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Abstract. Motivated by aspects of reasoning in theories of physics, Robin Giles defined

a characterization of infinite valued  Lukasiewicz logic in terms of a game that combines

Lorenzen-style dialogue rules for logical connectives with a scheme for betting on results

of dispersive experiments for evaluating atomic propositions. We analyze this game and

provide conditions on payoff functions that allow us to extract many-valued truth functions

from dialogue rules of a quite general form. Besides finite and infinite valued  Lukasiewicz

logics, also Meyer and Slaney’s Abelian logic and Continuous Hoop Logic turn out to be

characterizable in this manner.
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1. Introduction and overview

Already in the 1970s Robin Giles [10, 11] combined dialogue rules for the
systematic reduction of arguments involving logically complex statements
to simpler statements with a scheme for betting on the results of dispersive
experiments and proved that the resulting game is sound and complete for
(infinite-valued)  Lukasiewicz logic. While Giles explicitly referred to Paul
Lorenzen’s dialogical semantics for intuitionistic logic [14, 15], his game ar-
guably should be thought of as a special form of an evaluation game, rather
than a Lorenzen-style game for characterizing validity: in devising optimal
strategies it is essential that the players know the payoff values associated
with atomic statements. On the other hand, Giles’s game is also not just a
variant of Hintikka’s evaluation game for classical first order logic. Like in
Lorenzen’s dialogue game, more than just one sub-formula of the originally
asserted formula has to be considered in general at any particular state of
the game. However, in contrast to Lorenzen’s setup, no strict regulation on
the successions of moves has to be imposed on the two players. These and a
number of other features render Giles’s game an interesting object of study,
independently from the renewed interest in  Lukasiewicz logic in the context
of t-norm based fuzzy logics [12, 16].

In [8] and [7] a connection between analytic proofs in so-called hyperse-
quent calculi for  Lukasiewicz logic and winning strategies for the proponent
of a formula in Giles’s game has been investigated. In [3] and [6] it is ex-
plained how that connection can be generalized to cover also the two other
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fundamental t-norm based fuzzy logics, Gödel logic and Product logic. This
generalization however comes at a price: not only does one have to aug-
ment the dialogue rule for implication in a somewhat problematic manner,
but one also has to distinguish between two different types of game states,
indicating whether for the evaluation of final game states a strict (<) or a
non-strict comparison (≤) between the values of atomic formulas is to be
used. More importantly from our current point of view, one also loses the
direct correspondence between payoff values and truth values that one can
observe about Giles’s original game.∗

Here, we are not interested in the relation between proof theory and
game based semantics for many-valued logics, but ask to what extent the
neat interpretation of truth values in  Lukasiewicz logics as payoff values
resulting from optimal dialogue game strategies can be extended to other
many-valued logics. The aim is to stick as closely as possible to the elegant
structure of Giles’s game, while at the same time replacing Giles’s very
particular payoff scheme and his specific rules for (a selection of) logical
connectives with general conditions on viable payoff functions and on the
format of dialogue rules. Our results imply that one can indeed extract
a truth functional semantics from any Giles-style game that satisfies some
rather weak conditions. It also turns out that, in spite of the generality of
the game format, only a rather narrow family of logics can be characterized
in this manner: the only prominent members of this family are, besides all
finite and the infinite valued  Lukasiewiz logics ( L∞,  Ln), Continuous Hoop
Logic CHL [4], and Meyer and Slaney’s Abelian Logic A [17].

The paper is organized as follows. Section 2 describes our base camp:
Giles’s original game for  Lukasiewicz logic. In Section 3 we add rules for
so-called ‘strong conjunction’ and isolate the role of a ‘principle of limited
liability’. Section 4 presents general conditions on suitable payoff functions,
while Section 5 introduces a general format for logical dialogue rules, that
allows us to lift, in Section 6, payoffs from final game states to arbitrary
ones. In Section 7 we show how a number of known logics emerge as con-
crete instances of our general framework. Section 8 concludes with a brief
summary and an outlook on topics for further investigation.

∗If one is willing to pay the indicated price, however, one obtains a game that cor-
responds to a quite remarkable (hypersequent) calculus with uniform rules for all three
fundamental t-norm based fuzzy logics. This proof system enjoys, among other desir-
able properties, cut elimination, invertible rules, reduction to atomic axioms, unrestricted
permutability of logical rules, and moreover supports efficient proof search [3, 6].
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2. Giles’s game for  Lukasiewicz logic

In [10] and, in more detail, in [11] Robin Giles sets out to determine a logic
for reasoning about physical theories with dispersive experiments, meaning
that repeated trials of the same experiment may yield different results. (The
most familiar examples arise from quantum mechanics.) To provide ‘tangible
meaning’ of logical connectives Giles refers to Lorenzen’s dialogue games
for intuitionistic and classical logic [14, 15]. More precisely, Giles employs
Lorenzen’s so-called particle rules to reduce arguments involving logically
complex assertions to arguments about atomic assertions. To evaluate the
latter Giles assigns an dispersive experiments to each atomic proposition
and lets the players bet on the corresponding results. We follow Giles in
referring to the players as me and you, respectively.

Let us first review the betting phase of the game, largely ignoring Giles’s
motivation pertaining to the philosophy of science. Each atomic proposition
p is associated with an experiment (test) Ep, which has a fixed probabil-
ity π(Ep) of yielding a positive result. Giles identifies this (subjective) prob-
ability with a player’s expectation that a trial of Ep will end positively and
cashes out this interpretation by the following betting scheme. I promise
to pay to you a fixed amount of money, say 1€, for each of my assertions
of p, where a corresponding trial of Ep yields a negative result. Likewise,
you have to pay 1€ to me for each of your assertions that does not pass the
associated test. Note that it matters whether we assert the same proposi-
tion just once or more often. A final game state at which [p1, . . . , pn] is the
multiset of atomic assertions made by you and [q1, . . . , qm] is the multiset of
atomic assertions made by me is denoted by

[p1, . . . , pn | q1, . . . , qm] .

Let us define the risk value of p by 〈p〉r = 1 − π(Ep). We can then specify
the expected total amount of money (in €) that I have to pay to you at the
exhibited state by

〈p1, . . . , pn | q1, . . . , qm〉r =
∑

1≤i≤m
〈qi〉r −

∑
1≤j≤n

〈pj〉r .

We call this number briefly my risk associated with that state. Note that
the risk can be negative, i.e., the risk values of the relevant propositions may
be such that I expect a net payment by you to me.

As an example consider the state [p, p | q], where you have asserted p
twice and I have asserted q once. Three trials of experiments are involved in
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the corresponding evaluation: two trials of Ep, one for each of your assertions
and one trial of Eq to test my assertion. If 〈p〉r = 0.2, i.e., if the probability
that the experiment Ep yields a positive result is 0.8, and 〈q〉r = 0.5 then
〈p, p | q〉r = 0.1. This means that my expected loss of money according to
our betting scheme is 0.1€. If, on the other hand, 〈p〉r = 〈q〉r = 0.5, then
〈p, p | q〉r = −0.5, which means that I expect an (average) gain of 0.5€.

In order to evaluate logically complex assertions, Giles defines dialogue
rules for the reduction of disjunctive, conjunctive, implicative, and negated
statements to their sub-statements. In Giles’s diction—except for changing
gender and currency—these rules are as follows:

• She who asserts A ∨ B undertakes to assert either A or B at her own
choice.

• She who asserts A ∧ B undertakes to assert either A or B at her oppo-
nent’s choice.

• She who asserts A ⊃ B agrees to assert B if her opponent asserts A.

• She who asserts ¬A agrees to pay 1€ if her opponent asserts A.

The last rule mixes reduction of formulas with final evaluation. To retain
a strict separation between the dialogue phase of the game (reducing argu-
ments involving complex assertions to arguments about simpler assertions)
and the betting phase (evaluation of final game states by reference to disper-
sive experiments) we introduce the propositional constant ⊥ and stipulate
that it refers to an experiment that always yields a negative result and there-
fore corresponds to the (certain) payment of 1€ by any player asserting this
formula. By defining ¬A as abbreviation for A ⊃ ⊥ the above negation rule
thus becomes redundant. As will get clear below, the risk associated with
an assertion of ¬A is inverse to the risk for A.

Giles also considers rules for evaluating quantified formulas. However,
these rules involve some complications that we will not have to deal with
since we are only interested in propositional logic here. At that level, Giles’s
main result can be formulated as follows.

Theorem 1 (Giles). For every assignment of risk values to propositional
variables I have a strategy for avoiding positive expected loss of money in the
game starting with my assertion of a formula F if and only if F is valid in
 Lukasiewicz logic  L∞.

To render this paper self-contained, we still have to formally specify
 Lukasiewicz logic  L∞. Formulas of  L∞ are built up from propositional vari-
ables and the propositional constant ⊥ using the connectives ¬, ∧, ∨, ⊃, and
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augmented by so-called strong conjunction &. The corresponding semantics
extends any assignment (valuation) v of values in [0, 1] to propositional vari-
ables to arbitrary formulas as follows:

v(⊥) = 0 v(¬A) = 1− v(A)
v(A ∧B) = min(v(A), v(B)) v(A&B) = max(0, v(A) + v(B)− 1)
v(A ∨B) = max(v(A), v(B)) v(A ⊃ B) = min(1, 1− v(A) + v(B))

A formula F is called valid in  L∞ if v(F ) = 1 for all valuations.

The connection between Giles’s dialogue rules and the valuation func-
tion for the corresponding connective actually is tighter than the above
formulation of Theorem 1 reveals. In fact, the game can be seen as an
evaluation game where risk value assignments correspond to valuations via
〈p〉r = 1−v(p) for all p: the minimal risk r at a final state that I can enforce
by an optimal strategy for a game starting with my assertion of F turns out
to be 1− v(F ).

3. Strong conjunction and the principle of limited liability

The attentive reader will have noticed we have included so-called ‘strong
conjunction’ (&) in defining  Lukasiewicz logic  L∞, while this connective is
not considered by Giles. From the point of view of contemporary mathe-
matical fuzzy logic [12, 16] the clause v(A&B) = max(0, v(A) + v(B) − 1)
is central indeed, since the latter function is one of three fundamental t-
norms—the others being min and multiplication—which determine fuzzy
logics in a canonical way.† However, in fact all connectives of  L∞ can be
defined from ⊃ and ⊥ as follows: ¬A =def A ⊃ ⊥, A&B =def ¬(A ⊃ ¬B),
A ∧B =def A&(A ⊃ B), A ∨B =def ((A ⊃ B) ⊃ B) ∧ ((B ⊃ A) ⊃ A).

Nevertheless, from Giles’s own perspective of providing ‘tangible mean-
ing’ of logical connectives, it is somewhat odd to consider exclusively a
dialogue rule for conjunction, where only one of the conjuncts has to be
defended. One might rather be tempted to add the following rule:

• She who asserts A ∧′ B undertakes to assert both A and B.

However, it is easy to see that this has undesirable effects. E.g., there is
no strategy for avoiding positive risk when initially asserting ⊥ ⊃ (⊥ ∧′ ⊥).
†A t-norm is a commutative, associative, and monotonic function on [0, 1] with 1 as neu-

tral element. Following Hájek [12], any continuous t-norm uniquely determines a (fuzzy)
logic by interpreting it as truth function for conjunction and taking its residuum as truth
function for implication.
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More profoundly, one cannot any longer limit one’s risk associated with
asserting a single formula by 1€. Therefore Giles defends his choice of
conjunction rule, originating with Lorenzen [14], by referring to what he
calls the principle of limited liability. One may interpret the challenge to find
an intuitively convincing rule for conjunction as an effect of dropping the
contraction rule. In this view the principle of limited liability is triggered by
‘going sub-structural’ and it is not surprising that in fact a second, different
form of conjunction arises. Indeed, as pointed out in [8], one can formulate
a simple rule that is adequate for strong conjunction & in  L∞:

• She who asserts A&B undertakes to assert either both A and B, or else
to assert ⊥.

Remember that asserting ⊥ obliges one to pay the agreed upon maximal
‘fine’ of 1€ for asserting a statement that cannot be verified by a corre-
sponding trial of a dispersive experiment (〈⊥〉r = 1). In this sense our rule,
too, is motivated by the principle of limited liability.

With hindsight one can detect yet another form of the principle of limited
liability already at play in Giles’s rule for implication: instead of attacking
A ⊃ B by asserting A to force the opponent to assert B, a player may choose
not to attack A ⊃ B at all. Since the risk associated with A may be higher
than the risk associated with B, the latter choice (no attack) amounts to
an option that limits my risk originating with your assertion of A ⊃ B—a
risk that I would not be able to avoid if the rules of the game required that
every asserted implication is to be attacked. We will return to this issue in
Section 7 in connection with Abelian logic A.

For later reference, let us formulate both relevant forms of limiting risk
in a slightly more abstract form:

Limited liability for defense (LLD): A player can always choose to just
assert ⊥ in reply to an attack by her opponent.

Limited liability for attack (LLA): A player can always declare not to
attack an occurrence of a formula that has been asserted by her opponent.

From this general perspective on the principle of limited liability, which does
not refer to particular connectives, it might seem unsatisfying to invoke LLD
only for implication and LLA only for strong conjunction. However it is
straightforward to check that the proof of Theorem 1 as presented in [8]
remains essentially unchanged if LLD and LLA are uniformly imposed on
all specific dialogue rules. To understand this fact it suffices to observe that
a player can never decrease her expected loss (risk) by asserting ⊥ in reply
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to an attack on any statement that is not a strong conjunction, nor can
one’s risk be decreased by not attacking an opponent’s assertion, except for
attacks on implicative statements.

4. General payoff functions

So far we have only dealt with concepts that are closely connected to Giles’s
game for  Lukasiewicz logic  L∞ as presented in [10, 11, 8]. In the following
we aim at a more general framework that, in contrast to the game variants
described in [3] and [6], nevertheless preserves some essential and arguably
quite desirable features of the original game. We will not any longer talk
about specific rules for particular logical connectives. Moreover, we will also
look at the evaluation of final (atomic) game states from a wider perspec-
tive that is neither dependent on philosophical motivations regarding proper
forms of reasoning in physics nor on a specific logical target language.

We will stick to Giles’s convention of referring to the two players as you
and me, respectively.

Definition 1 (Tenet). The tenet Γ of a player (me or you) is the finite
multiset [φ1, . . . , φn] of formulas asserted by that player at a given state of
the game. A tenet is atomic if all formulas in Γ are atomic.

We will denote atomic tenets by lower Greek letters γ, δ, . . . and arbitrary
tenets by upper Greek letters Γ,∆, . . .. Moreover, we write [Γ,∆] to denote
the union of the multisets Γ and ∆ as well as [Γ, φ] instead of [Γ, [φ]], etc.

Definition 2 (Game state). A (game) state [Γ | ∆] consists of two tenets
Γ and ∆, where Γ is your tenet and ∆ is my tenet. A game state is atomic
if Γ and ∆ are atomic.

Ignoring all specific details of Giles’s story about risky bets on dispersive
experiments, we see that the proposed betting scheme boils down to an ordi-
nary payoff function (in the game theoretic sense), i.e., an assignment of real
numbers to all final states of the game. Probabilities (‘risk’) and amounts
of money to be paid by either me or you only serve as an—interesting, but
in principle dispensable—interpretation of those real numbers. This obser-
vation motivates the formulation of general principles for assigning payoff
values to atomic states.

We will only be interested in my payoff and may thus simply speak of
‘the payoff’ associated with an atomic state. (More precisely, we can think
of your payoff for the same state as directly inverse to mine. In other words,
the game is zero-sum. This is codified in Payoff Principle 2, below.)
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Definition 3 (Payoff). A payoff function assigns a value ∈ R to every
atomic game state. The payoff of the game state [γ | δ] is denoted as 〈γ | δ〉.

Payoff Principle 1 (Context independence). A payoff function 〈· | ·〉 is
context independent if for all atomic tenets γ, δ, γ′, δ′, γ′′, and δ′′ the following
holds: If 〈γ′ | δ′〉 = 〈γ′′ | δ′′〉 then 〈γ, γ′ | δ′, δ〉 = 〈γ, γ′′ | δ′′, δ〉.

Context independence entails that the payoff for a state [γ, γ′ | δ, δ′] is
solely determined by the payoffs of its sub-states [γ | δ] and [γ′ | δ′]. This
property will be crucial to achieve a truth functional (compositional) seman-
tics.

Proposition 1. Let 〈· | ·〉 be a context independent payoff function and let
G = [γ, γ′ | δ, δ′] be an atomic game state. Then there exists an associative
and commutative binary operation ⊕ on R such that 〈G〉 = 〈γ | δ〉⊕〈γ′ | δ′〉.

Proof. Assume that 〈γ | δ〉 = 〈γ′′ | δ′′〉 = x and 〈γ′ | δ′〉 = 〈γ′′′ | δ′′′〉 = y.
Then 〈γ′′, γ′′′ | δ′′, δ′′′〉 = 〈γ, γ′′′ | δ, δ′′′〉 = 〈γ, γ′ | δ, δ′〉 by applying context
independence twice. Thus we may write 〈γ, γ′ | δ, δ′〉 = x ⊕ y. Associativ-
ity and commutativity of ⊕ directly follow from the fact that tenets are
multisets.

Remark. We will call ⊕ as specified in Proposition 1 the aggregation function
corresponding to 〈· | ·〉. In Giles’s original game the function ⊕ is ordinary
addition, which motivates our notation.

Payoff Principle 2 (Symmetry). A payoff function 〈· | ·〉 is symmetric if
〈γ | δ〉 = −〈δ | γ〉 for all atomic tenets γ and δ.

If 〈· | ·〉 is context independent and symmetric then the payoff of an
arbitrary atomic game state can be decomposed as follows:

〈p1, . . . , pn | q1, . . . , qm〉
= 〈p1 |〉 ⊕ . . .⊕ 〈pn |〉 ⊕ 〈| q1〉 ⊕ . . . 〈| qm〉
=− 〈| p1〉 ⊕ . . .⊕−〈| pn〉 ⊕ 〈| q1〉 ⊕ . . .⊕ 〈| qm〉 .

Note that symmetry implies that 〈γ | γ〉=0. In other words, the payoff
is 0 in an atomic state where your tenet is identical to mine. Moreover, this
shows that one could focus on single tenets instead of two-sided states.

Proposition 2. Let 〈· | ·〉 be a context independent and symmetric payoff
function. Then
(i) − distributes over the corresponding aggregation function ⊕, i.e., for all
payoff values x and y, −(x⊕ y) = −x⊕−y, and
(ii) − is inverse to ⊕, i.e., x⊕−x = 0 holds for all values x.
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Proof.
(i) Let [γ1 | δ1] and [γ2 | δ2] be two atomic states such that 〈γ1 | δ1〉 = x and
〈γ2 | δ2〉 = y. Then

−(x⊕ y) = −(〈γ1 | δ1〉 ⊕ 〈γ1 | δ2〉) by definition of x, y
= −〈γ1, γ2 | δ1, δ2〉 by Proposition 1
= 〈δ1, δ2 | γ1, γ2〉 by Payoff Principle 1 (symmetry)
= 〈δ1 | γ1〉 ⊕ 〈δ2 | γ2〉 by Proposition 1
= −〈γ1 | δ1〉 ⊕ − 〈γ2 | δ2〉 by Payoff Principle 1 (symmetry)
= −x⊕−y by definition of x, y.

(ii) Let [γ | δ] be an atomic game state such that 〈γ | δ〉 = x. Then

x⊕−x= 〈γ | δ〉 ⊕ − 〈γ | δ〉 by definition of x
= 〈γ | δ〉 ⊕ 〈δ | γ〉 by Payoff Principle 1 (symmetry)
= 〈γ, δ | γ, δ〉 by Proposition 1
= 〈γ | γ〉 ⊕ 〈δ | δ〉 by Proposition 1
= 0⊕ 0 by Payoff Principle 1 (symmetry)
= 0 by Proposition 1.

Note that every context independent and symmetric payoff function in-
duces via its aggregation function a totally ordered abelian group with (some
subset of) the reals as base set and with 0 as neutral element.

Given Proposition 2 we can rewrite the decomposition of the payoff for
an atomic state [p1, . . . , pn | q1, . . . , qm] as

〈p1, . . . , pn | q1, . . . , qm〉 =
⊕

1≤i≤m
〈| qi〉 ⊕ −

⊕
1≤j≤n

〈| pi〉 .

Payoff Principle 3 (Monotonicity). A payoff function 〈· | ·〉 is monotone
if for all tenets γ,δ,γ′, δ′, γ′′, and δ′′ the following holds: if 〈γ′ | δ′〉 ≤ 〈γ′′ | δ′′〉
then 〈γ, γ′ | δ′, δ〉 ≤ 〈γ, γ′′ | δ′′, δ〉.

Proposition 3. Let 〈· | ·〉 be a monotone and context independent payoff
function and ⊕ the corresponding aggregation function. Then for all payoff
values x, y, and z:
(i) if y ≤ z then x⊕ y ≤ x⊕ z,
(ii) min and max distribute over ⊕, i.e., min(x ⊕ y, x ⊕ z) = x ⊕min(y, z)
and max(x⊕ y, x⊕ z) = x⊕max(y, z).

Proof. (i) Let G = [γ | δ] , G′ = [γ′ | δ′], and G′′ = [γ′′ | δ′′] be three atomic
states such that 〈G〉 = x, 〈G′〉 = y, and 〈G′′〉 = z. Then the premise y ≤ z
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amounts to 〈γ′ | δ′〉 ≤ 〈γ′′ | δ′′〉 and x ⊕ y ≤ x ⊕ z to 〈γ | δ〉 ⊕ 〈γ′ | δ′〉 ≤
〈γ | δ〉 ⊕ 〈γ′′ | δ′′〉 or, equivalently, to 〈γ, γ′ | δ, δ′〉 ≤ 〈γ, γ′′ | δ, δ′′〉, which is
just an instance of Payoff Principle 3.

(ii) We only consider the equation for min; the argument for max is
analogous. Assume that y ≤ z holds. Then, by (i), x⊕ y ≤ x⊕ z holds for
all x and thus also min(x⊕ y, x⊕ z) = x⊕ y = x⊕min(y, z). On the other
hand, if z ≤ y then x⊕ z ≤ x⊕ y and thus also min(x⊕ y, x⊕ z) = x⊕ z =
x⊕min(y, z).

Definition 4 (Discriminating). We call a payoff function 〈· | ·〉 discrimi-
nating if it is context independent, symmetric, and monotone.

We will see in Section 6 that under some very general conditions on
the form of logical dialogue rules, to be investigated in the next section,
discriminating payoff functions can be extended to arbitrary game states.

5. A general format of logical dialogue rules

We now turn our attention to logical connectives and look for dialogue rules
that regulate the stepwise reduction of states with logically complex asser-
tions to final atomic states. We assume perfect information, which in par-
ticular implies that the two players have common knowledge of the payoff
values. Since we strive for full generality, we will not consider conjunc-
tion, disjunction, implication, etc., separately, but rather specify a generic
format of dialogue rules for arbitrary n-ary connectives (n ≥ 1). It turns
out that two simple and general ‘dialogue principles’, in combination with
discriminating payoff functions, suffice to guarantee that a truth functional
semantics can be extracted from the corresponding game.

Dialogue Principle 1 (Decomposition). A (dialogue) rule for an n-ary
connective � is decomposing if in any corresponding round of the game ex-
actly one occurrence of a compound formula �(A1, . . . , An) is removed from
the current state and (possibly zero) occurrences of A1, . . . , An and of propo-
sitional constants are added to obtain the successor state. (See below for a
step-by-step description of what is meant by ‘round’ here.)

The decomposition principle entails that each occurrence of a formula
can be attacked at most once: it is simply removed from the state in the
corresponding round of the game. Moreover, an attack may or may not in-
volve sub-formulas of the attacked formula occurrence (and/or propositional
constants) to be asserted by the attacking player. For example, in Giles’s
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original game attacking A ⊃ B requires the attacker to assert A (see Sec-
tion 2). We require the reply to any attack to follow at once. In our example
of an attack to A ⊃ B in Giles’s original game this means that an assertion
of B will be added to the tenet of the attacked player. In general, the attack-
ing player may choose between one of several available forms of attacking a
particular formula, as witnessed by the rule for (weak) conjunction in the
original game. Likewise, as exemplified in Giles’s rule for disjunction, a rule
may also involve a choice on the side of the defending player. Consequently,
every round of the game may be thought of as consisting of a sequence of
three consecutive moves (we only consider the case where you attack one of
the formulas asserted by me, the other case is dual):

1. You pick an occurrence of a compound formula �(A1, . . . , An) from my
current tenet for attack (or possibly for dismissal, see below).

2. You choose the form of attack (if there is more than one form available).

3. I choose the way in which I want to reply to the given attack on the
indicated occurrence of �(A1, . . . An) (if such a choice is possible).

The corresponding rule may be depicted as shown in Figure 1. That there
is a forest rather than a single tree rooted in [Γ | ∆, �(A1, . . . , An)] reflects
the fact that you may choose between different forms of attack for formulas of
the form �(A1, . . . , An). In contrast, the branching in the trees corresponds
to my possible choices in defending against your particular attack.

[Γ | ∆, �(A1, . . . , An)]

[
Γ, X1

1 | ∆, Y 1
1

] [
Γ, X1

k1
| ∆, Y 1

k1

] · · · · · ·
[Γ | ∆, �(A1, . . . , An)]

[Γ, Xm
1 | ∆, Y m

1 ]
[
Γ, Xm

km
| ∆, Y m

km

]
where Xi

j and Y i
j , for 1 ≤ j ≤ ki, 1 ≤ i ≤ m, are multisets of zero or more

occurrences of the formulas A1, . . . , An and of propositional constants.

Figure 1. Generic dialogue rule for your attack of my assertion of �(A1, . . . , An)

To illustrate this dialogue rule format by a concrete example, consider
the case of your attack on my assertion of A ⊃ B in a variant of Giles’s
game where both forms of the principle of limited liability, LLD and LLA,
are imposed (see Section 3). The resulting version of the implication rule is
depicted in Figure 2.
The right (degenerate) tree in Figure 2 corresponds to your declaration not
to attack the exhibited occurrence of A ⊃ B at all. We treat this case as
a special form of attack, where the ‘attacked’ formula occurrence is simply
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[Γ | ∆, A ⊃ B]

[Γ, A | ∆, B] [Γ | ∆,⊥]

[Γ | ∆, A ⊃ B]

[Γ | ∆]

Figure 2. Implication rule (your attack) with two-fold principle of limited liability

removed to obtain the successor state. The first tree indicates a choice by
me (i.e., the defending player): I may either according to LLD assert ⊥ in
reply to your attack or else assert B in exchange for your assertion of A.

The second principle that we want to maintain in generalizing Giles’s
game is player neutrality, i.e., role duality: you and me have the very same
obligations and rights in attacking or defending a particular type of formula.

Dialogue Principle 2 (Duality). A rule δ� for my (your) assertion of a
formula of the form �(A1, . . . , An) is called dual to the rule δ′� for your (my)
assertion of �(A1, . . . , An), if δ� is obtained from δ′� by just switching the
roles of the players.

We will say that a dialogue game has dual rules if for every dialogue rule
of the game there is dual rule.

Figure 3 depicts the generic dialogue that is dual to that in Figure 1. Note
that now I am the one who, in attacking your assertion of �(A1, . . . , An), is
free to pick a tree of the forest, whereas the branching in the tree now refers
to your choices when defending against my attack.

[Γ, �(A1, . . . , An) | ∆]

[
Γ, Y 1

1 | ∆, X1
1

] [
Γ, Y 1

k1
| ∆, X1

k1

] · · · · · ·
[Γ, �(A1, . . . , An) | ∆]

[Γ, Y m
1 | ∆, Xm

1 ]
[
Γ, Y m

km
| ∆, Xm

km

]
where m, ki, X

i
j , and Y i

j are defined in Figure 1.

Figure 3. Generic dialogue rule dual to that in Figure 1

Note that since the format of decomposing rules allows for a choice be-
tween different types of attacks as well as corresponding replies, we may
speak without loss of generality of the dialogue rule for a connective � if the
game has dual rules.
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6. Lifting payoffs to valuations of general states

Following the well-known game theoretic principle of backward induction,
the maximal payoff value that I can enforce at a game state S—for short:
my enforceable payoff at S—amounts to the minimum of enforceable payoffs
at the successor states of S if it is your turn to move at S as well as to the
maximum of enforceable payoffs at the successor states if it is my turn to
move at S. Correspondingly, the function 〈· | ·〉 that denotes my enforceable
payoff at an arbitrary state in our dialogue games (where a round involves a
move by both of us in turn) is induced by the corresponding payoff function
for atomic game states and by the following min-max conditions for non-
atomic game states:

〈Γ | �(A1, . . . An),∆〉 = min
1≤i≤m

max
1≤j≤ki

〈
Γ, Xi

j | ∆, Y i
j

〉
(1)

〈�(A1, . . . An),Γ | ∆〉 = max
1≤i≤m

min
1≤j≤ki

〈
Γ, Y i

j | ∆, Xi
j

〉
(2)

where m, ki, X
i
j , and Y i

j are defined as in Figure 1. We call this function the

extended payoff function.‡

In Section 4 we have defined context independence, symmetry, and mono-
tonicity for payoff functions which, by definition, refer only to atomic game
states. However, by inspecting Definitions 1, 2, and 3 it is obvious that
neither these properties, nor those expressed in Propositions 1, 2, and 3 de-
pend on the atomicity of the formulas in a corresponding tenet. Therefore
we can speak without ambiguity of context independence, symmetry, and
monotonicity for arbitrary functions from general states to real numbers,
not just for proper payoff functions.

Theorem 2. Let a be a dialogue game with a discriminating payoff function
and decomposing dual rules. Then the extended payoff function denoting my
enforceable payoff is context independent, symmetric, and monotone.

Proof. Given a discriminating payoff function 〈· | ·〉 with corresponding
aggregation function ⊕, we define a function v from (arbitrary) game states

‡It can easily be checked that the above min-max conditions define a unique extension
of any discriminating payoff function to arbitrary game states if the dialogue rules are dual
and discriminating. As pointed out in [8] (for Giles’s game) this fact implies that the order
of rule applications is irrelevant: we arrive at the same enforceable payoff, independently
of the specific formula occurrence that is picked by you or me for attack at any given state.
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to the real numbers inductively as follows:

(a) v([| p]) = 〈| p〉

(b) v([| ∆]) =
⊕

B∈∆
v([| B]))

(c) v([Γ | ∆]) = v([| ∆])⊕−v([| Γ])

(d) v([| �(A1, . . . An)]) = min
1≤i≤m

max
1≤j≤ki

v(
[
Xi
j | Y i

j

]
)

where m, ki, X
i
j , and Y i

j are defined as in Figure 1.
We prove that v indeed calculates my enforceable payoff, i.e., it coincides

with 〈· | ·〉 on atomic states and fulfills the min-max conditions. Moreover
we show that it is context independent, symmetric, and monotone.

It is straightforward to check that v([γ | δ]) indeed coincides with 〈γ | δ〉
for all atomic states [γ | δ]. Taking our clue from this observation we will
from now on usually write 〈Γ | ∆〉 instead of v([Γ | ∆]), even if the tenets Γ
and ∆ are not atomic.

The symmetry of v([· | ·]) immediately follows from its definition, where
(here as well as further on) we freely exploit the commutativity and associa-
tivity of ⊕.

(−v([Γ | ∆] =)− 〈Γ | ∆〉= −(〈| ∆〉 ⊕ − 〈| Γ〉) by definition of v (c)
= −〈| ∆〉 ⊕ 〈| Γ〉 by Proposition 2(i)
= 〈∆ | Γ〉 by definition of v (c)

Note that the definition of v directly entails that, just like the payoff at
atomic states, the enforceable payoff at arbitrary states can also be obtained
from the enforceable payoffs for sub-states by applying ⊕: we will refer to
merging of and partitioning, respectively. More precisely:

〈Γ,Γ′ | ∆′,∆〉= 〈| ∆′,∆〉 ⊕ − 〈| Γ,Γ′〉 by definition of v (c)
= (〈| ∆′〉 ⊕ 〈| ∆〉)⊕−(〈| Γ′〉 ⊕ 〈| Γ〉) by definition of v (b)
= 〈| ∆′〉 ⊕ 〈| ∆〉 ⊕ − 〈| Γ′〉 ⊕ − 〈| Γ〉 by Proposition 2
= 〈Γ′ | ∆′〉 ⊕ 〈Γ | ∆〉 by definition of v (c).

Given this fact, it is easy to see that 〈· | ·〉 is context independent. Let
[Γ′ | ∆′], [Γ′′ | ∆′′] be two game states such that 〈Γ′ | ∆′〉 = 〈Γ′′ | ∆′′〉. Then
for arbitrary tenets Γ and ∆

〈Γ,Γ′ | ∆′,∆〉= 〈Γ′ | ∆′〉 ⊕ 〈Γ | ∆〉 by partitioning
= 〈Γ′′ | ∆′′〉 ⊕ 〈Γ | ∆〉 by assumption
= 〈Γ,Γ′′ | ∆′′,∆〉 by merging.
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Monotonicity also straightforwardly carries over from atomic to arbitrary
game states. Let [Γ′ | ∆′], [Γ′′ | ∆′′] be two game states such that 〈Γ′ | ∆′〉 ≤
〈Γ′′ | ∆′′〉. Then for arbitrary tenets Γ and ∆

〈Γ,Γ′ | ∆′,∆〉= 〈Γ′ | ∆′〉 ⊕ 〈Γ | ∆〉 by partitioning
≤ 〈Γ′′ | ∆′′〉 ⊕ 〈Γ | ∆〉 by assumption and Proposition 3(i)

= 〈Γ,Γ′′ | ∆,∆′′〉 by merging.

It remains to check that the min-max conditions are satisfied. For states
of the form [Γ | ∆, �(A1, . . . An)] we obtain min-max condition (1) as follows:

〈Γ | ∆, �(A1, . . . An)〉
= 〈Γ | ∆〉 ⊕ 〈| �(A1, . . . An)〉 by partitioning

= 〈Γ | ∆〉 ⊕min1≤i≤m max1≤j≤ki

(〈
Xi
j | Y i

j

〉)
by definition of v (d)

= min1≤i≤m max1≤j≤ki

(
〈Γ | ∆〉 ⊕

〈
Xi
j | Y i

j

〉)
by Proposition 3(ii)

= min1≤i≤m max1≤j≤ki

(〈
Γ, Xi

j | Y i
j ,∆

〉)
by merging.

The dual min-max condition (2) exploits the symmetry of 〈· | ·〉:

〈Γ, �(A1, . . . An) | ∆〉
=−〈∆ | Γ, �(A1, . . . An)〉 by symmetry

=−min1≤i≤m max1≤j≤ki

(〈
∆, Xi

j | Y i
j ,Γ

〉)
by min-max condition (1)

= max1≤i≤m min1≤j≤ki

(
−
〈

∆, Xi
j | Y i

j ,Γ
〉)

by Proposition 3(ii)

= max1≤i≤min1≤j≤ki

(〈
Y i
j ,Γ | ∆, Xi

j

〉)
by symmetry,

where m, ki, X
i
j , and Y i

j are defined as in Figure 1.

Remark. The duality of dialogue rules is used only indirectly in the above
proof: it is reflected in the corresponding duality of the two min-max con-
ditions and in the symmetry of the extended payoff function.

Corollary 1. Let a be a game with discriminating payoff function and de-
composing dual rules. Then for each connective � there is a function f� such
that 〈| �(A1, . . . An)〉 = f� (〈| A1〉 , . . . , 〈| An〉) for all formulas A1, . . . , An,
where 〈· | ·〉 denotes the extended payoff function of Theorem 2.

Proof. Applying min-max condition (1) as well as context independence
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and symmetry, we obtain

〈| �(A1, . . . , An)〉
= min1≤i≤m max1≤j≤ki

〈
Xi
j | Y i

j

〉
= min1≤i≤m max1≤j≤ki

(〈
| Y i

j

〉
⊕
〈
Xi
j |
〉)

= min1≤i≤m max1≤j≤ki

(〈
| Y i

j

〉
⊕−

〈
| Xi

j

〉)
= min

1≤i≤m
max

1≤j≤ki

(⊕
Y ∈Y i

j
〈| Y 〉 ⊕ −

⊕
X∈Xi

j
〈| X〉

)
,

where ⊕ is the aggregation function corresponding to 〈· | ·〉; m, ki, Y
i
j , and

Xi
j obviously again refer to the dialogue rule for �(A1, . . . An) as exhibited

in Figure 1. Note that the Xi
js and Y i

j s are multisets containing only the
formulas A1, . . . , An and propositional constants, which of course are eval-
uated to constant real numbers. Therefore that last expression defines the
required function f�.

To emphasize that f� is of type Rn 7→ R it can be rewritten as

f�(x1, . . . , xm) = min
1≤i≤n

max
1≤j≤ki

⊕
y∈Y i

j

y ⊕−
⊕
x∈Xi

j

x

 ,

where Y i
j is a multiset of real numbers defined with respect to the multiset

of formulas Y i
j as follows: Y i

j = {A | A ∈ Y i
j }, where A = xi when A = Ai

for 1 ≤ i ≤ n and A = 〈| A〉 if A is a propositional constant.
The duality of the rules entails 〈�(A1, . . . An) |〉 = −〈| �(A1, . . . An)〉 =

−f� (〈| A1〉 , . . . , 〈| An〉). By identifying payoff values with truth values we
may thus claim to have extracted a unique truth function for � from a
given payoff function and any decomposing dialogue rule for �. However, as
we will see in the next section, standard truth functions for many affected
logics usually are based on different sets of truth values. To obtain those
truth functions from an appropriate game we have to use certain bijections
between payoff values and truth values, as explained in Section 7.

7. Which logics are captured?

Revisiting Giles’s game

To illustrate the emergence of concrete logics as instances of the general
framework for games presented in Sections 4 to 6 we should first check
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whether Giles’s original game for  Lukasiewicz logic is indeed covered. While
the assignment of risk 〈· | ·〉r to atomic states, as defined in Section 2,
amounts to a discriminating payoff function (according to Definition 4),
the connection to the standard truth functional semantics for  L∞ becomes
clearer when we convert risk, that is to be minimized, to payoff, that is to
be maximized, and set

〈p1, . . . , pn | q1, . . . , qm〉 = −〈p1, . . . , pn | q1, . . . , qm〉r

= −
∑

1≤i≤m
〈qi〉r +

∑
1≤j≤n

〈pj〉r

= −
∑

1≤i≤m
−〈| qi〉+

∑
1≤j≤n

−〈| pj〉

=
∑

1≤i≤m
〈| qi〉 −

∑
1≤j≤n

〈| pj〉 .

Clearly, the aggregation function corresponding to 〈· | ·〉 is ordinary addi-
tion. Figure 4 presents the dialogue rules in the format defined in Section 5.
Because of duality—which is obvious from Giles’s generic presentation of the
rules—we only have to consider your attacks on my assertions explicitly.

[Γ | ∆, A ⊃ B]

[Γ, A | ∆, B]

[Γ | ∆, A ⊃ B]

[Γ | ∆]

(a) Implication

[Γ | ∆, A&B]

[Γ | ∆, A,B] [Γ | ∆,⊥]

(b) Strong Conjunction

[Γ | ∆, A ∧B]

[Γ | ∆, A]

[Γ | ∆, A ∧B]

[Γ | ∆, B]

(c) Conjunction

[Γ | ∆, A ∨B]

[Γ | ∆, A] [Γ | ∆, B]

(d) Disjunction

Figure 4. Giles’s game with strong conjunction (your attack/my defense)

Note that discriminating payoff functions have 0 as neutral element. If
we want to match the functions f⊃, f&, f∧, and f∨ extracted from these dia-
logue rules according to Corollary 1 with standard truth functions over [0, 1]
we still have to add 1 to the payoff. It is straightforward to check that,
modulo that transformation, the functions extracted from the rules in Fig-
ure 4 indeed coincide with the standard truth functions for  L∞, reviewed in
Section 2. We only illustrate the case for implication. From the rule for my
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assertion of A ⊃ B, which gives you a choice between asserting A to force
me to assert A or else to declare that you will not attack this assertion at
all, we obtain the following instance of min-max condition (1):

〈| A ⊃ B〉 = min(〈A | B〉 , 〈|〉) = min(0, 〈| B〉 − 〈| A〉).

Adding 1 yields the truth function v(A ⊃ B) = 1 + 〈| A ⊃ B〉 = min(1, 1 +
〈| B〉 + 1 − (〈| A〉 + 1)) = min(1, 1 − v(A) + v(B)). The truth function for
the other connectives are obtained in the same manner.

Finite valued  Lukasiwicz logics

Instead of considering arbitrary risk (and therefore also arbitrary truth val-
ues) from [0, 1], one may restrict the set of permissible risk values (equiv-
alently: truth values) to Vn = { i

n−1 | 1 ≤ i < n}, for some n ≥ 2. Since
Vn is closed with respect to addition, subtraction, as well as min and max,
truth functions for all finite valued  Lukasiewicz logics  Ln are obtained just
like those for  L∞.

Note that by this observation we have also covered classical logic, which
coincides with  L2. This means that classical logic can be modeled by a
version of Giles’s game where the experiments that determine the payoffs are
not dispersive: every atomic proposition p is simply true or false, entailing
a determinate payment of 1€ for every assertion of p in case it is false. For
every assignment of risk values 0 or 1 to atomic formulas I have a strategy
for avoiding (net) payment in a game starting with my assertion of a formula
A, if A is true under that assignment; on the other hand, if A is false, my
best strategy limits my payment to you to 1€.

Continuous hoop logic

A more interesting case is continuous hoop logic CHL [4]. The truth value
set of CHL is (0, 1]; correspondingly the propositional constant ⊥, along
with negation (¬) is removed from the language. The truth functions for
implication and strong conjunction are given as

v(A&B) = v(A) · v(B) v(A ⊃ B) =

{
v(A)
v(B) if v(A) ≥ v(B)

1 else.

At first sight it is unclear how to obtain these truth functions from dialogue
rules in our framework. However remember that in the game for  Lukasiewicz
logics—assuming that Giles’s “risk values” have already been translated into
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payoff values by multiplying with −1—we still had to shift payoff values by 1
to obtain the standard truth function �̃ from the function ⊕� that can be
extracted from the dialogue rule for the connective �. It will be helpful to
visualize the general form of this relation, as follows:

Vpayoff

f�−→ Vpayoff

µ↑ ↓σ
Vtruth

�̃−→ Vtruth

In the case of  L∞ we have Vtruth = [0, 1], Vpayoff = [−1, 0], µ(x) = x− 1, and
σ(x) = x + 1. In CHL we have Vtruth = (0, 1]. If we set µ(x) = log(x) and
accordingly Vpayoff = (−∞, 0] and ρ(x) = exp(x), then the implication rule of
Giles’s game (see Figure 4) yields the truth function for implication in CHL.
In the same manner addition (+) over (−∞, 0] maps into multiplication (·)
over (0, 1]. However, the function f& extracted from the dialogue rule for &
of Giles’s game (with risk inverted into payoff) is &(x, y) = max(−1, x−1 +
y − 1) rather than the required +. (Note that the  Lukasiewicz t-norm that
models & in the standard semantics for  L∞ is obtained by adding +1. i.e.
by applying σ, as explained above.) To obtain a dialogue rule for & such
that f& = +, we have to drop the option to reply to an attack on A&B
by asserting ⊥, instead of asserting A and B. In other words we simply
drop the principle of limited liability LLD from the original rule for strong
conjunction.

Abelian logic

So far we have only considered logics where the set of truth values is a
proper subset of R and where we had to explicitly transform payoff values
into truth values and vice versa. But there is an interesting and well studied
logic, namely Slaney and Meyer’s Abelian logic A [17, 18, 9] which coincides
with one of Casari’s logics for modeling comparative reasoning in natural
language [1, 2], where arbitrary real valued payoffs in a Giles-style game
can be directly interpreted as truth values. The truth value set of A indeed
is R. The truth functions for implication (⊃) is subtraction and the truth
function for strong conjunction (&) is addition over R. In addition, max and
min serve as truth functions for disjunction (∨) and weak conjunction (∧),
respectively.

The game based characterization of A is particularly simple: just drop
both forms of the principle of limited liability, LLA and LLD, from Giles’s
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game. In other words: every assertion made by the opposing player, in-
cluding those of the form A ⊃ B, has to be attacked, moreover the only
permissible reply to attack an A&B is to assert both A and B. (The latter
rule has already been used for CHL, above.) The functions that can be
extracted from the resulting dialogue rules according to Corollary 1 are pre-
cisely those mentioned above: f⊃ = −, f& = +, f∧ = min, and f∨ = max.

Alternative aggregation functions

In all the above examples, the aggregation function ⊕ corresponding to the
respective payoff function has been addition (+). This raises the question,
whether in fact ⊕ always has to be +. This question is of some interest, since
every truth function that can be directly extracted from a Giles-style game
is built up from ⊕, −, min, max, and constant real numbers corresponding
to propositional constants. (By ‘directly extracted’ we mean: disregarding
further transformations—like +1 for  L∞, and exp for CHL—that we may
want to apply to map payoffs into standard truth values for particular logics.)

To settle this question in the negative it suffices to check that for any
assignment v of reals to atomic propositions

〈γ | δ〉 = 3

√∑
q∈δ

v(q)3 − 3

√∑
p∈γ

v(p)3

is a discriminating payoff function with ⊕(x, y) = 3
√
x3 + y3 as correspond-

ing aggregation function. However, we do not know of any many-valued
logic in the literature where definitions of truth functions involve this or
other possible aggregation functions different from +.

Finally, one may ask whether for any aggregation function the ordered
group G = (R;≤,⊕, 0,−) is isomorphic to (R;≤,+, 0,−). A partly positive
answer is provided by noting that G is archimedean. This is essentially due
to monotonicity (Payoff Principle 3) and the standard order ≤ on the base
set R. Therefore Hölder’s Theorem [13] entails that G is isomorphic to a
subgroup of (R;≤,+, 0,−).

8. Conclusion

Taking Giles’s characterization of  Lukasiewicz logic  L∞ in terms of a dia-
logue game with final betting scheme as a starting point, we have defined
a general concept of ‘Giles-style’ dialogue games for many-valued logics.
We have shown that quite general conditions on payoff functions (context
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independence, symmetry, and monotonicity) and on the format of logical di-
alogue rules (decomposition and duality) guarantee that a truth functional
semantics for a corresponding logic can be extracted from the game. It can
easily be checked by providing simple counter examples, that in fact the three
mentioned payoff principles and the two mentioned dialogue principles are
not only (jointly) sufficient, but (individually) necessary for the extraction
of truth functions.

We emphasize that the inverse of Corollary 1 does not hold: many, if
not most interesting logics with a truth functional semantics defined over (a
subset of) the real numbers as set of truth values cannot be characterized
by a Giles-style game in the sense of this paper. This throws interesting
light on the alternative generalizations of Giles’s original game that have
been presented in [3], and explored in more detail in [6] and [5]. There,
in order to arrive at a characterization of Gödel logic as well as Product
logic, we considered two different types of states that may occur in a given
game. These types of states correspond to strict and non-strict comparison
of real numbers (</≤), respectively. The results of the current paper can be
interpreted as demonstrating that such deviations are unavoidable, at least
when other desirable features of Giles’s game are kept in place.

These observations trigger a host of questions for further investigation:
Can the range of logics that are extractable from a Giles-style game be char-
acterized concisely? What kind of extensions and variations of the game
are needed to characterize other important many-valued logics in a similar
manner? Can the correspondence between payoff values and truth values
be maintained even if the truth functions are not continuous (like for  L∞,
CHL, A) or result from continuous functions by restriction to finite sub-
sets of R (like for  Ln)? Perhaps most interestingly: can the translation of
Giles’s dialogue rules into logical rules of a cut-free (hypersequent) calculus,
described in [8], be generalized to other variants and types of games?
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