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Abstract. We provide uniform and invertible logical rules in a framekvof re-
lational hypersequents for the three fundamental t-norsedbduzzy logics i.e.,
tukasiewicz logic, Godel logic, and Product logic. Redatil hypersequents gen-
eralize both hypersequents and sequents-of-relatiorth &framework can be
interpreted via a particular class of dialogue games coathivith bets, where the
rules reflect possible moves in the game. The problem of mhéterg the valid-
ity of atomic relational hypersequents is shown to be patyiab for each logic,
allowing us to develop Co-NP calculi. We also present caleith very simple
initial relational hypersequents that vary only in the stanal rules for the logics.

1 Introduction

Fuzzy logics based on t-norms and their residua are fornsésys providing a founda-
tion for reasoning under vagueness. Following e.g., [1®}junction and implication
are interpreted on the real unit interjal 1] by a continuous t-norm and its residuum,
respectively. The most important of these logics are tdwisiz logict., Godel logic
G, and Product logidI. These three are viewed as fundamental salteontinuous
t-norms can be constructed from their respective t-norms.

A variety of proof methods have been proposed#orG, andII. In particular,
calculi for many fuzzy logics have been presented in a fraonkwf hypersequenisa
generalization of Gentzen sequents to multisets of segse e.g., [2]). A very attrac-
tive calculus has been defined 1@rin [2] by embedding Gentzenls] for intuitionistic
logic into a hypersequent calculus without modifying thiesifor connectives. Elegant
hypersequent calculi have also been defined.ffit6] andII [14], but using different
rules for connectives. A further calculus f6F, which unlike the respective hyperse-
guent calculus hamvertible rules, has been introduced in a frameworksefjuents-
of-relations[5]. More proof search oriented calculi include a tableaalcelus fork
[9], decomposition proof systems f@ [3], and goal-directed systems fhr[15] and
G [13]. Finally, a general approach is presented in [1] whecalaulus for any logic
based on a continuous t-norm is obtained via reductionsitatde finite-valued logics.

In this paper we introduce a generalization of both hypareats and sequents-of-
relations, that we catkelational hypersequenté relational hypersequent, or, for short,
r-hypersequent, is a multiset of two different types of sads, where Gentzen'’s se-
quent arrow is replaced in one By and in the other by<. Intuitively we may think
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of an r-hypersequent as a meta-level (classical) disjoncf negated and non-negated
sequents. Within this framework, we are able to give logicéés fort, G, andIl,
that areuniformi.e., identical for all three logics. Since these rules dsp mvert-
ible, we thus obtain uniform proof search procedures where thdityaproblem for
r-hypersequents ih, G, or IT can be reduced to the validity problem in the respective
logic for r-hypersequents containing only atomic formuiadoreover, we show that
this latter problem ipolynomialfor each logic. Simple modifications then allow us to
use these rules to present Co-NP decision procedurds, f@r, andII, matching the
complexity class of the logics (see e.g., [10]). Furthemnpurely syntactic calculi with
very simple initial relational hypersequents are obtaimgdhtroducing structural rules
reflecting the characteristic properties of the particldgic.

We also present an interpretation of the uniform logica¢suih terms oflialogue
games combined with bethat stems from Giles’s game-theoretic characterizasfon
t inthe seventies [7, 8]. Giles defined a Lorenzen-style gameffich the existence of
winning strategies for a formula corresponds to the validftthat formula int.. Here
we reveal a deep connection between the search for winnmiaiggies in Giles's game
and the r-hypersequent rules torand extend this connection € andII.

2 t-Norm Based Fuzzy Logics

Continuoug-norms and their residua are defined as follows:

Definition 1. A continuoust-normis a continuous, commutative, associative, mono-
tonically increasing functior : [0, 1]% — [0, 1] wherel x x = z for all z € [0, 1]. The
residuum of is a function=-,: [0, 1]2 — [0, 1] wherer =, y = max{z |z * 2 < y}.

The most important examples of continugusorms and their residua are:

t-Norm Residuum
tukasiewicz z # y = max(0, 2 +y — 1) |x = y = min(l,1 —x +y)
} . life <y
Godel T xg Yy = min(z,y) rT=6Y= {y otherwise
1 ifz<y
Product rHAmY =Ty rT=ny = {y/m otherwise

Any continuous-norm is an ordinal sum construction of these three, seg[@@].for
details. Observe also that the function& andmaax can be expressed in terms:oénd
=, e,min(x,y) = x x (x =, y) andmaz(z,y) = min((z =« y) =« v, (y =«
x) =, x). Each continuous-norm determines propositional logicas follows:

Definition 2. For a continuoug-norms with residuum=-,., we define a logi&.,. based
on a language with binary connectives, ®, constantl, and defined connectives
—“A=gef A— LLANB =4y AO(A — B),AVB =45 (A — B) = B)A((B —

! These may also be viewed as providing a uniferonmal formfor £, G, andII.



A) — A). Avaluationfor L, is a functionv assigning to each propositional variable a
truth value from the real unit intervdo, 1], uniquely extended to formulas by:

v(A® B) =v(A) xv(B) v(A — B) =v(A) =, v(B) v(Ll)=0
A formulaA is valid inL,, written=r,, A, iff v(A) = 1 for all valuationswv for L..

We call the logicd.,, , L., andL.,, Lukasiewicz logid-, Godel logicG, and Product
logic IT, respectively.

3 Uniform Rules

We give uniform and invertible logical rules fér, G, andII in a framework ofrela-
tional hypersequentsvhich are defined as follows:

Definition 3. Arelational hypersequent (r-hypersequéng finite multiset of the form:
G:F1<]1A1 | |Fn<]nAn

where«; € {<, <} andI; and A; are finite multisets of formulas far=1,...,n. G
is atomicif all formulas occurring inG are atomic. Theizeof GG is the total number of
symbols occurring in formulas @f.

The use ofmultisetsin this definition means that the multiplicity but not the erdf
elements is important. Hence all set notation will refer toltisets, denoted by the
symbolsI” and A. Also, we take advantage of standard conventions such @siagj

I'y Aandl’, Ato stand forl" U{ A} andI" U A respectively\I" for I', ..., I" (A times),
and the empty space for the empty multisellote moreover, that the use of inequality
symbols< and< in the definition is purely syntactic (although of cours@aaggestive
of the intended meaning). Finally, we remark th&ypersequenisee e.g., [2]) may be
viewed as an r-hypersequent with just one relation symblalevasequent-of-relations
(see e.g., [5]) may be viewed as an r-hypersequent whereudtilsets contain exactly
one formula.

Below, we define validity for r-hypersequents in each of tire¢ logics, informally
understanding as a meta-level “or” anék and < as denoting inequalities between
combinations (different for each logic) of truth values ofrhulas. Note that here (and
throughout this paper) the symbetsand< havetwo uses: a syntactic one as part of an
r-hypersequent, and a semantic one as inequalities hdbgitvgeen two mathematical
expressions. We rely on context to make clear which useénded.

Definition 4. An r-hypersequenty = Iy <1 Ay | ... | [, <, Ay isvalid for L €
{t, G,II}, written =, G, iff for all valuationsv for L,

#1.1; < #1.A; forsomei, 1 <i<n,

where#Y () = 1for L € {t, G,II} and

#D) =1+ {v(A)-1}  #&I) =minaer{v(4)}  #ul) = []{v(4)}

Aer Aerl’



Observe that for all formulad, =, < A iff =1, A for L € {t,G,II}. Below we
present uniform logical rules in this framework, usi6gand H as metavariables to
denote (possibly empty) r-hypersequents cadige r-hypersequents

Definition 5. We define the followingniform logical ruledor <« € {<, <}:

(—,90) G| T'<A|IB<1A,A G|I'«A|B<A
G|T,A—B<A

(—,4,7) G|I'«A G|IA<B,A|A<B
G|I'<A—B,A

(©,90) G| T A, B<A G|I''1L<A (®,49,7) G| I'<al,A|I'<A,B,A
G|ILA®B<A G|I'aA®B,A

Note that uniform rules fon andV are derivable using Definition 2. However we can
also give more streamlined versions, i.e.,dof {<, <}:

(A l) GITLA<A|IB<aA (A,<,r) G| TT'<A,A G| TI'«<B, A
G|ITANB<A G|T'<ANB,A

(V,q,1) G| I,A<«A G|IB<A (V,<,7) G|TI'<AA|T'<aB, A
G|ITAVB<A G|T'<xAV B, A

Observe that the rules fer, A andV have thesubformula propertyi.e., all formulas
occurring in the premises of a rule occur as subformulasrofifitas in the conclusion.
The rules foro do not have this property, sindeappears in the premises and possibly
not the conclusion. Nevertheless, the right premisécing, (), and” <« L, A in the
premise of ®, <, r) may be removed with no loss of soundnessGoandII. Moreover,
sincet can be based on a language with@yton-uniform rules with the subformula
property can be given for all three logics.

Definition 6. A rule €=~ is soundfor a logic L if whenever=, G; for i =
1,...,n,then=;, G, andinvertibleif whenevet=;, G, thenl=;, G, fori =1,...,n.

Lemma 1. If $-=%= s sound (invertible) for, then so |SH‘G1H7‘GH|G"
Proof. Follows directly from Definition 4. a

Theorem 1. The uniform logical rules are sound and invertible torG, andIl.

Proof. We consider only the rules fer (the cases fop being similar), using Lemma 1
to disregard side r-hypersequents. béte a valuation fot., G, orIT. If v(A) < v(B),
thenv(A — B) = 1, and clearly for bot{—, <,1) and(—, <, r'), the premises hold iff
the conclusion holds. Now suppose thatl) > v(B). We consider each rule in turn:

— (—,<,1). The right premise clearly holds. Fér and IT, by simple arithmetic,
the conclusion holds iff the left premise holds. Fér v(A — B) = v(B) and
main(#& (1), v(B)) < min(v(A), #&(AQ)) iff min(#&(),v(B)) < v(A) and
man(#& (1), v(B))<#& (A). Howevermin(#¢& (1), v(B))<wv(A) sincev(A) >
v(B), so we have that the left premise holds iff the conclusiool



— (—, <, 7). If the conclusion holds, then the left premise, and (by $&napithmetic)
the right premise hold. Fdr andII, by simple arithmetic, the conclusion holds iff
the right premise holds. Fd&&, if min(#g& (1), v(A)) <min(v(B), #&(4)) then
min(#& (1), v(A))<v(B) holds, and, since(A) > v(B), min(#& ("), v(4)) =
#¢& (I). Hence the right premise holds iff the conclusion holds. O

Example 1.The uniform logical rules may be applied upwards exhaulstiteereduce
r-hypersequents to atomic r-hypersequents, e.g.,

p<q|lpa<pq p<qlqg<p
(—,<,1)
p,p—q=<q 1 <q
pO(P—q) <q

(0,<,1)

Proposition 1. Applying the uniform logical rules upwards to r-hypersensetermi-
nates with atomic r-hypersequents.

Proof. We define the following measures and well-orderings:

¢(q) = 1for g atomic,c(A ® B) = ¢(A — B) = ¢(A) + ¢(B) + 1 for formulasA, B.
me(I'a A) = {c(A) | A € I' U A} for multisetsl’, A, and« € {<, <}.
mmc(G) = {mc(I' < A) | I« A € G} for an r-hypersequert.

For multisetsa, 5 of integers:a <, Biff (1) o C 3, or (2) a <,, v where
vy=(B-4{j})U{i,...,i},andi < j.

For multisetsp, ¢ of multisets of integersp <., ¢ iff (1) ¢ C ¥, or (2)d <inm X
wherexy = (¢ — {a}) U{G,..., [} andB <, a.

For each uniformlogical rulg% itis easy to check thatmc(G;) <mm mme(G)
fori = 1,...,n. Hence, since there is always a rule for any non-atomic ftatbe
rules applied upwards terminate with atomic r-hypersetgien a

4 Evaluating Atomic Relational Hypersequents

Let us take stock of what we have achieved so far. By providimifprm rules fort, G,
andIl, that are sound and invertible, we are able to reduce thdityafiroblem (i.e.,
checking the validity of a formula) in these logics to chexkihe validity of atomic
r-hypersequents. We might also view the atomic r-hypemetsuthus obtained as a
sort of “uniform normal form” for these logics. This is a p&eent enough achievement
in itself but it is only really usefutomputationallyif we can show that checking the
validity of atomic r-hypersequents is less complex tharidieg the validity problem
for each logic. In fact, while it is well-known that the vailig problem for all these
logics is Co-NP complete (see e.g., [10] for proofs and esfees), we show here that
checking validity for atomic r-hypersequents is in eacheqadynomial

We begin with a useful translation of atomic r-hypersegsiémb a set of inequa-
tions, where an atomic r-hypersequent is valid in a logith# associated set is incon-
sistent overo, 1].



Definition 7. For atomicG = I1 <1 Ay | ... | [, <, A, andL € {t, G, II}:
Sg ={oplh o Ay,...,opT dhop Ay}
where£ is > and« is>, o0 = 1, and
o (I) =1+ Z{zq -1} oa (I') = minger{zq} om (I') = H{zq}

qerl’ qer
wherez, is a real-valued variable for all propositional variablgs andxz; = 0.
Lemma 2. For atomicG andL € {t, G,II}, =1, G iff S¢ is inconsistent ovelo, 1].
Proof. Immediate from Definition 4. a
Fort we obtain the desired result using linear programming masho
Theorem 2. Checking=; G for an atomic r-hypersequen is polynomial.
Proof. By Lemma 2, since linear programming is polynomial, see €13]. a

To show that checking the validity of atomic r-hypersegsedat G is polynomial, we
use a result of Jeavons et al. [11] concerning relations @¥ieite domain.

Definition 8. Let R be an n-ary relation over a domaif? and® : D?> — D be anACI
operationi.e., a binary idempotent, associative, and commutatperation. We say
that R is closed unde® if (t1,...t,), (t,...t),) € Rimplies(t; @}, ..., t, ®t,) €
R. A set of relationsS is closed unde iff R is closed undew for all R € S.

Theorem 3 ([11]).If a set of relationd” over a finite domairD is closed under some
ACI operation, then its constraint satisfaction problensdvable in polynomial time.

Theorem 4. Checking=¢g G for an atomic r-hypersequent is polynomial.

Proof. Letzq, ..., x, be the distinct variables occurringify;. It can be shown thaf;

is inconsistent ovel0, 1] iff S is inconsistent over the sé&,, = {0, %, ceey "T_l, 1}.
Associate with eachg I" b A € Sg arelationR(zy, . .., x,) suchthaR(ay, ..., ay)
fora; € D,,i = 1,...,n, holds iffogI” 4og A holds whenz; is replaced by;.
Moreover, ifR(as,...,a,) andR(by,...,by,) hold fora;, b, € D,,,i =1,...,n, then
alsoR(min(ay,b1), ..., min(an, by)) holds. Hence the set of relations associated with
S is closed under the ACI operationin : D2 — D,,, and, by Theorem 3, its con-
straint satisfaction problem is solvable in polynomialeiniHowever, this problem is
equivalent to checking the inconsistency$%f which, by Lemma 2, is equivalent to
checking the validity of7. O

For IT we again use linear programming methods, dealing sepanaiti the cases
where propositional variables are assigned the v@alue

Definition 9. LetG be an atomic r-hypersequent. An atomic formgla:

— 0-zero-okfor Gif I'g < A € G.



— n-zero-okfor G if I',g < A € G,and for allp € A, p is m-zero-ok folG for some
m € N, m <n,wheren =1+%" _ \ min{k | pis k-zero-ok forG}.
— zero-okfor G if g is n-zero-ok forG for somen € N.

Lemma 3. LetH = G | I' < A be an atomic r-hypersequent, apd I' U A wherep
is not zero-ok fo. If = H, then=n G.

Proof. Note first that ifp € I" is not zero-ok, then there must be= A such thaty is
not zero-ok forH. Hence we can assume that A. Supposé#n G, i.e., there is a
valuationv for IT such that for all” « A" € G, #3417 $#114’. We define a valuation
v such thaw'(¢q) = 0 if ¢ is not zero-oky’(q) = v(q) otherwise. Clearly#y I" #
#”{{A = 0. Considerl" « A’ € G. Ifall ¢ € I'" are zero-ok, thel#ﬁf’ #LIIf
q € I is not zero-ok, theri is <, and for some not zero-aK € A’, v'(¢') = 0. In
both casesty I #4 A' > #4 A, Hencef~r; H as required. O

Lemma 4. LetG be an atomic r-hypersequent wherés zero-ok forGG. For all valua-
tionsw for I, if v(p) = 0, then#§ (") <« #§(A) for somel" < A € G.

Proof. A simple induction om wherep is n-zero-ok. a
Theorem 5. Checking=r1 G for an atomic r-hypersequeni is polynomial.

Proof. It is straightforward to show that finding the zero-ok atoritomulas ofG is
polynomial in the size ofr. Moreover, by repeated applications of Lemm&=3; G iff
En G’ for someG’ C G containing only zero-ok atomic formulas. If occurs inG’
(which can be checked in polynomial time) then by Lemm@?is valid. If 1. does not
occur inG’, by Lemma 2= G’ iff S¢ is inconsistent ovej0, 1] iff, by Lemma 4,
S is inconsistent ove(0, 1]. However this latter problem is isomorphic to a linear
programming problem over the positive reals, known to bgmpamial. a

5 Co-NP Calculi

Despite having invertible rules and polynomially decigadomic r-hypersequents, we
do not yet have Co-NP calculi fdr, IT, andG, since the rules applied upwards may
increase the size of r-hypersequents exponentially. Troislem is overcome by giving
rules that make use of new propositional variables.

Definition 10. We define the followingevised logical rulesor <« € {<, <}, wherep
andgq are propositional variables not occurring in the conclussoof the rules:

(=, 9,0 G|IgaA|B<gqA
CITA>BaA

(—,q,r) G| I'vA G|I,p<q,Alp<q|A<p|g<B
G| T<A—B,A

(©,4,0) G| TA,B1A G|I,L<A (O,r) G| I'<q,A|g<AB|g<L
G|ILA®B<A G|I'«dA®B,A




Theorem 6. The revised logical rules are sound and invertible fgrG, andII.

Proof. We consider just the rules fer (the cases fop being similar), using Lemma 1
to disregard side r-hypersequents. Let {t, G,II}.

— (—,<,1)’. For soundness, given a valuationwe can assume (singedoes not
occur in the conclusion) that(q) = v(A — B). Fromv(B) > #Y(q,A) we
get#Y (I, A — B) < #Y(A) as required. For invertibility, given a valuationif
v(B) < #Y (g, A) then we are done, otherwise we must hayg® < v(A — B)
and hence#! (I, q) < #Y (A) as required.

— (—,<,r). For soundness, consider a valuatiorf v(A) < v(B), thenv(4 —
B) =1 and we are done by the first premisev(fd) > v(B), then we can assume
(sincep andq do not occur in the conclusion) thatp) = v(A) andv(q) = v(B).
Hence#Y (I, p) < #Y (¢, 4) and, similarly to the case ¢f—, <, r) in Theorem 1,
#9(I' <«#Y (A — B, A) as required. For invertibility, the left premise is obvipus
for the right premise consider a valuation|f v(A) < v(p), v(q) < v(B), or
v(p) < v(q), then we are done. Otherwisg} (I, A) < #Y (B, A) and, similarly
to the case of—, <, ) in Theorem 1#Y (I, p) < #Y (¢, A) as required. a

Proposition 2. Applying the revised logical rules upwards to an r-hypersagG ter-
minates with atomic r-hypersequents of size polynomidiérsize of>.

Proof. Similar to the proof of Proposition 1, except that also egaWward application
of a rule gives only a constant increase in the size of thepelsequent. a

Theorem 7. The revised logical rules provide Co-NP decision proceddcs the va-
lidity problems fort, G, andIl.

Proof. To show that a formula is not valid we apply the revised lobiokes upwards
exhaustively, making a non-deterministic choice of twanotaes where necessary. The
result follows from Proposition 2, and Theorems 2, 4, and 5. O

6 Structural Rules

The aim of this section is to use the uniform logical rulesit@gurely syntactic calculi
for £, G, andIT with very simple axioms and structural rules.

Definition 11. We define the followingniform axioms and structural rules

(ID) A<A (L) L <A (1) < (<) L <
(EW) G (EC) G| TI'<A|T’'<«A (WL) G|I'<A
G|TI'<A G|I'<A G|TIA<A
(SS) G|F1,F2§A1,A2 (M)G|F1<1A1 G|F2<1A2
G| I <A | Ik < A G| I, Iy <A, Ay

Lemma 5. The uniform axioms and rules are sound farG, andIl.



Proof. Straightforward using Definition 4. a

We now define calculi fok., G, andII by extending the core uniform axioms and rules
with further structural rules reflecting the charactetigtioperties of each logic.

Definition 12. rHE consists of the uniform axioms and rules together with:

(Se) G, I <ALA (WL) G|I'<A
G|F1§A1|FQ<A2 G|F,J_<A

Theorem 8. An r-hypersequent is derivable infHL iff =, G.

Proof. For soundness it is enough and easy to show(tfiatand (/L) are sound. For
completeness we apply the invertible logical rulestapwards to obtain valid atomic
r-hypersequents. For each atomic r-hyperseqéient 11 <1 Ay | ... | I}, < Ay,
. H iff Sy is inconsistent ovef0, 1]. By linear programming methods [17], this
holds iff there exist\, A1, ..., A, € N where eithetx > 0, or A\; > 0 and<; is < for
somes, 1 < ¢ < n, and:

ALulJnaicr | Jan

i=1 i=1

where (1)A C* I'if A C I'yand QAU {A} C* T'U{L}if A C* I If
A > 0, then we choose anysuch thatlL € I;; and apply(W.L) upwards to get an
r-hypersequentl’ whereSy: meets the conditions of the second case\; It~ 0 and
q; is < for somei, 1 < i < n, then we apply EW) and (EC) upwards to geb;
copies of[; «; A;. Applying (S ) and(S<) upwards we have that is derivable if
H = MI,..., 0 < MA, ..., A, is derivable. Howeverf’ is derivable by
repeated applications ¢f/), (W L), (ID), (L), and(A). O

Definition 13. rHG consists of the uniform rules and axioms together with:

(Sq,<) G| I, Ih4A, G|I[1<Ay, (CL)G|[AA4A
G|F1<]A1|F2<A2 G|F,A<1A

Lemma 6. The following rules are invertible fo&, and derivable irTHG:

(M,<,l) G| [N<aA | T3<A (M,«,r) G| I'ady G|T'<aA,
G|F17F2<]A G|F<]A1,A2

Proof. It is straightforward to show that\/, <, 1) and (M, <, r) are invertible forG.
They are derivable inHG as follows, where we writélW L)* and(C'L)* for multiple
applications of W L) and(C'L) respectively:

G|F1<]A|F2<]A G|F<]A1 G|F<]A2
(wry* (M)
G|F1,F2<1A|F1,F2<]A G|F,F<1A1,A2
(EC) (crLy*
G|F1,F2<]A G|F<]A1,A2

Theorem 9. An r-hypersequen® is derivable intHG iff =¢ G.



Proof. For soundness, it suffices and is easy to show(ifhdt) and(Sg, <) are sound
for G. For completeness, we first apply the invertible logicaksulo G upwards to
obtain valid atomic r-hypersequents. By Lemma 6, applying <,!) and (M, <,r)
upwards, atomic r-hypersequents are derivable if valigpensequents in which all
multisets contain at most one atomic formula are derive®leh an r-hypersequeht
is valid iff the sequent-of-relations obtained by replacthe empty set by is valid,
and hence, using a result of [4] for sequents-of-relatimegyet thatd must have one of
the following forms, wherey; € {<, <} fori =1,...,n,and we allowC, C1,...,C,
to stand for multisets containing at most one formula.

1. (cycles)G’ |C <C orG' | C1 <1 Co | ... | Cphe1 <1 Cn | Cp < Ch.

2. (I-chaing G’ |C < orG' | C1 <Cy | Ca<Cs|...| Cpo1 < Cp | Cp <

3. 0chaingG' | L<C orG' | L<C1|C1 <C|...|Cror <Cy | Cy < C
4. 0-1chaingG' | L< orG' | L<Cy | CL < Co| ... | Cy <.

It is straightforward to show that the above r-hypersequardg derivable inHG. 0O

Definition 14. rHII consists of the uniform rules together with:

(Sm) G| In,[» <A, Ay G| 15 < Ay (RCL) G| I 1,114
G|F1§A1|F2<A2|F3§A3 G|F,L<]A

Lemma7.If G| I, Iy < Ay, Ay is atomic and derivable imHII andp is zero-ok
forall p € Ay, thenG | Ih < Ay | I, < As is derivable incHII.

Proof. We proceed by inductionon = 1+3- _ ,, min{m | p is m-zero-ok forG}

For eachp € A,, we have two cases. H is 0-zero-ok, thenl’,p < A’ € G. If p

is m-zero-ok for somen > 0, thenl”,p < A" € G where allg € A’ are zero-ok.
Repeatedly applyingS<) upwards in the former case, and the induction hypothesis in
the latter, plus repeated applicationg 81C') and(EW') upwards, we getthaf | I} <

Ay | Iy < Agisderivable ifH = G | Ih < Ay | In < Ay | I3 < As is derivable
whereA; C I's. Now applying(St) upwards, sincé& | I's < A, is derivable, we get
thatH is derivable ifG | I, I < Ay, A, is derivable. a

Theorem 10. An r-hypersequent is derivable inrHIT iff =11 G.

Proof. It is easy to show thatRCL) is sound forIl. For (Sm), if v is a valuation
for IT in which the conclusion does not hold, afd; (1) - #4(12) < #K(4q) -
#¥(Ag), then, since# (I11) > #4 (A1) and#§ (1) > #¥4(Az), we must have
#1(Az) = 0. Hence, sincety (I3) > #4(As) > 0, the right premise cannot hold.
For completeness, we apply the invertible logical rulegtopwards to obtain valid
atomic r-hypersequents. By Lemma 3, for each valid atorhigpgersequentl, = H
impliesf=rr H' forsomeH’ C H such thatd’ contains only zero-ok atomic formulae.
If H' containsl thenitis easy to prove thaf’ is derivable as required. OtherwiSe

is inconsistent ovef0, 1] and by linear programming methods there exXist. . ., A, €

N with \; > 0, where<; is < for somei, 1 < ¢ < n, and

O Al C O Al
i=1 i=1



By (EC) applied upwards to obtaik; copies ofl; <; A;, then multiple applications of
Lemma 7 and S<), and(EW) applied upwardsH is derivable ifA\1 I, ..., A\, I}, <
MAq, ..., A\ A, is derivable. But this r-hypersequent is derivable usihg), (WL),
(ID) and(A). O

It is important to note that for each logic there may be cossitile redundancy in
the rules presented. For example, fowe can drop the right premise ¢£,1) and
maintain soundness; we are then able to drop all rules aoteaxieferring to<. What
we obtain is essentially the hypersequent calculus predém{16]. ForII our pruning
leads to a calculus that, unlike the sequent or hyperseaquaauli of [14], has the
subformula property, albeit with more complicated stroesu ForG simplifications
lead to a calculus very similar to the sequent-of-relataisulus presented in [5].

7 Game Interpretation

In the 1970s [7,8] Robin Giles presented a characterizaifan in terms of a dia-
logue game combined with bets. In this section we reviewy(beiefly) Giles's game
and generalize it with the aim of revealing a deep connedi&tween our uniform r-
hypersequent rules and the search for winning strategieargions of the game fdr,
I1, andG.? Giles's game consists of two largely independent buildilogks:

1. Betting for positive results of experiments. There are two players — say, me and
you — who agree to pay 13 to the opponent player for every fetement that they
assert By [pi1,...,pmllq1, - -, q.] we denote arlementary state the game, where

| assert each of the in the multiset{qs, . . ., ¢, } of statements (atomic formulas), and
you assert each; € {p1,...,pm}-

Each statementrefers to an experime, with a binary (yes/no) resuli; can be
read as E, yields a positive result’. The same experiment may yieléedént results
when repeated. However, for every run of the game, a ceniginvalue(¢)* € [0, 1]
is associated witly, denoting the probability thal, yields a negative result. For the
special atomic formula. (falsunm) we defing{_L)* = 1. The risk associated with a mul-
tiset{p1,...,pm} of atomic formulas is defined &g+, ..., pm)* = > v, (p:)*. The
risk ()* associated witlfl is defined a$. The risk associated with an elementary state
[p1,---yDmllg1, -, gs) is calculated from my point of view. Therefore the condition
P1y- - yDm)* = {qu,...,qn)* expresses that | do not expect any loss (but possibly
some gain) when betting as explained above.

2. A Lorenzen-style dialogue game for compound formulas.Giles follows Paul
Lorenzen (see e.g., [12]) in implicitly defining the meanofdogical connectives by
reference to rules of a dialogue game that proceeds by sgitathy reducing argu-
ments about compound formulas to arguments about theiosubfas.

2 We also generalize the results of [6] that relate a dialocareeyfor G- to the sequents-of-
relations calculus of [5].
3 For a detailed motivation and explanation of the game we tefs].



To assist a concise presentation, we will only consideriagibn (—), noting that
in £ all other connectives can be defined fremand_L. The central dialogue rule can
be stated as follows:

(R) IflassertA — B, then whenever you choose to attack this assertion by aspdrt
| have to assert alsB. (Andvice versai.e., for the roles of me and you switched.)

No special regulations on the succession of moves in theglial game are required.
However, each assertion is attacked at most once: this ectedl by the removal of
A — B from the multiset of all formulas asserted by a player du@é@ngin of the
game, as soon as the other player has either attacked btiragsgror indicated that
she will not attackd — B at all. Observe that these stipulations ensure that every ru

of the dialogue game ends in an elementary s@ate. . ., pm||q1, - - -, gn]- Given an
assignment-)* of risk values to they;s andg;s we say that win the game if | do not
expectany loss, i.e., 1, ..., pm)* > (g1, -, qn)*.

As an almost trivial example consider the game with intiatesf||p — ¢; i.e., |
initially assertp — ¢, for some atomic formulag andgq. In response, you can either
asserp in order to force me to assertor explicitly refuse to attack — ¢. In the first
case the game ends in the elementary gtalig; in the second case it ends]ifj. If an
assignment-)* of risk values givegp)* > (¢)*, then | win the game, whatever move
you choose to make. In other words: | have a winning strategg@ated witlp — ¢
for assignments of risk values such tigt* > (¢)*.

Theorem 11 (R. Giles [7, 8]) A formula A is valid int iff for all assignments of risk
values to atomic formulas occurring i, | have a winning strategy.

Giles proved the theorem without formalizing the concepstoategies. However, to
reveal the connection to analytic proof systems we needfioalstructures that register
possible choices for both players. These structures,ccditgunctive strategiesr, for
short,d-strategiesappear at a different level of abstraction to strategiée latter are
only defined with respect to given assignments of risk va{aad may be different for
different assignments), whereas d-strategies abstragt fram particular assignments.

Definition 15. A d-strategy(for me) is a tree whose nodes are disjunctions of states:
(AL, AL Bl BYT - (AL, AL B, .. B

which fulfill the following conditions:

1. All leaf nodes of a d-strategy denote disjunctions of elagary states.

2. Internal nodes are partitioned into I-nodes and you-rede

3. Any I-node is of the for@ \/ [A — B, I'|| 4] and has exactly one successor node
of the formG \/ [I, B|| 4, A] \/ [I||4], whereG denotes a (possibly empty) dis-
junction of states, andl', A denote (possibly empty) multisets of formulas.

4. Forevery statél’||A] of a you-node and every occurrencebf- B in A, the you-
node has a successor node of the foify [I, A|| B, A] as well as a successor node
of the formG \/ [I']| 4]. Moreover, there is at least one occurrence of an impligatio
on the right hand side of some disjunct (i.e., state) of ayode?

4 If there is a total of» occurrences of compound formulas on the right hand sidestefssin a
you-node, then it hagn successor nodes, i.e., corresponding@riigossible moves for you.



We call a d-strategwinning (for me) if, for all leaf nodes and for all possible assign-
ments(-)* of risk values to atomic formulas, there is a disjupgt . . ., pi g1, - - -, @)
in v, such thatipy, ..., pm)* > (g1, .., qn)™

In game theory a winning strategy (for me) is usually defineddunction from all
possible states where | have a choice, into the set of my ljessioves. Note that
winning strategies in the latter sense exist for all assigmisof risk values if and only
if a winning d-strategy exists.

Strictly speaking we have only defined d-strategies (ancefbee, implicitly, also
strategies) with respect to some given regulation that&oh possible state, determines
who is to move next. Each consistent partition of internalesinto I-nodes and you-
nodes corresponds to such a regulation. However, it has (@@ficitly) proved by
Giles that the order of moves is irrelevant. Therefore ne tfggenerality is involved.

The defining conditions for I-nodes and you-nodes not ontyespond to possible
moves in the dialogue game, but also to the introductiorsrdeimplication in the hy-
persequent calculus fardefined in [16]. In fact, every winning d-strategy corresg®n
to a family of proofs in that hypersequent calculus. In oreestablish a similar re-
lation between our uniform r-hypersequent rules and garseaharacterizations of
L, IT, and G, we start by observing that the phrase ‘betting for a pasitesult of (a
multiset of) experiments’ is ambiguous. As we have seerJdentified the combined
risk associated with such a bet with themof risks associated with the single exper-
iments. However, other ways of interpreting the combinek are worth exploring. In
particular, we are interested in a second version of the gasmere an elementary state
[p1,---,pmllq1,---,qs) corresponds to my single bet that experiments associated
with theg;s (1 < ¢ < n) show a positive result, against your single bet #ihexperi-
ments associated with thes (1 < i < m) show a positive result. A third form of the
game arises if one decides to perform ooheexperiment for each of the two players,
where the relevant experiment is chosen by the opponent.

To achieve a direct correspondence between the three nersidhe game and the
standard-norm based semantics fer, IT, andG, respectively, we invert risk values
into probabilites opositiveresults of associated experiments. More formally, theevalu
of an atomic formulg is defined agq) = 1 — (¢)*; in particular,(L) = 0.

My expected gain in the elementary st@te, ..., pm|lq1, - - ., ¢»] in Giles's game
for £ is the sum of money that | expect you to have pay me minus thelsainh expect
to have to pay you. This amounts¥d." , (1 — (p;)) — > i, (1 — (g:)) $. Therefore my
expected gain is greater or equal to zero if and only if theltton 1+ 7" | ({(p;)—1) <
1+ 5" ({a:) — 1) holds.

In the second version of the game, you have to pay me 1$ unlesspariments
associated with thg;s test positively, and | have to pay you 1$ unless all expertme
associated with the;s test positively. My expected gain is therefdre [T\, (p;) —

(1 —TTi=,{g:)) $. The corresponding winning condition[i§;" , (p;) < [T;—, (g:)-

To maximize the expected gain in the third version of the ghwiét choose ap; €
{p1,...,pm} Where the probability of a positive result of the associaegeriment is
least; and you will do the same for thes that | have asserted. Therefore my expected
gainis(l —minj<;<m (p;)) — (1 —min;<;<,(g;)) $. Hence the corresponding winning
condition iSminlSigm <pz> < minlgign <Qz>



We thus arrive at the following definitions for the value of altiset{p1,...,p,}
of atomic formulas, according to the three versions of thegja

n

(P1,- - Pt = 1+Z(<pi>*1) (pr,--pa)m = [[(1) (p1,-- - pn)e = min ()

- 1<i<n
=1

For the empty multiset we defig = (o = (g = 1.

A disjunction of elementary statesis now calledwinning according to logid. €
{£, I, G} if for every assignment) of values there is a staig,, . . . , pinllq1, - - - , Gn)
in v where(p1,....,pm)r <{q1,--,qn)L-

It turns out that, in order to characteriEEand G, the dialogue game rule (R) has
to be augmentédy the following additional rule:

(Q) If I have a strategy for winning the game starting in theestA|| B], then | am not
allowed to attack your assertion df — B. (And vice versa)®

The trees of disjunctive states as presented in DefinitioddlBot yet contain all the
information that is needed to formulate winning d-stragsdor the new versions of the
game. To see what kind of information is missing, observethla (Q), at the meta-
level, corresponds to

— if v(4) < v(B), then | have to quit on your assertions4f— B, and you have to
quit on my assertions ol — B,

wherew is the valuation extending the relevant assignmenfrom atomic formulas
to arbitrary formulas. Incorporating this fact into the défon of d-strategies seems,
at first glance, to require additional notation fnditionsof the form ‘if A < B'.
However, we can use the fact that ‘if X then Y’ (at the clasisicata-level) is equivalent
to ‘not X or Y’. Thus we remain within the notation fdisjunctivestates, as long as we
are willing to use also the strict inequality, in order to be able to express ‘nat< B’
as ‘B < A'. Consequently, statdg’||A] now come in two different formgT” < A]
and[[" < A].

Taking into account these modifications, condition 3 of Di&fin 15 is replaced by

3’. Any I-node is of the fornG \/ [A — B, I" < A}, where< is either< or <. It has
exactly two successor nodes: one of the f@iry [I, B < A, A] \/ [I" < A] and
one ofthefornG \/ [B < AV [I" < A].

Note that this new condition corresponds directly to thdarmi logical rules(—, <, )
for r-hypersequents.

In Definition 15 conditions 3 and 4 are dual. In fact, the adaiity of both in-
equality relations allows us to express the dual to conjanstof disjunctive states as
conjunctions of disjunctive states, by pushing negatiosgle and finally expressing
‘not I' < A’as'A < I, After removing some redundancies, the result of this fure

5 We could have used rule (Q) already in Giles'’s original gartmvever, in contrast to the game
for IT and G, (Q) does not affect the existence of winning strategie$dionulas valid int .
& Recall that the strategies mentioned in (Q) refer to a gigsigament-) of values.



mechanical dualization of condition 3’ results in a versibithat corresponds to rule
(=, <,7).

Concluding Remark. We have presented invertible uniform logical rules for tineda-
mental t-norm based fuzzy logi¢s G, andIl, that both provide the basis for Co-NP

de

cision procedures, and may be interpreted within a framewf dialogue games

with bets. However, these rules are also sound and invetfiitsla number of related
logics. This raises the interesting question as to whickrdtigics can be characterized

in

an analogous way. In particular we hope to find a first nhtakulus for Hajek’s

Basic logicBL [10], the logic characterizing all logics based on contimsibnorms.
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