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Abstract

We explore different ways to generalize Hintikka’s classic game theo-
retic semantic to a many-valued setting, where the unit interval is taken
as the set of truth values. In this manner a plethora of characterizations
of  Lukasiewicz logic arise. Among the described semantic games is Giles’s
dialogue and betting game, presented in a manner that makes the relation
to Hintikka’s game more transparent. Moreover, we explain a so-called
explicit evaluation game and a ‘bargaining game’ variant of it. We also
describe a recently introduced backtracking game as well as a game with
random choices for  Lukasiewicz logic.

1 Introduction

Already in the 1960s Jaakko Hintikka [13, 14] introduced game theoretic seman-
tic as an alternative characterization of the Tarskian notion of truth in a model.
Two antagonistic players, where one is in the role of the verifier or proponent
and the other one in the role of the falsifier or opponent of a given formula, step-
wise reduce logically complex formulas until an atomic formula is reached, for
that truth in the given model can be checked immediately. Roughly speaking,
conjunction corresponds to a choice by the opponent, disjunction corresponds
to a choice by the proponent, whereas negation corresponds to a switch of the
players’ roles; existential and universal quantification are analyzed via the choice
of a witnessing domain element by the proponent or the opponent, respectively.
Truth in a model in Tarski’s sense turns out to be equivalent to the existence
of a winning strategy for the initial proponent. At a first glance, this semantic
game seems to be inherently classical. In particular there is no room for impli-
cation, other than defining it by F → G = ¬F ∨G. Moreover, bivalence seems
to be built into the game in an essential manner. However, from the very begin-
ning Hintikka realized that the game triggers a generalization of classical logic
by inviting us to consider what happens if the two players do not have perfect
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information about the choices made during a run of the game. These consid-
erations lead to Independence Friendly (IF-)logic, as later worked out together
with Sandu (see, e.g., [15, 18]).

Independently of Hintikka’s game theoretic semantics, Robin Giles in the
1970s characterized a ‘logic for reasoning about dispersive experiments’, that
coincides with infinitely valued  Lukasiewicz logic, by another type of semantic
game. Giles’s game involves bets on the results of experiments that may show
dispersion, i.e., repeated trials of the same experiments may show different re-
sults; but a fixed success probability is assumed for each experiment. At the
end of the game the players pay a fixed amount of money to the other player for
each their atomic claims, where the corresponding experiments fails. Regard-
ing the rules for decomposing logically complex statements into simpler ones,
Giles did not refer to Hintikka, but rather to the dialogue games suggested
by Lorenzen [16, 17] as a foundation for constructive reasoning. While Giles
initially proposed his game for logical reasoning within theories of physics, he
later motivated the game as a semantic approach to fuzzy logic [11]. Nowadays,
 Lukasiewicz logic is indeed recognized as one of the most important, if not the
most important example of a t-norm based logic over [0, 1] as set of truth values,
i.e., a standard fuzzy logic in the sense of mathematical fuzzy logic [2].

In this paper we provide an overview of different types of semantic games
for  Lukasiewicz logic. We begin, in Section 2, with the observation that Hin-
tikka’s original game for classical logic in fact already characterizes the so-called
weak fragment of  Lukasiewicz logic by simply generalizing the players’ payoffs
from 0 or 1 (for ‘win’ or ‘lose’) to the unit interval [0, 1]. In this fragment of
 Lukasiewicz logic we only have weak conjunction and weak disjunction, mod-
eled by minimum and maximum, respectively, besides negation and the standard
quantifiers. Providing a game based semantics for implication and for strong
(t-norm based) conjunction and disjunction of full  Lukasiewicz logic is a greater
challenge. In Section 3 we present a so-called explicit evaluation game, or E-
game for short, where the players explicitly refer to a truth value associated
with the current formula of the game. In Section 4 we present Giles’s game
(‘G-game’) in a manner that supports the comparison with the other games
of this paper. Since the G-game deviates from Hintikka’s game, but also from
the E-game, by considering more than one current formula at any given state,
we ask whether the focus on a single formula (and a role distribution) can be
restored in a game for full  Lukasiewicz logic, where, unlike in the E-game, we
do not explicitly refer to truth values, but rather identify the payoff for the
proponent of the initial formula with its truth value in the interpretation in
question (like in the G-game). A positive answer is provided in Section 5 by
the so-called B-game, where alternative game states are stored on a stack for
backtracking. An alternative positive answer, where backtracking is avoided, is
obtained in Section 6 by allowing for random choices in some rules of the game.
This so-called R-game is in fact rather close in its overall format to Hintikka’s
original game. The short Section 7 introduces a particular interpretation of the
quantifier rules of semantic games, suggesting that the game can be seen as a
kind of bargaining about the (partial) truth of the given formula. Finally, in the
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Conclusion Section 8) we hint at an interesting relation between (propositional)
IF-logic and the form of randomization in the R-game.

While we will present the rules of the various games in some detail, we refer
to the literature for the proofs the corresponding adequateness theorems.

2 Hintikka’s game and (many) truth values

Hintikka’s semantic game, called H-game here, characterizes truth of a formula
F in a model J for classical first order logic [13, 14, 15]. We will slightly simplify
the original game by restricting attention to sentences (closed formulas) and by
stipulating that there is a constant for each element c in the domain of J .
We will use the same name c for the constant.1 We call the two players of
the game Myself (or I) and You, respectively. The rules of the game do not
refer directly to the players’ identity, but rather to their current roles at any
given state. With a nod to Lorenzen’s related game based approach to logic [16],
introduced already in the late 1950s, we will speak of the (current) Proponent P
and Opponent O, respectively.2 At every state of an H-game the logical form of
the current formula specifies who is to move at that state. The initial current
formula is the one to be evaluated. Initially, I am in the role of P and You act
as O. The succeeding states are determined according to the following rules:

(RH∧ ) If the current formula is F∧G then O chooses whether the game continues
with F or with G.

(RH∨ ) If the current formula is F∨G then P chooses whether the game continues
with F or with G.

(RH¬ ) If the current formula is ¬F , the game continues with F , except that the
roles of the players are switched: the player who is currently acting as P,
acts as O at the the next state, and conversely for the current O.

(RH∀ ) If the current formula is ∀xF (x) then O chooses a domain element c and
the game continues with F (c).

(RH∃ ) If the current formula is ∃xF (x) then P chooses a domain element c and
the game continues with F (c).

Except for states with negated formulas, the roles of Myself and You remain
unchanged. The game ends when an atomic formula A is hit. The player who
is currently acting as P wins and the other player loses if A is true in the

1The game can straightforwardly be generalized to formulas with free variables and to lan-
guages, where there may not be a constant for every domain element, by explicitly augmenting
formulas by assignments. However we find it more convenient to stick with sentences and to
dispense with extra notation for assignments.

2Hintikka uses Nature and Myself as names for the players and Verfier and Falisifer for
the two roles. To emphasize our interest in the connection to Giles’s game (see Section 4)
we use Giles’s names for the players (I/You) and Lorenzen’s corresponding role names (P/O)
throughout the paper.
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given model J . The game starting with sentence F is called the H-game for F
under J . Note that, like all other games described in this paper, it is a two-
person constant-sum3 extensive game of finite depth with perfect information.
We may view each such game as a tree, where the branches correspond to the
possible runs of the game. Each node of the tree corresponds to a game state
and is labeled with the current formula of that state. A strategy for Myself may
be identified with a subtree obtained by deleting all but one successor nodes
(states) of every node where I can choose between different moves. If I win at
all leaf nodes (final states), such a tree is called a winning strategy for Myself.
Given these notions, one can straightforwardly show by backward induction that
the H-game characterizes classical logic in the following sense.

Theorem 1 (Hintikka). A sentence F is true in a (classical) interpretation J
(in symbols: ‖F‖J = 1) iff I have a winning strategy in the H-game for F
under J .

Regarding many-valued logics, our first important observation is that almost
nothing has to be changed in Hintikka’s game to obtain a characterization of
so-called ‘weak  Lukasiewicz logic’. To make this precise, let us fix the following
notions. (Full)  Lukasiewicz logic  L provides two forms of conjunction: weak
conjunction (∧) and strong conjunction (&) and two forms of disjunction: weak
disjunction (∨) and strong disjunction (⊕); moreover, we have negation (¬),
implication (→), the constant “falsity” (⊥), and the standard quantifiers (∀
and ∃). In weak  Lukasiewicz logic  Lw only ∧, ∨, ¬, ∀, and ∃ are considered.4

The standard (‘Tarskian’) semantics of these connectives and quantifiers is given
by:

‖F ∧G‖J = min(‖F‖J , ‖G‖J ) ‖F &G‖J = max(0, ‖F‖J + ‖G‖J − 1)
‖F ∨G‖J = max(‖F‖J , ‖G‖J ) ‖F ⊕G‖J = min(1, ‖F‖J + ‖G‖J )
‖⊥‖J = 0 ‖¬F‖J = 1− ‖F‖J
‖F → G‖J = min(1, 1− ‖F‖J + ‖G‖J )
‖∀xF (x)‖J = infc∈D(‖F (c)‖J ) ‖∃xF (x)‖J = supc∈D(‖F (c)‖J )

where D is the domain of J , which we again identify with the set of constants.
J now assigns a value ‖A‖J ∈ [0, 1] (and not just ∈ {0, 1}, as in classical logic)
to each atomic formula A.

Note that the connectives of weak  Lukasiewicz logic  Lw coincide with those
considered in the H-game. Therefore only the winning conditions have to be
generalized in playing the H-game with respect to the language of  Lw. In fact,
we may just identify the payoff for P with the truth value ‖A‖J and the payoff
for O with 1−‖A‖J if the game ends with the atomic formula A. We express this

3Hintikka’s game, like the explicit evaluation game of Section 3, actually is a game where
no payoff values are specified; rather it is sufficient to say that one player wins and the other
player loses the game. This can be considered a special case of constant-sum by identifying
winning with payoff 1 and losing with payoff 0.

4One can also find the name ‘Kripke-Zadeh logic’ for this fragment of  L in the literature
(see, e.g., [1]). The well-known textbook [19] even simply speaks of ‘fuzzy logic’. We will
focus on  Lukasiewicz logic in this paper and thus prefer to use the name  Lw.
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by saying that the game is under J . It is not hard to see that the backward
induction argument that leads to Theorem 1 for classical logic, matches the
above truth functions for ∧, ∨, and ¬ (also) if we generalize payoffs from {0, 1}
to [0, 1]. However for the quantifiers a complication arises: there might be
no domain element d such that ‖F (d)‖J = infc∈D(‖F (c)‖J ) or e such that
‖F (e)‖J = supc∈D(‖F (c)‖J ). A simple way to deal with this fact is to restrict
attention to so-called witnessed models [12], where constants that witness all
arising infima and suprema are assumed to exist. In other words: infima are
minima and suprema are maxima in witnessed models. A more general solution
refers to optimal payoffs up to some ε.

Definition 1. Suppose that, for every ε > 0, player X has a strategy that
guarantees her a payoff of at least r − ε, while her opponent has a strategy that
ensures that X’s payoff is at most r + ε, then r is called the value for X of the
game.

This notion is closely related to the game theoretic concept of an epsilon-
equilibrium, also known as near-Nash equilibrium. For the type of games consid-
ered in this paper (two-person constant-sum games of finite depth with perfect
information) the existence of a unique value is guaranteed by general game the-
oretic results. The notion of a value allows us to concisely state the following
generalization of Theorem 1 to a many valued setting. (A proof can be found
in [8].)

Theorem 2. An  Lw-sentence F evaluates to ‖F‖J = r in an interpretation J
iff the H-game for F under J has value r for Myself.

Characterizing not just  Lw, but full  Lukasiewicz logic  L is a greater challenge.
The following sections will present different ways to accomplish this task.

3 An explicit evaluation game

As we have seen in the previous section, the rules ofH-game do not change when
we move from classical logic to weak  Lukasiewicz logic. The difference between
the two versions of the game can be interpreted as a difference of attitude
regarding the truth of the initial claim. In the classical case my attitude is
strict — either I fully succeed to defend truth or I completely fail. In the many-
valued case my attitude to truth is rather loose, in the sense that I expect to
be able to defend the truth of the claim only up to some (quantifiable) extent.
Formally this is reflected by the fact that the first game is a win/lose game while
the second one is a constant-sum game. The explicit evaluation game (E-game)
that we present in this section is closer to the classical case. I have to be strict
about the initial claim again, but not about its full truth, but rather about its
degree of truth. In particular I have to claim explicitly a minimal truth value
of the claim I want to defend. This entails that the value of a formula is an
explicit parameter of the initial state and consequently also of all the following
states of the game. At the end of the game I either (fully) succeed to defend this
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value or I (completely) fail. So explicit evaluation games are win/lose games
again. Loosely speaking, the difference between the H-game and the E-game in
a many-valued setting can be paraphrased as follows: Instead of being partially
satisfied about strict truth I have to be strict about the partial truth.

The formal set-up of an explicit evaluation game (E-game) is similar as in
the previous section. The game starts with my claim that the value ‖F‖J of a
closed formula F of first-order  Lukasiewicz logic  L in a model J is at least r for
some r ∈ [0, 1]. To simplify the rules of the game we again assume that there is
a constant for each element of the domain. I start in the role of Proponent P,
while You are initially the Opponent O. At every state there is a unique rule
to be applied, determined by the logical form of the current formula. While in
the H-game each rule refers to at most one action by one of the players, some
E-game rules consist of two actions — typically one of the players modifies the
value of the formula and the other one chooses a subformula to continue with.

The rules for weak conjunction and disjunction remain the same as in H-
game. The only difference is, that the state of the game now also contains a
reference to a value. The value however does not change in this kind of move.

(RE∧) If the current state is (F ∧ G, r) then O chooses whether the game con-
tinues with (F, r) or with (G, r).

(RE∨) If the current state is (F∨G, r) then P chooses whether the game continues
with (F, r) or with (G, r).

The rule for strong disjunction consists of two actions. First (the current) P
divides the value of the current formula between the disjuncts; then O chooses
one of the disjuncts (with the corresponding value) for the next state of the
game.

(RE⊕) If the current state is (F⊕G, r), then P chooses rF , rG such that rF+rG =
r and O chooses whether the game continues with (F, rF ) or with (G, rG).

Note that the rule RE∨ for weak disjunction can be seen as a restricted case
of the rule RE⊕ for strong disjunction, where either rF = r and rG = 0 or,
conversely, rG = r and rF = 0.

Negation corresponds to the role switch, as in H-game. However switching
formulas and the corresponding values is no longer enough, but now includes a
change of the value as well. If O denies P’s claim that ‖¬F‖J ≥ r then she
asserts that ‖¬F‖J ≤ r′ for some r′ strictly larger than r, which amounts to
claiming ‖F‖J ≥ 1− r′.

(RE¬) If the current state is (¬F, r) then O chooses r′ > r and the game con-
tinues with (F, 1− r′) with the roles of players switched.

The rule for the strong conjunction is dual to the one of strong disjunction.
It again refers to two actions: modification of the value by O and a choice by P.
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(RE&) If the current state is (F&G, r) then P chooses rF , rG such that rF +rG =
r and O chooses whether the game continues with (F, r + rF ) or with
(G, r + rG).

The universal quantifier rule is analogous to the one for the H-game. The
state (∀xG(x), r) corresponds to P’s claim that inf{‖G(c)‖J | c ∈ D} ≥ r.
O has to provide a counterexample, i.e., to find a d such that ‖G(d)‖J < r.
Clearly the choice of a counterexample is independent of the (non)existence of
an witnessing element for the infimum.

(RE∀) If the current state is (∀xF (x), r) then O chooses some c ∈ D and the
game continues with (F (c), r).

The situation is different in the case of the existential quantifier. Now P has
to provide a witness for the existential claim, i.e. for sup{‖G(c)‖J | c ∈ D} ≥ r.
But as mentioned in Section 2, if the supremum is not a maximum, this poses
a problem. It can happen, that Ps claim is true, but that nevertheless there
exists no witnessing element that would show this. The solution for the case of
non-witnessed models is similar to the one from Section 2. We relax the winning
condition for P and allow her to provide a witness for which the value of the
formula might not be equal to r, but only arbitrarily close. To this aim we let
O decrease the value of the formula (where, of course, it is in O’s interest to
decrease it as little as possible) and only then require P to find a witness (for
the decreased value). Note that this does not affect O’s winning condition. If
in the state (∃xF (x), r) r is strictly greater than sup{‖F (c)‖J | c ∈ D} then
O can always win by choosing an ε between the supremum and r. Formally
the just discussed rule can simply be stated without explicit involvement of ε
as follows.

(RE∃) If the current state is (∃xF (x), r) then O chooses r′ < r and P chooses
c ∈ D; the game continues with (F (c), r′).

Atomic formulas correspond to tests, like in the classical H-game. If the
current state is (F, r), where F is an atomic formula, then the game ends and
(the current) P wins if ‖F‖J ≥ r, otherwise O wins.

The following adequateness theorem states that the game semantics given
by the E-game corresponds to the standard truth functional semantics for
 Lukasiewicz logic. Its proof can be found in [3].

Theorem 3. An  L-sentence F evaluates to ||F ||J ≥ r in interpretation J iff I
have a winning strategy in the E-game under J starting with (F, r).

4 Giles’s game

Already in the 1970’s Giles [9, 10] presented a game based interpretation of  L
that in some aspects deviates more radically from Hintikka’s game than the
explicit evaluation game considered in Section 3. In fact Giles did not refer to
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Hintikka, but rather to the logical dialogue game suggested by Lorenzen [16, 17]
as a foundation for constructive reasoning. Initially Giles proposed his game as a
model of logical reasoning within theories of physics; but later he motivated the
game explicitly as an attempt to provide “tangible meaning” for fuzzy logic [11].
We briefly review the essential features of Giles’s game, in a variant called G-
game, that facilitates comparison with the other semantic games mentioned in
this paper.

Again the players are Myself (I) and You, and the roles are referred to as P
and O. Unlike in the H- and in the E-game, a game state now contains more
that one current formula, in general. More precisely a state of a G-game is given
by

[F1, . . . , Fm | G1, . . . , Gn] ,

where {F1, . . . , Fm} is the multiset of formulas currently asserted by You, called
your tenet, and {G1, . . . , Gn} is the multiset of formulas currently asserted by
Myself, called my tenet. At any given state an occurrence of a non-atomic
formula H is picked arbitrarily and distinguished as current formula.5 If H is
in my tenet then I am acting as P and You are acting as O. Otherwise, i.e.
if H is in your tenet, You are P and I am O. States that only contain atomic
formulas are called final. At non-final states the game proceeds according to
the following rules:

(RG∧) If the current formula is F ∧G then the game continues in a state where
the indicated occurrence of F ∧G in P’s tenet is replaced by either F or
by G, according to O’s choice.

(RG∨) If the current formula is F ∨G then the game continues in a state where
the indicated occurrence of F ∨G in P’s tenet is replaced by either F or
by G, according to P’s choice.

(RG→) If the current formula is F → G then the indicated occurrence of F → G
is removed from P’s tenet and O chooses whether to continue the game at
the resulting state or whether to add F to O’s tenet and G to P’s tenet
before continuing the game.

(RG∀ ) If the current formula is ∀xF (x) then O chooses an element c of the
domain of J and the game continues in a state where the indicated oc-
currence of ∀xF (x) in P’s tenet is replaced by F (c).

(RG∃ ) If the current formula is ∃xF (x) then P chooses an element c of the domain
of J and the game continues in a state where the indicated occurrence of
∃xF (x) in P’s tenet is replaced by F (c).

5It turns out that the powers of the players of a G-game are not depended on the manner in
which the current formula is picked at any state. Still, a more formal presentation of G-games
will employ the concepts of a regulation and of so-called internal states in formalizing state
transitions. We refer to [7] for details.
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No rule for negation is needed if ¬F is defined as F → ⊥. Likewise, rules for
strong conjunction & and ⊕ can either be dispensed with by treating these con-
nectives as defined from the other connectives or by introducing corresponding
rules. (See [5, 7] for presentations of a rule for strong conjunction.) If no non-
atomic formula is left to pick as current formula, the game has reached a final
state

[A1, . . . , Am | B1, . . . , Bn] ,

where the Ai and Bi are atomic formulas. With respect to an interpretation J
(i.e, an assignment of truth values ∈ [0.1] to all atomic formulas) the payoff for
Myself at this state is defined as

m− n+ 1 +
∑

1≤i≤n

‖Bi‖J −
∑

1≤i≤m

‖Ai‖J ,

where empty sums are identified with 0. The G-game is called under J if it has
these payoff values.

Just like for the H-game for  Lw, we need to take into account that suprema
and infima are in general not witnessed by domain elements. Note that Defini-
tion 1 (in Section 2) does not refer to any particular game. We may therefore
apply the notion of the value of a game to G-games as well. A G-game where
my tenet at the initial state consists of a single formula occurrence F , while
your tenet is empty, is called a G-game for F . This allows us to express the
adequateness of G-games for  Lukasiewicz logic in direct analogy to Theorem 2.

Theorem 4 (Giles6). An  L-sentence F evaluates to ‖F‖J = r in an interpre-
tation J iff the G-game for F under J has value r for Myself.

Readers familiar with the original presentation of the game in [9, 10] might
be inclined to protest that we have skipped Giles’s interesting story about bet-
ting money on the results of dispersive experiments associated with atomic
assertions. Indeed, Giles proposes to assign an experiment EA to each atomic
formula A. While each trial of an experiment yields either “yes” or “no” as its
result, successive trials of the same experiment may lead to different results.
But for each experiment EA there is a known probability 〈A〉 that the result
of a trial of EA is negative. Experiment E⊥ always yields a negative result;
therefore 〈⊥〉 = 1. For each occurrence (‘assertion’) of an atomic formula in a
player’s final tenet, the corresponding experiment is performed and the player
has to pay one unit of money (say 1€) to the other player if its result is neg-
ative. Therefore Giles calls 〈A〉 the risk associated with A. For the final state
[A1, . . . , Am | B1, . . . , Bn] the expected total amount of money that I have to
pay to You (my total risk) is readily calculated to be( ∑

1≤i≤m

〈Ai〉 −
∑

1≤i≤n

〈Bi〉
)
€.

6Giles [9, 10] in fact only sketched a proof for the language without strong conjunction.
For a detailed proof of the propositional case, where the game includes a rule for strong
conjunction, we refer to [7].
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Note that the total risk at final states translates into the payoff specified above
for G-games via ‖A‖J = 1 − 〈A〉. To sum up: Giles’s interpretation of truth
values as inverted risk values associated with bets on dispersive experiments is
completely independent from the semantic game for the stepwise reduction of
complex formulas to atomic sub-formulas. In principle, one can interpret the
payoff values also for the H-game as inverted risk values and speak of bets on
dispersive experiments at final states also there. The only (technically incon-
sequential) difference to the original presentation is that one implicitly talks
about expected payoff (inverted expected loss of money), rather than of certain
payoff when the betting scenario is used to interpret truth values.

5 A backtracking game for  Lukasiewicz logic

As we have seen above, characterizing full  Lukasiewicz logic  L (in contrast to
weak  Lukasiewicz logic  Lw) by a semantic game seems to call for some non-trivial
deviation from Hintikka’s original game theoretic semantics. In the E-game of
Cintula and Majer (see Section 3) the players explicitly refer to some truth value
at every state of the game, whereas in Giles’s game (see Section 4) one has to
take into account a whole multiset of formulas at a given state in general. In this
and in the next section we indicate the possibility to define semantic games for  L
that focus on a single formula and a given role assignment at each state without
explicitly referring to truth values. Moreover, unlike in the explicit evaluation
game of 3, but like in the (many-valued) H-game, there will be a direct match
between payoffs and truth values.

We propose to ‘sequentialize’ the concurrent options for further moves that
are considered at a given state of Giles’s game. More precisely, we introduce
a (game) stack on which information about an alternative state is stored at
certain moves. Initially the stack is empty. Upon reaching an atomic formula
the game only ends if the stack is empty. Otherwise, the game backtracks to the
state indicated by the uppermost stack element. In addition to the stack, we
need to keep track of the preliminary payoff σP for P. The preliminary payoff
σO for O is −σP throughout the game. Initially, σP = 1. When the game ends
the preliminary payoff becomes final. We will call the resulting variant of Giles’s
game backtracking game for  L or B-game for short.

The rules RH∧ , RH∨ , RH∀ , and RH∃ (see Section 2) are taken over from the
H-game into the B-game without change: no reference to the game stack or
to σP and σO is needed in these cases. The rules for strong conjunction and
implication are as follows:

(R L
&) If the current formula is F&G then P can choose either (1) to continue

the game with F and to put G together with the current role assignment
on the stack, or (2) to continue the game with ⊥.

(R L
→) If the current formula is F → G then O can choose either (1) to continue

the game with G and to put F on the stack together with the inverted
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role assignment, or (2) to continue the game with the top element of the
stack. If the stack is empty, the game ends.

¬F is treated as F → ⊥ as therefore does not need a specific rule.

When the current formula is an atom A then ‖A‖J − 1 is added to σP and the
same value is subtracted from σO.

We speak of the B-game for F under J if the game starts with the current
formula F where initially I am P and You are O.

Theorem 5. An  L-sentence F evaluates to r in an interpretation J , i.e.,
‖F‖J = r, iff the value of the B-game for F under J for Myself is r.

We refer to [4] for a proof of Theorem 5. An alternative proof is obtained
by transforming Giles’s game into a B-game and vice versa.

6 A semantic game with randomized choice

Although the B-game described in Section 5 focuses on a single formula at any
given state, the backtracking mechanism, that entails the reference to a stack
and to preliminary payoffs, renders the B-game rather different from the H-
game. A game for full  Lukasiewicz logic  L that is much closer in spirit and
structure to Hintikka’s original game can be obtained by introducing a simple
form of randomization. So far we have only considered rules where either Myself
or You (as P or O) choose the sub-formula of the current formula with which the
game continues. In game theory one often introduces Nature as a special kind of
additional player, who does not care what the next state looks like when it is her
turn to move and therefore is modeled by a uniformly random choice between
all moves available to Nature at that state. As we will see below, introducing
Nature leads to increased expressive power of semantic games. In fact, to keep
the presentation of the games simple, we prefer to leave the role of Nature only
implicit and just speak of random choices, without attributing them officially
to a third player. The most basic rule of the indicated type refers to a new
propositional connective π and can be formulated as follows.

(RRπ ) If the current formula is FπG then a uniformly random choice determines
whether the game continues with F or with G.

As shown in [6], adding rule RRπ to the H-game with payoffs in [0, 1] yields
a characterization of a logic that properly extends  Lw, but is incomparable
with  L: the connective π is not definable from the connectives of  L, nor can
strong conjunction, strong disjunction, or  L-implication be defined from π, ∧,
∨, and ¬.

If we adapt Definition 1 (Section 2) by replacing ‘payoff’ with ‘expected
payoff’, then the following truth function can be straightforwardly extracted
from the game.

‖FπG‖J = (‖F‖J + ‖G‖J )/2.
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Note that this is related to the truth function for strong disjunction ⊕ in  L:

‖F ⊕G‖J = min(1, ‖F‖J + ‖G‖J ).

This observation suggests the following rule for strong disjunction.

(RR⊕ ) If the current formula is G⊕F then a random choice determines whether
to continue the game with F or with G. Moreover the payoff for P is
doubled, but capped to 1.

For the resulting R-game game, we retain the principle that the payoff for O
is always inverse to that for P. In other words, like all other games considered
in this paper, the R-game is constant sum.

Since all other connectives can be defined from ⊕ and ¬ in  L, it remains to
specify a rule for negation. It turns out that Hintikka’s original rule (RH¬ ), that
simply consists in a role switch, suffices for this purpose.

Alternatively, one may synthesize explicit rules for the other connectives by
combining role switch with the rule for ⊕. For example, the following rule for
implication arises in this manner.

(RR→) If the current formula is F → G then a random choice determines whether
to continue the game with G or with F , where in the latter case the roles of
P and O are switched. Moreover the payoff for P is doubled, but capped
to 1.

Independently of whether the rules for connectives other than ⊕ and ¬ are made
explicit or not, we speak of the R-game for F under J if the game starts with
the current formula F where initially I am P and You are O.

Theorem 6. An  L-sentence F evaluates to r in an interpretation J , i.e.,
‖F‖J = r, iff the value of the R-game for F under J for Myself is r.

A proof of Theorem 6 is implicit in the somewhat more general investigation
of games with randomized choices presented in [4].

7 Semantic games as bargaining games

We finally briefly indicate an interpretation of the quantifier rules of seman-
tic games that illustrates that game based evaluation can be interpreted as
‘negotiating’ the value of the given formula between the players. The aim of
the Proponent P is to push the value of the formula up, while the aim of the
Opponent O is to push it down.

Assume that we start with a formula in a prenex form. (In  Lukasiewicz logic
every formula can be transformed into an equivalent one that is in prenex form.)
Like in the H-game (as well as in the G-, B-, and R-game) the quantifier moves
consist of choices of witnesses in which players try to maximize (minimize) the
value of the formula. In this sense we can see the ‘quantifier part’ of the game as
a kind of negotiation or bargaining. When all variables have been replaced by
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constants, we stipulate that the value of the remaining (quantifier-free) formula
is calculated in some manner and payoffs are distributed in the same way as
in the H-game for weak  Lukasiewicz logic. Following [3], we call this version
of a semantic game a bargaining game.7 More formally, the bargaining game
starts with a prenex  L-formula F and refers to a given interpretation J with
domain D. The only rules are the two quantifier rules of the H-game.

(RH∀ ) If the current formula is ∀xF (x) then O chooses c ∈ D and the game
continues with F (c).

(RH∃ ) If the current formula is ∃xF (x) then P chooses c ∈ D and the game
continues as F (c).

If the current formula is a quantifier free formula F then the game ends with
payoff ‖F‖J for P and payoff 1− ‖F‖J for O.

We remark that instead of taking the value under J of the quantifier free
part of the formula as given, we may want to continue the game as in any of
the other games for  Lukasiewicz logic presented in the sections above.

Theorem 7. A  L-sentence F evaluates to ‖F‖J = r in interpretation J iff the
bargaining game for F under J has value r for Myself.

8 Conclusion

The results collected in this paper show that Hintikka’s original semantic game
for classical logic can be generalized in various ways to  Lukasiewicz logic. In
some sense, the very concept of game theoretic semantics invites the considera-
tion of a many-valued setting, since game theory provides the tools for analyzing
interactions, where at the final states certain payoffs are distributed to the par-
ticipating players. Instead of just speaking of winning or losing a game, we
may pay attention to particular payoff values. For semantic games, i.e., for
games that proceed by reducing logically complex formulas to atomic ones, this
suggests the identification of possible payoff values with truth values.

One may argue that the full power of game theoretic semantics only arises
when the possibility of incomplete information about previous moves in a run
of a game is taken into account. Indeed, the resulting IF-logic of Hintikka and
Sandu [15, 18] is much more expressive than classical logic and shows features
that cannot easily be captured by Tarskian semantics. A connection between
many-valued logics and IF-logic, restricted to finite models, has recently been
established by so-called equilibrium semantics (see, e.g., [18, 21]). In this ap-
proach weak  Lukasiewicz logic arises by considering mixed strategies that induce
intermediate expected payoff values in [0, 1], even if each atomic formula is eval-
uated to either 0 or 1. Also the random choices in our R-game can be seen as
importing incomplete information into the game. The connection with (propo-
sitional) IF-logic can be made precise by the observation that the truth function

7The term ‘bargaining game’ has a different meaning in game theory (see, e.g., [20]). We
do not want to allude to those types of (not logic-related) games here.
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of FπG coincides with that of (F ∨/{∧} G) ∧ (G ∨/{∧} F ) according to equilib-
rium semantics. (Here ∨/{∧} indicates that P, when choosing the right or left
disjunct, does not know which conjunct has been chosen by O). We suggest that
the relation between equilibrium semantics and semantic games with random
choices should be explored more systematical in future work.

A further connection with IF-logic and topic for future research is suggested
even more directly by the games considered in the paper. Which generaliza-
tion(s) of  Lukasiewicz logics arise(s) if we relax the assumption of complete
information in those games? (See [3] for first hints in that direction.)
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