
Interpreting Sequent Calculi
as Client-Server Games

Christian G. Fermüller and Timo Lang

TU Vienna, Austria

Abstract. Motivated by the interpretation of substructural logics as
resource-conscious reasoning, we introduce a client-server game charac-
terizing provability in single-conclusion sequent calculi. The set up is
modular and allows to capture multiple logics, including intuitionistic
and (affine) linear intuitionisitic logic. We also provide a straightforward
interpretation of subexponentials, and moreover introduce a game where
the information provided by the server is organized as a stack, rather
than as a multiset or list.

1 Introduction

Resource consciousness is routinely cited as a motivation for considering sub-
structural logics (see, e.g., [10]). But usually the reference to resources is kept
informal, like in Girard’s well-known example of being able to buy a pack of
Camels and/or a pack of Marlboro [5] with a single dollar, illustrating linear
implication as well as the ambiguity of conjunction between the “multiplicative”
and “additive” reading. The invitation to distinguish, e.g., between a “causal”,
action-oriented interpretation of implication and a more traditional understand-
ing of implication as a timeless, abstract relation between propositions is cer-
tainly inspiring and motivating. However, the specific shape and properties of
proof systems for usual substructural logics owe more to a deep analysis of
Gentzen’s sequent system than to action-oriented models of handling scarce re-
sources of a specific kind. Various semantics, in particular so-called game se-
mantics for (fragments of) linear logics [1, 3] offer additional leverage points for
a logical analysis of resource consciousness. But these semantics hardly sup-
port a straightforward reading of sequent derivations as actions plans devised
by resource conscious agents. Moreover, the inherent level of abstraction often
does not match the appeal of (e.g.) Girard’s very concrete and simple picture of
action-oriented inference.

We introduce a two-player game based on the idea that a proof is an action-
plan, i.e. a strategy for one of the players (the “Client”) to reduce particular struc-
tured information to information provided by the other player (the “Server”). As
we will show, the interpretation of game states as single conclusion sequents leads
to variations of the basic game, that match (affine) intuitionistic linear logic, but
also other substructural logics. To emphasize the indicated shift of perspective,
relative to traditional interpretations of formulas as sentences or propositions or

types, we introduce the notion of an information package, which emphasizes the
interpretation of formulas as (in general) compound information, that is built
up from atomic pieces of information using constructors that indicate possible
ways of accessing the information.

Obviously our Client-Server games constitute a variant of game semantics;
therefore a few words on the relation to other forms of game semantics are appro-
priate. Already in the late 1950s Lorenzen [9] proposed to justify intuitionistic
logic in terms of dialogue game, where a proponent defends a statement against
systematic attacks by an opponent. Logical validity is identified with the exis-
tence of a winning strategy for the proponent. This setup has later been gener-
alized to other logics; see, e.g., [7, 11]. While there are some obvious similarities
between Lorenzen-style dialogue games and our Client-Server games the differ-
ent motivation triggers also structural differences. In particular, Lorenzen and
his followers argue that the two players should have ‘equal rights’: not only the
specific rules for the logical connectives, but also the so-called frame rules, that
regulate the overall progression of a dialogue, should be as symmetric as possible.
In contrast, we deliberately break this symmetry and view the Client as the ac-
tive ‘scheduler’ of the interaction with a largely passive or at least dis-interested
Server. Similar remarks hold for game semantics developed for (fragments of)
linear logic in the wake of [1,3,8]. The idea there is to view propositions as games
and connectives as operators on games. Again, the symmetry between the two
players is important, as witnessed by the prominence of the copy-cat strategy,
which has no counterpart in our Client-Server games. Finally, Japaridze’s Com-
putability Logic [6] deserves to be mentioned, where formulas are interpreted
as computational problems. The underlying model of interactive computation
is a game between a machine and the environment. While somewhat related in
spirit to our (much simpler and more specific) game model, the corresponding
logics and inference mechanisms are again quite different. Probably the most
important feature of our approach is that we aim at a direct interpretation of
sequent rules as rules for systematically reducing information packages to its
components.

The paper is structured as follows: In Section 2, we introduce our client-server
game in its basic form. In Section 2, we show that this game captures provability
in intuitionistic logic. Section 4 describes a resource-aware version of the game,
which is shown to capture affine intuitionistic logic. In Section 5, we make some
remarks on the interpretation of (sub)exponentials. The final section 6 discusses
a variant of the game where information packages are arranged in a stack.

2 A Client-Server Game for Intuitionistic Logic

In our C/S(I)-game, a client C maintains that the information packaged as G
can be obtained from the information represented by the packages F1, . . . , Fn,
provided by a server S, via stepwise reduction of complex information packages
(henceforth short ips, singular ip) into simpler ones. At any state of the game,
the bunch of information provided by S is a (possibly empty) multiset of ips.

The ip G which C currently claims to be obtainable from that information is
called C’s current ip. The corresponding state is denoted by

F1, . . . , Fn B G.

The game proceeds in rounds that are always initiated by C and, in general,
solicit some action from S. We look at the game from the client’s point of view.1

There are two different types of requests that C may submit to S: (1) Unpack
an ip provided by the server, and (2) Check my (i.e. the clients) current ip. We
call the ip chosen by C for either the Unpack- or Check-request the active ip.
Thus in a Check-request the active ip is always C’s current ip. Both Unpack-
and Check-requests depend on the structure of the active ip. For now, we will
consider the following types of ips:

– atomic ips, which admit no further reduction
– among those, a special ip ⊥, denoting an elementary inconsistency
– complex ips which are build from simpler ips by means of the constructors
∧, ∨, and → (called any of, some of and given respectively).

We use lowercase letters a, b, c for for atomic ips and uppercase letters F,G,H,K
for ips which may be either complex or atomic. Multisets of ips are denoted by
Γ or ∆. The rules for reducing complex ips are given in Table 1. One may easily
introduce other constructors for complex ips into the game by specifying their
Unpack- and Check-rules, and we will see some examples of that later.

At the beginning of each round of the game C is free to choose whether she
wants to continue with a request of type Unpack (if possible) or of type Check;
moreover in the first case C can freely choose any occurrence of a non-atomic ip
or an occurrence of ⊥ in the bunch of information provided by S. Formally, each
initial state F1, . . . , Fn B G induces an extensive two-players win/loose (zero
sum) game of perfect information in the usual game theoretic sense.

The corresponding game tree is finitely branching, but may be infinite since
C may request to unpack the same ip repeatedly. We will look at strategies only
at the level of states resulting from fully completed rounds. A winning strategy
τ for C can therefore be identified with a finite, downward growing, rooted tree
of game states, where all leaves are winning states for C according to either rule
(Check a) or (Unpack ⊥). The root of τ is the initial state of the relevant
instance of the C/S(I)-game in question. When, at a state S, the strategy τ tells
C to continue with a round of type (Unpack F1 → F2) or (Check F1 ∧ F2),
then τ branches at S into two successor states according to the possible choices
available to S as specified by the rules. On the other hand, no branching occurs
at states where τ tells C to continue according to any other rule, since those
rules do not involve a choice of S.

The game rules are local : the validity of a move of C only depends on the
presence of a certain ip in the current game state, but not on the complete bunch

1 Since we only care about winning strategies for C, the server S may be viewed as
acting nondeterministically or probabilistically, if preferred.

a atomic ip

Unpack: - not possible -

Check: The game ends and C wins iff a is contained in the
bunch of information proved by S.

⊥ inconsistency

Unpack: The game ends and C wins.

Check: as in the case for atomic F

F1 ∧ F2 any of F1, F2

Unpack: C chooses an ip out of {F1, F2} which S then has to
add to the bunch of provided information

Check: S chooses an ip out of {F1, F2} and sets it as C’s new
current ip.

F1 ∨ F2 some of F1, F2

Unpack: S chooses an ip out of {F1, F2} and adds it to the
bunch of provided information

Check: C chooses an ip out of {F1, F2} and sets it as the new
current ip.

(F1 → F2) F2 given F1

Unpack: S chooses whether to add F2 to the bunch of provided
information, or to force C to replace its current ip by F1.

Check: F1 is added to the bunch of provided information and
C’s current ip is replaced by F2.

Table 1: Atoms, constructors and rules for C/S(I)

of provided information. Furthermore, S’s moves are restricted to ips previously
chosen by C. From these observations, it follows easily that:

Proposition 1 If C has a winning strategy in the C/S(I)-game Γ B F and ∆
is any multiset of ips, then C also has a winning strategy in ∆,Γ B F .

Proof. Let τ be any winning strategy for C in Γ B F . By the locality of the
rules, C can also move according to τ in the extended game ∆,Γ B F , and if she
does so, S will not have more choices than before. Hence τ is still a strategy in
the extended game. Since ips in ∆ are never unpacked while moving according to
τ , and since τ is a winning strategy in Γ B F , the strategy leads in the extended
game to states of the form ∆,Γ ′ B F ′ where Γ ′ B F ′ is a winning state for C.
Since also the winning conditions of the C/S(I)-game are local, ∆,Γ ′ B F ′ is
still a winning state for C. �

3 The adequateness of C/S(I) for Intuitionistic Logic

Let us now identify atomic ips with propositional variables and complex ips with
their corresponding propositional formulas. It is well-known that we may read
winning strategies for C as proofs in a sequent calculus, where the turnstile ⇒
stands for B and the inital sequents correspond to winning states. In our case,
the initial sequents are thus

Γ, a⇒ a and Γ,⊥ ⇒ F

corresponding to the states Γ, a B a (where C wins by sending a (Check a)-
request) and Γ,⊥ B F (where C wins by sending an (Unpack ⊥)-request). The
Unpack-rule for ∨ translates to the sequent rule

Γ, F1 ∨ F2, F1 ⇒ H Γ,F1 ∨ F2, F2 ⇒ H

Γ,F1 ∨ F2 ⇒ H

where the two premises correspond to the two possible choices of S. The Check-
rule for ∨ translates to the pair of rules

Γ ⇒ F1

Γ ⇒ F1 ∨ F2
and

Γ ⇒ F2

Γ ⇒ F1 ∨ F2

corresponding to the two possible choices of C. Similarly, one writes down the
sequent rules for the remaining connectives ∧,→. Using this translation, the rules
and initial sequents exactly match the sequent calculus LIk for intuitionistic logic
(cf. [12]). We thus obtain:

Theorem 2 The following are equivalent:

1. C has a winning strategy in the C/S(I)-game Γ B H
2. LIk ` Γ ⇒ H
3. (

∧
Γ ⇒ H) is intuitionistically valid 2.

LIk arises from the traditional sequent calculus LI for intuitionistic logic by
eliminating contraction by building into the logical rules and eliminating weak-
ening by generalizing the initial sequents (axioms) correspondingly 3.

We get a game directly matching the rules for LI by making the following
modifications to the C/S(I)-game: First, we change the Unpack-rules such that
the active ip is removed from the bunch of provided information after use; second,
we add two types of request called Dismiss and Copy, which allow C to either
remove or duplicate ips from the bunch of provided information: and finally we
allow only

a B a and ⊥ B F
2 ∧

Γ denotes the conjunction of all formulas in Γ .
3 We assume that LI is already formulated using multisets - otherwise, this would be

another difference between the calculi.

as winning states for C. Let us call the modified game C/S(I)∗.
Via Theorem 2, results from the structural proof theory of LIk or LI turn

into statements about winning strategies in C/S(I) or C/S(I)∗. As a simple
example (which works for either variant of the calculus/game), the soundness of
the rule

Γ ⇒ F Γ ⇒ G (∧R)
Γ ⇒ F ∧G

says that if C has a winning strategy τ for Γ B F and σ for Γ B G, then she
has a winning strategy in Γ B F ∧ G. The winning strategy, of course, is this:
In her first move, C sends a (Check F ∧ G) request. If now S chooses F , the
game is a Γ B F where she can play according to τ to win; otherwise, if S picks
G, she plays according to σ.

More interestingly, the invertibility of the (∧R) rule – the fact that the va-
lidity of its conclusion implies the validity of its premises – says that if C has a
winning strategy in Γ B F ∧G, then she has such a winning strategy where her
first move is (Check F ∧G).

The correspondence of Theorem 2 goes both ways: For example, Proposition
1 is nothing but a game theoretic proof of the admissibility of the weakening
rule in LIk. As another toy application, we give a proof of cut-admissibility for
the →-free fragment of LI by using the game semantics of C/S(I)∗ (of course,
cut is admissible also in the full language).

Proposition 3 Assume that→ does not appear in Γ,∆,G,H. If C has winning
strategies in the C/S(I)∗-games Γ B G and G,∆ B H then she also has a
winning strategy in Γ,∆ B H.

Proof. Let τ be a winning strategy for Γ B G and σ a winning strategy for
G,∆ B H. We proof by induction on the structure of G that C wins in Γ,∆ B H.

1. G ≡ a for atomic a: Since the game ends when atomic ips are checked,
all but the last move in τ must be Unpack-requests. Since τ is winning, a
play on Γ B a according to τ always ends in a state of the form ⊥ B a or
a B a. C can thus move according to τ in the game Γ,∆ B H to arrive
at a state ⊥, ∆ B H or a,∆ B H. In the first case she wins by sending
Dismiss-requests repeatedly until she is in the winning state ⊥ B H. In the
second case, she can move according to σ to win.

2. G ≡ F1 ∧ F2: C starts moving according to τ in the game Γ,∆ B H until a
(Check F1 ∧ F2)-request appears (if that does not happen, the game must
arrive eventually at a state Γ ′,⊥, ∆ B H where C wins). The game is now
in a state Γ ′, ∆ B H. Note that C must have winning strategies in Γ ′ B F1

and Γ ′ B F2, since by moving according to τ in the game Γ B F1 ∧ F2 she
ends up in a state Γ ′ B F1 ∧F2 and now, since the next step in τ is (Check
F1 ∧ F2), C must be prepared for any choice of F1, F2 by S.
Back to the game state Γ ′, ∆ B H. Here, C now switches to the strategy σ
and moves until an (Unpack F1∧F2)-request appears (again, if this does not

happen, the game must have arrived in a winning state). The game is then
in a state Γ ′, ∆′ B H ′. Without loss of generality, let us assume that σ tells
C to pick F1 in the rule for ∧. Then C has a winning strategy ∆′, F1 B H ′,
because this state arises by starting in F1∧F2, ∆ B H and moving according
to the winning strategy σ.
Applying the induction hypothesis to the states Γ ′ B F1 and ∆′, F1 B H ′

(and their respective winning strategies), we thus know that C has a winning
strategy in Γ ′, ∆′ B H ′, and so she can continue playing.

3. G = F1 ∨ F2: similar to the previous case. �

Remark 4 Note that the length of play according to the winning strategy con-
structed in the above proof is polynomially bounded in the length of plays ac-
cording to the winning strategies for Γ B G and G,∆ B H. This cannot be the
case if we include →, since it is known that cut reduction in the full fragment of
intuitionistic logic increases proof size exponentially.

4 Resource Consciousness

Probably the most important step in turning the C/S(I)-game into a ‘resource
conscious’ one, regards rules that entail a choice by S and thus require C to be
prepared to act in more than just one possible successor state to the current
state. The C/S(I)-rules allow C to use all the information provided by S in each
of the possible successor states. If, instead, we require C to declare which ips
she intends to use for which of those options – taking care that she is using
each occurrence of an ip exactly once – then we arrive at rules that match
multiplicative instead of additive connectives.

Following the tradition of linear logic, we do not discard the previously de-
fined rules, but rather extend the game by new ip constructors and their corre-
sponding resource concious rules. We also introduce a unary ‘safety’ construc-
tor ! (called exponential in the literature on linear logic). Ips prefixed by ! are
meant to be exempt from resource consciousness and thus behave like ips in the
C/S(I)-game. Ips not prefixed by ! are called unsecured. Table 2 lists all new
constructors and their corresponding rules4. Let us denote by C/S(IAL) the
following modification of game C/S(I):

1. Constructors and rules for ⊗,(and ! are added as in Table 2
2. The Unpack-rules for ∧,∨ and → are changed so that the active formula is

removed at the end of the request.

We claim that the logic captured by C/S(IAL) is intuitionistic affine logic
IAL, i.e. intuitionistic linear logic with weakening [5]. A standard sequent cal-
culus for IAL is presented in Table 3. We need the following preliminary result
analogous to Proposition 1:

4 In these rules, operations as replacing and removing an ip in a multiset are meant
to affect only the active instance of the ip, rather than all instances of the ip in the
multiset.

⊗(F1, . . . , Fn) each of F1, . . . , Fn

Unpack: ⊗(F1, . . . , Fn) is replaced by F1, . . . , Fn

Check: C marks every unsecured ip in the bunch of provided
information with one of F1, . . . Fn. Next, S chooses one Fi out of
F1, . . . Fn. Then C’s current ip is changed to Fi and all unsecured
ips not marked with Fi are removed.

(F1 (F2) F2 from F1

Unpack: C marks every unsecured ip in the bunch of provided
information (except the instance of (F1 (F2)) with either F1 or
F2. S then chooses between the premise F1 and the conclusion
F2. If S’s choice was F1, C’s current ip is changed to F1 and
all ips marked with F2 are removed. If S’s choice was F2, F2 is
added to the bunch of provided ips and all ips marked with F1

are removed. In any case, the instance of F1 (F2 is removed
as well.

Check: F1 is added to the bunch of provided information and
C’s current ip is replaced by F2.

!F safe F

Unpack: A copy of F is added to the bunch of provided in-
formation, and then an Unpack-request is performed on this
copy.

Check: All unsecured ips are removed, and C’s current ip is
changed to F .

Table 2: Resource-conscious rules in C/S(IAL)

Proposition 5 If C has a winning strategy in the C/S(IAL)-game Γ B F and
∆ is any multiset of ips, then C also has a winning strategy in ∆,Γ B F .

Proof. By induction on the number of steps in a winning strategy for Γ B F .
We only consider the case that the first step in the winning strategy is to send
a (Check !G)-request. The state must thus be of a form !Γ1, Γ2 B!G, where we
assume that all ips in Γ2 are unsecured (!Γ denotes {!F | F ∈ Γ}). The request
results in the state !Γ1 B G, for which C therefore has a winning strategy. It
follows that C wins in ∆, !Γ1, Γ2 B!G: She starts by sending a (Check !G)-
request, resulting in the state ∆1, !Γ1 B G, where ∆1 denotes the set of all
safe formulas in ∆. Since C has a winning strategy for !Γ1 B G, the induction
hypothesis implies that she also wins in ∆1, !Γ1 B G. �

Theorem 6 The following are equivalent:

1. C has a winning strategy in the C/S(IAL)-game Γ B H
2. IAL ` Γ ⇒ H

(id)a⇒ a
(⊥)

⊥ ⇒ A
Γ ⇒ A (W)
B,Γ ⇒ A

Γ,Ai ⇒ C
(∧Li) i = 1, 2

Γ,A1 ∧A2 ⇒ C

Γ ⇒ A Γ ⇒ B (∧R)
Γ ⇒ A ∧B

Γ,A⇒ C Γ,B ⇒ C
(∨L)

Γ,A ∨B ⇒ C

Γ ⇒ Ai (∨Ri) i = 1, 2
Γ ⇒ A1 ∨A2

Γ,A,B ⇒ C
(⊗L)

Γ,A⊗B ⇒ C

Γ ⇒ A ∆⇒ B (⊗R)
Γ,∆⇒ A⊗B

Γ ⇒ A ∆,B ⇒ C
((L)

Γ,∆,A(B ⇒ C

Γ,A⇒ B
((R)

Γ ⇒ A(B

Γ, !A, !A⇒ B
(!C)

Γ, !A⇒ B

Γ,A⇒ B
(!dR)

Γ, !A⇒ B

!Γ ⇒ A (!R)
!Γ ⇒ !A

Table 3: The sequent calculus IAL

Proof. (Sketch) Again, we use the correspondence between winning strategies
and proofs described in Section 3. However, the game rules do not directly match
the rules of IAL in all cases, thus we have to provide some further arguments.

First, there is no game rule corresponding to weakening (W). This is not a
problem, because weakening is admissible in the game theoretic version of the
rules by Proposition 5.5

Second, there is no game rule corresponding to (!C). Rather, the splitting
in multiplicative rules is changed so that safe formulas never need to be split,
making the duplication of safe formulas obsolete. The equivalence of the thus
obtained calculus is known in the literature (see for example the dyadic calculus
of [2]).

Finally, the (Unpack !F)-rule in our game semantics forces us to immediately
unpack the copy of F after it has been created. There is no such requirement
in IAL: here we may create a copy of a safe formula by a combination of (!C)
and (!dR), which might be used only later in a proof (if at all). It is however not
hard to check that such a detour is never necessary. This can also be seen as a
special case of Andreoli’s results on Focusing [2]. �

5 We remark that (W) is not admissible in IAL, even if one relaxes the axioms, because
of the (!R)-rule. Our corresponding (Check !F)-rule is different: It could be written
as

!Γ ⇒ F
∆, !Γ ⇒ !F

which has a built-in weakening.

Before closing this section, let us remark that we also obtain a game adequate
for ILL (full intuitionistic linear logic) by allowing only

a B a and ⊥ B F

as winning states for C and introducing atomic ips 0, 1,> with their correspond-
ing rules. This amounts to an interpretation of sequents as C/S-game states,
where C announces that she needs precisely the information provided by S to
obtain her current ip.

5 Interpreting exponentials and subexponentials

The Unpack-rule for ! (together with the Check-rule for ⊗ and the Unpack-
rule for () shows that safe ips are exempt from resource consciousness: op-
erations are performed on copies of the safe ip rather than on the ip itself.
The Unpack-rule for ! says that the safety predicate is hereditary : If F can be
demonstrated from a bunch of safe ips, then F is also safe.

C can send (Unpack !F)-requests to the same ip !F as often as she wishes.
Furthermore, if C has a winning strategy for Γ B!F then she also has winning
strategies for Γ B F⊗n for any n, where F⊗n denotes F ⊗ . . .⊗ F︸ ︷︷ ︸

n

. This is most

easily seen by first checking that C has a winning strategy in !F B F⊗n and
then using the fact that the cut rule is admissible in IAL.

The meaning of !F is often paraphrased as ‘arbitrarily many F ’. But this
intuition is not without pitfalls, as the observation demonstrates.

Lemma 7 Assume a, b 6= ⊥. C has a winning strategy in a, !(a(a⊗ b) B b⊗n
for any n, but she has no winning strategy in a, !(a(a⊗ b) B!b.

Formulated proof-theoretically, Lemma 7 entails that the infinitary rule

Γ ⇒ F⊗n for all n (!Rω)
Γ ⇒ !F

is not admissible in IAL. The interpretation of ! is improved by thinking of !F
not as arbitrarily many F ’s, but as a single container containing (potentially)
arbitrarily many F ’s. The problem is that this does not tell us much about what
we should require from a proof of !F .

Instead, we invite the reader to think of the rules for the safety predicate
as (partially) specifying a concept of safety, where being exempt form consump-
tion through unpacking (i.e., resource-consciousness) is the essential minimal
requirement. This also aligns with the observation that when adding another
unary constructor !′ with the same rules as ! to IAL, one cannot6 prove the
equivalence of ! and !′. Variants of the standard exponential introduced in this

6 We remark that the combination of the rules (!C), (!dR) and (!Rω) does define an
exponential ! uniquely. Howerver, cut is not admissible in the resulting system.

way are usually called subexponentials. In the ‘arbitrarily many’-interpretation
of the exponential, the existence of subexponentials seems to be mysterious –
how can there be two different concepts of ‘arbitrarily many’?

In the safety interpretation, we may think of different subexponentials !’s
as corresponding to different levels of safety. In fact, we can add constructors
!1, !2, . . . , !n, where greater indices denote greater safety. A natural generalization
of the !-rule is then the following:

!iF safety level i for F

Unpack: A copy of F is added to the bunch of provided
information, and then an Unpack request on this copy
is invoked.

Check: All ips of safety level less than i (including
the unsecured ones) are removed, and C’s current ip
is changed to F .

One may go further and arrange the safety levels in a partial order rather than
a linear order, with the obvious modification of the (Check)-rule. At some point,
one looses cut-admissibility of the logic – we refer the reader to [4, Chapter 5].

6 The Server as Stack

In the games considered so far, C’s choice of the active ip at the beginning of
each round was completely free. We now consider a variant of the game where
the bunch of provided information is a list rather than a multiset, and C can
only access the last element in the list. In other words, we think of the server as
a stack.

We consider the constructors and game rules as given in Table 4. Note that in
Unpack-requests, the active ip is now always the topmost element of the stack.

Let us call the resulting game C/S(STACK). Again, we translate game
states to sequents (which are now lists of ips) and game rules to sequent rules.
We write stacks from left to right, so that the rightmost element of a list of ips
corresponds to the topmost element of the stack. Let us call the resulting system
LSTACK. The initial sequents are thus

Γ, a⇒ a and Γ,⊥ ⇒ F .

Of the rules, we only mention those for → and (;) explicitly. They are

Γ,G⇒ H Γ ⇒ F
(→L)

Γ, F → G⇒ H

Γ1, F, Γ2 ⇒ G
(→R)

Γ1, Γ2 ⇒ F → G

and

Γ,G, F ⇒ H
(;L)

Γ, (F ;G)⇒ H

Γ2 ⇒ F Γ1 ⇒ G
(;R)

Γ1, Γ2 ⇒ (F ;G)

where Γ1 and Γ2 correspond to the lower and the upper part of the stack in the
rule (Check (F ;G)) respectively.

Analogously to Theorems 2 and 6, we have

a atomic ip

Unpack: - not possible -

Check: The game ends and C wins iff a is the topmost item on
the stack.

⊥ inconsistency

Unpack: The game ends and C wins.

Check: as in the case for atomic F

F1 ∧ F2 any of F1, F2

Unpack: C chooses an ip Fi out of {F1, F2}. S then has to
replace F1 ∧ F2 by Fi.

Check: S chooses an ip out of {F1, F2} and sets it as C’s new
current ip.

F1 ∨ F2 some of F1, F2

Unpack: S replaces F1 ∨ F2 by one ip out of {F1, F2}.

Check: C chooses an ip out of {F1, F2} and sets it as the new
current ip.

(F1 → F2) F2 given F1

Unpack: S removes (F1 → F2) and chooses whether to add F2

on top of the stack, or to force C to replace its current ip by F1.

Check: C choses a position in the stack at which S has to insert
F1, and changes her current ip to F2.

(F1;F2) F2 after F1

Unpack: S replaces (F1;F2) by the two ips F2, F1 to the stack
(so that F1 becomes the topmost element).

Check: C chooses a splitting of the stack into an upper and a
lower part (both parts may be empty). S then decides whether
to change C’s current ip to F1 and continue the game with the
upper part of the stack, or to change C’s current ip to F2 and
continue the game with the lower part of the stack.

Table 4: Constructors and rules for C/S(STACK)

Theorem 8 The following are equivalent:

1. C has a winning strategy in the C/S(STACK)-game Γ B H.

2. LSTACK ` Γ ⇒ H.

The rules for the connective (;) resemble those of the ⊗ of linear logic, only that
in the right rule, the premises are split in an ordered way. (;) internalizes the lin-

ear order of the stack. It has the following properties, which are straightforward
to check:

Proposition 9

1. (non-commutativity) C has no winning strategy in (F ;G) B (G;F).
2. (associativity 1) C has a winning strategy in (F ; (G;H)) B ((F ;G);H).
3. (associativity 2) C has a winning strategy in ((F ;G);H) B (F ; (G;H)).

Proposition 10

1. C has a winning strategy in Γ, F B F .
2. C has a winning strategy in Γ, F, F → G B G.

Proof. The proof of (1) proceeds by induction on F . If F is atomic, Γ, F B F is
already a winning state for C. If F ≡ G→ H, the LSTACK-derivation

Γ,G,H ⇒ H Γ,G⇒ G
(→L)

Γ,G,G→ H ⇒ H
(→R)

Γ,G→ H ⇒ G→ H

demonstrates that C can always move to end up in a state Γ,G,H B H or Γ,G B
G, for both of which she has winning strategies by the induction hypothesis. If
F ≡ (G;H), the LSTACK-derivation

G⇒ G Γ,H ⇒ H
(;R)

Γ,H,G⇒ (G;H)
(;L)

Γ, (G;H)⇒ (G;H)

demonstrates that C can always move to end up in a state G B G or Γ,H B C,
and again she has winning strategies for both states by the induction hypothesis.
The other cases are similar.

For (2), C starts the game Γ, F, F → G B G by sending an (Unpack F →
G)-request. Depending on the subsequent choice of S, the game is then either
in the state Γ, F,G B G or Γ, F B F . For both of these states, C has a winning
strategy by (1). �

Proposition 11 If C has a winning strategy in Γ, (F ;G), ∆⇒ H, then she also
has a winning strategy in Γ,G, F,∆⇒ H.

Proof. Let τ be a winning strategy for C in Γ, (F ;G), ∆⇒ H. C can use essen-
tially the same strategy τ in Γ,G, F,∆⇒ H. If during the game, the indicated
occurence of G,F is on top of the stack and τ tells her to (Check (F ;G)), C
simply skips this step. �

The converse to Proposition 11 fails: For example, C has a winning strategy in

K,F → G,G→ H B F → H

as the following LSTACK-derivation shows:

K,F, F → G,H ⇒ H

K,F,G⇒ G K,F ⇒ F
(→L)

K,F, F → G⇒ G
(→L)

K,F, F → G,G→ H ⇒ H
(→R)

K,F → G,G→ H ⇒ F → H

In contrast, C has no winning strategy in ((F → G);K), G → H B F → H.
This is because (;) prevents C from inserting the premise F below F → G in the
stack as her first step in the winning strategy. One easily checks that no other
proof exists, assuming that F,G,H,K are pairwise distinct atoms.

The discussed properties allow one to wrap up whole game states in single
information packages: For any game state S ≡ F1, . . . , Fn B G let IP(S) :=
((. . . (Fn;Fn−1);Fn−2); . . .);F1)→ G.

Proposition 12 C has a winning strategy in a game state S iff C has a winning
strategy in the state B IP(S).

Proof. For the direction from left to right, C starts the game for B IP(S) by
sending a (Check →)-request, followed by (n − 1)-many Unpack(;)-requests.
The game is then in the state S, for which C has a winning strategy by assump-
tion. For the other direction, it is clear (by lack of other choices) that a winning
strategy for IP(S) must start with a (Check →)-request, and hence C has a
winning strategy for the subsequent state ((. . . (Fn;Fn−1);Fn−2); . . .);F1) B G.
By applying Proposition 11 (n− 1)-times, we see that C has a winning strategy
in F1, . . . , Fn B G. �

Formulated proof-theoretically, Proposition 12 says that LSTACK is an internal
calculus: There is a uniform way of mapping sequents S to formulas IP(S) such
that S is provable iff its formula interpretation IP(S) is provable.

Finally observe that combining winning strategies for different game states in
C/S(STACK) would require to merge stacks. Hence the following observation
should not come as a surprise.

Proposition 13 The cut rule is not admissible in LSTACK.

Proof. Let a, b, c be pairwise distinct atoms and a 6= ⊥. The sequents a, b→ c⇒
b → c and b, b → c ⇒ c are provable. Applying the cut rule (with cut formula
b→ c) yields the sequent b, a, b→ c⇒ c, which is not provable:

b, a, c⇒ c
??

b, a⇒ b
(→L)

b, a, b→ c⇒ c �

7 Conclusion

We have introduced an interpretation of single-conclusioned sequent calculi as
means of information extraction: formulas are seen as information packages and
a derivation of Γ ⇒ F corresponds to a winning strategy of a Client C that seeks
to reduce the information F to the information Γ provided by the Server S. In

this manner we obtain an interpretation of a standard sequent calculus for intu-
itionistic logic that naturally extends to (affine) intuitionistic linear logic IAL.
In particular exponentials and subexponentials receive a robust interpretation in
terms of safeness from destruction through consumption. To demonstrate that
our game semantics does not only fit already known calculi, we also applied it
to a new concept: sequents where the left hand side represents a stack, rather
than a set, multiset, or list of information packages.

We view the presented ideas and results as just a starting point for a more
thorough analysis of deduction in analytic calculi in terms of reducing struc-
tured information to atomic information and plan to address, e.g., the following
questions in future research: Which further operators for packaging information
should be considered? Which alternative forms of storing information on a server
lead to sequent calculi? Can the approach be lifted to quantifiers? Does the new
interpretation of rule-admissibility lead to further insights into the underlying
logics? How can the Client/Server view assist in organizing efficient proof search?

References

1. Samson Abramsky and Radha Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. The Journal of Symbolic Logic, 59(02):543–574, 1994.

2. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J.
Logic Comput., 2(3):297–347, 1992.

3. Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied
logic, 56(1):183–220, 1992.

4. Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of expo-
nentials: Uncovering the dynamics of linear logic proofs. In Kurt Gödel Colloquium
on Computational Logic and Proof Theory, pages 159–171. Springer, 1993.

5. Jean-Yves Girard. Linear logic: its syntax and semantics. In Advances in linear
logic (Ithaca, NY, 1993), volume 222 of London Math. Soc. Lecture Note Ser.,
pages 1–42. Cambridge Univ. Press, Cambridge, 1995.

6. Giorgi Japaridze. The intuitionistic fragment of computability logic at the propo-
sitional level. Annals of Pure and Applied Logic, 147(3):187–227, 2007.

7. Laurent Keiff. Dialogical logic. In Edward N. Zalta, editor, The Stanford Encyclo-
pedia of Philosophy. Metaphysics Research Lab, Stanford University, summer 2011
edition, 2011.

8. Yves Lafont and Thomas Streicher. Games semantics for linear logic. In LICS’91.
Proceedings of Sixth Annual IEEE Symposium on Logic in Computer Science, pages
43–50. IEEE, 1991.

9. Paul Lorenzen. Logik und Agon. In Atti del XII Congresso Internazionale di
Filosofia, volume 4, pages 187–194, 1960.

10. Francesco Paoli. Substructural logics: a primer, volume 13. Springer Science &
Business Media, 2013.

11. Shahid Rahman and Helge Rückert. Dialogical connexive logic. Synthese,
127(1):105–139, 2001.

12. A. S. Troelstra and H. Schwichtenberg. Basic proof theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge,
second edition, 2000.

