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Abstract. Various challenges for lifting semi-fuzzy quantifier models to
fully fuzzy ones are discussed. The aim is to embed such models into
 Lukasiewicz logic in a systematic manner. Corresponding extensions of
Giles’ game with random choices of constants as well as precisifications
of fuzzy models are introduced for this purpose.

1 Introduction

Fuzzy logic provides formal models of vague quantifier expressions like many, few,
almost all, about half, etc. Following Zadeh [14], the literature on corresponding
fuzzy quantifiers is huge: we refer to the monograph [12] and to the more recent
survey article [2] for an overview of relevant literature. Following a useful and
well argued suggestion by Glöckner [12], a truth function for a fuzzy quantifier
should be determined in two separate steps: (1) define a suitable semi-fuzzy
quantifier, where the (scope and range) predicates are crisp (i.e. classical 0/1-
valued) and (2) lift the semi-fuzzy quantifier to a (fully) fuzzy quantifier in
some systematic and uniform manner. Regarding step (1) we will refer to an
approach based on extensions of Giles’s game for  Lukasiewicz logic [10] that
involve random choices of witness elements. But in this paper we will focus on
step (2). After reviewing various shortcomings of existing approaches, Glöckner
proposed an axiomatic approach for this second step, arriving at a corresponding
quantifier fuzzification mechanism (QFM). However, Glöckner’s QFM is still
unsatisfying in some respects. In particular it is incompatible with the paradigm
of mathematical fuzzy logic [1], where implication is understood as the residuum
of (strong) conjunction.

After reviewing some basic notions regarding quantifiers,  Lukasiewicz logic  L,
and Giles’s game for  L, we will explain some problems that may arise for lift-
ing semi-fuzzy quantifier models to fully fuzzy ones. We then discuss various
quantifier fuzzification methods that arise from considering precisifications of
fuzzy interpretations in a systematic manner. A central aim in this endeavor is
to embed the quantifier models into (suitable extensions of)  Lukasiewicz logic.
Moreover, we want to avoid ad hoc definitions of truth functions. For this reason,
our main tool are certain extensions of Giles game, where one considers random
choices of domain elements (constants) as well as choices of precisifications, in
addition to moves by the two strategic players of the game. We conclude with a
brief summary and some hints on further topics for related research.
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2 Types of Quantification

We are interested in models of vague quantifier expressions like almost all, about
half, at least about a quarter. We focus on unary (also known as monadic or type
〈1〉) quantification, where the scope of the quantified statement consists of a
single formula and where the quantifier binds a single object variable. Vagueness
will be modeled by fuzziness. A fuzzy set S̃D is a function of type D → [0, 1],
where the (crisp) set D is the underlying domain or universe. Similarly, an n-ary
fuzzy relation is a function of type Dn → [0, 1]. Every interpretation M with
domain D assigns an n-ary fuzzy relation over D to each n-ary predicate symbol.
Any unary fuzzy quantifier Q̃ is interpreted by a truth function which assigns a
truth degree (truth value) in [0, 1] to each fuzzy set over the domain. As a special
case of fuzzy quantification, we obtain semi-fuzzy quantifiers by restricting the
scope to classical predicates (corresponding to crisp sets).

Throughout this paper we will assume that the domainD is finite; an assump-
tion that is justified by the intended application of modeling natural language
expressions. We will focus on a specific, but very common type of quantifiers,
namely proportionality quantifiers, where, in the (unary) semi-fuzzy case, the
degree of truth of the quantified sentence depends only on the fraction of do-
main elements that satisfy the scope predicate. Given an interpretationM with
domain D and a formula F we define1

PropM(F ) =
∑
d∈D

vM(F (d))

|D|
.

When F is a classical formula, then PropM(F ) is |{d ∈ D : vM(F (d)) = 1}|/|D|
and denotes the proportion of elements of the domain satisfying F under M.
Hence, if Q is a semi-fuzzy proportionality quantifier, vM(QxF (x)) is uniquely
determined by PropM(F ). In the general fuzzy case, we can read PropM(F )
as the average truth value of F under M. It is much more straightforward to
judge the linguistic adequateness of semi-fuzzy quantifiers as models of vague
(proportional) quantification, than to deal directly with the general case, where
the scope predicate may be vague as well. For this reason, as already mentioned
in the introduction, Glöckner [12] suggested to split the design of adequate fuzzy
models of vague quantifiers into two separate steps:

(1) specify the truth function for a semi-fuzzy quantifier,
(2) lift the function obtained in (1) to the fully fuzzy case.

For step (2) Glöckner introduced the notion of a quantifier fuzzification mecha-
nism (QFM) and presented a range of axioms that should be satisfied by a QFM
that lifts a wide class of semi-fuzzy to fuzzy quantifiers in a uniform manner.
While we definitely agree with the usefulness of splitting the task of designing
fuzzy logic based quantifier models as indicated, there remain a number of chal-
lenges. In particular it is left unclear how task (1) can be accomplished without
resorting to ad hoc decisions for selecting appropriate truth function.

1 For convenience, we identify constant symbols with domain elements.
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Of particular importance for the current paper, we moreover argue that the
corresponding quantifiers should be embeddable into (full)  Lukasiewicz logic or
at least into some other t-norm based fuzzy logic, as suggested by the paradigm
of Hájek [13], which provides the basis for contemporary Mathematical Fuzzy
Logic [1]. The approach of Glöckner [12] as well as that of many others (see
[2]) leaves much to be desired in this respect. Here, we will not deal directly
with step (1), but rather rely on a framework for the systematic design of semi-
fuzzy proportionality quantifiers, based on Giles’s game for  Lukasiewicz logic
(see Section 4).

3  Lukasiewicz Logic

As already indicated, we do not want to consider fuzzy quantifiers in isolation,
but rather suggest that such quantifiers should lead to natural generalizations
of well understood deductive fuzzy logics, as investigated under the heading of
contemporary Mathematical Fuzzy Logic [1]. Among the corresponding t-norm
based logics,  Lukasiewicz logic  L can be singled out as particularly important,
since it has the unique property that the truth functions of all logical connectives
are continuous2 functions [1]. The semantics of the propositional connectives of
(full)  Lukasiewicz logic is given by the following truth functions:

vM(F ∧G) = min(vM(F ), vM(G)) vM(F ⊗ G) = max(0, vM(F ) + vM(G)− 1)
vM(F ∨G) = max(vM(F ), vM(G)) vM(F ⊕G) = min(1, vM(F ) + vM(G))
vM(F → G) = min(1, 1− vM(F ) + vM(G))
vM(⊥) = 0 vM(>) = 1 vM(¬F ) = 1− vM(F )

Universal and existential quantification is specified as follows:

vM(∀xF (x)) = infc∈D(vM(F (c))) vM(∃xF (x)) = supc∈D(vM(F (c)))

There is a further reason for choosing  Lukasiewicz logic as a frame for design-
ing formal models of vague language: already in the 1970s Robin Giles [10, 11]
provided a game based semantics for  L, that allows one to justify the particular
choice of truth functions with respect to first principles about approximate rea-
soning. As will see in the next section, Giles’s game provides a suitable base for
extending  L with further quantifiers in a principled manner.

4 Giles’s Game and Semi-Fuzzy Quantifiers

In Giles’s game for  L, two players (You and Myself) stepwise reduce logically
complex assertions (formulas) to their atomic components via systematic attack
and corresponding defense moves. A state of the game is given by two multisets
(tenets) of formulas, written as

[F1, . . . , Fm | G1, . . . , Gn] ,

2 In rival candidates, like Gödel logic or Product logic the truth function for implica-
tion is not continuous.
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where F1, . . . , Fm denotes the multiset of formulas currently asserted by You
(your tenet), whereas G1, . . . , Gn denotes the multiset of formulas currently as-
serted by Myself (my tenet). The rules of the game specify how the player in
role P (‘proponent’) may react to an attack by the player in role O (‘opponent’)
on an occurrence of one the formulas asserted by P. For example, an attack
(by O) on ∀xF (x) has to be answered by P with the assertion of F (c), where
the constant c is chosen by O. Whereas in replying to an attack on ∃xF (x), P
chooses the instance F (c) that replaces the attacked formula occurrence in the
multiset of formulas currently asserted by her. Similar rules apply to proposi-
tional connectives: if a disjunctive formula A∨B is attacked, then it is replaced
by either A or B, according to a choice by P, etc. In particular, implication and
strong conjunction are specified by the following rules:

(R→) If P asserts F → G then, if O chooses to attack this formula occurrence, it
is replaced by G in P’s tenet and F is added to O’s tenet; otherwise, if O
chooses not attack this occurrence of F → G, it is removed from P’s tenet.

(R⊗) If P asserts F ⊗G then P has to reply to O’s attack by either asserting F
as well as G or else ⊥ instead of F ⊗G.

In any case, the successor state of the game is obtained by removing the
attacked formula occurrence and adding zero or more immediate subformulas
or the logical constant ⊥ to my or your tenet. This is repeated until a state is
reached, where all asserted formulas are atomic. At such a final state the payoff
for Myself is given by

m− n+ 1 +
∑

1≤i≤n

vM(Gi)−
∑

1≤i≤m

vM(Fi),

where vM(A) denotes the truth value3 assigned to the atomic formula A by the
given interpretationM. Giles [10] (essentially) proved that for every formula F of
 Lukasiewicz logic, there is a strategy for Myself that guarantees a final payoff of
vM(F ) if both players play rationally according the rules of the outlined (finite,
two person, perfect information) game. When this is the case, we say that the
truth functions used in vM(F ) for interpreting the connectives and quantifiers
match the corresponding game rules. Here we are interested in game rules—and
the resulting truth functions—for proportional semi-fuzzy quantifiers. To obtain
such rules Fermüller and Roschger [4, 8] considered uniformly random choices
of witnessing constants, in addition to the choices made by the two strategic
players in roles P and O, as indicated above for the classical quantifiers ∀ and
∃. The most basic of such rules introduces a new random choice quantifier Π as
follows.
3 The payoff scheme may look arbitrary at a first glimpse. However it results from

Giles’s interpretation of the truth value of a given atom A in terms of the expected
loss for a player, who has to pay a fixed amount of money (say 1 Euro) to the
opposing player, if a certain experiment EA associated with A fails. Such (binary)
experiments may show dispersion, i.e. repeated executions of the same experiment
EA may show different results. However for each A a fixed failure probability (risk)
is associated to EA.
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(RΠ) If P asserts ΠxF (x) then this formula occurrence is replaced by F (c), where
c is a (uniformly) randomly chosen constant.

We will call  L(Π) the expansion of  L with the random choice quantifier Π. More
generally, rules for a quantified formula QxF (x) feature bets for and bets against
instances F (c) of its scope formula, where c is a randomly chosen constant. A bet
for F (c) is simply an assertion of F (c) by the corresponding player, whereas a bet
against F (c) means that ⊥ has to be asserted, while the opposing player asserts
F (c). Following [4, 8], these notions allow us to formulate, e.g., the following
families of rules for so-called blind choice quantifiers.

(RLkm
) If P asserts LkmxF (x) then O may attack by betting for k random instances

of F (x), while P bets against m random instances of F (x).
(RGkm

) If P assert GkmxF (x) then O may attack by betting against m random in-
stances of F (x), while P bets for k random instances of F (x).

Some clarifications are needed to render these rules intelligible:

1. ‘Blind choice’ signifies that the identity of the randomly picked constants c1,
. . . , cn used for the relevant random instances F (c1), . . . , F (cn) is revealed
to the players only after they have placed their bets.

2. The choices of constants are uniformly random and independent of each
other. In particular, the same constant may be picked more than once. There-
fore the random instances form multisets, rather than sets of formulas.

3. Attacks are always optional in a Giles style game, which means that (the
player in role) O can always decide that the attacked formula is simply re-
moved from the current state. Giles speaks of a ‘principle of limited liability’
for attack (LLA) in such a situation.

4. A ‘principle of limited liability’ for defense (LLD) is also in place: if attacked
by O then P may always decide to replace the attacked formula occurrence
by ⊥, rather than to continue the game as indicated in the above rules.

As shown in [8] the above rules, together with the just mentioned principles of
limited liability, allow one to extract the following corresponding truth functions:

vM(LkmxF (x)) = min{1,max{0, 1 + k − (m+ k)PropM(F )}} (1)

vM(GkmxF (x)) = min{1,max{0, 1− k + (m+ k)PropM(F )}}. (2)

These quantifiers are definable in  L(Π) using additional truth constants [6].

5 Problems with Lifting

It is tempting to extend the above framework for semi-fuzzy quantifiers to fully
fuzzy quantifiers by just applying the same functions and game rules to fuzzy
predicates. From a purely mathematical point of view, no problem arises: for any
formula F in the scope of a quantifier we can just compute PropM(F ) and plug
the obtained value into the corresponding truth functions. However, this leads
to results that run counter to expectations on the behavior of vague quantifiers
in natural language, as illustrated by the following example.
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Example 1. Let F a predicate standing for “is tall”. We want to evaluate the
sentence About half (of the elements of the domain) are tall. For modeling About
half we use the quantifier H1

0x, introduced in [8] and shown there to be equivalent
to G1

1x ∧ L1
1x. It is straightforward to see that

vM(H1
0x(F (x))) = max{0,min{2PropM(F ), 2− 2PropM(F )}}.

We now consider the following two interpretationsM1 andM2 under the same
domain D = {d1, d2, d3, d4}. Under the interpretation M1 we let vM1(F (d1)) =
vM1

(F (d2)) = 0.1 and vM1
(F (d3)) = vM1

(F (d4)) = 0.9. Under the inter-
pretation M2 we let instead vM2

(F (d)) = 0.5 for any d ∈ D. Note that
PropM1

(F ) = PropM2
(F ) = 0.5, hence vM1

(H1
0xF (x)) = vM2

(H1
0xF (x)) = 1.

In the first interpretation we have two almost clear cases of tall people and two
almost clear cases of not tall people, and we correctly obtain a high value for
vM1

(H1
0xF (x)). In the second interpretation instead, all individuals of the do-

main are meant to be of perfectly average height. Of course there is no clear fact
in this situation which would determine the “correct” truth value, but we would
expect it to be smaller than in the first interpretation. As we saw above, how-
ever, vM1(H1

0xF (x)) = vM2(H1
0xF (x)). Informally, the approach is not sensitive

to the difference between About half (of the people) are tall and All (of the people)
are about half tall. Note that using any other truth function for the quantifier
About half defined only in terms of the average truth value PropM(F ) would
not help. The example shows that, when evaluating a fuzzy quantifier over fuzzy
predicates, one should also keep track of how the truth values are distributed
over the elements of the domain.

6 Fuzzification via Random Precisification

Assume that we have a sentence Q̃xF (x), where Q̃ is a fuzzy quantifier corre-
sponding to a semi-fuzzy quantifier Q, and letM be an interpretation evaluating
F over [0, 1]. As we saw before, we cannot interpret Q̃ just in the same way as
Q. To obtain more satisfactory models, we first need to associate to the inter-
pretationM a set of interpretations evaluating F as a classical formula, so that
the corresponding semi-fuzzy quantifier Q can be evaluated properly. Following
the terminology used in supervaluationist accounts of vagueness [7, 9], we call
such a set of interpretations the admissible precisifications4 of M and denote
it by CM. Informally CM collects the “reasonable” ways of making M precise
(i.e. classical) over atomic formulas. A simple idea for the evaluation of fuzzy
quantifiers via reduction to precisifications has been introduced in [5] and can
be formulated game semantically as follows. With respect to an interpretation
M, with a corresponding set CM of admissible precisifications, the following
random-precisification based rule extends Giles’ game for  L(Q), where Q is a
semi-fuzzy quantifier, to a corresponding fuzzy quantifier Q̃:

4 Note that, despite the fact that a precisification evaluates atomic formulas classically,
the valuation under a precisification of a formula involving a semi-fuzzy quantifier
might be an intermediate value in [0, 1].
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(RRP
Q̃

) If P asserts Q̃xF (x) and O attacks the formula, a precisification M′ is

chosen randomlyfrom CM and P has to assert Qx(F (x)), where this formula
occurrence is evaluated over M′ .

A truth function for Q̃ matching this rule is obtained as the expected value
of vM′(QxF (x)), where M′ ranges over the set of admissible precisifications
CM. Even though not explicitly required by the general framework, we can
assume that the random choice of a precisification from CM follows a uniform
distribution. A natural way to instantiate (RRP

Q̃
) is by letting

CM = {M≥α | α ∈ [0, 1]},

where M≥α denotes the interpretation such that, for any atomic formula A,
vM≥α(A) = 1 if vM(A) ≥ α and vM≥α(A) = 0 otherwise. Hence we can think
of the random choice of a precisification as coinciding with the random choice
of a value α acting as a threshold. The truth function matching (RRP

Q̃
) is then

be obtained as:

vM(Q̃xF (x)) =

∫ 1

0

vM≥α(QxF (x))dα.

The same evaluation function and corresponding lifting mechanism for fuzzy
quantifier is also obtained in [3], though motivated by a different semantics,
based on voting models. In [3] it is also shown that the model satisfies many,
though not all of Glöckner’s desiderata for a quantifier fuzzification mechanism.
Let us look now how this approach deals with the Example 1.

Example 1 (continued). Let b0 = 0, b1 = vM1
(F (d1)) = vM1

(F (d2)) = 0.1,
b2 = vM1(F (d3)) = vM1(F (d4)) = 0.9, b3 = 1. Clearly, for any bi−1 < α ≤ bi we
have vM≥α1

(H1
0xF (x)) = vM≥bi1

(H1
0xF (x)). As the domain D is finite, we get

vM1(H̃1
0xF (x)) =

3∑
i=1

(bi − bi−1) · vM≥bi1

(H1
0xF (x)) =

= 0.1 · vM≥0.1
1

(H1
0xF (x)) + 0.8 · vM≥0.9

1
(H1

0xF (x)) + 0.1 · vM≥1
1

(H1
0xF (x)) = 0.8.

For the interpretation M2 we instead obtain

vM2
(H̃1

0xF (x)) = 0.5 · vM≥0.5
2

(H1
0xF (x)) + 0.5 · vM≥1

1
(H1

0xF (x)) = 0.

This computation of the expected value of H1
0F (x) over the admissible precisifi-

cations delivers more adequate results than the naive application of the function
for H1

0. From our perspective though, the fuzzification mechanism recalled here
still poses a problem: we lose the possibility of expressing fuzzy quantifiers in
the language of the logic  L(Π) – in contrast to the case for the semi-fuzzy quan-
tifiers introduced in [8]. To embed fuzzy quantifiers in a  Lukasiewicz logic based
framework, we have to consider appropriate expansions of  L(Π). One way of
doing so consists in introducing a random choice quantifier Πp operating over
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propositional variables rather than over elements of the domain. Game seman-
tically, given a formula F containing occurrences of a propositional variable p,
we can interpret ΠpF (p) via the following rule.

(RΠp) If O attacks ΠpF (p), a propositional variable p′ is randomly chosen and P
has to assert F (p′).

The random choice of a propositional variable can be seen as a syntactic coun-
terpart of the random choice of a threshold truth value. In addition, we need to
expand  L(Π) with the the well-known unary connective ∆ (see e.g. [1]), given
by vM(∆F ) = 1 if vM(F ) = 1 and 0 otherwise. In what follows,  L∆(Π) denotes
the corresponding expansion of  L(Π). It easy to see that, if vM(p) = α, then
vM≥α(F (x)) = vM(∆(p→ F (x)). Hence in  L∆(Π) extended with Πp we can
express Q̃ by Q̃xF (x) ≡ ΠpQx(∆(p→ F (x))) for any fuzzy quantifier Q̃.

7 Expressing Fuzzy Quantifiers in  L∆(Π)

We will now introduce a different approach to lift semi-fuzzy to fuzzy quantifiers.
As in the previous case the idea is rooted in Giles’ game semantics setting, but
has an important advantage: the resulting fuzzy quantifiers are already definable
over the logic  L∆(Π). We start by presenting a more abstract framework.

Assume that, at a certain stage of a Giles’ game, the player acting as P has
in its tenet a fuzzy quantified sentence, say Q̃xF (x). If this assertion is attacked
by O, the following two-step defense ensues:

(i) P adds Qx(F (x)) to his tenet and evaluates this formula occurrence under
a precisification M′ of M of his choice.

(ii) P has to state that vM(F (x)) is “close” to vM′(F (x)).

Playing rationally, the proponent P will choose a precisification which maximizes
the truth value of the semi-fuzzy quantified sentence, while staying as close as
possible to the original truth values of the (fuzzy) predicate (a “reasonable”
precisification). Let us consider some possible ways to instantiate the above
abstract scheme in Giles’ game in such a way as to obtain the expressibility of
fuzzy quantifiers in  L∆(Π).

First, in addressing step (i) above, we may reduce the choice of a pre-
cisification to the choice of a certain element of the domain, say c, acting
as a threshold. In other words, we take precisifications Mc of M such that
vMc(F (d)) = 1 if vM(F (d)) ≥ vM(F (c)), and vMc(F (d)) = 0 otherwise. In
this setting, we could actually even remove any explicit reference toMc: letting
F c(x) ≡ ∆(F (c)→ F (x)), we easily see that vMc(F (x)) = vM(F c(x)). For ease
of reference, in the following we also let F>(x) ≡ ∆F (x), where F> stands for
the choice of > as a threshold, instead of an element of the domain.

Let us turn now to step (ii). Given two formulas A and B in  Lukasiewicz logic,
the most obvious way of measuring the closeness of their truth values under a
given interpretation is by evaluating A ↔ B, i.e. (A → B) ∧ (B → A). Thus,
a natural way to evaluate how close the formulas F c(x) and F (x) are under
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the interpretation M is by computing PropM(F c ↔ F ). In the setting of Giles’
game, the above ideas for (i) and (ii) result in the following closeness-based game
rule for Q̃x.

(RCL
Q̃

) If P asserts Q̃xF (x) and O attacks the formula, P can either invoke LLD

(i.e. dismiss this formula occurrence) or add QxF c(x) to his tenet, where c
is either an element of the domain of his choice or >. An element d is then
randomly chosen and O can then choose between the following:
1. O adds F c(d) to his tenet, thereby forcing P to add F (d) to his tenet.
2. O adds F (d) to his tenet, thereby forcing P to add F c(d) to his tenet.

The states of the game corresponding to O’s choices when P does not invoke LLD
can be depicted as follows (Γ and Σ stand for arbitrary multisets of formulas):[

Γ | Σ, Q̃xF (x)
]

[Γ, F c(d) | Σ,QxF c(x), F (d)] [Γ, F (d) | Σ,QxF c(x), F c(d)]

Proposition 1. Let us define the formula CL(QxF (x)) as

∃z(QxF z(x)⊗Πy(F z(y)↔ F (y))) ∨ (Qx(∆F (x))⊗Πy(F (y)↔ ∆F (y))).

The game rules for CL(QxF (x)) in Giles’ game for  Lukasiewicz logic are es-
sentially reducible to (RCL

Q̃
), modulo some irrelevant change of order: letting

vM(Q̃xF (x)) = vM(CL(QxF (x))), where

vM(CL(QxF (x))) = sup
c∈D∪{>}

(
max{0,PropM(F c ↔ F ) + vM(QxF c(x))− 1}

)
,

we obtain an evaluation of Q̃xF (x) matching the game rule (RCL
Q̃

).

Note that the occurrence of Πy(F z(y)↔ F (y)) in CL(QxF (x)) corresponds to
asserting that F z(y) is “close” to F (y), whereas the subformula Qx(∆F (x)) ⊗
Πy(F (y)↔ ∆F (y)) reflects the choice of > as a threshold instead of an element
of the domain.

Motivated by game semantics, we have thus obtain an abstract characteri-
zation of fuzzy quantifiers in terms of semi-fuzzy ones. We remark that simple
changes in the choice of connectives and quantifiers in CL(QxF (x)), lead to dif-
ferent fuzzification mechanisms, still expressible in  L∆(Π). Let us check how the
approach sketched here fares with respect to Example 1 of Section 5.

Example 1 (continued). Under the interpretation M1, the supremum in
vM(CL(H1

0xF (x)) is obtained equivalently by choosing d3 or d4 as a thresh-

old element. Hence vM1
(H̃1

0xF (x)) = vM1
(H1

0xF
d4(x)⊗Πy(F d4(y)↔ F (y))).

We have PropM1
(F d4) = 0.5 and PropM1

(F d4 ↔ F ) = 0.9+0.9+0.9+0.9
4 = 0.9.

Hence vM1
(H̃1

0xF (x)) = 1⊗ 0.9 = 0.9.
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For the interpretationM2 it does not matter which element of the domain is
taken as a threshold (the choice of > can only make the value of vM(CL(H1

0x))

smaller). In any case vM2(H1
0xF

di(x)) = 0, hence vM2(H̃1
0xF (x)) = 0.

The method correctly determines two different truth values for H̃1
0xF (x) for the

two interpretations M1 and M2. Note that a different value was obtained for

vM1(H̃1
0xF (x)) under the random precisification mechanism in Section 6. The

value 0.8 obtained for M1 in that approach points to a probabilistic interpre-
tation of the truth values of F (di). Indeed 0.8 stands for the probability that
one picks the precisifications accepting half of the elements of the domain (d3, d4
but not d1, d2) as instances of F . What we present in this section instead follows
a “metric” intuition: it determines how close the interpretation M1 is from the
one where exactly for half of the elements of the domain fully satisfy F (x), hence
the value 0.9. We contend that both results are plausible and justifiable under
the respective (different) underlying intuitions.

Some problems persist, due to our choice of the closeness measure: evaluating
how close the truth values of all the elements of the domain are to a precisification
can lead indeed to counterintuitive results, as illustrated in the following.

Example 2. Let us consider the quantifier G1
1, which can be thought of as mod-

eling At least about half. Recall that vM(G1
1xF (x)) = min{1, 2PropM(F )}. We

compare the truth values of G1
1xF (x) under the interpretationM1 in Example 1

and under a new interpretationM3 over the same domain D = {d1, . . . , d4}. As

for the case of H̃1
0xF (x), we obtain vM1(G̃1

1xF (x)) = 0.9. Now let vM3(F (d1)) =
vM3

(F (d2)) = 0.4 and vM3
(F (d3)) = vM3

(F (d4)) = 0.9. ForM3, the supremum
of vM(CL(G1

1xF (x))) is obtained by choosing the precisification determined by
F d4 . Again, we have vM3

(G1
1xF

d4(x)) = 1, but F d4 is less close to F then in
M1. Indeed, we have vM3

(Πy(F d4(y)↔ F (y))) = 0.6+0.6+0.9+0.9
4 = 0.75 hence

vM3
(G̃1

1xF (x)) = 1⊗ 0.75 = 0.75.

Note that the semi-fuzzy quantifier G1
1 is increasingly monotone, which means

that vM1(F (d)) ≤ vM3(F (d)) for any d ∈ D, implies that vM1(G1
1xF (x)) ≤

vM3
(G1

1xF (x)). One would expect the same to happen also for the corresponding

fuzzy quantifier, i.e. to have vM1
(G̃1

1xF (x)) ≤ vM3
(G̃1

1xF (x)). But this is not
the case, as shown above. The problem is that, when evaluating in M3 how
close F is to the precisification F d4 , we take into account also those elements (d1
and d2) for which vM3(F d4(d)) = 0. These values should be indifferent for an
increasingly monotone predicate. A simple solution to address this problem is to
replace in the subformula Πy(F z(y) ↔ F (y)) of CL(QxF (x)) (see Proposition
1) the quantifier occurrence Πy by ∀y or ∃y, thus obtaining a stricter or looser
measure of closeness, respectively. A more general – and hence more satisfactory
– solution consists in replacing the rule (RCL

Q̃
) above by a simplified version,

which reduces the choices available to O. In case the semi-fuzzy quantifier under
consideration is monotone increasing, we allow the opponent O only the first
choice, which is matched by the truth function PropM(F c → F ). Similarly, for
decreasing monotonic quantifier we allow only the second option, corresponding
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to PropM(F → F c), while for other quantifiers we leave both options available
to O. Let CL′(QxF (x)) stand for

∃z(QxF z(x)⊗Πy(◦(F z(y), F (y))) ∨ (Qx(∆F (x)⊗Πy(◦(∆F (y), F (y))))

where ◦(F z(y), F (y)) ≡ F z(y) → F (y) if Q is increasing, F (y) → F z(y) if Q
is decreasing, and F (y) ↔ F z(y) otherwise. The game rules for CL′(QxF (x))
correspond to the refinement of (RCL

Q̃
) just discussed; i.e., we obtain the analogue

of Proposition 1 for vM(Q̃xF (x)) = vM(CL′(QxF (x))). We can now solve the
problems with monotonicity in Example 2, while still retaining the important
property of allowing to define fuzzy quantifiers over  L∆(Π).

Example 2 (continued). For M1 the supremum in vM1
(CL′(QxF (x))) is ob-

tained considering F d4 . Since G1
1 is a monotone increasing quantifier, the close-

ness of F to F d4 is measured by vM1(Πy(F d4(y)→ F (y))) = 1+1+0.9+0.9
4 = 0.95

and consequently we obtain vM1(G̃1
1xF (x)) = 0.95. The same value is obtained

for vM3
(Πy(F d4(y)→ F (y))), hence vM3

(G̃1
1xF (x)) = vM3

(G̃1
1xF (x)) = 0.95.

More generally, we obtain the following restricted preservation of monotonicity.

Proposition 2. For any semi-fuzzy quantifier Q, let us interpret Q̃xF (x) as
CL′(QxF (x)); and let M and M′ be two interpretations such that vM(F (di))�
vM(F (dj)) iff vM′(F (di)) � vM′(F (dj)) for arbitrary elements di, dj of a finite
domain D, where � is either = or <. If Q is a monotone increasing quantifier
and vM(F (d)) ≤ vM′(F (d)) for any d ∈ D, then vM(Q̃xF (x)) ≤ vM′(Q̃xF (x)).
Analogously, for monotone decreasing quantifiers.

8 Conclusion

We have investigated different ways of lifting semi-fuzzy to fuzzy quantifiers.
The two main approaches presented in Section 6 and 7 have the following ad-
vantages: (1) they have a clear semantic foundation, based on Giles’ game and (2)
they provide models of fuzzy quantifiers compatible with  Lukasiewicz logic. The
closeness-based method introduced in Section 7 fulfills (2) in an even stronger
sense, by allowing for the definition of fuzzy quantifiers over  L∆(Π). We partially
departed from Glöckner’s [12], as the set of axioms presented there for fuzzifica-
tion mechanisms forces an interpretation of the connectives different from that
of  Lukasiewicz logic. Nevertheless we maintain that some of the properties listed
by Glöckner are relevant for our purposes as well. Among them, we stress the
preservation of monotonicity. In the closeness based approach we obtained only
a restricted form of this property. Full preservation of monotonicity can be easily
achieved if we drop the requirement that a precisification should be identified
with the choice of a threshold element. This, however, results in losing the im-
mediate expressibility of quantifiers in  L∆(Π).

Further refinements of the method yet to be explored can be obtained by
changes to the definition of the closeness measure.
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Another natural research direction is to extend the closeness based approach
to binary, or more generally to n-ary vague quantifiers: linguistically adequate
models of such quantifiers should also take into account general concerns regard-
ing truth functionality, as already suggested in [5] for the random precisification-
based approach.

Finally, we suggest to further explore the advantages of embedding fuzzy
quantifiers models into logical calculi, in particular for t-norm based logics. An
axiomatization and a proof-theoretic study of semi-fuzzy and fuzzy quantifiers
is still lacking, even for the “basic” logic  L(Π). Promising steps in this direc-
tion consider modal counterparts of quantifiers, e.g. along the lines suggested in
Chapter 8 of Hajek’s ground breaking monograph [13].
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