membership degree 0)
then clearly we should evaluate the statement as perfectly true (truth value 1). The
problem arises when all guests are borderline hungry; i.e., when the predicate hungry
uniformly applies with degree 0.5 to each guest. The approach favored by Zadeh,
based on the so-called Σ-count for representing the cardinality of fuzzy sets evaluates
About half of the guests are hungry as perfectly true also in this case, which clearly is in
discrepancy with ordinary language use. Zadeh himself and a number of his followers
suggest alternatives to the Σ-count measure. However, none of these models is in
perfect correlation with pre-formal intuitions about the meaning of vague quantifiers
in natural language. We do not want to enter the debate on the linguistic adequateness
of various Type IV models, but rather refer to Glöckner’s monograph [20] for an
overview and detailed discussion of this literature. Glöckner suggests to focus on semi-
fuzzy quantifiers first and let the generalization of Type III to Type IV be guided by an
axiomatic framework. While we remain skeptical about the adequateness of (solely)
fuzzy logic based models of vague natural language quantifiers with vague scope, we
fully agree with the strategy to give priority to models of semi-fuzzy quantification
over some finite, contextually fixed domains (universes of discourse).

Coherent interpretation of intermediate truth values. The challenge of find-
ing a semantic frame that allows one to attach concrete meaning to truth values drawn
from the real unit interval and in particular to justify the choice of corresponding truth
functions is well known and certainly not specific to the study of quantifiers. Vari-
ous proposals, like voting semantics [27], acceptability semantics [36], re-randomising
semantics [26, 21], approximation semantics [4, 37], as well as Robin Giles’s game
based semantics [18, 19] address this challenge. To our best knowledge none of these
semantics has so far been extended to cover also semi-fuzzy (let alone fully fuzzy)
quantifiers. All mentioned approaches primarily refer to propositional logic and can
only be (more or less) straightforwardly extended to Type II quantification (∃ and ∀
as generalized disjunction and conjunction, respectively). Nevertheless we think that
a uniform semantic framework that allows one to extract particular truth functions
from more explicit models of reasoning with vague, uncertain, and/or underspecified
propositions is called for, in particular also as a basis to tackle the problem outlined
in the next paragraph.

An embarrassment of riches. Any function of type P([0, 1]) → [0, 1] (where
P(X) denotes the powerset of X) is a candidate for the truth function corresponding
to a unary fuzzy quantifier. When we restrict attention to proportionality quan-
tifiers over crisp domains, as done in this paper, this boils down to functions of
type [0, 1] → [0, 1], as illustrated in (Zadeh’s) Figure 1, above. Clearly, uncountably
many candidates remain, even if we impose further general constraints, like continu-
ity, monotonicity, symmetry, etc. Zadeh’s figure is to be understood as a deliberately
vague suggestion regarding the general form of plausible candidates of truth functions
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for few, many, and about half, rather than as fixing the meaning of these quantifiers
by particular truth functions. Even so, the specific shape of the three graphs may be
questioned. For example, why is About half [elements of the domain] are X evaluated
as 1 only if exactly half of the elements satisfy property X? Should not the linguistic
hedge ‘about ’ render the statement perfectly true also in cases where the proportion
of elements satisfying X deviates from 0.5 very slightly? Independently of worries of
this kind, the space of suitable candidates of truth functions that adequately model
about half is not only uncountably large, but it is left unclear what parameters (if
any) should or can be set in order to justify the choice of particular functions. No
doubt further constraints, like efficient computability, will guide the choice of truth
functions in practice. However even where, as in [20], concrete functions or parame-
terized families of functions are suggested, the choices remain ad hoc. To some extent
this is probably unavoidable. Certainly one should not expect to be able to single
out a particular truth function for, e.g., about half as clearly optimal in all respects.
However, one may reasonably ask for a guiding semantic principle that leaves only
a small number of parameters to be settled, where the space of possible parameter
values is finite or at least discrete and tied to some general interpretation.

Compatibility with standard deductive fuzzy logics. Well after Zadeh’s pi-
oneering work, Petr Hájek and his collaborators developed a t-norm based approach
to many-valued logics that connects fuzzy logic with a more traditional agenda of
mathematical logic that includes axiomatic systems, soundness, completeness and
complexity results, algebraic tools, proof theory, and the like. While Hájek’s mono-
graph [21] remains a classic reference, the Handbook of Mathematical Fuzzy Logic [7]
provides a more recent overview of relevant work in this area. Although much of this
research is centered on propositional logics and their algebraic counterparts, there
is also a wealth of results on quantified logics. However the investigated first order
systems focus on the (Type II) quantifiers ∀ and ∃. This holds in particular also for
 Lukasiewicz logic, which is often favored for applications, due to the fact that it can
be characterized as the only t-norm based logic, where all connectives have continu-
ous truth functions. On the other hand, research on fuzzy quantifiers seldom seeks to
explicitly embed these quantifiers into deductive fuzzy logics.3

To sum up this discussion of some (potential) problems with traditional approaches
to fuzzy quantifiers, we formulate a list of desiderata for an alternative approach. We
aim at a framework—limited here to proportional quantifiers—that

• focuses on semi-fuzzy quantification,

• is based on a uniform semantic framework, able to justify specific truth functions
with respect to first principles about reasoning with vague concepts and proposi-
tions,

• suggests candidates of truth functions for quantifiers like about half that arise
from setting a small number of meaningful parameters,

• and straightforwardly extends standard  Lukasiewicz logic.

As already indicated in the introduction, we think that a rather straightforward exten-
sion of Giles’s game semantics for  Lukasiewicz logic provides all needed ingredients. It

3The approach in [35], based on fuzzy type theory, is an exception. But the framework of [20]—the most compre-

hensive framework for fuzzy quantifiers, so far—is incompatible with full  Lukasiewicz logic, due to an understanding

of implication that is at variance with the truth function for implication in  Lukasiewicz logic (the residuum of the

 Lukasiewicz t-norm).
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thus remains to explain Giles’s framework, before extending it to cover certain semi-
fuzzy quantifiers. Since the relation between Giles’s game and the standard semantic
game for classical logic has to our best knowledge never been explained so far, we will
first take the reader on a tour that starts with Hintikka’s classic semantic game and
leads to Giles’s more elaborate setting in a few simple steps.

3 Randomizing Henkin-Hintikka games

As shown by Hintikka [24], building on an idea of Henkin, the Tarskian notion of
truth can be characterized by a two person game played on a first order formula with
respect to a given model. Such a characterization provides a semantic framework that
goes beyond mere definitions of truth functions. It suggests an analysis of logical truth
and validity in game theoretical terms and thus opens a formal pragmatic approach to
logic that has proved to be very fruitful and led to the study of well motivated variants
of classical logic, in particular IF-logic (independence friendly logic; see [25, 30]), that
arises when the assumption of perfect information is dropped. We present the classical
evaluation game in a slightly unusual terminology that will make the later transition
to Giles’s game more transparent.

The H-game. There are two players, say me and you, who can both act in the
roles of either the attacker or the defender of a formula. The game is played with
respect to a given classical first order interpretation M , where all domain elements
are witnessed by constants. M can thus be identified with an assignment of 0 (false)
or 1 (true) to the variable free atoms of the language. By vM (F ) we denote the truth
value to which F evaluates in M .

At every state of the game either me or you act as the defender of some sentence
(closed formula) F , the opponent player is the attacker. Accordingly, moves by the
defender may be referred to as defenses and moves by the attacker as attacks. We will
say that player X asserts F , if X is the defender of F at the given state. The game
starts with my assertion of some formula and proceeds according to the following
rules corresponding to the form of the currently considered formula.

(R∧) If I assert F ∧G then you attack by pointing either to the left or to the right sub-
formula. As corresponding defense, I then have to assert either F or G, according
to your choice.4

(R∨) If I assert F ∨G then I have to assert either F or G at my own choice.

(R¬) If I assert ¬F then you have to assert F . In other words, our roles are switched:
the game continues with you as defender and me as attacker (of F ).

(R∀) If I assert ∀xF (x) then you attack by picking c and I have to defend by asserting
F (c).

(R∃) If I assert ∃xF (x) then I have to pick a constant c and assert F (c).

Note that (R∨) and (R∃) only involve a move by me. However, we may speak of
an empty attack by you, followed by my defense, also in these cases. Also the role
switch in (R¬) may be viewed as triggered by my defense to your attack of ¬F . In
this manner we arrive at a uniform format of rules and corresponding rounds in a

4Note the duality of the rules for ∧ and ∨. A version of conjunction where both conjuncts have to be asserted

will be considered for G-games, in Section 4.
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run of the game: each round consists of an attack followed by a defense. We have
only stated rules for states where I am the defender and you are the attacker of the
currently considered formula. The rules for you defending a formula are completely
dual.

More formally, each state of the H-game determines the currently asserted sentence
and a role assignment (either I am the defender and you the attacker, or vice versa).
The role assignment remains unchanged in all state transitions, except for the one
explicitly triggered by (R¬). A run (terminal history) of the game is a sequence of
states beginning with a sentence defended by me, where each successor state results
from the previous one in accordance with the specified rules. Thus attack moves
strictly alternate with corresponding defense moves. A round consists of two state
transitions, where only the second one, the defense move, changes the currently as-
serted formula. Once we arrive at an atomic formula, the run of the game ends. In
such a final state, where I assert an atomic formula A, we say that I win if vM (A) = 1
and I lose if vM (A) = 0. Analogously, in a final state, where you assert an atomic
formula A, we say that I win if vM (A) = 0 and I lose if vM (A) = 1.

We call the game starting with my assertion of F the H-game for F under M . Like
all games that we will consider in this paper, it is a two-person zero-sum extensive
game of finite depth with perfect information. We may view each such game as a
tree where the branches correspond to the possible runs of the game. A strategy for
me may be identified with a subtree obtained by deleting all but one successor nodes
(states) of every node where I can choose between different moves. If I win at all final
states, such a tree is called a winning strategy for me.

It might seem that we have deviated from Hintikka’s classic semantic game. How-
ever, the differences between the above presentation of the game and the one found,
e.g., in [25], are only superficial:

• We followed Giles [18, 17] by referring to the players as me and you, where Hintikka
and Sandu use Myself and Nature, respectively.

• While the roles in the game are called verifier and falsifier, in [25], we prefer to
speak of a defender and an attacker instead. Moreover we use “asserting F” as
shorthand for “being the current defender of F”. This is not only closer to Giles’s
terminology, but assists in disentangling the players’ roles from the reference to
the classical truth values.

• In stating the rules of the game, Hintikka and Sandu only refer to the roles, not to
the identity of the players. While this allows for a more compact presentation, it
hides the fact that, in any formal presentation of the game, one has to keep track
of the current assignment of roles to the two players. In order to make the later
transition to Giles’s game more transparent, we prefer to include the reference to
the players in stating the rules.

To sum up, while our presentation of the semantic game looks different from tradi-
tional descriptions, the game itself remains unchanged.

Theorem 3.1 (Hintikka)
A sentence F is true in an interpretation M (in symbols: vM (F ) = 1) iff I have a
winning strategy in the H-game for F under M .

Our aim is to provide a similarly elegant characterization of graded truth for first
order fuzzy logics. While game semantics can be generalized to cover a wide range
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of different many-valued logics (see [11, 8, 15]) we will stick here to infinite valued
 Lukasiewicz logic, which is arguably the most important example of a deductive math-
ematical fuzzy logic in the sense of [7].

 Lukasiewicz logic  L provides two forms of conjunction: weak conjunction (∧) and
strong conjunction (&); moreover, we have negation (¬), implication (→), (weak)
disjunction (∨), and the standard quantifiers (∀ and ∃). The standard semantics of
these connectives and quantifiers is given by:

vM (F ∧G) = min(vM (F ), vM (G))
vM (F ∨G) = max(vM (F ), vM (G))
vM (F &G) = max(0, vM (F ) + vM (G)− 1)
vM (⊥) = 0
vM (¬F ) = 1− vM (F )
vM (F → G) = min(1, 1− vM (F ) + vM (G))
vM (∀xF (x)) = infc∈D(vM (G(c)))
vM (∃xF (x)) = supc∈D(vM (G(c)))

where D is the domain of M (which we identify with the set of constants).
There are many good reasons to base  L on the full syntax, as specified above.5 In

particular this nicely fits the general theory of t-norm based fuzzy logics as introduced
by Hájek [21, 22] and developed into a prolific subfield of mathematical logic by many
researchers since, as witnessed by the handbook [7]. However, in the vast literature
on fuzzy logic and on many-valued logics in general one frequently considers only ∧,
∨, and ¬ as propositional connectives. We will call this fragment of  L, together with
the standard quantifiers (∀, ∃), weak  Lukasiewicz logic  Lw here.6

The restrictions of  L and  Lw to the propositional part will be denoted by  Lp and
 Lw
p , respectively.
In order to transfer H-games into a many-valued setting we follow an idea of

Giles [18, 17] and reformulate the winning condition in a way that will lead to an
interesting interpretation of intermediate truth values in terms of expected risks of
payments. We conceive of the evaluation of the atomic formula A at the final state
of an H-game as a (binary) experiment EA that either fails, meaning vM (A) = 0, or
succeeds, meaning vM (A) = 1. The experiment E⊥ always fails. Moreover, we stipu-
late that I have to pay 1€ to you if I lose the game. Hence winning strategies turn
into strategies for avoiding payment.7 So far this just amounts to an alternative way
to present the original game. The main innovation of Giles is to let the experiments
EA be dispersive. This means that EA may show different results upon repetition,
where the individual trials of the experiment are understood as independent events.
(Of course, E⊥ remains non-dispersive: it simply always fails.) The reader is invited
to think about intended applications modeling vague language: while in concrete
dialogues competent language users either (momentarily and provisionally) accept
or don’t accept grammatical utterances upon receiving them, vagueness results in a

5Actually one can define all connectives of  L from just → and ⊥ or alternatively from & and ⊥. But neither →
nor & can be defined from the remaining connectives.

6This logic is simply called “fuzzy logic” in [34]. It also coincides with “Zadeh-Kleene logic” [1], restricted to

the unit interval.
7Note the asymmetry of the payoff scheme: even when the roles of attacker and defender are switched, it is me,

not you, who has to pay upon losing the game. This is necessary to ensure that enforceable payments (inversely)

correspond to truth values. Giles’s extended game scenario allows one to restore perfect symmetry, as we will see

in Section 4.
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brittleness or dispersiveness of such highly context dependent decisions. (See, e.g,
[41, 2].) In order to arrive at ‘degrees of truth’ for an atomic statement A in such a
model, one assumes that the dialogue partners associate a fixed success probability
π(EA) to the experiment EA. The result of EA may be thought of as an answer to
the question “Do you accept A (at this instance)?” By 〈A〉 = 1 − π(EA) we denote
the risk associated with A, i.e., the expected (average) loss of money associated with
my assertion of A. The function 〈·〉 that maps each atomic sentence into a failure
probability of the corresponding experiment is called risk value assignment. Note that
risk value assignments are in 1-1-correspondence with (many-valued) interpretations
via 〈A〉M = 1− vM (A).

The setting of randomized payoff for H-games straightforwardly leads to a char-
acterization of weak propositional  Lukasiewicz logic  Lw

p , as shown in the following
theorem.
Theorem 3.2
A  Lw

p -sentence F is evaluated to vM (F ) = x in interpretation M iff in the H-game for
F under the corresponding risk value assignment 〈·〉M I have a strategy that limits my
expected risk to (1 − x)€, while you have a strategy that ensures that my expected
risk is not below this value.

Proof. We use 〈| G〉∗ to denote my final risk when playing rationally in a game
where I am defending and you are attacking G. If I am the attacker and you are the
defender of G this value is denoted by 〈G |〉∗.8

If F is atomic then 〈F |〉∗ = 1 − 〈F 〉M and 〈| F 〉∗ = 〈F 〉M and thus my risk is
vM (F ) in the former case and 1 − vM (F ) in the latter case, as required. Otherwise
we argue by induction on the complexity of F that 〈| F 〉∗ = 1− vM (F ).

• If I assert ¬G, the game continues with your assertion of G and 〈| ¬G〉∗ reduces
to 〈G |〉∗ = 1− 〈| G〉∗, just like in the truth function for ¬.

• If I assert G ∨ H then I will pick G or H according to where my associated
expected risk is smaller. Therefore 〈| G ∨H〉∗ = min(〈| G〉∗ , 〈| H〉∗), and thus
vM (G ∨H) = max(vM (G), vM (H)) = 1−min(1− 〈| G〉∗ , 1− 〈| H〉∗).

• If I assert G∧H then you will pick G or H according to where my associated risk,
i.e., your expected gain, is higher. Therefore 〈| G ∧H〉∗ = max(〈| G〉∗ , 〈| H〉∗),
corresponding to vM (G ∧H) = min(vM (G), vM (H)).

The cases where you defend and I attack F are completely dual.

Note that we are only interested in final risk as payoff values of the game, not in
actual final payments due to particular results of experiments. Since individual trials
of experiments are independent events, truth functionality is preserved. Consider a
game for A ∨ ¬A for example. While I will finally have to pay either 1€ or nothing,
depending on the result of EA, my risk, i.e. my optimal expected loss under the risk
value assignment corresponding to interpretation M is min(〈A〉M , 1−〈A〉M )€, which
indeed amounts to (1− vM (A ∨ ¬A))€.

There is a slight complication in lifting Theorem 3.2 to the first order level:
in a [0, 1]-valued interpretation M witnessing domain elements for quantified sen-
tences may not exist. More precisely, we may have vM (∀xF (x)) < vM (F (c)) and

8Note that probability (risk) is only involved in the definition of the payoff at final (atomic) states. The game

itself does not contain any random moves. Since the game is of finite depth one can compute optimal pure strategies

by backward induction as usual.
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vM (∃xF (x)) > vM (F (c)) for all constants c. For this reason we define the follow-
ing general notion for games with randomized payoff (as in our new version of the
H-game, above, and in G-games, introduced below).

Definition 3.3
A game with randomized payoff is r-valued for player X if, for every ε > 0, X has a
strategy that guarantees that her expected loss is at most (r+ε)€, while her opponent
has a strategy that ensures that the loss of X is at least (r − ε)€. We call r the risk
for X in that game.

This notion allows us to state the generalization of Theorem 3.2 to  Lw concisely:

Theorem 3.4
A  Lw-sentence F is evaluated to vM (F ) = x in interpretation M iff the H-game for
F under risk value assignment 〈·〉M is (1− x)-valued for me.

Proof. Building on the proof of Theorem 3.2, it only remains to consider the induc-
tion steps for quantified sentences:

• If I assert ∃xF (x), then the game continues with my assertion of F (c) for a constant
c picked by me in a manner that minimizes my risk. In fact, since there might
be no domain element witnessing the infimum vM (∃xF (x)) = infc∈D(vM (F (c))),
we can only ensure that, for any given δ > 0, 〈| ∃xF (x)〉∗ = 〈| F (c)〉∗ = 1 −
vM (∃xF (x)) + δ.

• If I assert ∀xF (x), the game continues with my assertion of F (c), where c is chosen
by you to maximize my risk. Therefore, analogously, we obtain 〈| ∀xF (x)〉∗ =
〈| F (c)〉∗ = 1− vM (∀xF (x))− δ for some δ > 0.

The cases where you are the defender of a quantified formula are dual.

Note that the value εmentioned in Definition 3.3 does not directly correspond to δ as
used in the above proof, but rather results from the accumulation of appropriate δs.
In any case, since our intended applications assume finite domains, we may from
now on safely ignore the fact that, in general, truth values of statements involving
quantifiers are only approximated by expected risk in concrete instances of a game.
We nevertheless retain the notion of the value of a game, but could actually simplify
Definition 3.3 by dropping all references to ε.

4 From H-games to G-games

Already in the 1970s Robin Giles [18, 17] introduced an evaluation game that was
intended to provide ‘tangible meaning’ to reasoning about statements with dispersive
semantic tests as they appear in physics. For the logical rules of his game Giles
referred not to Henkin or Hintikka, but to Lorenzen’s dialogue game semantics for
intuitionistic logic [29]. In particular, the following rule for implication was proposed:

(R→) If I assert F → G then you may attack by asserting F , which obliges me to
defend by asserting G. (Analogously if you assert F → G.)

In contrast to H-games, such a rule introduces game states, where more than one
formula may be currently asserted by each of us. Since, in general, it matters whether
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we assert the same statement just once or more often, game states are now denoted
as pairs of multisets of formulas. We call such games G-games. A final state of a
G-game where {A1, . . . , An} is the multiset of atomic assertions made by you and
{B1, . . . , Bm} is the multiset of atomic assertions made by me is denoted by

[A1, . . . , An | B1, . . . , Bm] .

Again we assume that a binary experiment EA is associated with every atomic A with
corresponding risk 〈A〉 = 1−π(EA). We now make payments fully dual and stipulate
that I have to pay 1€ to you whenever an instance of an experiment corresponding
to one of my atomic assertion fails, while you have to pay me 1€ for each instance of
a failing experiment corresponding to one of your atomic assertions. We obtain the
following value for the expected total amount of money (in €) that I have to pay to
you at the exhibited final state:

〈A1, . . . , An | B1, . . . , Bm〉 =
∑

1≤i≤m

〈Bi〉 −
∑

1≤j≤n

〈Aj〉 .

We call this value briefly my risk associated with that state. Note that the risk can
be negative in G-games, i.e., the risk values of the relevant propositions may be such
that I expect a net payment by you to me.

Interestingly, the rules (R∧), (R∨), (R∀), and (R∃) defined in Section 3 remain
unchanged for G-games. By adding the above implication rule (R→) and defining
¬F = (F → ⊥) we arrive at Giles’s game for  Lukasiewicz logic.

We like to point out that (R→) contains a hidden principle of limited liability : the
player opposing the defender of F → G may (instead of asserting F in return for
the opponent’s assertion of G) explicitly choose not to attack F → G at all. This
option results in a branching of the game tree. The state [Γ | ∆, F → G], where Γ
and ∆ are multisets of sentences asserted by you and me, respectively, and where the
exhibited occurrence indicates that you currently refer to my assertion of F → G,
has the two possible successor states: [F,Γ | ∆, G] and [Γ | ∆]. In the latter state you
have chosen to limit your liability in the following sense. Attacking an opponent’s
assertion should never incur an expected (positive) loss, which were the case if the
risk associated with asserting F is higher than that for asserting G. In such cases a
rational player in the attacking role will explicitly renounce an attack on F → G. For
all other logical connectives the principle is ensured by the fact that—in all games
considered here—each occurrence of a formula can be attacked at most once. (The
attacked occurrence is removed from the state in the transition to a corresponding
successor state.)

Another form of the principle of limited liability can be considered for defending
moves. In defending any sentence F , the defending player has to be able to hedge
her possible loss associated with the assertions made in defense of F to at most 1€.
This is already the case for all logical rules considered so far. However, as shown in
[11, 13], by making this principle explicit we arrive at a rule for strong conjunction,
that is missing in Giles [18, 17]:

(R&) If I assert F&G, I have to assert either both F and G, or assert ⊥ instead.
(Analogously if you assert F&G.)
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The above description might yet be too informal to see in which sense every G-game,
just like an H-game, constitutes an ordinary two-person zero-sum extensive game of
finite depth with perfect information. For this purpose one has to be a bit more
precise than Giles and introduce the notion of a consistent regulation, determining
which player is to move next. Additionally, one has to model the selection of a
non-atomic formula to be attacked as an explicit move in the game. For a detailed
formal presentation, including examples, we refer to [13]. Here it suffices to point
out that any given consistent regulation determines the tree representing a concrete
G-game for a formula F (meaning a game with initial state [| F ]). By identifying the
formula F selected for attack with the formula exhibited in the corresponding game
rule we obtain for every such state the next two levels of successor states: the first
level registers the possible choices (if any) for attacking F (including, in the case of
an implication, the option to apply the principle of limited liability and thus just to
remove F ) and the second level registers the options for defending F according to the
rule. (In the terminology introduced in Section 3, the two levels correspond to a round
in the game. Like for randomized H-games, every run of a G-game is a sequence of
states ending in a final state, the risk of which constitutes its payoff.)

We arrive at the following characterization of strong  Lukasiewicz logic  L by G-
games:

Theorem 4.1 ([13], based on [18])
A  L-sentence F is evaluated to vM (F ) = x in interpretation M iff every G-game for
F under risk value assignment 〈·〉M is (1− x)-valued for me.

5 Random witnesses for quantifiers

We argue that a simple generalization of the game for  L, described in Section 4, allows
one to address the challenges for fuzzy quantification outlined in Section 2 by singling
out a class of semi-fuzzy quantifiers that fit Giles’s idea to provide ‘tangible meaning’
to logical connectives in terms of bets on the results of dispersive experiments.

Remember that the only difference between the rules (R∀) and (RE) for defending
assertions ∀xF (x) and ∃xF (x), respectively, is that either the defender or the attacker
has to pick the constant c that determines the new sentence F (c) that remains to be
defended. Considering the randomized setting of G-games, the following rule for a
new type of (monadic) quantifier Π seems natural:

(RΠ) If I assert ΠxF (x) then I have to assert F (c) for a randomly picked c.

The random choice refers to a uniform distribution of the finite domain. Note
that, while all kinds of other forms of randomly picking domain elements might be
considered in principle, we recall from the literature on generalized quantifiers (see,
e.g., [39, 42]) that a necessary condition for a quantifier to be called logical is the
domain invariance of its semantics.9 As will get clear below, this is guaranteed for Π
(and for the quantifiers considered in Sections 6 and 7 by insisting on random choices
with respect to a uniform distribution.

9There is no agreement in the literature on when a generalized quantifier is to be called logical. However it is

at least clear that invariance with respect to isomorphisms between domains is a necessary condition, because a

quantifier should not be able to distinguish between elements of the universe. This principle has first been formulated

by Mostowski [33]. See [39] for a discussion of this issue.
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While (RΠ), in principle, can be applied to arbitrary  L-formulas F in the scope of
Π, we will view Π as a semi-fuzzy quantifier and hence insist on classical formulas in
its scope for reasons explained in Section 2. More formally, we specify the language
for logic  L(Qs), where Qs is a list of (unary) quantifier symbols other than ∀ or ∃, as
follows:

γ ::= ⊥ | P̂ (~t) | ¬γ | (γ ∨ γ) | (γ ∧ γ) | ∀vγ | ∃vγ
ϕ ::= γ | P̃ (~t) | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ→ ϕ) | (ϕ&ϕ) | ∀vϕ | ∃vϕ | Qvγ

where P̂ and P̃ are meta-variables for classical and for general (i.e., possibly fuzzy)
predicate symbols, respectively, Q ∈ Qs; v is our meta-variable for object variables;
~t denotes a sequence of terms, i.e. either object variable or constant symbol, match-
ing the arity of the preceding predicate symbol. Note the scope of the additional
quantifiers from Qs is always a classical formula. Otherwise the syntax is as for  L
itself.

The following notion supports a crisp specification of truth functions for semi-fuzzy
proportionality quantifiers over finite interpretations.

Definition 5.1
Let Ĝ(x) be a classical formula and vM (·) a corresponding evaluation function over
the finite domain D. Then

Propx Ĝ(x) =

∑
c∈D vM (Ĝ(c))

|D|

Propx Ĝ(x) thus denotes the proportion of all elements in D satisfying the classical
predicate Ĝ. As we stipulated a uniform probability distribution over D, above, this
matches the probability that a randomly chosen element satisfies Ĝ.

The following theorem states that rule (RΠ) matches the extension of the valuation
function for  L to  L(Π) by vM (ΠxF (x)) = Propx F (x).

Theorem 5.2
A  L(Π)-sentence F is evaluated to vM (F ) = x in an interpretation M iff every
G-game for F augmented by rule (RΠ) is (1 − x)-valued for me under risk value
assignment 〈·〉M .

Theorem 5.2 will turn out to be an instance of a more general result to be proved
in the next section.

As mentioned in Section 2, natural language quantifiers are usually binary, as in
About half of the students are present, rather than unary as in About half [of the
elements in the domain of discourse] the students are present. However, binary quan-
tifiers like about half, many, at least a third, etc, are extensional. This means that,
like in the above example, the first argument of the binary quantifier—its range—is
only used to restrict the universe of discourse. More formally, let Â denote the set of
domain elements that satisfy the (crisp) predicate expressed by the classical formula

Â(x). If Q is a unary quantifier, then ÂQxF (x) is a quantified statement defined by

vM (ÂQxF (x)) = vM ′(QxF (x)), where M ′ denotes the interpretation that results from
M by restricting the domain of M to Â, denoting the set of elements that satisfy the
(crisp) predicate expressed by the classical formula Â(x). This reduces extensional
binary quantification to unary quantification in a manner that is readily modeled by
a uniform modification of quantifier game rules, illustrated for Π as follows:
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(RΠ2) If I assert ÂΠxB̂(x) then I have to assert B̂(c) where c is a randomly picked
element of Â.

If the classical formula Â(x) is atomic then it is clear what it means to randomly pick
an element of Â (if one exists at all). If however Â(x) is of arbitrary logical complexity,
then we may remain within our game semantical framework by employing H-games
to find an appropriate random witness as follows:

1. Pick a random domain element c.

2. Initiate an H-game where a Proponent P defends Â(c) against an Opponent O.

3. If P wins the H-game, then I and you continue the main G-game with the constant
c. Otherwise, continue at 1.

We deliberately changed the identity of the players (from I/You to P/O) in moving
from the G-game to the H-game, since it is important to keep the objectives of the
players P and O in the H-game independent from our objectives in the G-game. By
Theorem 3.1 P wins the H-game against the rational Opponent O if and only if Â(c)
is true, i.e., if c ∈ Â. Note that the indicated procedure and therefore the main
G-game will fail to terminate if the range Â is empty. This is in accordance with the

above definition that leaves vM (ÂQxF (x)) undefined if the range is empty. According
to [3] this matches intuitions about natural language quantifiers applied to an empty
range.

Remark. There is an interesting similarity between our notion of randomized
witness selection and the “chance setups” used by Halpern and others in the context
of reasoning about probability (see in particular [23]). Halpern introduces a first order
logic that allows one to express statements10 like “A randomly chosen element of the
domain satisfies property Ĝ with probability at least p”. Note that such statements are
bivalent. Moreover they involve terms referring to probability values. Consequently,
the underlying formal language differs substantially from fuzzy logics. Nevertheless
probability logics and our generalization of semantic games share the basic idea of
referring to random elements of the domain of discourse.

6 Blind choice quantifiers

Remember that in the context of our G-games we have considered three types of
challenges to the defender X of a quantified sentence QxF (x). In each case X has to
assert F (c), but the constant (domain element) is either

(A) chosen by the attacker, or

(D) chosen by the defender, or

(R) chosen randomly.

We will speak of a challenge of type A, D, or R, respectively. The need to variate these
three challenges arises when we allow the defender (and possibly also the attacker) of
QxF (x) to bet either for or against F (c). Betting for F (c) simply means to assert
F (c), betting against F (c) is equivalent to betting for ¬F (c) and thus amounts to

10In fact Halpern’s logic is much more expressible and combines statistical reasoning over arbitrary distributions

with reasoning about degrees of belief.
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Γ | ∆,QxF̂ (x)

]
[
Γ, F̂ (ci)

r1 ,⊥s1 | ∆, F̂ (c′i)
u1 ,⊥v1

] [
Γ, F̂ (ci)

rn ,⊥sn | ∆, F̂ (c′i)
un ,⊥vn

]

Fig. 2: Schematic blind choice quantifier rule — my possible defenses to a particular
attack by you.

an assertion of ⊥ in exchange for an assertion of F (c) by the opposing player. We
interpret this as follows: X pays 1€ for a betting ticket regarding F (c) that entitles
her to receive whatever payment by her opponent Y is due for Y’s assertion of F (c)
according to the results of associated dispersive experiments made at the end of the
game.

As explained in Section 3, a round of a game consists of a player’s attack of an
assertion made by the other player, followed by a defense of that latter player, where
the principle of limited liability states that asserting ⊥ is always a valid defense.
Moreover, by the other form of the principle of limited liability, the attacker, instead
of attacking an assertion in some specific way, may grant the assertion which will
consequently be deleted from the current state of the game. In general, when an
assertion of QxF̂ (x) is attacked, the round results in a state where both players are
placing certain numbers of bets for or against various instances of F̂ (x), where the
constants replacing x can be of type A, D, or R. Thus we arrive at a rich set of possible
quantifier rules. In this paper we are only interested in type R challenges. We will
call F̂ (c) a random instance of F̂ (x) if c has been chosen randomly.

In this section we will investigate the family of blind choice quantifiers defined as
follows.

Definition 6.1
Q is a (semi-fuzzy) blind choice quantifier if it can be specified by a game rule satis-
fying the following two conditions:

(i) Only challenges of type (R) are allowed. An attack on QxF̂ (x) followed by
a defense move results in a state where both players have placed a certain number
(possibly zero) of bets for and against random instances of F̂ (x).

(ii) The identity of the random constants is revealed to the players only at the end of
the round; i.e., after an attack has been chosen by the one player and a corresponding
defense move has been chosen by the other player.

Figure 2 depicts possible state transitions involved in the application of a blind
choice quantifier rule. Γ and ∆ denote arbitrary multisets of formulas; F̂ (x) is a
classical formula that forms the scope of the sentence QxF̂ (x) asserted by my and
attacked by you; ⊥k denotes k occurrences of ⊥; and F̂ (ci)

k is used as an abbreviation
for the k assertions of random instances F̂ (c1), . . . , F̂ (ck). Note that in general there
is more than one way in which you may attack my assertion of QxF̂ (x). Figure 2
only shows the scheme for one particular attack. A presentation of a full rule consists
of a finite number of instances of this scheme. The root of all these trees is labeled
by
[
Γ | ∆,QxF̂ (x)

]
, which means that the effect of the different attacks is shown

only at the end of a full round, i.e., only after also a corresponding defense has been
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Γ | ∆, LkmxF̂ (x)

]

[Γ | ∆]

[
Γ | ∆, LkmxF̂ (x)

]

[Γ | ∆,⊥]
[
Γ, F̂ (ci)

k+m | ∆,⊥m
]

[
Γ | ∆,Gk

mxF̂ (x)
]

[Γ | ∆]

[
Γ | ∆,Gk

mxF̂ (x)
]

[Γ | ∆,⊥]
[
Γ,⊥m | ∆, F̂ (ci)

k+m
]

Fig. 3. Games rules RLk
m

and RGk
m

.

chosen. The principle of limited liability implies that you (the attacker) may choose
to simply remove the exhibited occurrence of QxF̂ (x) from the state. In other words,
every rule includes an instance of Figure 2 that consists of only one branch (n = 1),
where r1 = s1 = u1 = v1 = 0. For me as defender, the principle of limited liability
implies that in any other instance of the schematic tree there is a branch i with
ri = si = ui = 0 and vi = 1, i.e., where I reply to your attack by asserting ⊥.

Throughout the paper we assume that for every rule for my assertion of a formula,
there is a corresponding rule for your assertion of the same formula, that arises by
switching our roles. It therefore suffices to explicitly state and investigate rules for
my assertions of quantified formulas only.

We define blind choice quantifiers Lkm and Gk
m for as follows:

(RLk
m

) If I assert LkmxF̂ (x) then you may attack by betting for k random instances of

F̂ (x), while I bet against m random instances of F̂ (x).

(RGk
m

) If I assert Gk
mxF̂ (x) then you may attack by betting against m random in-

stances of F̂ (x), while I bet for k random instances of F̂ (x).

We insist on condition (ii) of Definition 6.1: the random constants used to obtain the
mentioned instances of F (x) are only revealed to the players after they have placed
their bets. Moreover, although not explicitly mentioned, the principle of limited
liability remains in force. Therefore, the defender may also respond to an attack by
asserting ⊥. However, if none of the players invokes the principle of limited liability
the following successor game states are reached:

for LkmxF̂ (x) :
[
Γ, F̂ (ci)

k+m | ∆,⊥m
]

for Gk
mxF̂ (x) :

[
Γ,⊥m | ∆, F̂ (ci)

k+m
]

Thus, for my assertion of LkmxF̂ (x) the rule can be depicted as shown in Figure 3 and
analogously for your assertion of LkmxF̂ (x) and also for Gk

m.
We claim that these rules match the extension of  L to  L(Lkm,G

k
m) by

vM (LkmxF̂ (x)) = min(1,max(0, 1 + k − (m+ k) Propx F̂ (x))) and (6.1)

vM (Gk
mxF̂ (x)) = min(1,max(0, 1− k + (m+ k) Propx F̂ (x))). (6.2)
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Theorem 6.2
A  L(Lkm,G

k
m)-sentence F is evaluated to vM (F ) = x in an interpretation M iff every

G-game for F augmented by the rules (RLk
m

) and (RGk
m

) is (1−x)-valued for me under
risk value assignment 〈·〉M .

Proof. Relative to the proof of Theorem 4.1 (see [18, 17, 13]) we only have to consider

states of the form
[
Γ | ∆, LkmxF̂ (x)

]
and

[
Γ | ∆,Gk

mxF̂ (x)
]
. (I.e., we only consider

cases where the regulation of the game determines that my assertion of an Lkm- or
Gk
m-quantified sentences is to be considered next. The cases for your assertions of

LkmxF̂ (x) or Gk
mxF̂ (x) are dual.) In fact, since Gk

m is treated analogously to Lkm, we

may focus on states of the form
[
Γ | ∆, LkmxF̂ (x)

]
without loss of generality. Like for

the other connectives, we obtain the total risk at such a state as the sum of the risk
for the exhibited assertion and of the risk for the rest of the state:〈

Γ | ∆, LkmxF̂ (x)
〉

= 〈Γ | ∆〉+
〈
| LkmxF̂ (x)

〉
.

It remains to show that the reduction of the exhibited quantified formula to instances
according to rule (RLk

m
) results in a risk that corresponds to the specified truth func-

tion if we play rationally. According to Figure 3 the three possible successor states

are
[
F̂ (ci)

k+m | ⊥m
]
, [|], and [| ⊥]. In the first case, revealing the constants to the

players also reveals the amount of money I have to pay, since only classical formulas
are involved: I have to pay m€ to you for my m assertions of ⊥, while for each of
your k +m assertions you have to pay me either 0€ or 1€. In total I have to pay to
you between −k€ and m€, depending on the random constants ci. The risk value
of the game state before the identities of the constants are revealed to the players is
therefore calculated as the expected value for this amount. It is binomially distributed
and readily computed as:

m−
k+m∑
i=0

i · (Propx F̂ (x))k+m−i(1− Propx F̂ (x))i
(
k +m

i

)
=

m− (k +m)(1− Propx F̂ (x)) = −k + (k +m) Propx F̂ (x)).

The second case (state [|], carrying risk 0) arises if you choose to grant my assertion
of the formula, which you will do if the above expression is below 0. The third case
(state [| ⊥], carrying risk 1) arises if I invoke the principle of limited liability to hedge
my expected loss. Thus we obtain〈
| LkmxF̂ (x)

〉
= min(1,max(0,−k + (k +m) Propx F̂ (x))) = 1− vM (LkmxF̂ (x))

which means that the claimed correspondence between the truth function and the
risk resulting from playing rationally holds.

At least about a third. As an example, let us take a closer look at quantifiers
of the form Gs

2s. We argue that these quantifiers can be used to model the natural
language expression at least about a third. Note that the attacker of Gs

2sxF̂ (x) is
supposed to believe that F̂ (x) holds for clearly less than a third of all domain elements
(otherwise she would grant the assertion). Consequently she will agree to place 2s
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Fig. 4. Truth functions for Gs
2sxF̂ (x)

bets against random instances of F̂ (x) if the defender places s bets for such random
instances. Figure 4 shows the resulting truth functions for sample sizes (2s+ s) 3, 6,
and 9, where the horizontal axis corresponds to Propx F̂ (x) and the vertical axis
to vM (Gs

2sxF̂ (x)). Functions like these are routinely suggested to represent natural
language quantifiers like at least about a third in the fuzzy logic literature.11 However
no justification beyond intuitive plausibility is usually given. In contrast, our model
allows one to extract such truth function from an underlying semantic principle:
namely the willingness to bet on randomly chosen witnesses that support or refute
the statement in question.

As noted above, the quantifiers Lkm and Gk
m are only (very restricted) examples of

blind choice quantifiers. Nevertheless, they turn out to be expressive enough to define
all blind choice quantifiers in the context of weak  Lukasiewicz logic  Lw:

Theorem 6.3
All blind choice quantifiers can be expressed using quantifiers of the form Lkm and Gk

m,
conjunction ∧, disjunction ∨, and ⊥.

Proof. As illustrated in Figure 2 above, the game state resulting from an attack and
a corresponding defense of my assertion of a blind choice quantifiers is always of the

form
[
Γ, F̂ (ci)

r,⊥s | ∆, F̂ (c′i)
u,⊥v

]
. Analogously to the proof of Theorem 6.2, the

associated risk before the identities of the constants are revealed is computed as

〈Γ | ∆〉+ v − s+ (u− r)(1− Propx F̂ (x)).

Remember that F̂ (ci)
k is short hand notation for k (in general) different random in-

stances of F (x). As a first step towards a simplified uniform presentation of arbitrary
blind choice quantifiers, note the following. Instead of picking u+r random constants

we can rather investigate the game state
[
Γ, F̂ (c)r,⊥s | ∆, F̂ (c)u,⊥v

]
where only one

random constant c is picked, since this modification does not change the expected risk.
As a further step, note that game states where assertions of F̂ (c) are made by both
players show redundancies in the sense that there are equivalent game states where
F̂ (c) occurs only in one of the two multisets of assertions that represent a state. Like-
wise for game states with assertions of ⊥ made by both players. Depending on v, s, u,

11For example in [20] trapezoidal functions like the ones in Figure 4 are explicitly suggested for natural language

quantifiers of this kind.
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Γ | ∆,Hs

txF̂ (x)
]

[Γ | ∆]

[
Γ | ∆,Hs

txF̂ (x)
]

[Γ | ∆,⊥]
[
Γ, F̂ (ci)

2s | ∆,⊥s−t
]

[
Γ | ∆,Hs

txF̂ (x)
]

[Γ | ∆,⊥]
[
Γ,⊥s+t | ∆, F̂ (ci)

2s
]

Fig. 5. The rule RHs
t

and r, an equivalent game state is given by:

(1)
[
Γ, F̂ (c)r−u | ∆,⊥v−s

]
if v > s and r > u,

(2)
[
Γ, F̂ (c)r−u,⊥s−v | ∆

]
if v ≤ s and r > u

(3)
[
Γ | ∆, F̂ (c)u−r,⊥v−s

]
if v > s and r ≤ u,

(4)
[
Γ,⊥s−v | ∆, F̂ (c)u−r

]
if v ≤ s and r ≤ u.

Note that states of type (2) are redundant, since you would rather invoke the
principle of limited liability, resulting in [Γ | ∆], than to make an assertion without
being compensated by any assertions made by me. On the other hand, states of type
(3) reduce to state [Γ | ∆,⊥], since I may invoke the principle of liability. For states
of type (1) I will invoke the principle of limited liability if v − s > r − u. Similarly,
you will invoke the principle of limited liability to ensure that only those states of
type (4) have to be considered where s− v ≤ u− r. But, for appropriate choices of k
and m, this leaves us with states that result from the rules for either LkmxF̂ (x) or for
Gk
mxF̂ (x).
Finally observe that all of my defenses to your attack on QxF̂ (x) lead to successor

states which are reached also by suitable instances of Gk
mxF̂ (x), of LkmxF̂ (x), (or ⊥).

Hence my risk for that attack amounts to the minimum of the risk values for these
successor states, which in turn equals the risk value for asserting the disjunction of
these instances. Similarly, since you can choose between several attacks on QxF̂ (x)
in the first place, my risk for QxF̂ (x) amounts to the maximum of the risks for these
attacks. Hence it is equal to the risk of the conjunction of these disjunctions.

About half. As an example consider the family of quantifiers Hs
t , defined by the

game rule depicted in Figure 5.
We suggest that Hs

t induces plausible fuzzy models for the natural language quan-
tifier about half. Figure 6 shows the truth functions for three different quantifiers of
this family, where the horizontal axis corresponds to Propx F̂ (x) and the vertical axis
to vM (Hs

txF̂ (x)).
The two parameters of Hs

t can be interpreted as follows: s determines the sample
size (i.e. the number of random instances involved in reducing the quantified formula),
while t may be called the tolerance, since the smaller t gets, the closer Propx F̂ (x)
has to be to 1/2 if Hs

txF̂ (x) is to be evaluated as perfectly true. If t = 0 (zero
tolerance) then vM (Hs

0xF̂ (x)) = 1 if only if Propx F̂ (x) = 1/2 in M . By increasing t
(while maintaining the same sample size s) the range of values for Propx F̂ (x) that
guarantee vM (Hs

0xF̂ (x)) = 1 grows symmetrically around 1/2.
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(c) H4
2xF̂ (x)

Fig. 6. Truth functions for Hs
txF̂ (x)

As an instance of Theorem 6.3 we obtain that Hs
txF̂ (x) is equivalent to Gs+t

s−txF̂ (x)∧
Ls+t
s−txF̂ (x). The tree at the center of Figure 5 corresponds to the rule for Gs+t

s−t and
the one at the right hand side corresponds to the rule for Ls+t

s−t. The tree at left hand
side corresponds to the fact that the attacker may choose to grant the formula.

Next we show how arbitrary blind choice quantifiers can be reduced to the quantifier
Π introduced in Section 5 if the connectives of strong  Lukasiewicz logic  L are available.

Theorem 6.4
The blind choice quantifiers Gk

m and Lkm can be expressed in  L(Π) via the following
reductions:

vM (Gk
mxF̂ (x)) = vM (¬((¬ΠxF̂ (x))m+1)&(ΠxF̂ (x))k−1)

vM (LkmxF̂ (x)) = vM (¬((ΠxF̂ (x))k+1)&(Πx¬F̂ (x))m−1)

for all natural numbers m and k and φn denoting φ& . . .&φ, n times.

Proof. Note that the truth functions of Gk
mxF̂ (x) and LkmxF̂ (x) depend only on

Propx F̂ (x), while the random choice quantifier Π is directly represented by the truth
function Propx F̂ (x). Hence the equivalences can easily be checked by computing the
truth value of the respective right hand side formula and comparing it to the truth
function for the corresponding quantifier.

Corollary 6.5
All blind choice quantifiers can be expressed in  L(Π).

The corollary follows directly from Theorems 6.3 and 6.4. By a less direct route,
one could also employ (a constructive proof of) McNaughton’s theorem [31] to obtain
such reductions.

We finally point out a related fact: any linear function f(x) = m1x + m0 with
integer coefficients m1 and m0 capped to the unit interval [0, 1] can be expressed via
instances of Gk

m and Lkm and ⊥. We distinguish the two cases (1) m1 ≥ 0 and (2)
m1 < 0. Case (1): If m0 > 1 we take the truth function of L0

0, constantly yielding 1; if
m0 +m1 < 1 we use ⊥, constantly yielding 0; otherwise we use G1−m0

m0+m1−1. Case (2):

If m0 < 1 we use ⊥; if m0 +m1 > 1 we use L0
0; otherwise we use Lm0−1

1−m0−m1
. This can

readily be checked by inserting the respective values for k and m into Formulas 6.1
and 6.2.
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7 Deliberate choice quantifiers

In the previous section we surveyed the family of blind choice quantifiers and con-
cluded that these quantifiers all amount to piecewise linear truth functions. A much
more general class of quantifiers arises by dropping condition (ii) of Definition 6.1.
As an example of this class we investigate the family of so-called deliberate choice
quantifiers, specified by the following schematic game rule, where F̂ is a classical
formula:

(RΠk
m

) If I assert Πk
mxF̂ (x) then, if you attack, k+m constants are chosen randomly

and I have to pick k of those constants, say c1, . . . , ck, and bet for F̂ (c1), . . . , F̂ (ck),
while simultaneously betting against F̂ (c′1), . . . , F̂ (c′m), where c′1, . . . , c

′
m are the

remaining m random constants. (Analogously for your assertion of Πk
mxF̂ (x).)

Although not mentioned explicitly, we emphasize that the principle of limited liability
remains in place: after the constants are chosen, I may assert ⊥ (i.e., agree to pay 1€)
instead of betting as indicated above. Therefore I have 1 +

(
k+m
k

)
possible defenses

to your attack on my assertion of Πk
mxF̂ (x): either I choose to hedge my loss by

asserting ⊥ or I pick k out of the k +m random constants to proceed as indicated.
We claim that this rule matches the extension of  L to  L(Πk

m) by

vM (Πk
mF̂ (x)) =

(
k +m

k

)
(Propx F̂ (x))k(1− Propx F̂ (x))m.

Theorem 7.1
A  L(Πk

m)-sentence F is evaluated to vM (F ) = x in interpretation M iff every G-
game for F augmented by rule (RΠk

m
) is (1 − x)-valued for me under risk value

assignment 〈·〉M .

Proof. Like in the proof of Theorem 6.2, we only have to consider states of the form[
Γ | ∆,Πk

mxF̂ (x)
]
. Again, we can separate the risk for the exhibited assertion from

the risk for the remaining assertions:〈
Γ | ∆,Πk

mxF̂ (x)
〉

= 〈Γ | ∆〉+
〈
| Πk

mxF̂ (x)
〉
.

It remains to show that my optimal way to reduce the exhibited quantified formula to
instances as required by rule (RΠk

m
) results in a risk that corresponds to the specified

truth function. For the following argument remember that the principle of limited
liability is in place. Moreover remember that F̂ (x) is classical. This means that I
either finally have to pay 1€ for my assertion of Πk

mxF̂ (x) or do not have to pay
anything at all for it. The latter is only the case if all my bets for F̂ (c1), . . . , F̂ (ck),
as well as all my bets against F̂ (c′1), . . . , F̂ (c′m), for c1, . . . , ck, c′1, . . . , c

′
m as specified

in rule (RΠk
m

), succeed. Let the random variable K denote the number of chosen

elements c on which my bet is successful; i.e., where
〈
F̂ (c)

〉
= 0. ThenK is binomially

distributed and the probability that this event obtains (the inverse of my associated
risk) is readily calculated to be(

k +m

k

)
Propx F̂ (x)k(1− Propx F̂ (x))m.

This matches the relevant truth function.
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At a first glance, the deliberate choice quantifier Πk
m might seem suitable for mod-

eling the natural language quantifier about k out of m + k. However, a look at the

corresponding graph for
〈

Π1
1xF̂ (x)

〉
reveals that the risk for asserting Π1

1xF̂ (x) is al-

ways larger than 0.5. In other words the statement is always ‘half-true’ at best. This
is clearly not in accordance with intuitions about the truth conditions for statements
like About half of the students passed.
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Fig. 7. Truth value for Π1
1xF̂ (x) (depending on p)

An additional mechanism is needed to obtain more appropriate models of natural
quantifier expressions like about half. While there are many ways to achieve the
desired effect, we confine ourselves here to a particularly simple operator that nicely
fits our semantic framework, since it arises by simply multiplying involved bets. Given
a number n ≥ 2 and a semi-fuzzy quantifier Q we specify the quantifier Wn(Q) by the
following rule.

(Wn(Q)xF̂ (x)) If I assert Wn(Q)xF̂ (x) then you have to place n bets against QxF̂ (x)
while I have to bet for QxF̂ (x) just once. (Analogously for your assertion of
Wn(Q)xF̂ (x).)

Note that Wn is acting here as a quantifier modifier ; for any semi-fuzzy quan-
tifier Q, Wn(Q) still denotes a semi-fuzzy quantifier. The principle of limited lia-

bility remains in place, hence the game state
〈

Γ | ∆,Wn(Q)xF̂ (x)
〉

is reduced to〈
Γ,⊥n | ∆,QxF̂ (x)n+1

〉
, or to 〈Γ | ∆〉, depending on whether it is is preferable from

the attacker’s point of view to attack or to grant the assertion of QxF̂ (x)n+1. (The
defender never has to invoke the principal of limited liability in optimal strategies.)
Moreover, similarly as in Theorem 6.4, Wn can be expressed using negation and strong
conjunction by

vM (Wn(Q)xF̂ (x)) = vM (¬(¬QxF̂ (x))n+1).

The truth functions for some for quantifiers of type Wn(Πk
m) are presented in the

following figure:
The quantifier W3(Π2

2) may be considered as formal fuzzy counterpart of the informal
expression about half. Likewise, W3(Π1

2) may be understood as model of about a third.
Moreover, W3(Π1

1) might serve as a model of very roughly half, whereas W2(Π1
1) might

be appropriate as fuzzy model of the (unhedged) determiner half.
We do not claim to have determined optimal fuzzy models of the natural language

quantifiers in question. But our approach suggests a way to arrive at models that can
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Fig. 8: Wi-modified proportional quantifiers — the graphs correspond to the cases
i = 1, i = 2, and i = 3 from bottom to top in each diagram.

be interpreted in terms of bets on random instances of the quantified sentences. This
obviously fits Giles’s betting game based semantics of fuzzy logic [18, 17] and suggests
corresponding extensions of  Lukasiewicz logic in a principled manner. Admittedly, the
involvement of the Wn-operator amounts to an ad hoc feature of the above models,
that may one lead to prefer models based on blind choice quantifiers, studied in
Section 6. But in any case, only a small number of discrete parameters, corresponding
to numbers of (particular types of) bets, have to selected to obtain concrete game
rules that in turn correspond to concrete truth functions.

In a similar manner, deliberate choice quantifiers can be used to generate plausible
candidate models for the proportional reading of many. In particular, consider a
model where asserting (the formal counterpart of) Many [domain elements] are F̂ is
expressed by a willingness to place a certain number of bets for random instances
of F̂ (x). This clearly amounts to considering the family of quantifiers Πi

0. The
corresponding truth functions are depicted in Figure 9.
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Fig. 9: Truth functions for Πi
0xF̂ (x) (depending on p) for i = 1, 2, 3 from top to

bottom.

Like for about half etc, above, one may want to evaluate Many [domain elements] are
F̂ as perfectly true (truth value 1) even if Propx F̂ (x) is somewhat smaller than 1.
Again, this can be achieved by employing the Wn-operator, which requires the attacker
to place several bets against the contended assertion.
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8 Conclusion

We began our investigation by pointing out some challenges for the traditional ap-
proach to fuzzy quantifiers as introduced by Zadeh in [44]. We do not claim to have
satisfactorily solved all these problems. However we hope to have shown that the game
semantic framework of Giles, if extended by the concept of randomized choices of wit-
nessing constants, provides essential clues for at least partly meeting these challenges
for the limited realm of semi-fuzzy proportionality quantifiers. We briefly revisit the
four issues raised in Section 2 to assess and summarize our results, but also in order
to hint at directions for future research.

Problems with fully fuzzy quantification. As Glöckner’s discussion of these
problems in [20] makes clear, the well justified criticism of Zadeh’s models, that moti-
vates the bulk of more recent literature on fuzzy quantifiers, did not result in generally
accepted alternatives. Glöckner himself suggests to focus on semi-fuzzy quantifiers
and to address the problem of lifting to fully fuzzy quantification within an axiomatic
framework. We remark that, in principle, our game based models of semi-fuzzy quan-
tifiers can be lifted to fully fuzzy quantification in a very straightforward manner.
Indeed nothing at all has to be changed in the formulation of quantifier rules intro-
duced in Sections 5, 6, and 7 if the restriction to crisp scopes is dropped. In fact,
the syntax clearly even gets simplified by dropping the distinction between classical
and fuzzy (sub)formulas. Since perfect information about the overall risk (payoff)
associated with the final game states is maintained, one may extract particular truth
functions also in this ‘fully fuzzy’ setting. However the linguistic adequateness of the
resulting fuzzy quantifiers is questionable. In fact, we remain skeptical about the ap-
propriateness of any attempt to capture the meaning of natural language quantifiers
like few, many, and about a half applied to vague scopes by solely referring to truth
functions. We rather think that it is more appropriate to treat the inherent vagueness
of the quantifier expression separately from the possible vagueness of scope and range.
To hint at a concrete direction for future related research, we suggest to study game
based models, similar to the one for extending  Lukasiewicz logic with a ‘supertruth’
modality in [12], where the evaluation of final game states refers to a context of pos-
sible precisifications endowed with a probability measure. Such models invite one
to consider attack and defense moves for quantified statements that distinguish the
choice of plausible precisifications of predicates from choices directly relating to the
quantifier itself. In general, the resulting models will not be truth functional. How-
ever, truth functions appear as limiting cases. Moreover, particular truth functions
can be extracted if the space of possible precisifications is completely homogeneous
and does not reflect semantic dependencies among the relevant predicates. (We refer
to [16] for an investigation of models that relate contexts of precisification to fuzzy
logic.)

Coherent interpretation of intermediate truth values. Giles has motivated
his game for  Lukasiewicz logic (in particular in [19]) by the need to provide ‘tangi-
ble meaning’ to intermediate truth values and to corresponding truth functions as a
precondition for judging the adequateness of fuzzy models in given contexts of appli-
cations. We have listed a number of alternative semantic frameworks in Section 2.
We do not claim that game semantics is the only viable approach towards an in-
terpretation of truth values and truth functions that covers at least certain kinds of
fuzzy quantification. However, we point out that it remains open how, e.g., voting
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semantics [27], acceptability semantics [36], re-randomising semantics [26, 21], and
approximation semantics [4, 37], fare in this respect. In any case we have demon-
strated that Giles-style games amount to a semantic framework that leads rather
straightforwardly to extensions of  Lukasiewicz logic with different types of semi-fuzzy
proportionality quantifiers.

An embarrassment of riches. By this term we mean to allude to the fact that
the space of prima facie plausible candidates of truth functions modeling some vague
natural language quantifier is vast and unstructured. Clearly, additional semantic
principles are needed to support a systematic search for suitable truth functional
models. So far, it remained unclear whether any of the semantic frameworks men-
tioned in last paragraph justifies the choice of particular truth functions for quantifiers
other than ∀ and ∃. It is certainly unreasonable to hope that a single truth function
for a vague quantifier like about half will pop out as clearly optimal candidate from
any sufficiently general semantic approach. However, we contend that the rule guided
reduction of a quantified assertion to assertions of random instances constitutes a sim-
ple semantic principle that suggests quite specific candidates for modeling, e.g., about
half. In Sections 6 and 7 we have defined two families of quantifier game rules based
on the mentioned principle and extracted corresponding truth functions from optimal
strategies in the game. The difference between ‘blind choice’ and ‘deliberate choice’ of
random instances illustrates a versatility of randomized game semantics that remains
to be explored more fully in future work. In principle, all kinds of combinations of
blind and deliberate choices as well as of instances resulting from witnesses picked
by the players lead to new quantifier rules. We suggest to further investigate which
families of truth functions receive ‘tangible meaning’ in this manner and whether
this leads to models that plausibly match semantic intuitions about further natural
language quantifiers.

Compatibility with standard deductive fuzzy logics. As pointed out in Sec-
tion 2, research on fuzzy quantifiers, as initiated by Zadeh’s [44], has largely been
pursued independently from the t-norm based approach to deductive fuzzy logics de-
veloped by Hájek and his colleagues (see, e.g., [21, 7]). Conversely, results about
the three fundamental t-norm based fuzzy logics— Lukasiewicz logic, Gödel logic, and
Product logic—and about related logics, like Hajek’s BL and MTL12 so far focus
either on the propositional level or on first order logics with universal and existential
quantifiers only. By directly extending Giles’s game, we have obtained characteri-
zations of extensions of  Lukasiewicz logic that include certain families of semi-fuzzy
quantifiers. The question arises whether the game semantic approach can be adapted
to cover a wider range of t-norm based logics. At the propositional level a variant of
Giles’s game that covers all three mentioned fundamental t-norm based fuzzy logics
has been introduced in [5] and is studied in more detail in [11]. Another type of gen-
eralization of Giles’s game, that allows one to characterize propositional logics close
to  Lukasiewicz logic, including cancellative hoop logic CHL [9], is investigated in [15].
We conjecture that all these game variants can be straightforwardly augmented by
quantifier rules like those presented in this paper.

To summarize, the aim of this paper has been to explore a simple, but non-trivial
extension of Giles’s game semantics with respect to its capability to model semi-fuzzy

12We refer to the Handbook of Mathematical Fuzzy Logic [7] for information explaining the prominent roles of

the five mentioned logics.
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proportionality quantifiers. Refining these models in various directions, in particular
in those suggested by potential applications, determining the full extent of randomized
game semantics, and studying the properties of resulting quantifiers in more detail
are obvious tasks for future research.
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