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Fuzzy logics in Zadeh’s ‘narrow sense’ (Zadeh, 1988), i.e., truth functional
logics referring to the real closed unit interval [0,1] as set of truth val-
ues, are often motivated as logics for ‘reasoning with imprecise notions and
propositions’ (see, e.g., (Hájek, 1998)). However the relation between these
logics and theories of vagueness, as discussed in a prolific discourse in ana-
lytic philosophy (Keefe & Rosanna, 2000), (Keefe & Smith, 1987), (Shapiro,
2006) is highly contentious. We will not directly engage in this debate here
but rather pick out so-called interval based fuzzy logics as an instructive
example to study

1. how such logics are usually motivated informally,

2. what problems may arise from these motivations, and

3. how betting and dialogue games may be used to analyze these logics
with respect to more general principles and models of reasoning.

The main technical result1 of this work consists in a characterization of an
important interval based logic, considered, e.g., in (Esteva, Garcia-Calvés,
& Godo, 1994), in terms of a dialogue cum betting game, that generalizes
Robin Giles’s game based characterization of Łukasiewicz logic (Giles, 1974),
(Giles, 1977). However, our aim is to address foundational problems with
certain models of reasoning with imprecise information. We hope to show
that the traditional paradigm of dialogue games as a possible foundation of
logic (going back, at least, to (Lorenzen, 1960)) combined with bets as ‘test
cases’ for rationality in the face of uncertainty might help to sort out some
of the relevant conceptual issues. This is intended to highlight a particular
meeting place of logic, games, and decision theory at the foundation of a
field often called ‘approximate reasoning’ (see, e.g., (Zadeh, 1975)).

∗This work is supported by FWF project I143–G15.
1Due to limited space, we state propositions without proofs.
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1 T-norm based fuzzy logics and bilattices

Petr Hájek, in the preface of his influential monograph on mathematical
fuzzy logic (Hájek, 1998) asserts:

The aim is to show that fuzzy logic as a logic of imprecise (vague)
propositions does have well developed formal foundations and that
most things usually named ‘fuzzy inference’ can be naturally under-
stood as logical deduction. (Hájek, 1998, p. viii)

As the qualification ‘vague’, added in parenthesis to ‘imprecise’, betrays,
some terminological and, arguably, also conceptional problems may be lo-
cated already in this introductory statement. These problems relate to
the fact that fuzzy logic is often subsumed under the general headings of
‘uncertainty’ and ‘approximate reasoning’. In any case, Hajek goes on to
introduce a family of formal logics, based on the following design choices
(compare also (Hájek, 2002)):

1. The set of degrees of truth (truth values) is represented by the real
unit interval [0,1]. The usual order relation ≤ models comparison of
truth degrees; 0 represents absolute falsity, and 1 represents absolute
truth.

2. The truth value of a compound statement shall only depend on the
truth values of its subformulas. In other words: the logics are truth
functional.

3. The truth function for (strong) conjunction (&) should be a continu-
ous, commutative, associative, and monotonically increasing function
∗ ∶ [0,1]2 → [0,1], where 0 ∗ x = 0 and 1 ∗ x = x. In other words: ∗ is
a continuous t-norm.

4. The residuum ⇒∗ of the t-norm ∗ — i.e., the unique function ⇒∗∶
[0,1]2 → [0,1] satisfying x ⇒∗ y = sup{z ∣ x ∗ z ≤ y} — serves as the
truth function for implication.

5. The truth function for negation is λx[x⇒∗ 0].

Probably the best known logic arising in this way is Łukasiewicz logic L
(Łukasiewicz, 1920), where the t-norm ∗L that serves as truth function for
& is defined as x ∗L y = max(0, x + y − 1). Its residuum ⇒L is given by
x ⇒L y = min(1,1 − x + y). A popular alternative choice for conjunction
takes the minimum as its truth function. Besides ‘strong conjunction’ (&),
also this latter ‘weak (min) conjunction’ (∧) can be defined in all t-norm

based logics by A ∧ B
def
= A&(A → B). Maximum as truth function for

disjunction (∨) is always definable from ∗ and ⇒∗, too.
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Other important logics, like Gödel logic G, and Product logic P, can
be obtained in the same way, but we will confine attention to L, here. At
this point we like to mention that a rich, deep, and still growing subfield
of mathematical logic, documented in hundreds of papers and a number of
books (beyond (Hájek, 1998)) is triggered by this approach. Consequently
it became evident that degree based fuzzy logics are neither a ‘poor man’s
substitute for probabilistic reasoning’ nor a trivial generalization of finite-
valued logics.
A number of researchers have pointed out that, while modelling degrees

of truth by values in [0,1] might be a justifiable choice in principle, it is
hardly realistic to assume that there are procedures that allow us to assign
concrete values to concrete (interpreted) atomic propositions in a coherent
and principled manner. While this problem might be ignored as long as
we are only interested in an abstract characterization of logical consequence
in contexts of graded truth, it is deemed desirable to refine the model by
incorporating ‘imprecision due to possible incompleteness of the available
information’ (Esteva et al., 1994) about truth values. Accordingly, it is
suggested to replace single values x ∈ [0,1] by whole intervals [a, b] ⊆ [0,1]
of truth values as the basic semantic unit assigned to propositions. The
‘natural truth ordering’ ≤ can be generalized to intervals in different ways.
Following (Esteva et al., 1994) we arrive at these definitions:

Weak truth ordering: [a1, b1] ≤
∗ [a2, b2] iff a1 ≤ a2 and b1 ≤ b2

Strong truth ordering: [a1, b1] ≺ [a2, b2] iff b1 ≤ a2 or [a1, b1] = [a2, b2]

On the other hand, set inclusion (⊆) is called imprecision ordering in this
context. The set of closed subintervals Int[0,1] of [0,1] is augmented by the
empty interval ∅ to yield so-called enriched bilattice structures ⟨Int[0,1],≤

∗,
0,1,∅,L,N∗⟩ as well as ⟨Int[0,1],≺,0,1,∅,L,N∗⟩, where L is the standard
lattice on [0,1], with minimum and maximum as operators, and N∗ is the
extension of the negation operator N to intervals; in our particular case
N∗([a, b]) = [1 − b,1 − a] and N∗(∅) = ∅.
Quite a number of papers have been devoted to the study of logics

based on such interval generated bilattices. Let us just mention that the
Ghent school of Kerre, Deschrijver, Cornelis, and colleagues has produced
an impressive amount of work on interval bilattice based logics (see, e.g.,
(Cornelis, Deschrijver, & Kerre, 2006)).
While it is straightforward to generalize both types of conjunction (t-

norm and minimum) as well as disjunction (maximum) from [0,1] to Int[0,1]

by applying the operators point-wise, it seems less clear how the ‘right’ gen-
eralization of the truth function for implication should look like. In (Cornelis,
Arieli, Deschrijver, & Kerre, 2007), (Cornelis, Deschrijver, & Kerre, 2004)

[a, b] ⇒∗C [c, d]
def
= [min(a ⇒ c, b ⇒ d), b ⇒ d] is studied, but in (Esteva et
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al., 1994) the authors suggest [a, b]⇒∗E [c, d]
def
= [b⇒ c, a⇒ d]. As has been

pointed out in (Hájek, n.d.) there seems to be a kind of trade off involved
here. While ⇒∗C preserves a lot of algebraic structure — in particular it
yields a residuated lattice which contains the underlying lattice over [0,1]
as a substructure — the function ⇒∗E is not a residuum, but leads to the
following desirable preservation property that is missing for ⇒∗C . IfM2 is
a precisiation of M1 (meaning: for each propositional variable p, M2 as-
signs a subinterval of the interval assigned to p byM1), than any formula
satisfied byM1 is also satisfied byM2.

2 Below, we will try to show that a
game based approach might justify the preference of ⇒∗E over ⇒

∗
C against

a background that takes the challenge of deriving formal semantics from
first principles about logical reasoning more seriously than the mentioned
literature on ‘interval logics’.

2 Worries about truth functionality

It is interesting to note that both, (Esteva et al., 1994) and (Cornelis et al.,
2007), (Cornelis et al., 2004), refer to Ginsberg (Ginsberg, 1988), who ex-
plicitly introduced bilattices following ideas of (Belnap, 1977). Most promi-
nently Ginsberg considers B = ⟨{0,⊺,�,1},≤t ,≤k,¬⟩ as endowed with the
following intended meaning:

• 0 and 1 represent (classical) falsity and truth, respectively, ⊺ repre-
sents ‘inconsistent information’ and � represents ‘no information’. The
idea here is that truth values are assigned after receiving relevant in-
formation from different sources. Accordingly ⊺ is identified with the
information set {0,1}, � with ∅ and the classical truth values with
their singleton sets.

• ≤t, defined by 0 ≤t ⊺/� ≤ 1, is the ‘truth ordering ’.

• ≤k, defined by � ≤t 0/1 ≤ 1, is the ‘knowledge ordering ’.

• Negation is defined by ¬(0) = 1, ¬(1) = 0, ¬(⊺) = ⊺, ¬(�) = �.

While the four ‘truth values’ of B may justifiably be understood to represent
different states of knowledge about propositions, it is very questionable to
try to define corresponding ‘truth functions’ for connectives other than nega-
tion. Indeed, it is surprising to see how many authors3 followed (Belnap,
1977) in defending a four valued, truth functional logic based on B. It should
be clear that, in the underlying classical setting that is taken for granted
by Belnap, the formula A ∧ ¬A can only be false (0), independently of the

2Here, a formula is defined to be satisfied if it evaluates to the degenerate interval [1,1].
3Dozens of papers have been written about Belnap’s 4–valued logic.
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kind of information, if any, we have about the truth of A. On the other
hand, if we neither have information about A nor about B, then B ∧ ¬A

could be true as well as false, and therefore � should be assigned not only
to A, B, and ¬A, but also to B ∧ ¬A (in contrast to A ∧ ¬A). This simple
argument illustrates that knowledge does not propagate compositionally —
a well known fact that, however, has been ignored repeatedly in the liter-
ature. (For a recent, forceful reminder on the incoherency of the intended
semantics for Belnap’s logic we refer to (Dubois, n.d.).)
In our context this warning about the limits of truth functionality is

relevant at two separate levels. First, it implies that ‘degrees of truth’ for
compound statements cannot be interpreted epistemically while upholding
truth functionality. Indeed, most fuzzy logicians correctly emphasize that
the concept of degrees of truth is orthogonal to the concept of degrees of
belief. While truth functions for degrees of truth can be motivated and
justified in various ways — below we will review a game based approach
— degrees of belief simply don’t propagate compositionally and call for
other types of logical models (e.g., ‘possible worlds’). Second, concerning
the concept of intervals of degrees of truth, one should recognize that it is
incoherent to insist on both at the same time:

1. truth functions for all connectives, lifted from [0,1] to Int[0,1], and

2. the interpretation of an interval [a, b] ⊆ [0,1] assigned to a (com-
pound) proposition F as representing a situation where our best knowl-
edge about the (definite) degree of truth d ∈ [0,1] of F is that a ≤ d ≤ b.

Given the mathematical elegance of 1, that results, among other desirable
properties, in a low computational complexity of the involved logics4, one
should look for alternatives to 2. Godo and Esteva5 have pointed out that,
if we insist on 2 just for atomic propositions, then at least we can assert
that the corresponding ‘real’, but unknown truth degree of any composite
proposition F cannot lie outside the interval assigned to F according to
the truth functions considered in (Esteva et al., 1994) (described above).
However, these bounds are not optimal, in general. As we will see in Sec-
tion 5, taking clues from Giles’s game based semantic for L (Giles, 1974),
(Giles, 1977), a tighter characterization emerges if we dismiss the idea that
intervals represent sets of unknown, but definite truth degrees.

4 It is easy to see that coNP-completeness of testing validity for L (and many other t-norm
based logics) carries over to the interval based logics described above.
5Private communication.
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3 Revisiting Giles’s game for L

Giles’s analysis (Giles, 1974), (Giles, 1977) of approximate reasoning origi-
nally referred to the phenomenon of ‘dispersion’ in the context of physical
theories. Later (Giles, 1976) explicitly applied the same concept to the prob-
lem of providing ‘tangible meanings’ to (composite) fuzzy propositions.6 For
this purpose he introduces a game that consists of two independent compo-
nents:

3.1 Betting for positive results of experiments.

Two players — say: me and you — agree to pay 1€ to the opponent player
for every false statement they assert. By [p1, . . . , pm∥q1, . . . , qn] we denote
an elementary state of the game, where I assert each of the qi in the multiset
{q1, . . . , qn} of atomic statements (represented by propositional variables),
and you assert each atomic statement pi ∈ {p1, . . . , pm}.
Each propositional variable q refers to an experiment Eq with binary

(yes/no) result. The statement q can be read as ‘Eq yields a positive result’.
Things get interesting as the experiments may show dispersion; i.e., the
same experiment may yield different results when repeated. However, the
results are not completely arbitrary: for every run of the game, a fixed risk
value ⟨q⟩r ∈ [0,1] is associated with q, denoting the probability that Eq

yields a negative result. For the special atomic formula � (falsum) we define
⟨�⟩r = 1. The risk associated with a multiset {p1, . . . , pm} of atomic formulas

is defined as ⟨p1, . . . , pm⟩
r
=

m

∑
i=1

⟨pi⟩
r. It specifies the expected amount of

money (in €) that has to be paid according to the above agreement. The
risk ⟨⟩r associated with the empty multiset is 0. The risk associated with an
elementary state [p1, . . . , pm∥q1, . . . , qn] is calculated from my point of view.
Therefore the condition ⟨p1, . . . , pm⟩

r
≥ ⟨q1, . . . , qn⟩

r expresses that I do not
expect (in the probability theoretic sense) any loss (but possibly some gain)
when we bet on the truth of the involved atomic statements as stipulated
above.

6E.g., Giles suggests to specify the semantics of the fuzzy predicate ’breakable’ by as-
signing an experiment like ’dropping the relevant object from a certain height to see if it
breaks’. The expected dispersiveness of such an experiment represent the ’fuzziness’ of
the corresponding predicate. An arguably even better example of a dispersive experiment
in the intended context might consist in asking an arbitrarily chosen competent speaker
for a yes/no answer to questions like ’Is Chris tall?’ or ‘Is Shakira famous?’ for which
truth may cogently be taken as a matter of degree.
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3.2 A dialogue game for the reduction of composite formulas.

Giles follows ideas of Paul Lorenzen that date back already to the 1950s (see,
e.g., (Lorenzen, 1960)) and constrains the meaning of logical connectives
by reference to rules of a dialogue game that proceeds by systematically
reducing arguments about composite formulas to arguments about their
subformulas.
The dialogue rule for implication can be stated as follows:

(R
→
) If I assert A → B then, whenever you choose to attack this statement
by asserting A, I have to assert also B. (And vice versa, i.e., for the
roles of me and you switched.)

This rule reflects the idea that the meaning of implication is specified by the
principle that an assertion of ‘if A, then B’ (A → B) obliges one to assert B,
if A is granted.7

In the following we only state the rules for ‘me’; the rules for ‘you’ are
perfectly symmetric. For disjunction we stipulate:

R∨ If I assert A1 ∨A2 then I have to assert also Ai for some i ∈ {1,2} that
I myself may choose.

The rule for (weak) conjunction is dual:

R∧ If I assert A1 ∧A2 then I have to assert also Ai for any i ∈ {1,2} that
you may choose.

One might ask whether asserting a conjunction shouldn’t oblige one to assert
both disjuncts. Indeed, for strong conjunction8 we have

R& If I assert A1&A2 then I have to assert either both A1 and A2, or
just �.

The possibility of asserting � instead of the attacked conjunction reflects
Giles’s ‘principle of hedged loss’: one never has to risk more than 1€ for
each assertion. Asserting � is equivalent to (certainly) paying 1€.
In contrast to dialogue games for intuitionistic logic (Lorenzen, 1960),

(Felscher, 1985) or fragments of linear logic, no special regulation on the
succession of moves in a dialogue is required here. Moreover, we assume
that each assertion is attacked at most once: this is reflected by the removal
of the occurrence of the formula F from the multiset of formulas asserted
by a player, as soon as it has been attacked, or whenever the other player
has indicated that she will not attack this occurrence of F during the whole

7Note that, since ¬F is defined as F → �, according to (R→) and the above definition of
risk, the risk involved in asserting ¬p is 1 − ⟨p⟩r.
8Giles did not consider strong conjunction. The rule is from (Fermüller & Kosik, 2006).
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run of the dialogue game. Every run thus ends in finitely many steps in
an elementary state [p1, . . . , pm∥q1, . . . , qn]. Given an assignment ⟨⋅⟩

r of risk
values to all pi and qi we say that I win the corresponding run of the game if I
do not have to expect any loss in average, i.e., if ⟨p1, . . . , pm⟩

r
≥ ⟨q1, . . . , qn⟩

r.
As an almost trivial example consider the game where I initially assert

p → q for some atomic formulas p and q; i.e., the initial state is [∥p → q]. In
response, you can either assert p in order to force me to assert q, or explicitly
refuse to attack p → q. In the first case, the game ends in the elementary
state [p∥q]; in the second case it ends in state [∥]. If an assignment ⟨⋅⟩r of
risk values gives ⟨p⟩r ≥ ⟨q⟩r, then I win, whatever move you choose to make.
In other words: I have a winning strategy for p → q in all assignments of
risk values where ⟨p⟩r ≥ ⟨q⟩r.
Note that winning, as defined here, does not guarantee that I do not

loose money. I have a winning strategy for p → p, resulting either in state
[∥] or in state [p∥p] depending on your (the opponents) choice. In the sec-
ond case, although the winning condition is clearly satisfied, I will actually
loose 1€, if the execution of the experiment Ep associated with your asser-
tion of p happens to yield a positive result, but the execution of the same
experiment associated with my assertion of p yields a negative result. It is
only guaranteed that my expected loss is non-positive. (‘Expectation’, here,
refers to standard probability theory. Under a frequentist interpretation
of probability we may think of it as average loss, resulting from unlimited
repetitions of the corresponding experiments.)
To state Giles’s main result, recall that a valuation v for Łukasiewicz

logic L is a function assigning values ∈ [0,1] to the propositional variables
and 0 to �, extended to composite formulas using the truth functions ∗L,
max, min, and ⇒L, for strong and weak conjunction, disjunction and im-
plication, respectively.

Theorem 1 ((Giles, 1974),(Fermüller & Kosik, 2006)). Each assignment
⟨⋅⟩r of risk values to atomic formulas occurring in a formula F induces a
valuation v for L such that v(F ) = x if and only if my optimal strategy for F

results in an expected loss of (1 − x)€.

Corollary 1. F is valid in L if and only if for all assignments of risk values
to atomic formulas occurring in F I have a winning strategy for F .

4 Playing under partial knowledge

It is important to realize that Giles’s game model for reasoning about vague
(i.e., here, unstable) propositions implies that each occurrence of the same
atomic proposition in a composite statement may be evaluated differently
at the level of results of associated executions of binary experiments. This
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feature induces truth functionality: the value for p∨¬p is not the probability
that experiment Ep either yields a positive or a negative result, which is 1

by definition; it rather is 1−x, where x =min(⟨p⟩r,1 − ⟨p⟩r) is my expected
loss (in €) after having decided to bet either for a positive or for a negative
result of an execution of Ep (whatever carries less risk for me).
The players only know the individual success probabilities9 of the relevant

experiments. Alternatively, one may disregard individual results of binary
experiments altogether and simply identify the assigned probabilities with
‘degrees of truth’. In this variant the ‘pay-off’ just corresponds to these
truth values, and Giles’s game turns into a kind of Hintikka style evaluation
game for L.
How does all this bear on the mentioned problems of interpretation for

interval based fuzzy logics? Remember that both, (Esteva et al., 1994) and
(Cornelis et al., 2007, 2006, 2004) seem to suggest that an interval of truth
values [a, b] represents ‘imprecise knowledge’ about the ‘real truth value’ c,
in the sense that only c ∈ [a, b] is known. For the betting and dialogue
game semantic this suggests that the players (or at least player ‘I’) now
have to choose their moves in light of corresponding ‘imprecise’ (partial)
knowledge about the success probabilities of the associated experiments.
However, while this may result in an interesting variant of the Giles’s game,
its relation to the truth functional semantics suggested for logics based on
Int[0,1] and L-connectives is dubious.
The following simple example illustrates this issue. Suppose the interval

v∗(p) = [v∗1(p), v
∗
2 (p)] assigned to the propositional variable p is [0,1], re-

flecting that we have no knowledge at all about the ‘real truth value’ of the
proposition represented by p. According to the truth functions presented
in Section 1, the formula p ∨ ¬p evaluates also to [0,1], since v∗(¬p) = [1 −
v∗2(p),1−v∗1(p)] = [0,1] and hence v(p∨¬p) = [max(0,0),max(1,1)] = [0,1].
Sticking with the ‘imprecise knowledge’ interpretation, the resulting interval
should reflect my knowledge about my expected loss if I play according to
an optimal strategy. However, while 1 − v∗

2
(p ∨ ¬p) = 0 is the correct lower

bound on my expected loss after performing the relevant instance of Ep,
to require that 1 − v∗

1
(p ∨ ¬p) = 1 is the best upper bound for the loss that

I have to expect when playing the game is problematic. When playing a
mixed strategy that results in my assertion of either p or of ¬p with equal
probability, then my resulting expected loss is 0.5€, not 1€.
We introduce some notation to assist precise statements about the re-

lation between the interval based semantics of (Esteva et al., 1994) and
Giles’s game. Let v∗ be an interval assignment, i.e., an assignment of closed

9These might well be purely subjective probabilities that may differ for the two players.
To prove Theorem 1 one only has to assume that I can act on assigned probabilities that
determine ‘my expectation’ of loss.
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intervals ⊆ [0,1] to the propositional variables PV. Then v∗
L
denotes the ex-

tension of v∗ from PV to arbitrary formulas via the truth functions ⇒∗E for
implication and the point-wise generalizations of max, min, and ∗L for dis-
junction, weak conjunction, and strong conjunction, respectively. Call any
assignment v of reals ∈ [0,1] compatible with v∗ if v(p) ∈ v∗(p) for all p ∈ PV.
The corresponding risk value assignment ⟨⋅⟩rv, defined by ⟨p⟩

r
v = 1 − v(p), is

also called compatible with v∗.

Proposition 1. If, given an interval assignment v∗, the formula F evalu-
ates to v∗

L
(F ) = [a, b] then the following holds:

∗ For the game in Section 3, played on F : All (pure) strategies for me
that are optimal with respect to some fixed risk value assignment ⟨⋅⟩rv
compatible with v∗ result in an expected loss of at most (1 − a)€, but
at least (1 − b)€.

Note that in the above statement my expected loss refers to a risk value
assignment ⟨⋅⟩rv that is fixed before the dialogue game begins. I will play
optimally with respect to this assignment. Since the corresponding expected
pay-off is all that matters here, we technically still have a game of perfect
information and therefore no generality is lost by restricting attention to
pure strategies. The bounds given by v∗

L
for my expected loss are not

optimal in general. In other words, the inverse direction of Proposition 1
does not hold. To see this, consider again the interval assignment v∗(p) =
[0,1] resulting in v∗

L
(p ∨ ¬p) = [0,1]. Obviously, I cannot loose more than

1€, even if I play badly, but my expected loss under any fixed risk value
assignment ⟨⋅⟩rv is never greater than 0.5€ if I play optimally with respect
to ⟨⋅⟩rv .
On the other hand, sticking with our example ‘p ∨ ¬p’, one can observe

that the best upper bound for my loss is indeed 1€ if I do not know the rele-
vant risk values and I still have to stick with some pure strategy. This is be-
cause the chosen strategy might suggest to assert p even if, unknown to me,
the experimentEp always has a negative result. In other words, the bounds 1
and 0 are optimal now and coincide with the limits of v∗

L
(p∨¬p). However,

in general, this scenario — playing a pure strategy referring to risk values
that need not coincide with the risk values used to calculate the expected
pay-off — may lead to an expected loss outside the interval corresponding
to v∗

L
. For a simple example consider p∨ q, where v∗(p) = [0.4,0.4], i.e., the

players know that the expected loss associated with an assertion of p is 0.6€,
and v∗(q) = [0,1], i.e., the risk associated with asserting q can be any value
between 1 and 0. We have v∗

L
(p ∨ q) = [max(0,0.4),max(0.4,1)] = [0.4,1].

Under the assumption that ⟨q⟩rv = 0, which is compatible with v∗(q), my
best strategy calls for asserting q in consequence of asserting p∨q. But if the
state [∥q] is evaluated using the risk value ⟨q⟩rv = 1, which is also compatible
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with v∗(q), then I have to expect a sure loss of 1€, although 1 − 1 = 0 is
outside [0.4,1].

5 Cautious and bold betting on unstable propositions

We suggest that a more convincing justification of the formal semantics
of (Esteva et al., 1994) arises from the following alternative game based
model of reasoning under imprecise knowledge. Like above, let v∗ be an as-
signment of intervals ⊆ [0,1] to the propositional variables. Again, we leave
the dialogue part of Giles’s game unchanged. But in reference to the partial
information represented by v∗, we assign two different success probabilities
to each experiment Eq corresponding to a propositional variable q, reflecting
whether q is asserted by me or by you and consider best case and worst case
scenarios (from my point of view) concerning the resulting expected pay-off.
More precisely, my expected loss for the final state [p1, . . . , pm∥q1, . . . , qn]

when evaluated v∗-cautiously is given by
n

∑
i=1

⟨qi⟩
r
h −

m

∑
i=1

⟨pi⟩
r
l , but when eval-

uated v∗-boldly it is given by
n

∑
i=1

⟨qi⟩
r
l −

m

∑
i=1

⟨pi⟩
r
h, where the risk values ⟨q⟩

r
h

and ⟨q⟩rl are determined by the limits of the interval v
∗(q) = [a, b] as follows:

⟨q⟩rh = 1 − a and ⟨q⟩rl = 1 − b.

Proposition 2. Given an interval assignment v∗, the following statements
are equivalent:

(i) Formula F evaluates to v∗
L
(F ) = [a, b].

(ii) For the dialogue game in Section 3, played of F : if elementary states
are evaluated v∗-cautiously then the minimal expected loss I can achieve
by an optimal strategy is (1 − b)€; if elementary states are evaluated
v∗-boldly then my optimal expected loss is (1 − a)€.

6 Conclusion

We have been motivated by various problems that arise from insisting on
truth functionality for a particular type of fuzzy logic intended to capture
reasoning under ‘imprecise knowledge’. Most importantly for the current
purpose, we have employed a dialogue cum betting game approach to model
logical inference in a context of ‘dispersive experiments’ for testing the truth
of atomic assertions. This analysis not only leads to different characteriza-
tions of an important interval based fuzzy logic, but relates concerns about
properties of fuzzy logics to reflections on rationality qua playing optimally
in adequate games for ‘approximate reasoning’.
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Hájek, P. (1998). Metamathematics of fuzzy logic. Dordrecht: Kluwer.
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