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Abstract We explain Giles’s characterization of  Lukasiewicz logic via a dialogue
game combined with bets on results of experiments that may show dis-
persion. The game is generalized to other fuzzy logics and linked to
recent results in proof theory. We argue that these results allow one to
place t-norm based fuzzy logics in a common framework with superval-
uation as a theory of vagueness.
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1. Introduction
In [12, 13] Robin Giles presents a strategic two-person game as a formal
model of reasoning in physical theories, in particular quantum theory.
Giles strictly separates the treatment of logical connectives from the
problem of assigning meaning to atomic propositions in the presence of
uncertainty. For the systematic stepwise reduction of arguments about
compound statements to arguments about their atomic subformulas he
refers to Paul Lorenzen’s dialogue game rules (see, e.g., [20]). Atomic
formulas are interpreted as assertions about (yes/no-)results of elemen-
tary experiments with dispersion. (I.e., the experiments may yield dif-
ferent results when repeated; only the probability of a particular answer
is known.) Finally it is stipulated that each player has to pay a fixed
amount of money to the other player for every false atomic assertion.
Giles discovered that the propositions that a player can assert initially in
the sketched game without having to expect a loss of money on average
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coincide with those that are valid in  Lukasiewicz logic  L, a logic that
had been introduced for different purposes already in the 1920s [21].

Giles’s remarkable result dates back to 1974; in more recent years  L
has emerged as one of several fundamental fuzzy logics. (See, e.g., [14,
24].) With hindsight, Giles has addressed an important philosophical
challenge concerning vagueness: how to derive a ‘fuzzy logic’ from first
principles of approximate reasoning? (For alternative approaches to this
foundational problem see, e.g., [24–26].)

We aim at two different tasks. First, we want to place Giles’s theo-
rem in the context of recent results in the proof theory of fuzzy logics.
In particular, we indicate how Giles’s game can be generalized to other
important fuzzy logics and point out that strategies in the correspond-
ing games are related to analytic proofs in so-called r-hypersequent cal-
culi [3]. A second task arises from a seeming paradox: the game theoretic
characterization of fuzzy logics eliminates all reference to fuzziness. More
exactly, talk of degrees of truth is replaced by talk of success probabil-
ities of elementary experiments. So how does the game based analysis
of fuzzy logics relate to their degree theoretic semantics? This question
is of particular significance, since experts insist on the fundamental dif-
ference between probabilities (degrees of belief), on the one hand, and
degrees of truth (reflecting vagueness), on the other hand. (See, e.g., [5,
14, 15] for a clear and concise explication of this difference.)

More generally, one may ask whether the game based analysis can shed
light on the relation between truth functional fuzzy logics and competing
models of approximate reasoning. Considering the highly contentious
discourse on vagueness in analytic philosophy, our aim, although lim-
ited, is rather ambitious. We claim that the relevant games provide a
way to reconcile the intuitions behind two prominent, but seemingly con-
tradicting theories of vagueness: namely the degree theoretic approach
and supervaluation with respect to admissible precisifications. We will
interpret both approaches to vagueness as combining a classical analysis
of logical connectives with a non-classical interpretation of the semantic
status of atomic propositions. To this aim, we show that not only super-
valuation, but also degree based fuzzy logics can be analyzed in terms
of admissible precisifications of vague propositions. The dramatic differ-
ence in the respective judgements on logical validity does not disappear,
but will be seen to result from the different syntactic levels at which
supervaluation and fuzzy logics, respectively, refer to precisifications.

This paper is organized as follows. We begin with a short review of t-
norm based fuzzy logics, in particular  L, P, and G (in Section 2). This is
followed by a presentation of Giles’s game for  L (in Section 3). We then
connect the game with recent results in the proof theory of fuzzy logics
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(Section 4) and generalize these results to include the logics P, CHL,
and G (Section 5)1. This will leave us with the challenge of interpreting
the game based characterization of fuzzy logics in terms of conceptions
of vagueness (as explained in Section 6). To address this challenge, we
connect (in Section 7) the semantic machinery of ‘supervaluation’ with
that of t-norm based fuzzy logics. In the conclusion (Section 8) we hint
at further topics for research.

We point out that, mainly due to lack of space, we confine our inves-
tigations to propositional logic, here.

2. t-norm based fuzzy logics
Fuzzy logics arise by stipulating that, in the presence of vague notions
and propositions, truth comes in degrees. This view is very controversial
among philosophers of vagueness. (See, e.g., [16, 29, 17] for an overview
of the vagueness discourse in analytic philosophy.) Although we think
that serious reflections on the philosophical foundation of logical for-
malisms are unavoidable in judging their adequateness, one may profit
from recognizing at the outset that the ‘degrees of truth’ approach leads
to a mathematically sound, robust and non-trivial formalism. It is not
our intention to enter the debate on the significance of mathematical
models in philosophical logic here, but we subscribe explicitly to the
view that as broad as possible a collection of mathematical structures
and tools should be in view of every expert—whether philosopher, lo-
gician, computer scientist, or technician—in the search for an adequate
model of reasoning in a given context.

The degree theoretic approach to approximate reasoning has moti-
vated dozens of different formalisms. Following Petr Hajek [14, 15], we
cite some ‘design decisions’ that lead to the definition of a family of
logics worth exploring in this context:

1 The set of truth degrees (truth values) is represented by the real
unit interval [0, 1]. The usual order relation ≤ serves as comparison
of truth degrees; 0 represents absolute falsity, and 1 absolute truth.

2 The truth value of a compound statement shall only depend on
the truth values of its subformulas. In other words: the logics are
truth functional.

3 The truth function for conjunction ( & ) should be a continuous,
commutative, associative, and (in both arguments) monotonically
increasing function ∗ : [0, 1]2 → [0, 1], where 0∗x = 0 and 1∗x = x.
In other words: ∗ is a continuous t-norm.
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4 The residuum ⇒∗ of the t-norm ∗—i.e., the unique function ⇒∗:
[0, 1]2 → [0, 1] satisfying x ⇒∗ y = max{z | x ∗ z ≤ y}—serves as
the truth function for implication. The truth function for negation
is defined as λx[x ⇒∗ 0]. (Observe that this is analogous to the
relation between conjunction, implication and negation in classical
logic.)

The three most fundamental continuous t-norms and their residua are:

t-norm associated residuum

 Lukasiewicz x ∗ L y = max(0, x + y − 1) x ⇒ L y = min(1, 1− x + y)

Gödel x ∗G y = min(x, y) x ⇒G y =


1 if x ≤ y
y otherwise

Product x ∗P y = x · y x ⇒P y =


1 if x ≤ y
y/x otherwise

Any continuous t-norm is an ordinal sum construction of these three (see,
e.g., [14]). Note that the minimum and maximum of two values, that
serve as alternative truth functions for conjunction (∧) and disjunction
(∨), respectively, can be expressed in terms of ∗ and ⇒∗: min(x, y) =
x ∗ (x ⇒∗ y) and max(x, y) = min((x ⇒∗ y) ⇒∗ y, (y ⇒∗ x) ⇒∗ x).

We arrive at the following definition of propositional logics associated
with a continuous t-norm:

Definition 1 For a continuous t-norm ∗ with residuum ⇒∗, we define
a logic L∗ based on a language with binary connectives →, & , constant
⊥, and defined connectives ¬A =def A → ⊥, A ∧B =def A & (A → B),
A ∨ B =def ((A → B) → B) ∧ ((B → A) → A). A valuation for L∗ is
a function v assigning to each propositional variable a truth value from
the real unit interval [0, 1], uniquely extended to v∗ for formulas by:

v∗(A & B) = v∗(A) ∗ v∗(B), v∗(A → B) = v(A) ⇒∗ v∗(B), v∗(⊥) = 0

A formula A is valid in L∗ iff v∗(A) = 1 for all valuations v∗ pertaining
to the t-norm ∗.

The logics L∗ L
, L∗G

, and L∗P
, are called  Lukasiewicz logic  L, Gödel

logic G, and Product logic P, respectively. Computational properties
as well as semantic aspects of these logics, including their relation to
other important logics, are well studied. (Again, [14] is the standard
reference.) Various corresponding proof systems have been presented.
Below, we will refer to the very recent systems H L of Metcalfe, Olivetti,
and Gabbay [23] for  L, and rH of Ciabattoni, Fermüller, and Metcalfe [3]
that provides a uniform treatment of  L, G, and P.
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3. Giles’s game for  L

As already mentioned, Giles [12, 13] arrived at his analysis of  Lukasiewicz
logic irrespective of any reflections on vagueness or t-norms. His corre-
sponding game consists of two largely independent building blocks:

(1) Betting for positive results of experiments. Two players—
let’s say me and you—agree to pay 1€ to the opponent player for every
false statement they assert. By [p1, . . . , pm‖q1, . . . , qn] we denote an ele-
mentary state in the game, where I assert each of the qi in the multiset
{q1, . . . , qn} of atomic statements (i.e., propositional variables), and you,
likewise, assert each atomic statement pi ∈ {p1, . . . , pm}.

Each propositional variable q refers to an experiment Eq with bi-
nary (yes/no) result. The statement q can be read as ‘Eq yields a
positive result’. Things get interesting as the experiments may show
dispersion; i.e., the same experiment may yield different results when
repeated. However, the results are not completely arbitrary: for every
run of the game, a fixed risk value 〈q〉r ∈ [0, 1] is associated with q,
denoting the probability that Eq yields a negative result.2 For the spe-
cial atomic formula ⊥ (falsum) we define 〈⊥〉r = 1. The risk asso-
ciated with a multiset {p1, . . . , pm} of atomic formulas is defined as
〈p1, . . . , pm〉r =

∑m
i=1〈pi〉r. The risk 〈〉r associated with the empty mul-

tiset is defined as 0. The risk associated with an elementary state
[p1, . . . , pm‖q1, . . . , qn] is calculated from my point of view. Therefore
the condition 〈p1, . . . , pm〉r ≥ 〈q1, . . . , qn〉r expresses that I do not ex-
pect any loss (but possibly some gain) when betting on the truth of
atomic statements, as explained above.

(2) A dialogue game for the reduction of compound formulas.
Giles follows Paul Lorenzen (see, e.g., [20]) in constraining the meaning
of connectives by reference to rules of a dialogue game that proceeds by
systematically reducing arguments about compound formulas to argu-
ments about their subformulas.

For brevity, we will assume that formulas are built up from propo-
sitional variables, the falsity constant ⊥, and the connective → only3.
The central dialogue rule can be stated as follows:

(R) If I assert A → B then, whenever you choose to attack this state-
ment by asserting A, I have to assert also B. (And vice versa, i.e.,
for the roles of me and you switched.)

This rule reflects the idea that the meaning of implication is specified
by the principle that an assertion of ‘if A, then B’ (A → B) obliges one
to assert B, if A is granted.
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In contrast to dialogue games for intuitionistic logic [20, 8, 18, 10], no
special regulations on the succession of moves in a dialogue are required
here. However, we assume that each assertion is attacked at most once:
this is reflected by the removal of A → B from the multiset of all formulas
asserted by a player during a run of the game, as soon as the other player
has either attacked by asserting A, or has indicated that she will not
attack A → B at all. Note that every run of the dialogue game ends in
an elementary state [p1, . . . , pm‖q1, . . . , qn]. Given an assignment 〈·〉r of
risk values to all pi and qi we say that I win the game if I do not expect
any loss, i.e., if 〈p1, . . . , pm〉r ≥ 〈q1, . . . , qn〉r.

As an almost trivial example consider the game where I initially assert
p → q for some atomic formulas p and q; i.e., the initial state is [‖p → q].
In response, you can either assert p in order to force me to assert q, or
explicitly refuse to attack p → q. In the first case, the game ends in
the elementary state [p‖q]; in the second case it ends in state [‖]. If an
assignment 〈·〉r of risk values gives 〈p〉r ≥ 〈q〉r, then I win the game,
whatever move you choose to make. In other words: I have a winning
strategy for p → q in all assignments of risk values where 〈p〉r ≥ 〈q〉r.

Theorem 2 (R. Giles [12, 13]) Every assignment 〈·〉r of risk values
to atomic formulas occurring in a formula F induces a valuation v〈·〉r for
 Lukasiewicz logic  L such that v〈·〉r(F ) = 1 iff I have a winning strategy
for F in the game presented above.

Corollary 3 F is valid in  L iff, for all assignments of risk values to
atomic formulas occurring in F , I have a winning strategy for F .

4. Connecting strategies and proofs
There is a well-known correspondence between winning strategies in di-
alogue games and cut-free proofs in adequate versions of Gentzen’s se-
quent calculus. For the case of Lorenzen’s original dialogue game and
(a variant of) Gentzen’s LJ for intuitionistic logic this has been demon-
strated, e.g., in [8]. A similar, even more straightforward relation holds
between Gentzen’s LK and Lorenzen style dialogue games for classical
logic. Game based characterizations have been presented for many other
logics, including modal logics, paraconsistent logics and substructural
logics. To name just one result of relevance to our context, a corre-
spondence between parallel versions of Lorenzen’s game and so-called
hypersequent calculi for intermediary logics, including the fuzzy logic G,
has been established in [10, 4].

Returning to the game presented in Section 3, we note that Giles
proved Theorem 2 without formalizing the concept of strategies. How-
ever, to reveal the close relation to analytic proof systems we need to
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define structures that allow us to formally register possible choices for
both players. These structures, called disjunctive strategies or, for short,
d-strategies appear at a different level of abstraction to strategies. The
latter are only defined with respect to given assignments of risk values
(and may be different for different assignments), whereas d-strategies
abstract away from particular assignments.

Definition 4 A d-strategy (for me) is a tree whose nodes are disjunc-
tions of states:

[A1
1, . . . , A

1
m1
‖B1

1 , . . . , B1
n1

]
∨

. . .
∨

[Ak
1, . . . , A

k
mk
‖Bk

1 , . . . , Bk
nk

]

which fulfill the following conditions:

1 All leaf nodes denote disjunctions of elementary states.

2 Internal nodes are partitioned into I-nodes and you-nodes.

3 Any I-node is of the form [A → B, Γ‖∆]
∨
G and has exactly

one successor node of the form [B, Γ‖∆, A]
∨

[Γ‖∆]
∨
G, where

G denotes a (possibly empty) disjunction of states, and Γ, ∆ denote
(possibly empty) multisets of formulas.

4 For every state [Γ‖∆] of a you-node and every occurrence of A → B
in ∆, the you-node has a successor of the form [A, Γ‖B, ∆′]

∨
G

as well as a successor of the form [Γ‖∆′]
∨
G, where ∆′ is ∆ after

removal of one occurrence of A → B. (The multiset of occurrences
of implications at the right hand sides is non-empty in you-nodes.)4

We call a d-strategy winning (for me) if, for all leaf nodes ν and for all
possible assignments of risk values to atomic formulas, there is a disjunct
[p1, . . . , pm‖q1, . . . , qn] in ν, such that 〈p1, . . . , pm〉r ≥ 〈q1, . . . , qn〉r.

In game theory a winning strategy (for me) is usually defined as a func-
tion from all possible states, where I have a choice, into the set of my
possible moves. Note that winning strategies in the latter sense exist for
all assignments of risk values if and only if a winning d-strategy exists.

Strictly speaking we have only defined d-strategies (and therefore,
implicitly, also strategies) with respect to some given regulation that,
for each possible state, determines who is to move next. Each consistent
partition of internal nodes into I-nodes and you-nodes corresponds to
such a regulation. However, it has been demonstrated by Giles [12, 13]
that the order of moves is irrelevant for determining my expected gain.
Therefore no loss of generality is involved here.

The defining conditions for I-nodes and you-nodes clearly correspond
to possible moves for me and you, respectively, in the dialogue game.



8

Thus Giles’s theorem can be reformulated in terms of d-strategies. More
interestingly, conditions 3 and 4 also correspond to the introduction rules
for implication in the hypersequent calculus H L for  L, defined in [23].

Hypersequents are a natural and useful generalization of Gentzen’s se-
quents due to Pottinger and Avron [1]. A hypersequent is just a multiset
of sequents written as

Γ1 ` ∆1 | · · · | Γn ` ∆n

The interpretation of component sequents Γi ` ∆i varies from logic to
logic. But the |-sign separating the individual components is always
interpreted as classical disjunction (at the meta-level). The logical rules
for introducing connectives refer to single components of a hypersequent.
The only difference to sequent rules is that the relevant sequents live in a
(possibly empty) context H of other sequents, called side-hypersequent.
The rules of H L for introducing implication are:

B, Γ ` ∆, A | H
A → B, Γ ` ∆ | H (→, l)

A, Γ ` ∆, B | H Γ ` ∆ | H
Γ ` ∆, A → B | H (→, r)

Observe that rules (→, l) and (→, r) are just syntactic variants of the
defining conditions 3 and 4 for d-strategies. To sum up: the logical rules
of H L can be read as rules for constructing generic winning strategies
in Giles’s game.

5. Other fuzzy logics: variants of the game
We have shown that a formalization of generic strategies for Giles’s game
(d-strategies) reveals a direct correspondence with the hypersequent sys-
tem H L for  L. What about other fuzzy logics? Can one generalize the
discovered correspondence to include P, G, and related logics?

Giles’s characterization of  L combines Lorenzen style dialogue rules for
the analysis of connectives with bets on positive results of elementary
experiments. But note that the phrase ‘betting for positive results of (a
multiset of) experiments’ is ambiguous. As we have seen, Giles identifies
the combined risk for such a bet with the sum of risks associated with the
single experiments. However, other ways of interpreting the combined
risk are worth exploring. In particular, we are interested in a second
version of the game, where an elementary state [p1, . . . , pm‖q1, . . . , qn]
corresponds to my single bet that all experiments associated with the
qi, where 1 ≤ i ≤ n, show a positive result, against your single bet
that all experiments associated with the pi (1 ≤ i ≤ m) show a positive
result. A third form of the game arises if one decides to perform only one
experiment for each of the two players, where the relevant experiment is
chosen by the opponent.
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To achieve a direct correspondence between the three mentioned bet-
ting schemes and the t-norm based semantics of the connectives in  L,
P, and G, respectively, we invert risk values into probabilities of positive
results (yes-answers) of the associated experiments. More formally, the
value of an atomic formula q is defined as 〈q〉 = 1 − 〈q〉r; in particular,
〈⊥〉 = 0.

My expected gain in the elementary state [p1, . . . , pm‖q1, . . . , qn] in
Giles’s game for  L is the sum of money that I expect you to have to pay
me minus the sum that I expect to have to pay you. This amounts to∑m

i=1(1−〈pi〉)−
∑n

i=1(1−〈qi〉) €. Therefore my expected gain is greater
or equal to zero iff 1 +

∑m
i=1(〈pi〉 − 1) ≤ 1 +

∑n
i=1(〈qi〉 − 1) holds. The

latter condition is called winning condition WP.5

In the second version of the game, you have to pay me 1€ unless all
experiments associated with the pi test positively, and I have to pay you
1€ unless all experiments associated with the qi test positively. My ex-
pected gain is therefore 1−

∏m
i=1〈pi〉−(1−

∏n
i=1〈qi〉) €; the corresponding

winning condition WQ is
∏m

i=1〈pi〉 ≤
∏n

i=1〈qi〉.
To maximize the expected gain in the third version of the game I will

choose a pi ∈ {p1, . . . , pm} where the probability of a positive result of
the associated experiment is least; and you will do the same for the qis
that I have asserted. Therefore my expected gain is (1−min1≤i≤m〈pi〉)−
(1−min1≤i≤n〈qi〉) €. Hence the corresponding winning condition Wmin

is min1≤i≤m〈pi〉 ≤ min1≤i≤n〈qi〉.
We thus arrive at the following definitions for the value of a multiset

{p1, . . . , pn} of atomic formulas, according to the three versions of the
game:

〈p1, . . . , pn〉 L = 1 +
∑n

i=1(〈pi〉 − 1) =
(∑n

i=1〈pi〉
)
− (n− 1)

〈p1, . . . , pn〉P =
∏n

i=1〈pi〉
〈p1, . . . , pn〉G =min1≤i≤n〈pi〉 .

For the empty multiset we define 〈〉 L = 〈〉P = 〈〉G = 1.
In contrast to  L, the dialogue game rule (R) does not suffice to char-

acterize P and G. To see this, consider the state [p → ⊥‖q]. According
to rule (R) I may assert p in order to force you to assert ⊥. Since
〈⊥〉 = 0, the resulting elementary state [⊥‖p, q] fulfills the winning con-
ditions 〈⊥〉 ≤ 〈p〉 · 〈q〉 and 〈⊥〉 ≤ min{〈p〉, 〈q〉}, that correspond to P
and G, respectively. However, this is at variance with the fact that for
assignments where 〈p〉 = 0 and 〈q〉 < 1 you have asserted a statement
(p → ⊥) that is definitely true (v(p → ⊥) = 1), whereas my statement
q is not definitely true (v(q) < 1).6

It is no accident that the above example involves the truth constant ⊥
as well as a value 〈p〉 = 0. If we remove ⊥ from the language and
evaluate formulas as in P—using multiplication for conjunction and its
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residuum for implication—but over the left-open interval (0, 1] instead
of [0, 1], then we arrive at a well investigated logic, known as cancellative
hoop logic CHL (see, e.g., [7, 22]).7 It is easy to check8 that the logical
rules of system H L are sound and invertible not only for  L, but also
for CHL. Therefore we can directly transfer the connection, described in
Section 4, between d-strategies for Giles’s game and H L-rules to obtain
the following.

Corollary 5 F is valid in CHL iff for all assignments of values from
(0, 1] to the atomic formulas occurring in F , I have a winning strategy
for F in the variant of Giles’s game with the winning condition WQ.

We have thus arrived at a game based characterization of CHL, which
uses dialogue rules identical to those for  L, but differs in the betting
schemes determining the winning conditions.

We may justify the elimination of ⊥ and 0 by the observation that
the presence of elementary experiments, which invariably yield a nega-
tive result, spoils the whole idea of combining bets on positive results
according to the schemes for P or G. On the other hand, however, the
expressiveness of the language is considerably reduced by removing ⊥,
since negation is defined in terms of ⊥. One may ask, whether there is
a characterization of P and G by a Giles/Lorenzen-style game. To ad-
dress this problem we analyse the rules of the uniform calculus rH [3],
mentioned at the end of Section 2. In contrast to H L, the component
sequents of hypersequents in rH come in two versions: there are two
different sequent signs ‘≤’ and ‘<’, instead of the one ‘`’ used in H L.
More formally, an r-hypersequent is a finite multiset

Γ1 /1 ∆1 | . . . | Γn /n ∆n

where /i ∈ {<,≤} and Γi and ∆i are finite multisets of formulas for
i = 1, . . . , n. The relational symbols indicate the intended semantics:
the above r-hypersequent is called valid for logic X ∈ { L,G,P} if for all
valuations v, that refer to the corresponding t-norm ∗X, there is some i,
1 ≤ i ≤ n, such that #v

XΓi /i #v
X∆i, where #v

X∅ = 1 and where

#v
 L(Γ) = 1+

∑
A∈Γ

{v(A)−1}, #v
G(Γ) = min

A∈Γ
{v(A)}, #v

P(Γ) =
∏
A∈Γ

{v(A)}.

This allows us to check that the following rH-rules for introducing im-
plication are sound and invertible for all three logics:

A, Γ / ∆, B | A ≤ B | H Γ / ∆ | H
Γ / ∆, A → B | H (→, r)∗
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B, Γ / ∆, A | Γ / ∆ | H Γ / ∆ | B < A | H
A → B, Γ / ∆ | H (→, l)∗

where / is either < or ≤, uniformly in each rule. Together with (also
uniform, even simpler) rules for the other connectives and appropriate
initial atomic r-hypersequents (that, of course, are different for each of
the three logics) one obtains a sound and complete analytic system for
 L, G, and P, respectively (see [3]).

There are at least two different ways to translate these rules into rules
for the construction of winning strategies in versions of our game. A
rather direct interpretation of r-hypersequents in terms of disjunctions
of states in a dialogue game is obtained by distinguishing two different
types of states: One, corresponding to the sequent sign ≤, which is
exactly as in the original game and one corresponding to the sequent
sign <, in which an additional flag ¶ is raised to announce that I will
be declared winner of the current run of the game only if the evaluation
of the final elementary state yields a strictly positive (and not just non-
negative) expected gain for me.

Dialogue rules, replacing (R) in Giles’s game, but directly correspond-
ing to (→, r)∗ and (→, l)∗ can be formulated as follows:

(R∗
r) If I assert A → B then, whenever you choose to attack this state-

ment by asserting A, I have the following choice: either I assert B
in reply or I challenge your attack on A → B by replacing the
current game with a new one in which you assert A and I assert B.

Note that the right hand side premise of rule (→, l)∗ corresponds to the
case were you choose not to attack the exhibited occurrence of A → B.
As can be seen, the newly introduced flag plays no direct role. It is only
needed in the rule corresponding to (→, l)∗:

(R∗
l ) If you assert A → B then, whenever I choose to attack this state-

ment by asserting A, you have the following choice: either you
assert B in reply or you challenge my attack on A → B by replac-
ing the current game with a new one in which the flag ¶ is raised
and I assert A while you assert B.

Note that I can also choose not to attack A → B. This corresponds to
the component sequents Γ/∆ in the two premise r-hypersequents of rule
(→, r)∗. The flag ¶ is needed because the winning conditions are not
fully complementary for me and you: we may both have a non-negative
expected gain. Your ‘attack-challenging’ claim that I cannot win when
starting in state [A‖B] is equivalent to the claim that I can win when
starting in state [B‖A] only if the flag ¶, signalling a strictly positive
expected gain as winning condition, is raised in the latter game.
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The translation of the r-hypersequent rules for conjunction and dis-
junction in [3] into dialogue game rules is also straightforward. Admit-
tedly these new versions of Lorenzen style dialogue rules amount to ad
hoc regulations to circumvent the problematic effects of bets on elemen-
tary results that always yield negative results. A different (but still ad
hoc) way to deal with this problem has been described in [3]. Instead
of using the additional flag, one imposes the following constraint on
attacking implicative formulas:

(Q) If I have a strategy for winning the game starting in the state
[A‖B], then I am not allowed to attack your assertion of A → B.
(And vice versa, i.e., for the roles of you and me switched.)9

Imposing (Q) also results in a game that characterizes  L, P, and G, if
the corresponding versions of the winning conditions are applied (cf. [3]).
Here we only point out that applying rule (Q) involves the systematic
development of full strategies for subformulas, before it can be judged
whether an attack to a formula according to rule (R) is permitted.
Whether more satisfying Giles/Lorenzen style characterizations of P and
G in the presence of ⊥ and 0 can be achieved remains an open problem.

6. Where is vagueness?
What has been achieved by the analysis of fuzzy logics in terms of di-
alogue games? Since the rules for the stepwise reduction of arguments
about compound formulas to arguments about their atomic subformulas
are identical for  L, CHL, but also (in a more problematic way) for  L, P,
and G, we have opened a unified view of reasoning in t-norm based fuzzy
logics. Moreover, the relation to classical logic is clarified: the dialogue
part of the game coincides with a version of Lorenzen’s original dialogue
game adapted to classical logic. If we trivialize the betting schemes
by stipulating that all assigned probabilities are either 0 or 1—i.e., if
each elementary experiment consistently shows the same result when
repeated—then Giles’s game, as well as the alternative games for P and
G, discussed in Section 5, characterize classical validity. To see this, it
suffices to check that for every elementary state [p1, . . . , pm‖q1, . . . , qn]
and X ∈ { L, P, G} we have:

〈p1, . . . , pm〉X ≤ 〈q1, . . . , qn〉X iff {p1, . . . , pm} ∩ {q1, . . . , qn} 6= ∅,

for all assignments 〈·〉 of values where 〈pi〉, 〈qj〉 ∈ {0, 1}. If we denote
elementary states in sequent notation

p1, . . . , pm ` q1, . . . , qn
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it gets clear that the latter condition corresponds to classical axiom se-
quents p ` p, up to (irrelevant) weakening. Moreover, it corresponds
to the standard winning condition for Lorenzen style dialogues: I win
the dialogue if you attack a statement that you have already asserted
yourself (‘ipse dixisti rule’). Indeed, it is straightforward to show that
winning d-strategies for all versions of the game, described above, cor-
respond to cut-free proofs in versions of hypersequent calculi that are
sound and complete for classical logic if valuations are restricted to range
over {0, 1}.

What is the significance of the betting schemes for the evaluation of
atomic formulas? Obviously, the betting schemes allow us to charac-
terize the differences between  L, P, and G: different underlying t-norms
correspond to different ways of combining bets on results of elementary
experiments into a single bet. However, a closer look at this setting re-
veals a serious foundational problem. One would like to present the game
based characterizations of  L, CHL, P, and G as a derivation of fuzzy log-
ics from first principles about reasoning with vague propositions, but all
reference to vagueness and degrees of truth seems to have disappeared;
more exactly: it has been replaced by references to classical reasoning
combined with a probabilistic semantics for atomic statements. How-
ever, fuzziness should never be confused with probability (as has been
emphasized in the literature, e.g., in [15, 14, 5]). Whereas fuzzy logic
takes vague propositions to refer to degrees of truth, probability theory
formalizes degrees of rational belief. Even without engaging in discus-
sions on adequate interpretations of vagueness and probability, it should
be clear that

(1) ‘The next throw of the dice will result in 5 or 6’

is true only with some probability (1/3, if the dice is fair), but does not
involve vagueness; whereas,

(2) ‘Logicians are weird people’

is vague, but does not refer to probability. (2) may meaningfully be
said to be true only to some degree (even in a fixed context); whereas
(1), in the intended context, is either definitely true or definitely false,
even if it is (not yet) known which of the two holds. Since Giles, in
evaluating atomic statements, refers to elementary experiments that are
of the same (probabilistic, but non-fuzzy) type as in statement (1), it
might seem inadequate to interpret Giles’s game as a model for proper
reasoning with vague notions.
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7. Connecting supervaluation, degrees of truth,
and bets on positive results of experiments

There is a prolific discourse in analytic philosophy about the nature of
reasoning in the presence of vagueness. This is not the place to comment
on these debates;10 however, in order to connect the game based analysis
of  L, P, and G with degrees of truth and disentangle it from probabilistic
logic, we refer to a particular approach to understanding vagueness,
called supervaluation—currently most popular among philosophers of
vagueness (see, e.g., [16, 27, 28]).

Supervaluation, as a theory of vagueness, is canonically developed
by Kit Fine in [11]. Since we are only interested in propositional logic
without additonal modal operators, only a simplified version of super-
valuation will be needed here. The central idea is to formalize reasoning
in vague contexts by reference to all admissible precisifications of vague
expressions. More exactly, formulas are evaluated in reference to a speci-
fication space S, which is simply a collection (multiset11) of partial mod-
els. A partial model is a possibly partial assignment of classical truth
values, 0 or 1, to propositional variables. An element w ∈ S is called a
complete precisification of v ∈ S if w is total and if v(p) = w(p) for all
propositional variables p, for which v is defined. A complete precisifica-
tion of v is a classical model compatible with v. We are only interested in
those elements of S that are complete precisifications of a fixed element
(‘actual world’) a ∈ S. This sub-multiset of S is denoted by Ca and is
assumed to be non-empty. Three possibilities for the semantic status of
a formula F arise:

v(F ) = 1 for all v ∈ Ca: in this case F is called supertrue in Ca;

v(F ) = 0 for all v ∈ Ca: in this case F is called superfalse in Ca;

∃v, w ∈ Ca such that v(F ) = 0 and w(F ) = 1: in this case the
semantic status of F remains undefined.

Proponents of supervaluation often contend that, in contrast to claims
made by degree theoretists, no revision of classical logic is necessary in
face of vagueness. (However see [19] for a criticism of the claim that
supervaluation does not deviate from classical logic.) Whereas, e.g., the
formula A∨¬A is not valid in  L, P, G, or any related logic, it is evaluated
true in all classical interpretations, and therefore is supertrue in all pre-
cisification spaces S, even if A is evaluated true in some precisifications
and false in other precisifications of the actual world of S.

Given the coincidence of supertruth in all specification spaces and
classical validity, it is understandable that supervaluation is usually seen
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as incompatible with fuzzy logic. In contrast, we claim that the game
based interpretation reveals much common ground among these compet-
ing conceptions of reasoning under vagueness. Both, supervaluationists
and defendants of  L, P, and G as logics of vagueness, can agree on three
principles:

1 An atomic statement is definitely true only if there is no admissible
precisification of it that renders it false.

2 Arguments about compound statements F can be reduced to ar-
guments involving only subformulas of F .

3 The rules used for 2 should only depend on the outmost connective
of F and should be sound and complete for classical logic.

That the reduction rules should refer to classical logic, seems, at a first
glance, to be at variance with the standard t-norm based interpretation
of our fuzzy logics. However, the coincidence of the logical dialogue
rules in Giles’s game with those in versions of the game for classical
logic makes shared intuitions about the meaning of connectives explicit.

Obviously, essential differences between supervaluation and t-norm
based valuations remain. To facilitate a more detailed comparison, we
interpret the truth value ∈ [0, 1], that is assigned to a propositional
variable p in fuzzy valuation, in terms of the proportion of those complete
precisifications that make p true. The simplest way to formalize this idea
is to assume that the cardinality of Ca ∈ S is finite. We may then define
the ‘fuzzy valuation’ vS induced by a precisification space S via Ca as

vS(p) =
|{v ∈ Ca : v(p) = 1}|

|Ca|
for all propositional variables p. In other words: with respect to a given
precisification space, fuzzy valuations and supervaluation agree on the
assignment of classical truth values 1 and 0 to atomic formulas; but
in the remaining cases, where supervaluation assigns no overall truth
value, fuzzy logics assign a value that ‘measures’ the fraction of veri-
fying precisifications.12 For compound formulas, the difference between
supervaluation and fuzzy valuation may be described in terms of the syn-
tactic level at which a formula is tied to individual precisifications. For
supervaluation the whole formula F is evaluated in each complete pre-
cisification to determine F ’s semantic status. Following the game based
characterization of  L, P, and G, fuzzy valuation of F may be described
as consisting of three stages:

1 an analysis—following classical principles—of F into arguments
about its atomic components;
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2 a valuation of each of the resulting relevant occurrences of atomic
formulas in F in reference to a specification space;

3 a synthesis of the resulting values of the atomic subformulas of F
into an overall value for F .

The following table confronts the valuation function vsv
S , resulting from

supervaluation, with the valuation function vX
S of a t-norm based fuzzy

logic X, where all valuations refer to the specification space S via the
multiset Ca of its complete precisifications.

Supervaluation Valuation in logic X

vsv
S (p) = 1 (0) ⇐⇒ ∀v ∈ Ca : v(A) = 1 (0) vX

S(p) =
|{v ∈Ca: v(p)=1}|

|Ca|

vsv
S (⊥) = 0 vX

S(⊥) = 0

vsv
S (F → G) = 1 (0) ⇐⇒ vX

S(F → G) =
`
vX
S(F ) ⇒∗ vX

S(G)
´
,

∀v ∈ Ca :
`
v(F ) ⇒c v(G)

´
= 1 (0) where X = L∗

Remember, that ⇒∗ is the residuum of the t-norm ∗ that defines the
logic L∗. We have used ⇒c to denote the classical truth function for
implication (which, by the way, can be presented as the residuum of
an arbitrary t-norm, restricted to {0, 1}). Also remember that all other
logical connectives can be defined in terms of → and ⊥, not only for  L,
but also for classical logic. Of course one can easily extend the above list
by the corresponding definitions for conjunction and disjunction (thus
including also full P and G).

We think that supervaluation and fuzzy valuation capture contrasting,
but individually coherent intuitions about the role of logical connectives
in vague statements. Consider a sentence like

(3) ”The sky is blue and is not blue”.

When formalized as b ∧ ¬b, (3) is superfalse in all specification spaces.
This fits Fine’s motivation in [11] to capture ‘penumbral connections’
that prevent any mono-colored object from having two colors at the
same time. According to his intuition the statement ”The sky is blue”
absolutely contradicts the statement ”The sky is not blue”, even if nei-
ther statement is definitely true or definitely false. Therefore (3) is
judged as definitely false, even if admittedly vague. On the other hand,
by asserting (3) one may intend to convey the information that both
component assertions are true only to some degree. Under this reading
(and a certain interpretation of ‘and’) b∧¬b is not definitely false, unless
b is supertrue or superfalse. The latter intuition is directly captured in
 Lukasiewicz logic since b ∧ ¬b may receive a value ∈ [0, 0.5], where ∧
denotes the ‘weak conjunction’, i.e., the minimum operator.13
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As already indicated, the difference between the two interpretations
of (3) can be described as a difference of the syntactic level at which the
sentence is projected to admissible precisifications. In supervaluation it
is checked whether the whole sentence b ∧ ¬b is true in every complete
precisification; whereas in fuzzy valuation each of the two occurrences of
the subformula b is valuated separately with respect to the proportion
of complete precisifications that make b true.

We claim that both kinds of intuitions should be accommodated in a
full account of approximate reasoning14. Technically, supervaluation and
various forms of fuzzy valuation can easily be embedded in a common se-
mantic framework, as indicated above. For evaluating a formula F corre-
spondingly, it suffices to mark syntactically—e.g., by using two different
types of implication, conjunction, negation, etc.—whether an occurrence
of a subformula of F should be supervaluated or valuated according to
a certain t-norm based scheme. In both cases, the valuation may refer
to the same specification space.

8. Conclusion
Our presentation of Giles’s game and its variants is meant to demon-

strate that t-norm based fuzzy logics can be derived from first principles
about approximate reasoning. As we have seen in Sections 4 and 5, rules
for the systematic construction of winning strategies in the games for  L,
CHL, P, and G correspond to the logical rules of analytic calculi for these
logics. This partly also clarifies the relation to classical logic: for all in-
vestigated logics the (dialogue based) meaning of connectives adheres to
constraints pertaining to classical logic. Moreover, the game based anal-
ysis allows us to relate supervaluation to the seemingly opposite concept
of ‘degrees of truth’: both models of approximate reasoning can be seen
as referring to admissible precisifications in a given specification space.

Many interesting topics for further investigation arise; we conclude
by explicitly posing a few relevant questions. Is there a similar analy-
sis of other logics that have been suggested for approximate reasoning?
In particular, can Hajek’s ‘basic logic’ [14]—the logic of all continuous
t-norms—be characterized by an adequate game? What about quanti-
fiers? How does the incompleteness of first-order  L and P, that contrasts
with the existence of complete calculi for G (and classical logic), bear on
game based semantics for these logics? How can we account for higher-
order vagueness in dialogue games? Can one extend the analysis to logics
equipped with a definiteness operator and other relevant modal opera-
tors? Can the game based characterization of fuzzy logics shed light
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on the relation to further conceptions of vagueness, like gap-theoretic,
epistemic, pragmatic and information-based approaches?

Notes
1. Sections 3, 4, and 5 extend the brief remarks in the final section of [3].

2. Giles [13] attempts to provide a tangible meaning to basic notions that arise in formal-
izing physical theories. Our use of Giles’s game is independent from this original motivation.

3. Note that in  L all other connectives can be defined from → and ⊥ alone, since we may
define A & B as (A → (B → ⊥)) → ⊥. The other connectives are defined as indicated in
Definition 1.

4. For a total of n occurrences of compound formulas on the right hand sides of states in
a you-node, there are 2n successor nodes, corresponding to 2n possible moves for you.

5. The term ‘winning condition’ is slightly misleading here, since I can loose money in a
particular run of the game even if this condition holds; only a non-negative expected gain is
guaranteed by what we choose to call ‘winning condition’.

6. The problem does not arise in logic  L, since there the expected gain for state [⊥‖p, q]
is 〈p, q〉 L − 〈⊥〉 L = 1 − (〈p〉 − 1) − (〈q〉 − 1) − (1 − 1) = 〈p〉 + 〈q〉 − 1 and therefore indeed
negative, as expected, if 〈p〉 = 0 and 〈q〉 < 1.

7. Note that CHL is different from ⊥-free P: e.g., (A → (A & B)) → B is valid in CHL,
but not in P.

8. For rule (→, l) it suffices to observe that for all a, b, ci, dj ∈ (0, 1]: (a ⇒P b) ·
Q

i gi ≤Q
j dj iff b ·

Q
i gi ≤

Q
j dj ·a. For rule (→, r) the relevant fact is that

Q
i gi ≤

Q
i di ·(a ⇒P b)

iff both a ·
Q

i gi ≤
Q

j dj · b and
Q

i gi ≤
Q

j dj .

9. Recall that the strategies mentioned in (Q) refer to a given assignment 〈·〉 of values
and thus appear at a more concrete level than d-strategies.

10. For an overview of theories of vagueness and their problematic relation to fuzzy logic
we refer to [16], [29], [2] and [9].

11. As long as one is not interested in measuring the cardinality of precisifications that sat-
isfy certain properties, the difference between precisifications spaces as sets and as multisets,
respectively, disappears.

12. At the propositional level, on which we focus here, it is not unreasonable to assume
that only a finite number of different plausible precisifications is relevant when evaluating a
given statement in a fixed context. Anyway, it is not difficult to extend the concept to more
general situations. E.g., one may wish to weight precisifications according to some measure of
their individual plausibility. One may also take into account non-complete precisifications in
different ways. In any case, an assignment of a truth value ∈ [0, 1] to a propositional variable
p in fuzzy logic can be interpreted as a way to quantify the information pertaining to p that
is contained in a given specification space.

13.Note that b &¬b is always evaluated to 0, where & is the ‘strong conjunction’ (t-norm)
of  L. Thus one may argue that  L is capable of representing both interpretations of a sentence
like (3). Also remember that in P and G the value of ¬b is 0 if the value of b is not equal
to 1. Therefore b ∧ ¬b is always evalutated to 0 in P and G.

14. This is of particular significance for a successful analysis of Sorites paradoxa and
phenomena of higher order vagueness, as we shall argue elsewhere.
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