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Abstract

Hintikka’s semantic game for classical logic is generalized to the fam-
ily of all finite valued matrices. This in turn serves as a springboard for
developing game semantics for all propositional formulas with respect to
arbitrary finite non-deterministic matrices. In this approach a new con-
cept of non-deterministic valuation, called ‘liberal valuation’, emerges
that augments the usually employed static and dynamic valuations in a
natural manner. Liberal valuation is shown to correspond to unrestricted
semantic games, while the characterization of static and dynamic valu-
ations involves certain restrictions of the game that are handled by an
interactive pruning procedure.

1 Introduction

In this paper we connect two lines of research that seem to be hardly related at
all at a first glance: semantic games, as introduced by Hintikka, on the one hand
side, and deterministic as well as non-deterministic matrix based semantics on
the other hand side. Hintikka’s characterization of classical logic in terms of a
competitive game between a Proponent P1, who seeks to verify that a given
formula is true in a given model, and an Opponent O, who challenges the
Proponent’s claim. While various extensions and variants of Hintikka’s original
game, that cover a broad range of nonclassical logics, have been described in
the literature, it has so far seemingly never been attempted to uniformly define
semantic games with respect to arbitrary finite truth tables. After briefly
revisiting Hintikka’s game in Section 2, we will generalize, in Section 3, the
classical semantic game to so-called M-games that correspond to valuations
with respect to an arbitrary finite matrixM; i.e., to a collection of finite truth
tables. However M-games will only serve as an intermediate station towards
a more ambitious goal. In [2, 3] Arnon and Lev have introduced the concept
of non-deterministic matrices, which, following Avron and his collaborators,
we will call Nmatrices. This concept turned out to be a useful and versatile

1Various other names are used in the literature to refer to the pair of players of a semantic
game: e.g., Verifier/Falsifier, Abelard/Eloise, or, as in [20], simply player I/player II. The
use of Proponent/Opponent originates with Lorenzen [16, 17], who introduced a different,
but related logical game already in the late 1950s.
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tool, in particular in the context of proof theoretic investigations. Here we
will look at Nmatrices from a purely semantic point of view, motivated by the
question whetherM-games can be extended to non-deterministic truth tables.
Two versions of Nmatrix based semantics are traditionally studied: (1) static
valuations, where a logical connective may be associated with more than one
(ordinary, i.e., deterministic) truth table, but where the chosen truth table
remains the same throughout the valuation of a given formula; (2) dynamic
valuations, where the chosen truth table may vary during the valuation, as long
as the same truth value is assigned to identical subformulas. As we will show in
Section 4, for every Nmatrix semanticsN there is a correspondingN -game that
looks exactly like anM-game: each rule refers to a connective and a truth value
and specifies choices by P and O in a format that can be directly extracted
from the corresponding truth table. However, it turns out that, without further
restrictions, the Proponent’s winning strategies in an N -game neither match
static nor dynamic valuations. These winning strategies rather give rise to a
further concept of non-deterministic valuation, introduced as ‘liberal valuation’
here. In liberal valuations different truth values may be assigned to different
occurrences of subformulas, even if they are identical. We will argue that liberal
valuations are interesting and useful even independently of semantic games.
But we provide characterizations of dynamic and static valuations in terms of
N -games as well. We show that certain pruning processes, to be applied to
the unrestricted game viewed as a tree, lead to restricted N -games that are
adequate for dynamic or static valuations, depending on the specific version
of pruning. The pruning process can be described as a series of interactions
between the two players, thus sticking with the spirit of game semantics.

Arguably, game semantics displays its full power only at the first order
level. Nevertheless we will remain in the realm of propositional logics here to
keep the exposition reasonably concise. We do not expect any complications in
generalizing N -games to a broad family of quantifiers, namely so-called distri-
bution quantifiers and their non-deterministic cousins. However, a clarification
of this conjecture and a detailed exposition of non-deterministic distribution
quantifiers via games calls for future work, as indicated in the conclusion of
this paper.

2 Generalizing Hintkka’s game

We begin by revisiting Hintikka’s well known semantic game (also known as
evaluation game) for classical logic. In that game, a player whom we will call
the Proponent P seeks to defend the claim that a formula F is true in a given
model M, while an Opponent O attempts to refute this claim. Since we are
only interested in propositional connectives here, M can be identified with an
assignment of ‘true’ or ‘false’ to propositional variables. At each stage of the
game one of the two players asserts a subformula of F . The game is initiated
by P’s assertion of F and proceeds in accordance with the following rules that
refer to the outermost connective of the currently asserted formula.

(R∧) If P asserts G∧H then O attacks by pointing either to the left or to the
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right subformula. At the next stage P has to assert G or H, according
to O’s choice.

(R∨) If P asserts G ∨H then at the next stage P has to assert either G or H
at her own choice.

(R¬) If P asserts ¬G then the roles of the two players are switched and the
game continues with O asserting G.

Remark 1 Although usually omitted for Hintikka’s games, a rule for implica-
tion can be compiled from G→ H =df. ¬G ∨H:

(R→) If P asserts G → H then P has a choice between continuing the game
with O’s assertion of G after switching the players’ roles or, alternatively,
to continue with her own (P’s) assertion of H (without switching roles).

In Section 3, we will introduce the concept of M-games that allows one to
formulate rules in a many-valued setting, even for connectives that cannot be
defined in terms of conjunction, disjunction, and negation.

Note that, although a role switch may occur due to negation, we have not
specified what happens at a stage where O asserts a formula. Actually, this
is not necessary since the roles are understood to be perfectly dual. In other
words, we simply interchange P and O to obtain the rules for assertions of O.
In any case, the game ends when an atomic formula A is asserted. If A is true
in M then the player who asserts A wins (and the other player loses). Clearly
we have a finite extensive-form zero-sum game of perfect information. We will
consider only games of this type throughout the paper. The central fact about
Hintikka’s game can be expressed as follows.

Theorem 1 (Hintikka2) A closed formula F is true in a ‘model M iff P has
a winning strategy in the semantic game starting with P’s assertion of F .

The game provides an alternative to standard Tarskian semantics: instead
of referring to a recursively defined evaluation function based on truth tables,
we refer to winning strategies in a two-person extensive form game. The full
potential of the game theoretic approach to truth is borne out by various gen-
eralizations of classical first-order logic that arise by considering natural vari-
ations on the standard semantic game described above. Most prominently we
obtain IF-logic by admitting that the players may have imperfect information
about the previous choices at a given state of the game. This in particular al-
lows one to model, e.g., branching quantifiers and so-called slashed quantifiers
and connectives (see, e.g., [19, 15]).

Remark 2 Also modal logics can be characterized by appropriate semantic
games (see, e.g., [8]). A less well-known, but also very fertile game theoretic
approach to semantics is Giles’s game for  Lukasiewicz logic [11, 12, 9]. Giles de-
veloped his game semantics for reasoning under uncertainty independent from

2We refer to [20] for a comprehensive presentation of classical game semantics.
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Hintkka. In fact he referred to Lorenzen’s dialogue game for intuitionistic logic
in formulating the logical rules of his game for infinitely-valued  Lukasiewicz
logic. However, with hindsight, it is clear that Giles’s game is a species of
semantic game, rather than a Lorenzen style dialogue game. For a recent
exposition that makes the relation to Hintikka’s game transparent and that
explores one of the many applications beyond standard  Lukasiewicz logic we
refer to [10].

We want to generalize Hintkka’s classical game in yet a further, seemingly
still unexplored direction by designing games that correspond to arbitrary fi-
nite valued valuations of formulas as well as to valuations with respect to non-
deterministic matrices (Nmatrices) [2, 3, 5]. Nmatrix semantics generalizes
ordinary matrix semantics for many-valued logics in a natural and interesting
way by allowing for choices between different truth values, instead of relying
on strictly functional dependencies with respect to truth values of subformulas,
in evaluating a given formula. Therefore we do not deal with two independent
ways of generalizing classical game semantics here; we rather devise games for
finite valued valuations in order to generalize those games further to match
Nmatrix semantics. Nevertheless we argue that games for finite valued logics
are interesting in their own right. For example, one may go on to study the ef-
fects of imperfect information for those games and design many-valued versions
of IF-logic in that manner. To do so one should investigate rules for so-called
distribution quantifiers. However, in order to keep the focus on the principles
of deterministic and non-deterministic matrix semantics and their relation to
game semantics, we will confine ourselves to propositional languages here.

Before going on to finite valued valuations, we briefly illustrate by a simple
example the fact that non-determinism naturally pops up when playing around
with semantic games, even if we stick with the two classical truth values. We
have pointed out that the rules in Hintikka’s game are perfectly symmetric for
the two players. But we may ask what happens if we break this symmetry.

Example 1 Let ud keep the rules for conjunction and for disjunction as they
are. Note that we in fact have four rules so far: (RP

∧ ), (RO
∧ ), (RP

∨ ), (RO
∨ ),

where (RP
∧ ) and (RP

∨ ) are exactly as formulated under the names (R∧) and
(R∨) above, and (RO

∧ ) and (RO
∨ ) arise from those rules by simply swapping P

and O. Also the rule (RP
¬ ) shall remain unchanged: if we are in a state where

P asserts ¬F , the game continues in a state where O asserts F . However, we
will alter (RO

¬ ) as follows. If O asserts ¬F she will be given a choice: she may
either let the game continue with P’s assertion of F (as in the standard rule) or
ignore the negation sign and continue the game with her assertion of F . What
is the effect of liberalizing the negation rule for O in this manner? Clearly,
we have changed the semantics of negation. But can we relate this ‘liberal’
form of negation to any known logic? Note that we did not change the winning
conditions: we still refer to an assignment of either t (true) or f (false) to
atomic formulas and stipulate that the player asserting an atomic formula A
(in the last stage of the game) wins (and the other player loses) if A is true
and loses (and the other player wins) if A is false. Therefore we can still define
logical validity and consequence in the usual way, by referring to games for all
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classical assignments. In other words our new game does define a logic; but it
seems to be quite different from classical logics. For example, it is easy to see
that P does not any longer have a winning strategy for every game starting with
his assertion of A ∨ ¬A. It turns out that winning strategies in the modified
game correspond to valuations with respect to the non-deterministic truth tables

¬
t {f}
f {f , t}

and

∨
t t {t}
t f {t}
f t {t}
f f {f}

.

As we will see in Section 4, actually three different forms of Nmatrix based val-
uations emerge. They correspond to different (respectively missing) restrictions
on the application of rules like (RO

¬ ). For the current example (A∨¬A, where
A is atomic) the three types of valuations coincide.

3 Games for finite valued deterministic valua-
tions

The generalization of classical logic arising from truth functions over sets of
truth values beyond {f , t} is an old idea that has been explored in countless
articles and books (see, e.g., [13, 18, 14, 6].

Remark 3 To some, the realm of finite-valued propositional actually seems a
too simple playground to warrant yet further investigation. However, we em-
phasize that many apparently interesting claims about classical logics, like e.g.
pointing out that different types of proof systems (sequent calculus, tableau,
natural deduction, clause form translation plus resolution, etc.) can be trans-
lated into each other, are in fact empty if not formulated against a background
of a wider class of logics that allows one to view point to point connections as
particular instances of a general, schematically defined relation. It is in this
latter spirit that we introduce a generalized concept of semantic games that
fits the family of all logics that have a finite truth table semantics.

We largely follow the handbook article [6] in providing basic definitions
that support formal investigations of the class of all finitely valued logics at an
appropriately abstract level.

Definition 1 (Syntax) A propositional language L consists of a countably
infinite set PV of propositional variables, a finite set PCL of propositional
constants3, and a non-empty finite set OPL of propositional connectives. Each
� ∈ OPL has a fixed finite arity ar(�) ≥ 1. The formulas FORML over L are
built up from PV and PCL using OPL, as usual. The elements of PV ∪ PCL
are called atomic formulas. By sf(F ) we denote the set of all subformulas of
F , including F itself.

We will usually drop the adjective ‘propositional’ from the above notions.

3Propositional constants could alternatively be treated as 0-ary connectives.
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Throughout this paper we use V to denote the set of truth values. V is
always finite here and contains at least two elements.

Definition 2 (Matrix semantics) Given a language L we associate a func-
tion �̂ : Vn → V with each � ∈ OPL, where ar(�) = n. �̂ is also referred to
as truth table for the connective �. The set {�̂ : � ∈ OPL} is augmented by a

function that fixes a truth value Ĉ ∈ V for each C ∈ PCL to form the matrix
M for L.

A partial valuation in M over an assignment α : PV → V is a function
vαM : F → V, where F ⊆ FORML is closed under subformulas, that satisfies
the following conditions.

(a) vαM(F ) = α(F ) if F ∈ PV,

(b) vαM(F ) = F̂ if F ∈ PCL,

(c) vαM(�(F1, . . . , Fn)) = �̂(vαM(F1), . . . , vαM(Fn)) if � ∈ OPL with ar(�) = n.

If F = FORML then vαM is a (total) valuation.

Proposition 1 Every assignment α induces a unique partial valuation vαM
in M over α on its domain. Therefore every partial valuation vαM can be
uniquely extended to a total valuation over the same assignment α.

Remark 4 We could go on to single out a set of designated truth values and
define corresponding notions of validity and logical consequence with respect to
a given matrix. However there is no need to do so here, since semantic games
are only concerned with valuations. This entails that we are not interested in
(deductive) logics here, but rather in the semantics of logical connectives.

Different kinds of generic external proof systems have been developed for
finite valued logics. (By ‘external’ one refers to the presence of labels or signs,
in addition to formulas in the system; see [6]). They are best described by
reference to signed formula expressions. While we are not interested in proof
systems here, our games are close enough to profit from (a somewhat simplified
version4 of) this formal meta-language for finite valued logics.

Definition 3 (Signed formula expression) For every F ∈ FORML and
every w ∈ V the expression w:F is called a signed formula. Signed formula
expressions are defined inductively as follows.

• Every signed formula is a signed formula expression.

• If φ and ψ are signed formula expressions then so are φ∧∧ψ, φ∨∨ψ, φ⊃⊃ψ,
φ ≡ ψ, and ¬¬φ.

4In the full language of signed formula expressions, presented in [6], signs consists not
of single truth values, but rather of sets of truth values. While leading to more compact
expressions in general, this does not increase the expressiveness of the formalism. Moreover
it could easily cause confusions when we move on to Nmatrices, where sets of truth values
are employed in a related, but nevertheless somewhat different manner.
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The semantics of signed formula expression refers to a given matrix seman-
tics M over L and an assignment α : PV→ V.

• We call a signed formula w:F true in M under α if vαM(F ) = w;

• φ ∧∧ ψ, φ ∨∨ ψ, φ ⊃⊃ ψ, φ ≡ ψ, and ¬¬φ are true or false according to the
truth or falsity of the subexpressions φ and ψ, where the meaning of the
meta-connectives is that of ordinary classical conjunction, disjunction,
implication, equivalence, and negation, respectively.

If φ ≡ ψ is true inM under all assignments then φ and ψ are called equivalent
in M.

At first sight it might not be obvious how to generalize Hintikka’s game to
an arbitrary matrixM. Any combinations of the three basic operations ‘choice
by Proponent P’, ‘choice by Opponent O’, and ‘role switch between P and O’,
clearly do not lead beyond classical logic. We only obtain rules for further
classical connectives in this manner. However a closer look at ‘role switch’
guides the way. Note that it is not enough to know the current (sub)formula
at a given state of the game; we also have to keep track of all role switches. In
other words, at any give state of the game we have to record whether P wants
to show that the current (sub)formula is true (as in the beginning of the game)
or whether she wants to show that it is false (like O in the beginning of the
game). It therefore seems natural to depict, e.g., the conjunction rules (RP

∧ )
and (RO

∧ ) as rule trees:

O
(RP
∧ ):

t:A ∧B

t:A t:B

P
(RO
∧ ):

f :A ∧B

f :A f :B

where the labels P and O at the root nodes indicate which player’s turn it is to
choose the successor state. Note that these labels do not indicate which player
is the one who asserts A ∧B. This job is rather taken over by the truth value
signs now: t:A ∧B means that P wants to show that A ∧ B is true, whereas
f :A ∧B means that P wants to show that A ∧ B is false. The latter fact was
originally expressed by saying that it is O who asserts A ∧ B (see Section 2).
This is an important observation for the generalized semantic game, introduced
below: we will no longer speak of a formula asserted by some player, but rather
about a signed formula w:F , where P seeks to verify that vαM(F ) = w with
respect to the given assignment α and O seeks to falsify this claim.

Trees for the disjunction rules (RP
∨ ) and (RO

∨ ) are obtained by replacing ∧
by ∨, P by O, and t by f in the trees for (RP

∧ ) and (RO
∧ ), respectively. The

negation rules look as follows:
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(RP
¬ ):

t:¬A

f :A

(RO
¬ ):

f :¬A

t:A

Remark 5 Note that we have not labeled the root nodes by either P or O.
The role switch is solely reflected by the switch of truth value signs. Since there
is only one successor state in each case it does not matter to which player (if
any) we want to attribute the corresponding move.

As already explained, the truth value sign that we attach to the current
formula of a game state determines the roles of two players. Therefore the
superscripts P and O in the rule names are redundant and are in fact some-
what misleading now. Remember, that instead of talking about some player’s
assertion of a formula, we rather talk about a signed formula that P wants
to verify and O wants to falsify. The rules are completely determined by the
truth value sign and the connective. Consequently the superscripts in the rule
names will from now on be replaced by the truth value exhibited in the signed
formula at the root of the rule tree.

Remark 6 While the disjunction and conjunction rules of Hintikka’s game
only exhibit choices to be made either solely by P or solely by O, in general
choices by both players are involved in a full round of the game, as illustrated
for the equivalence connective (↔) in Example 2.

Example 2 To understand the following rules for classical equivalence (↔)
just remember that equivalence can be expressed by combining conjunction, dis-
junction, and negation. More precisely, the following signed formula expression
are valid for classical semantics: t:A↔B ≡ ((t:A ∧∧ t:B) ∨∨ (f :A ∧∧ f :B)) and
f :A↔B ≡ ((f :A∧∧ t:B)∨∨ (t:A∧∧ f :B)). These expressions suggest the following
game rule trees:

P

O O

P PP P

(Rt
↔):

t:A↔B

t:A t:B f :A f :B

P

O O

P PP P

(Rf
↔):

f :A↔B

f :A t:B t:A f :B

The rules for↔ in Example 2 already indicate the general form of a semantic
game rule tree for an n-ary connective � and some truth value w ∈ V exhibited
in Figure 1.

Remark 7 (on Figure 1). Like in Hintikka’s original game, rules are under-
stood as schemes: we assume A1, . . . , An to be pairwise distinct propositional
variables and have to instantiate those variables accordingly in any applica-
tion of (Rw� ) to a concrete formula F = �(F1, . . . , Fn). Each such application
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Figure 1: General rule format (‘rule tree’) for connective � and truth value w:

P

O O

P PP P

(Rw� ):
w:�(A1, . . . , An)

· · ·

w1
1:A1

· · ·
w1

n:An wm
1 :A1

· · ·
wm

n :An

where wi
j ∈ V for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

corresponds to a round of the game, where in any round first P may choose
between different options of defending her claim that F evaluates to w. These
options correspond to the O-labeled successor nodes of the P-labeled root of
the rule tree. We will simply speak of O-nodes and P-nodes from now on. In
the second part of a round it is O’s turn to pick a successor node and thus
a particular signed subformula wij :Aj . The fact that the corresponding nodes
are P-nodes indicates that, unless we have reached an atomic formula, a new
round (of the same general type) follows at such states.

Remark 8 We shall look at a rule from P’s point of view. Therefore P’s
options correspond to disjunction and O’s options correspond to conjunction
at the meta-level. It may also happen that according to the truth table �̂
a formula of the form �(F1, . . . , Fn) can never evaluate to a particular truth
value w. In that case the rule (Rw� ) consists solely of the P-node labeled by
w:�(F1, . . . , Fn).

As made clear in Example 2 and in Remark 8, we want the rule tree to match
certain disjunctions of conjunctions of signed formulas that are equivalent to
the relevant signed formula. For this purpose we employ complete disjunctive
normal forms as specified in the following definition.

Definition 4 The complete disjunctive normal form with respect to a ma-
trixM for the signed formula w:�(A1, . . . , An) is the signed formula expression

w:�(A1, . . . , An) ≡
∨∨

(w1, . . . , wn) ∈ Vn

�̂(w1, . . . , wn) = w

∧∧
1≤i≤n

wi:Ai .

Remark 9 Strictly speaking, complete disjunctive normal forms are only unique
up to the order of disjuncts and of conjuncts within a disjunct. However it is
convenient to assume that this order is fixed. (E.g., by respecting the lexico-
graphic order on tuples of truth values, based on some fixed linear order on V.)
This allows us to speak of the complete disjunctive normal and of the M-game
based on a matrix M (in Definition 6, below).
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Definition 5 A rule of (Rw� ), as exhibited in Figure 1, is said to correspond to
the complete disjunctive normal form if the labels wi:A

j
i of the P-nodes (leaves)

of the rule tree match the conjuncts of the signed formula expression exhibited
in Definition 4.

Remark 10 In general, there are many equivalent disjunctive normal forms
for a given connective and truth value. One may want to base the game on
shorter normal forms instead of the complete ones specified in Definition 4,
whenever available. Such shorter normal forms can be obtained from the com-
plete norm forms by appealing to various kind of general laws for signed formula
expressions (as explained in [6]). In fact, we could alternatively also specify
rules where first O and only then P make their respective choices. Such rules
correspond to conjunctive, rather than to disjunctive normal forms. Moreover,
we could have rules of both types in a single semantic game. This will in many
cases lead to more compact rules. For sake of clarity, we will not care about
such optimizations here and stick with rules that correspond to complete dis-
junctive norm forms. (However our results can straightforwardly be generalized
to cover other types of rules as well.)

Remark 11 Remember that the complete disjunctive normal form for the
signed formula w:�(A1, . . . , An) is empty if �̂(v1, . . . , vn) 6= w for all v1, . . . , vn ∈
V. P, of course, loses the game when such a state is reached.

After these preparations, we can now specify semantic games matching
matrix semantics as trees that are composed of appropriate instances of rule
trees.

Definition 6 (M-game) Given a formula F ∈ FORML, a truth value w ∈ V,
and an assignment α : PV → V the M-game for w:F under α is defined
inductively as an ordered tree as follows.

• If F is atomic then the game consists of a single P-node labeled by w:F .

– If F ∈ PV then P wins if α(F ) = w, otherwise O wins.

– If F ∈ PCL then P wins if F̂ = w, otherwise O wins.

• If F = w:�(F1, . . . , Fn) then the game begins with an instance of the tree
shown in Figure 1, where (Rw� ) corresponds to the complete disjunctive
normal form (specified in Definition 4): the P-node at the root is labeled
with w:F and the P-nodes at the bottom are labeled with signed formulas
wij :Fj, obtained by instantiating the corresponding wij :Aj in the rule tree

for for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Any such node labeled with wij :Fj is the
root of an M-game for wi:Fj under α. If the disjunctive normal form is
empty, then the P-node labeled by w:F is a game at which O wins and P
loses.

Strategies in extensive form games are usually defined as functions from
histories to moves. For our purposes it is convenient to identify a strategy for
P with a sub-tree of the game that singles out a particular successor to each
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P-node, but leaves the possible moves of O, represented by the successor nodes
of an O-node, unchanged. (Strategies for O could be defined likewise; but we
do not care about them here.)

Definition 7 (M-game strategy) A strategy τ for P in an M-game for
w:F under α arises from the tree representing the M-game by removing all
except one successor (O-)node to each internal P-node in the tree. If P wins
at every leaf node of τ then τ is called a winning strategy for P.

The adequateness of M-games is expressed by the following theorem.

Theorem 2 Given a language L and a matrixM, the following are equivalent
for every formula F , truth value v ∈ V and assignment α.

(1) P has a winning strategy τ for the M-game for v:F under α.

(2) vαM(F ) = v, where vαM is the (unique) valuation over α.

Proof.
(1) ⇒ (2): Given τ , we define vτ (G) = w whenever there is a P-node in τ
labeled by w:G. We have vτ (F ) = v, since the root of τ is labeled by v:F . It
remains to show that vτ is the partial valuation induced by α in M on sf(F )
and therefore can be extended to the total evaluation vαM by Proposition 1.
We proceed by induction on the depth d(τ) of τ .

• d(τ) = 0: This means that τ consists of a P-node labeled by v:F . Since
τ is a winning strategy we have either F ∈ PV and vτ (F ) = α(F ) = v or

F ∈ PCL and vτ (F ) = F̂ = v, as required.

• d(τ) > 0: By definition, τ picks out (via a particular O-node) a disjunct
of the complete disjunctive normal form to which the relevant rule (Rv�)
corresponds. It therefore looks as follows:

P

O

P P

v:F

w1:F1...

· · ·
wn:Fn...

where, F = �(F1, . . . , Fn) and �̂(w1, . . . , wn) = v. By the induction hy-
pothesis, the sub-trees of τ that are rooted in the lower P-nodes, labeled
by wi:Fi, for i = 1, . . . , n, induce the partial valuations viτ over α on M,
that are defined on sf(Fi) for i = 1, . . . , n, respectively. Moreover we have
viτ (Fi) = wi. Since partial valuations are completely determined by α and
M, we have viτ (G) = vjτ (G) for every G ∈ sf(Fi) ∩ sf(Fj). We therefore
can extend all viτ for i = 1, . . . , n, to the common partial valuation vτ
in sf(F ) = {F} ∪

⋃
1≤i≤n sf(Fi), where vτ (F ) = �̂(w1, . . . , wn) = v, as

required.
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(2) ⇒ (1): We show by induction on F that any given valuation vαM, where
vαM(F ) = v, induces an M-game winning strategy τ for P rooted in v:F .

• If F is atomic, then τ consists just in a single P-node labeled by v:F .

• Suppose F = �(F1, . . . , Fn): By the induction hypothesis vαM(Fi) = wi
there is a winning strategy τi for P in the M-game for wi:Fi under
α for every i = 1, . . . , n. If �̂(w1, . . . , wn) = v then there is a disjunct∧∧

1≤i≤n wi:Fi in the complete disjunctive normal form for v:�(F1, . . . , Fn).
Since the rules of the game correspond to complete disjunctive normal
forms, this means that we obtain the required winning strategy τ as
follows. Join the root (P-)nodes of τ1, . . . , τn labeled by w1:F1, . . . , wn:Fn,
respectively, by a introducing a common parent O-node, and add as a
parent node to this O-node a P-node labeled by v:F . �

Remark 12 Väänänen [20] describes how Hintikka’s semantic game can be
modified to obtain a model existence game for classical logic without changing
the basic form of the rules for the logical connectives. The model existence
game, in turn, is related to a (signed analytic) tableau calculus for classical
logic. Roughly speaking, a winning strategy in the model existence game for
the player who seeks to show that there exists an interpretation in which F
evaluates to f can be extracted from every fully expanded, but non-closed
tableau for a formula F (and therefore with the signed formula f :F at its
root). The same holds if f is replaced by t. This connection between semantic
games and signed analytic tableaux can be generalized to finite valued logics.
(See, e.g., [14] for a tableau calculus of the appropriate type.) In any case,
the relation between the rules of M-games and logical rules for external proof
systems of various types should not be surprising, since they are all based on
normal forms for signed formulas, as explained in detail in [6].

4 Nmatrices and corresponding games

As already indicated in Section 2, non-deterministic matrices (Nmatrices) gen-
eralize standard matrix semantics in a fertile manner, motivated by a host of
interesting applications. The concept was introduced in [2] and has been stud-
ied in many papers by Arnon Avron and his collaborators since. (We refer to
the handbook article [5] for a recent overview.) Nmatrices induce two different
forms of evaluation for propositional languages as specified in Definition 1. The
following definition closely follows Definition 8 of Section 3, but differs in some
inessential details from the terminology used by Avron and his colleagues.

Definition 8 (Nmatrix semantics) Given a language L we associate a
function �̃ : Vn → 2V \ {∅} with each � ∈ OPL, where ar(�) = n. �̃ is
also referred to as non-deterministic truth table for the connective �. The
set {�̃ : � ∈ OPL} is augmented by a function that fixes a non-empty set of

truth values C̃ ⊆ V for each C ∈ PCL to form the Nmatrix N for L.
A partial dynamic valuation in N over an assignment α : PV → V is a

function dvαN : F → V, where F ⊆ FORML is closed under subformulas, that
satisfies the following conditions.
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(a) dvαN (F ) = α(F ) if F ∈ PV,

(b) dvαN (F ) ∈ F̃ if F ∈ PCL,

(c) dvαN (�(F1, . . . , Fn)) ∈ �̃(dvαN (F1), . . . , dvαN (Fn)) if � ∈ OPL, ar(�) = n.

If F = FORML then dvαN is a (total) valuation.
A (partial) static valuation svαN in N over assignment α is a (partial) dy-

namic valuation in N over α that additionally satisfies the following functional-
ity principle: for each � ∈ OPL and for every G1, . . . , Gn, F1, . . . Fn ∈ FORML

svαN (�(G1, . . . , Gn) = svαN (�(F1, . . . , Fn)) if svαN (Gi) = svαN (Fi), i = 1, . . . , n.

Like an ordinary matrix based valuation, every Nmatrix based valuation
assigns a definite truth value to each formula. However now different such
valuations may extend the same assignment and result in different truth values
getting assigned to the same formula.

Note that an ordinary matrix corresponds to the special case of an Nmatrix,
where �̃(v1, . . . , vn) is a singleton set for every � ∈ OPL and v ∈ V. Clearly
dynamic and static valuation coincide in that case.

Definition 9 Given an Nmatrix N for L, a matrix M for L is said to be
a determination of N if �̂(v1, . . . , vn) ∈ �̃(v1, . . . , vn) for every � ∈ OPL and

Ĉ ∈ C̃ for every C ∈ PCL, where �̂ and �̃ denote the truth tables for � in M
and in N , respectively.

This notion allows us to formulate the following observation compactly.

Proposition 2 For every formula F ∈ FORML and every assignment α there
is a static valuation svαN in Nmatrix N over α such that svαN (F ) = v iff
vαM(F ) = v the valuation vαM over α in some determination M of N .

Together with Theorem 2, Proposition 2 entails the following characteriza-
tion of static valuations.

Corollary 1 For every formula F ∈ FORML and every assignment α there is
a static valuation svαN over α in N such that svαN (F ) = v iff P has a winning
strategy in some M-game for v:F under α, where M is a determination of N .

To characterize dynamic semantics, as well as to introduce yet a further
type of interpretation based on Nmatrices, we prefer an alternative route to
corresponding semantic games. We can still use signed formula expressions to
talk formally about Nmatrix semantics. But since the same assignment may
induce different dynamic valuations, we have to define their truth differently.

Definition 10 (Signed formulas for Nmatrices) A signed formula w:F is
true in an Nmatrix N with respect to a dynamic valuation dvαN if dvαN (F ) = w.
The generalization of this definition to signed formula expressions is like in
Definition 3.
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For our purposes it suffices that we can express truth conditions for signed
formulas in Nmatrix semantics in close analogy to complete disjunctive normal
forms in matrix semantics.

Definition 11 The complete disjunctive truth condition ∆̄w
�(F1,...,Fn)

with re-

spect to an Nmatix N for the signed formula w:�(F1, . . . , Fn) is given by

∆̄w
�(F1,...,Fn)

=
∨∨

(w1, . . . , wn) ∈ Vn

w ∈ �̃(w1, . . . , wn)

∧∧
1≤i≤n

wi:Fi .

The following fact follows directly from the definition of a dynamic valua-
tion.

Proposition 3 Let F = �(F1, . . . , Fn) ∈ FORML, w ∈ V, and N an Nmatrix
for L. With respect to every partial dynamic valuation dvαN , if w:F is true,
then also its corresponding complete disjunctive truth condition ∆̄w

�(F1,...,Fn)
is

true. Conversely, if ∆̄w
�(F1,...,Fn)

is true with respect to some partial dynamic

valuation dvαN defined on sf(∆̄w
�(F1,...,Fn)

) ⊆
⋃

1≤i≤n sf(Fi), then w:F is true

with respect to some extension of dvαN that is defined also on F .

We define unrestricted N -games based on complete disjunctive truth con-
ditions. While only certain sub-games (‘restricted N -games’) will correspond
to dynamic and static valuation, respectively, unrestricted N -games are of in-
dependent interest as well: they generalize M-games (Definition 6) straight-
forwardly and therefore appear to be a natural concept, at least from a game
semantic point of view. Moreover, we argue that unrestricted N -games codify
a new version of non-deterministic matrix evaluation that may well turn out
to be useful for various applications, as briefly indicated in Example 4, below.

Definition 12 (Unresticted N -games) Given a formula F ∈ FORML, a
truth value w ∈ V, and an assignment α : PV → V, the unrestricted N -game
for w:F under α is defined inductively as the following ordered tree.

• If F is an atomic formula the game consists of a single P-node.

– If F ∈ PV then P wins if α(F ) = w, otherwise O wins.

– If F ∈ PCL then P wins if w ∈ F̃ , otherwise O wins.

• If F = w:�(F1, . . . , Fn) then, just like for M-games, the game begins
with a corresponding instance of the tree in Figure 1. The only difference
to M-games is that the labels at the leaves of the rule tree in Figure 1
are now obtained according to the complete disjunctive truth condition
∆̄w
�(A1,...,An)

. Each of the lower P-nodes labeled with wij :Fj, obtained by

instantiating Fj for Aj is the root of an unrestricted N -game for wij :Fj
under α. If the complete disjunctive truth condition is empty, then the
P-node labeled by w:F is a game at which O wins and P loses.

14



The notion of a (winning) strategy for P in N -games remains exactly as in
Definition 7. I.e., strategies arise from game trees by deleting all but one of the
successor P-nodes to every O-node.

Remark 13 Unrestricted N -games cannot be distinguished locally from M-
games. More precisely, any group of nodes that arises by instantiating a single
rule tree, i.e. some P-node, its succeeding O-nodes and the immediate succes-
sors (P-nodes) of the latter, could occur in an N -tree as well as in an M-tree.
The only difference is as follows: in a rule tree based on a complete disjunctive
truth condition for w:�(A1, . . . , An) with respect to a Nmatrix N there may
occur an O-node that has exactly the same sequence of successor P-nodes as
an O-node that occurs in a rule tree for v:�(A1, . . . , An), where v 6= w (but
where the truth condition refers to the same Nmatrix N ). This cannot hap-
pen for rules based on complete disjunctive normal forms with respect to a
matrix M. With respect to given matrix, determinism implies that each con-
junction

∧∧
1≤i≤n wi:Ai, where w1, . . . , wn ∈ V occurs as disjunct of exactly one

complete disjunctive normal form for a signed formula of type w:�(A1, . . . , An),
where w ∈ V. This observation will become important below, for describing a
certain ‘pruning mechanism’ for unrestricted N -games.

Unrestricted N -games characterize neither dynamic nor static valuations
as illustrated be the following example.

Example 3 Let us consider an unrestricted N -game for a language with the
classical equivalence connective ↔ (for which we have already presented ade-
quate rules in Section 3) and the ‘liberal negation’ ¬ considered in Example 1,
at the end of Section 2), where ¬̃(t) = {f}, ¬̃(f) = {f , t}. According to Defi-
nition 12 the game for f : ¬A ↔ ¬A under the assignment α(A) = f looks as
follows:

P

O O

P P P P

O O O O O O

P P P P P P

f :¬A↔¬A

f :¬A t:¬A t:¬A f :¬A

t:A f :A f :A f :A t:A f :A

where the gray leaf nodes represent those final states at which P wins. The
thick lines single out a sub-tree that constitutes a winning strategy for P for
f :¬A↔¬A under α. This should be contrasted with the fact that there exists
neither a dynamic nor a static valuation in the indicated Nmatrix semantics
that returns f for ¬A↔¬A under any assignment.
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The key to defining a form of valuation that remains close to Definition 8,
but matches unrestricted N -games, is to distinguish occurrences of formulas
from the formulas themselves.

Definition 13 An occurrence G in F of a subformula G of F is defined as a
tuple G = (G, p, F ), where p is some marker that uniquely identifies a specific
position within F at which G occurs. The set of all occurrences of subformulas
of F in F is denoted by osf(F ).

Remark 14 We have deliberately refrained from specifying how positions
within formulas are represented formally, since there is no need to worry about
details of such a representation here. Whenever it is necessary to distinguish
between occurrences of some formula G and the formula itself we will use G to
denote the relevant occurrence. (The context will always fix the formula F of
whose subformulas we speak.)

Definition 14 (Liberal valuation) Given an Nmatrix N for a language L,
a liberal valuation in N on F ∈ FORML over an assignment α : PV→ V is a
function lvαN : osf(F )→ V that satisfies the following conditions.

(a) lvαN (G) = α(G) if G ∈ PV,

(b) lvαN (G) ∈ G̃ if G ∈ PCL,

(c) lvαN (�(G1, . . . , Gn)) ∈ �̃(lvαN (G1), . . . , lvαN (Gn)) if � ∈ OPL with ar(�) =
n.

The concept of valuations defined on occurrences of (sub)formulas may seem
odd at first sight. But we argue that it amounts to a consequent continuation
of the path opened up by the move from static to dynamic valuations. To see
this, we take up an example from the introduction of the handbook article [5]
by Arnon Avron and Anna Zamansky. This example is particularly nice, since
it supports the illustration of all three forms of non-deterministic valuations in
reference to the same scenario.

Example 4 In [5] the authors invite us to consider “inherent non-deterministic
behavior” of a circuit like the following:

OR

AO? out(A,B,C)

A

B

C

If the gate marked by ’AO?’ is either an OR-gate or an AND-gate, but we
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do not know which of the two, we can use the non-deterministic truth table

AO?

t t {t}
t f {f , t}
f t {f , t}
f f {f}

and model our knowledge about the behavior of the gate by static valuation
of the formula out(A,B,C) = AO?(A ∨ B,C). Moreover it is argued in [5]
that dynamic valuation allows one to approximate the behavior of a faulty
AND-gate that responds correctly when its inputs are equivalent, but responds
unpredictably otherwise. But note that there is no difference at all between
static, dynamic, or liberal valuation if there is only a single occurrence of a
non-deterministic connective in a formula. The difference between the differ-
ent types of valuation emerges only if we consider a circuit where there is more
than one occurrence of, say, an AO?-gate. If these occurrences, unknown to us,
refer either all to an OR-gate or all to AND-gate then static valuation is ade-
quate to model the expected behavior of the circuit. If, instead, each occurrence
of an AO?-gate might behave like either classical gate individually, then we need
dynamic or liberal valuation. Dynamic valuation is adequate if we know that all
AO?-gates behave identical whenever identical sub-circuits are connected to the
first input as well as to the second input, respectively. If however, the behavior
of AO?-gates is truly unpredictable, i.e., if no constraint other than the one
specified in the truth table for ‘AO?’ restricts the non-deterministic behavior of
corresponding gates, then clearly liberal valuation has to be used to model the
behavior of the whole circuit.

We can think of many other examples where liberal valuations provide
an appropriate modeling tool; however, we will leave the investigation of this
(seemingly as yet unexplored) type of Nmatrix based valuation to future work.

From now on, we will assume that in an unrestricted N -game for v:F ,
the signed formulas labeling the P-nodes actually refer to occurrences of the
corresponding subformulas of F . This in particular implies that in any strategy
for P in such a game, each occurrence of a subformula of F occurs at most
once (together with a truth value) as a label of a P-node.

Theorem 3 Given a language L and an Nmatrix N , the following are equiv-
alent for every formula F , truth value v ∈ V and assignment α.

(1) P has a winning strategy for the unrestricted N -game for v:F under α.

(2) lvαN (F ) = v in N for some liberal valuation lvαN on F over α.

Proof. In complete analogy to the proof of Theorem 2, every winning strategy
induces a suitable liberal valuation, and every liberal valuation induces a cor-
responding winning strategy. The only difference is that we now assign truth
values to individual occurrences of subformulas of F and not to the subformulas
themselves. �
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Remark 15 Since liberal valuations may treat different occurrences of syntac-
tically identical subformulas differently, such valuations are not stable under
substitution. Therefore one does not obtain a logic (at least not in the usual
sense) by singling out the set of formulas that evaluate to a designated truth
value under all liberal valuations. Alternative ways of defining validity or a
consequence relation are conceivable. (E.g., one could involve a probability
distribution over all possible liberal valuations in various ways). Here, however,
we only claim that liberal valuations are meaningful from a purely semantic
perspective, as indicated not only by their relation to N -games, but also in
Example 4, above.

The concept of unrestricted semantic games provides an alternative route
towards a characterization of dynamic valuations. that is based on the following
simple observation.

Proposition 4 A liberal valuation lvαN in N on F over α, where lvαN (G) =

lvαN (G
′
) whenever G and G

′
are occurrences of the same subformula G ∈ sf(F ),

is a partial dynamic valuation in N on sf(F ) over α.

Proposition 4 suggests that, in order to arrive at a game that matches a
dynamic valuation, one should prune a given unrestricted semantic game in
such a manner that a unique truth value is assigned to each subformula in any
P-winning strategy in the resulting game tree.

In Remark 13 we have hinted at the difference between unrestricted N -
games andM-games. In the pruning process for N -games we have to focus on
the same type of configurations of nodes as described in Remark 13. To sup-
port the identification of such configurations of nodes we provide the following
definitions.

Definition 15 Let σ be an unrestricted semantic game. An O-node n in σ is
of type (w1, . . . , wn), where w1, . . . wn ∈ V, if the successor nodes of n (scanned
from left to right5) are labeled by w1:F1, . . . , wn:Fn, respectively. Let n1 and n2
be O-nodes of the same type, where the label of the P-node preceding n1 in σ is
u:�(F1, . . . , Fn) and the label of the P-node preceding n2 in σ is v:�(G1, . . . , Gn).
(Note that the exhibited formulas share their outermost connective.) If u 6= v
then (n1, n2) is called an unresolved static pair. If, in addition, Fi = Gi for all
i = 1, . . . , n then (n1, n2) is also called an unresolved dynamic pair if u 6= v.

Two O-nodes (not necessarily of the same type and not necessarily distinct)
also form an unresolved, dynamic as well as static, pair in σ if among their
successor nodes there are two P-nodes labeled by u:C and v:C, where u 6= v
and C is a propositional constant. We call such a pair also an unresolved end
pair.

We stipulate that the above notions of coordination and of unresolved pairs
transfer from σ to its sub-trees.

Remark 16 Remember that each O-node n refers to a particular disjunct in
the complete disjunctive truth condition for the signed formula u:�(F1, . . . , Fn)

5Remember that all game trees are ordered by definition.
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that labels the P-node preceding n. Unresolved pairs locate O-nodes in a game
that refer (via the corresponding rule tree) to identical disjuncts in the com-
plete disjunctive truth condition for the signed formulas u:�(A1, . . . , An) and
v:�(A1, . . . , An) that are instantiated to u:�(F1, . . . , Fn) and to v:�(G1, . . . , Gn),
respectively, in the game.

Remark 17 If (n1, n2) is a static or dynamic unresolved pair then so is (n2, n1).
Consequently we will not distinguish (n1, n2) from (n2, n1) when talking about
unresolved pairs.

Example 5 To illustrate the terminology introduced in Definition 15, we take
up Example 3. For easier reference, we re-draw the unrestricted game tree, but
now label the O-nodes by their respective types. Moreover, we attach names
(numbers 1 to 6, at the upper left hand side) to the lower O-nodes.

P

O O

P P P P

O O O O O O

P P P P P P

1 2 3 4 5 6

f :¬A↔¬A

f :¬A t:¬A t:¬A f :¬A

t:A f :A f :A f :A t:A f :A

(f , t) (t, f)

(t) (f) (f) (f) (t) (f)

In this game tree (2, 3), (2, 4), (3, 6), and (4, 6) are static as well as dynamic
unresolved pairs.

To exemplify the difference between static and dynamic pairs we replace the
formula at the root of the by ¬A ↔ ¬B, where A and B are different atomic
formulas. We will re-use that game in Example 6 and therefore exhibit it in
Figure 2. (2, 3), (2, 4), (3, 6), and (4, 6) remain unresolved static pairs in the
tree for f :¬A↔ ¬B, but only (2, 4) and (3, 6) are also unresolved dynamic pairs
now.

We could specify an appropriately restricted N -game simply as a maximal
sub-tree of an unrestricted semantic game σ, in which no unresolved (dynamic
or static) pair exists. However, in the spirit of game semantics, we will instead
describe a stepwise pruning process in which the players P and O interact
repeatedly.

Definition 16 (Pruning) Starting from an unrestricted N -game σ, dynamic
(static) pruning reduces the current N -game tree to a sub-tree of σ by repeating
the following round of interaction between P and O until no dynamic (static)
pair remains.
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Figure 2: Unrestricted game tree for f :¬A↔¬B.

P

O O

P P P P

O O O O O O

P P P P P P

1 2 3 4 5 6

f :¬A↔¬B

f :¬A t:¬B t:¬A f :¬B

t:A f :A f :B f :A t:B f :B

1. O picks an unresolved dynamic (static) pair (n1, n2) in the current game.

2. In reply, P removes either the sub-tree rooted n1 or the one rooted in n2
from the current game.

The resulting tree is called a restricted dynamic (static) N -game.
The winning conditions for restricted (dynamic or static) N -games remain

like in the corresponding unrestricted game. Let α be the relevant assignment
and let n be a leaf node labeled by v:F . Then P wins at n if F is a propositional
variable such that α(F ) = v or if F ∈ PCL and v ∈ F̃ . If F is not atomic then
P looses at n.

Remark 18 Note that new leaf nodes may arise by pruning. Such new leaf
nodes are always P-nodes labeled by a non-atomic signed formula. By defini-
tion, P looses the game at such nodes.

Remark 19 Although P and O interact in rounds that admit choices by the
two players, pruning actually is not a game in the sense of game theory. There
are no winning conditions. The interaction is just intended to lead to some
sub-tree of the unrestricted game in which there are no unresolved pairs.

Example 6 We continue Example 5 to illustrate the pruning process.
In the first step of static pruning applied to the N -game depicted in Figure 2

O can pick one of the following unresolved static pairs of O-nodes: (2, 3),
(2, 4), (3, 6), (4, 6). Suppose O picks (2, 3) and P replies by picking node 3 and
removing it together with the P-node below 3. In the next round of pruning P
picks (2, 4) and P replies by removing node 4 together with the P-node below 4.
At this stage no further unresolved static pairs are left. The resulting restricted
static N -game is depicted in Figure 3. Note that this tree is also an M-game,
where the matrix M contains the truth table ¬̂(f) = f , ¬̂(t) = f . Under this
semantics all negated formulas are false and hence there is no winning strategy
for P for f : ¬A↔ ¬B.
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Figure 3: Restricted N -game tree for f :¬A↔¬B that coincides with a partic-
ular M-game.

P

O O

P P P P

O O O O

P P P P

1 2 5 6

f :¬A↔¬B

f :¬A t:¬B t:¬A f :¬B

t:A f :A t:B f :B

Figure 4: Restricted N -game tree for f :¬A↔¬B that does not correspond to
any M-game.

P

O O

P P P P

O O O O

P P P P

1 4 5 6

f :¬A↔¬B

f :¬A t:¬B t:¬A f :¬B

t:A f :A t:B f :B
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Figure 5: Unrestricted N -game and restricted static N -games for f :¬A→¬B.

P

O

P P

O O O

P P P

1 2 3

f :¬A→¬B

t:¬A f :¬B

f :A t:B f :B

P

O

P P

O O

P P

2 3

f :¬A→¬B

t:¬A f :¬B

t:B f :B

P

O

P P

O O

P P

1 2

f :¬A→¬B

t:¬A f :¬B

f :A t:B

In contrast, the classical M-game (where ¬̂(f) = t) emerges if the the orig-
inal tree (Figure 2) is pruned at nodes 2 and 6 instead. However, we emphasize
that not all restricted static N -games areM-games for some deterministic ma-
trix M. In particular the restricted static N -game depicted in Figure 4, which
results from removing nodes 2 and 3 through pruning, does not correspond to
any matrix.

Although we have referred to static pruning in describing the restricted
games in Figures 2 and 4, the same trees may be obtained from dynamic prun-
ing as well. However this is a special feature of this particular example. For
an example that shows that restricted static trees are different from restricted
dynamic trees in general, consider once more the ‘liberal’ non-deterministic
negation; this time combined with classic implication (→). The leftmost tree in
Figure 5 is the unrestricted N -game for f :¬A→ ¬B. There is only one unre-
solved static pair in this tree, namely (1, 3). The tree in the middle of Figure 5
depicts the restricted static N -game resulting from removing node 1. The result
of the other possibility for static pruning, namely to remove node 3, is depicted
in the tree at the right hand side. Since (1, 3) is not a unresolved dynamic pair,
the unrestricted N -game is also the only restricted dynamic N -game in this
case.

Theorem 4 Given a language L and an Nmatrix N , the following holds for
every formula F , truth value v ∈ V, and assignment α.

(1) For every winning strategy for P in a restricted dynamic N -game for v:F
under α there is a dynamic valuation dvαN over α such that dvαN (F ) = v.

(2) If dvαN (F ) = v for some dynamic valuation dvαN over α then P has
winning strategy in some restricted dynamic N -game for v:F under α.

Both statements remain true when we replace ‘dynamic’ by ‘static’ everywhere.
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Proof. We show the case for dynamic valuation. The case for static valuation
is completely analogous.

(1): Let τ be a winning strategy for P in a restricted dynamic N -game for
v:F under α. A valuation dvτ is called induced by τ if dvτ (G) = w for every
signed formula w:G that labels some P-node in τ . We show that τ induces an
appropriate dynamic valuation dvτ by induction on its depth d(τ).

• d(τ) = 0: In this case τ consists of a single P-node labeled by v:F . Since
τ is a winning strategy, we have either F ∈ PV and dvτ (F ) = α(F ) = v,

or else F ∈ PCL and dvτ (F ) = v ∈ F̃ , as required. (Note that τ cannot
consist in a leaf node labeled by a compound formula, since P loses at all
such nodes.)

• d(τ) > 0: By definition, τ begins as follows:

P

O

P P

v:F

w1:F1

τ1

...

· · ·
wn:Fn

τn

...

where F = �(F1, . . . , Fn) and where v ∈ �̃(w1, . . . , wn), since the label of
the lower P-nodes are the conjuncts of some disjunct in the complete dis-
junctive truth condition for w:�(F1, . . . , Fn). By the induction hypothesis
we obtain valuations dvτ1 , . . . , dvτn induced by the sub-trees τ1, . . . , τn
of τ that are rooted in the lower P-nodes labeled by w1:F1, . . . , wn:Fn,
respectively. We know that dvτi(Fi) = wi, where dvτi is a dynamic valu-
ation over α for i = 1, . . . , n. It remains to show that dvτi(G) = dvτj (G)
whenever G ∈ sf(Fi) ∩ sf(Fj) (1 ≤ i, j ≤ n), and therefore the valuations
jointly extend to dvτ as required.

Suppose, to the contrary, that dvτi(G) 6= dvτj (G) for some i, j ∈ {1, . . . , n}.
Moreover assume without loss of generality that G is a smallest subfor-
mula of F with this property. G cannot be a propositional variable, since
dvτi and dvτj are defined over the same assignment α. G also cannot be a
propositional constant, since then there were an unresolved end pair in τ .
But all such unresolved pairs have been removed during pruning from the
game tree and therefore also cannot appear in a strategy. The remaining
possibility is that G = �′(G1, . . . , Gm) for some m-ary �′ ∈ OPL. Thus
there are two P nodes n1 and n2 in τ that are labeled by vi:G and vj :G,
respectively, where vi 6= vj . Since τ is a winning strategy for P, neither
n1 nor n2 can be a root node. The corresponding sub-trees therefore look
as follows:
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P

O

P P

vi:Gn1

n′
1

wi
1:G1...

· · ·
wi

m:Gm...

P

O

P P

vj :Gn2

n′
2

wj
1:G1...

· · ·
wj

m:Gm...

By the assumption that G is the smallest formula where dvτi(G) 6=
dvτj (G), we obtain wi` = wj` for 1 ≤ ` ≤ m. But this implies that
(n′1, n

′
2) is an unresolved dynamic pair, which contradicts the fact that τ

and thus also τi and τj are sub-trees of a restricted N -game, where all
unresolved dynamic pairs have been removed through pruning.

(2): Let dvαN (F ) = v for some dynamic valuation dvαN over α. We show by
induction on F that a winning strategy τ for a restricted dynamic N -game
rooted in v:F can be constructed, where dvαN (G) = w whenever a P-node
labeled by w:G appears in τ .

• If F is atomic, then τ consists just in a single P-node labeled by v:F .

• Suppose F = �(F1, . . . , Fn) and dvαN (Fi) = wi: By the induction hypoth-
esis there is a winning strategy τi for P in some restricted N -game σi for
wi:Fi under α for every i = 1, . . . , n. Moreover, for every signed formula
w:G that labels a P-node in τi we have dvαN (G) = w. dvαN (F ) = v im-
plies v ∈ �̃(w1, . . . , wn). Consequently there is a disjunct

∧∧
1≤i≤n wi:Fi

in the complete disjunctive truth condition for v:�(F1, . . . , Fn). Since the
rules of the game correspond to complete disjunctive truth conditions,
this means that we obtain the required winning strategy τ by joining
the root (P-)nodes of τ1, . . . , τn by a common parent O-node, and add a
P-node labeled by v:F as a parent node to this O-node.

Remember that we have dvαN (G) = w for every signed formula w:G occurring
as a label of some P-node in τ . Since every dynamic valuation assigns a single
truth value to any given formula, τ does not contain any unresolved dynamic
pair. Moreover, dvαN constrains the choices of P in the pruning process for the
removal of sub-trees of the original N -game σ: P should not remove any O-
node that is the successor node of a P-node labeled by w:G, where w = dvαN (G).
Any dynamic pruning process that obeys this constraint results in a restricted
game tree for which the sub-tree τ , specified above, is a winning strategy for P.
�

Remark 20 As already indicated in Example 6, there is no direct correspon-
dence between restricted static or dynamic N -games and static or dynamic
valuations. Theorem 4 rather expresses a correspondence between winning
strategies in such games and valuations. Without going into any details we
remark that by defining a somewhat more involved pruning procedure one can
in fact extract sub-trees from unrestricted N -games that directly correspond to
arbitrary static or dynamic valuations. This should not be surprising, since for
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every given signed formula and assignment the corresponding M-game is just
a sub-tree of an unrestricted N -game, whenever the matrixM is a determina-
tion of the Nmatrix N . This observation directly covers all static valuations;
but a similar statement holds for dynamic valuations as well.

5 Conclusion

Inspired by a fresh look at Hintikka’s semantic game for classical logic, we have
introduced the concept of M-games, matching the valuation of formulas with
respect to a matrix M, i.e., a collection of arbitrary finite truth tables. An
adequate game rule for a particular connective and truth value can be directly
read off from the corresponding truth table. This still holds when we generalize
M-games to unrestricted N -games, for arbitrary collections (Nmatrices) N of
finite non-deterministic truth tables. As we have seen in Section 4, P’s winning
strategies in unrestricted N -games correspond neither to static nor to dynamic
valuations, but rather to the new concept of ‘liberal valuations’, which arises
naturally not only from a game semantic perspective, but arguably generalizes
dynamic valuations in a manner that is independently suggested by certain
application scenarios. In any case, the concept allows to characterize dynamic
and static valuations in a new manner; namely, as arising from removing certain
options for player P from the game tree. The corresponding restrictions of N -
games can be obtained as results of a pruning process that proceeds by stepwise
interaction of the two players and thus fits the context of game semantics.

We consider this work as a starting point, bringing to light a number of
directions for further investigation. We conclude by highlighting four of these
further topics.

• We have only studied propositional valuations here. However, matrix se-
mantics as well as Nmatrix semantics can be extended to a wide class of
quantifiers, in particular so-called distribution quantifiers (see, e.g., [6])
and their non-deterministic variants (see, e.g., [4]). We conjecture that
the game semantics developed in this paper can be straightforwardly lifted
to the first order level. This in turn will provide a basis for investigat-
ing many-valued as well as non-deterministic variants of Independence-
Friendly Logic (IF-Logic, see [19, 15]).

• We have seen how liberal valuations arise as counterparts of P’s win-
ning strategies in unrestricted N -games. Dynamic and static semantics
require an additional game-like preprocessing procedure (‘pruning’) that
properly restricts N -games. This triggers the question, whether further
(new) types of non-deterministic valuations can be characterized by corre-
sponding variants of pruning. For example, preference relations on truth
values may be introduced that guide P’s choices in resolving unresolved
pairs. Moreover, one may also investigate whether, instead of restricting
P’s options in the game, it makes sense to restrict also O’s option in some
(systematic) way.

• Related to the previous item, one may consider various combinations of
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liberal, dynamic, and static semantics. Indeed, from a game semantic
point of view, such combinations naturally arise from subjecting a corre-
sponding mixture of static and dynamic unresolved pairs to pruning.

• Our presentation of N -games relies on the finiteness of the underlying
Nmatrices. However Nmatrices based on infinite sets of truth values have
been found useful as well (see, e.g., [5]). It is not clear to what extent
and how one can generalize semantic games to cover also valuations over
infinitely many values in a finitary manner.

Once more we want to emphasize that the investigation of these topics should
not be seen as purely theoretical exercise, undertaken for the sake of generaliza-
tion itself. We rather expect that appropriate forms of generalization deepen
the understanding of the underlying classical concepts. Moreover, in the spirit
of ‘logic engineering’ [1] or of ‘universal logic’ [7], one should be prepared to
assemble logics for different application scenarios by instantiating general tools
and concepts that extend and variate classical logic in various directions. Nma-
trix semantics certainly has a lot to offer in that vain. Corresponding games
may well prove to be a useful addendum to that logical toolbox.
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Archiv für mathemathische Logik und Grundlagenforschung, 11:32–55, 73–
100, 1968.

[18] N. Rescher. Many-valued Logic. MacGraw-Hill, 1969.

[19] G. Sandu. On the logic of informational independence and its applications.
Journal of Philosophical Logic, 22(1):29–60, 1993.

[20] J. Väänänen. Models and Games, volume 132 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2011.

27


