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Abstract. Various types of semantics games for deductive fuzzy logics,
most prominently for  Lukasiewicz logic, have been proposed in the liter-
ature. These games deviate from Hintikka’s original game for evaluating
classical first-order formulas by either introducing an explicit reference
to a truth value from the unit interval at each game state (as in [4]) or
by generalizing to multisets of formulas to be considered at any state (as,
e.g., in [12, 9, 7, 10]). We explore to which extent Hintikka’s game theoret-
ical semantics for classical logic can be generalized to a many-valued set-
ting without sacrificing the simple structure of Hintikka’s original game.
We show that rules that instantiate a certain scheme abstracted from
Hintikka’s game do not lead to logics beyond the rather inexpressive,
but widely applied Kleene-Zadeh logic, also known as ‘weak  Lukasiewicz
logic’ or even simply as ‘fuzzy logic’ [27]. To obtain stronger logics we
consider propositional as well as quantifier rules that allow for random
choices. We show how not only various extensions of Kleene-Zadeh logic,
but also proper extensions  Lukasiewicz logic arise in this manner.

1 Introduction

Fuzzy logics “in Zadeh’s narrow sense” [34, 15], i.e. truth functional logics with
the real unit interval as set of truth values, nowadays come in many forms and
varieties. (We refer to the Handbook of Mathematical Fuzzy Logics [3] for an
overview.) From an application oriented point of view, but also with respect to
foundational concerns, this fact imparts enhanced significance to the problem of
deriving specific logics from underlying semantic principles of reasoning. Among
the various models that have been proposed in this vein are Lawry’s voting se-
mantics [22], Paris’s acceptability semantics [28], re-randomising semantics [21],
and approximation semantics [2, 29]. Of particular importance in our context
is Robin Giles’s attempt, already in the 1970s [12, 13] to justify  Lukasiewicz
logic, one of the most fundamental formalizations of deductive fuzzy logic, with
respect to a game that models reasoning about dispersive experiments. While
Giles explicitly acknowledged the influence of Paul Lorenzen’s pioneering work
on dialogical foundations for constructive logic [23, 24], he did not refer to Hin-
tikka’s game theoretic semantics [18, 20]. However, with the benefit of hindsight,
one can classify Giles’s game for  Lukasiewicz logic as a semantic game, i.e. a
game for evaluating a formula with respect to a given interpretation, guided by
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rules for the stepwise reduction of logically complex formulas into their subfor-
mulas. While this renders Giles’s game closer to Hintikka’s than to Lorenzen’s
game, Giles deviates in some important ways from Hintikka’s concept, as we will
explain in Section 2. Semantic games for  Lukasiewicz logic that, arguably, are
closer in their mathematical form to Hintikka’s semantic game for classical logic
have been introduced by Cintula and Majer in [4]. However, also these latter
games exhibit features that are hardly compatible with Hintikka’s motivation
for introducing game theoretic semantics [18, 19] as foundational approach to
logic and language. In particular, they entail an explicit reference to some (in
general non-classical) truth value at every state of a game. The just presented
state of affairs triggers a question that will guide the investigations of this paper:
To what extent can deductive fuzzy logics be modeled by games that remain close
in their format, if not in spirit, to Hintikka’s classic game theoretic semantics?

The paper is organized as follows. In Section 2 we present (notational vari-
ants) of the mentioned semantic games by Hintikka, Cintula/Majer, and Giles
in a manner that provides a basis for systematic comparison. In particular, we
observe that so-called Kleene-Zadeh logic KZ, a frequently applied fragment of
 Lukasiewicz logic  L, is characterized already by Hintikka’s classic game if one
generalizes the set of possible pay-off values from {0, 1} to the unit interval [0, 1].
In Section 3 we introduce a fairly general scheme of rules that may be added to
Hintikka’s game in a many-valued setting and show that each connective speci-
fied by such a rule is already definable in logic KZ. Adapting an idea from [8, 10],
we then show in Sections 4 and 5 how one can go beyond KZ, while retaining
essential features of Hintikka’s original game format. In particular, we introduce
in Section 4 a propositional ‘random choice connective’ π by a very simple rule.
We show that this rule for π in combination with a rule for doubling the pay-off
for the player who is currently in the role of the ‘Proponent’ leads to a proper
extension of propositional  Lukasiewicz logic. In Section 5 we indicate how, at
the first-order level, various families of rules that involve a random selection of
witnessing domain elements characterize corresponding families of fuzzy quan-
tifiers. We conclude in Section 6 with a brief summary, followed by remarks on
the relation between our ‘randomized game semantics’ and the ‘equilibrium se-
mantics’ for IF-logic [25, 32] arising from considering incomplete information in
Hintikka’s game.

2 Variants of semantic games

Let us start by reviewing Hintikka’s classic semantic game [18, 20]. There are
two players, called Myself (or simply I) and You, here, who can both act either
in the role of the Proponent P or of the Opponent O1 of a given first-order
formula F , augmented by a variable assignment θ. Initially I act as P and You

1 Hintikka uses Nature and Myself as names for the players and Verfier and Falisifer
for the two roles. To emphasize out interest in the connection to Giles’s game we use
Giles’s names for the players and Lorenzen’s corresponding role names throughout
the paper.
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act as O. My aim — or, more generally, P’s aim at any state of the game — is
to show that the initial formula is true in a given interpretationM with respect
to θ. The game proceeds according to the following rules. Note that these rules
only refer to the roles and the outermost connective of the current formula, i.e.
the formula, augmented by an assignment of domain elements to free variables,
that is at stake at the given state of the game. Together with a role distribution
of the players, this augmented formula fully determines any state of the game.

(RH∧ ) If the current formula is (F ∧ G)[θ] then O chooses whether the game
continues with F [θ] or with G[θ].

(RH∨ ) If the current formula is (F ∨ G)[θ] then P chooses whether the game
continues with F [θ] or with G[θ].

(RH¬ ) If the current formula is ¬F [θ], the game continues with F [θ], except that
the roles of the players are switched: the player who is currently acting as P,
acts as O at the the next state, and vice versa for the current O.

(RH∀ ) If the current formula is (∀xF (x))[θ] then O chooses an element c of the
domain of M and the game continues with F (x)[θ[c/x]]2.

(RH∃ ) If the current formula is ∃xF (x)[θ] then P chooses an element c of the
domain of M and the game continues with F (x)[θ[c/x]].

Except for (RH¬ ), the players’ roles remain unchanged. The game ends when an
atomic (augmented) formula A[θ] is hit. The player who is currently acting as P
wins and the other player, acting as O, loses if A is true with respect to θ in the
given model M. We associate pay-off 1 with winning and pay-off 0 with losing.
We also include the truth constants > and ⊥, with their usual interpretation,
among the atomic formulas. The game starting with formula F and assignment θ
is called the H-game for F [θ] under M.

Theorem 1 (Hintikka). A formula F is true in a (classical) interpretationM
with respect to the initial variable assignment θ (in symbols: vθM(F ) = 1) iff I
have a winning strategy in the H-game for F [θ] under M.

Our aim is to generalize Hintikka’s Theorem to deductive fuzzy logics. As
already mentioned in the introductions, contemporary mathematical fuzzy logic
offers a plethora of logical systems. Here we focus on (extensions of) a system
simply called ‘fuzzy logic’, e.g., in the well known textbook [27]. Following [1],
we prefer to call this logic Kleene-Zadeh logic, or KZ for short. KZ is mostly con-
sidered only at the propositional level, where its semantics is given by extending
an assignment M of atomic formulas to truth values in [0, 1] as follows:

vM(F ∧G) = min(vM(F ), vM(G)),
vM(F ∨G) = max(vM(F ), vM(G)),
vM(¬F ) = 1− vM(F ),
vM(⊥) = 0,
vM(>) = 1.

2 θ[c/x] denotes the variable assignment that is like θ, except for assigning c to x.
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At the first-order level an interpretation M includes a non-empty set D as
domain. With respect to an assignment θ of domain elements to free variables,
the semantics of the universal and the existential quantifier is given by

vθM(∀xF (x)) = infd∈D(v
θ[d/x]
M (F (x))),

vθM(∃xF (x)) = supd∈D(v
θ[d/x]
M (F (x))).

It is interesting to observe that neither the rules nor the notion of a state in
an H-game have to be changed in order to characterize logic KZ. We only have
to generalize the possible pay-off values for the H-game from {0, 1} to the unit
interval [0, 1]. More precisely, the pay-off for the player who is in the role of P
when a game underM ends with the augmented atomic formula A[θ] is vθM(A).

If the pay-offs are modified as just indicated and correspond to the truth
values of atomic formulas specified by a many-valued interpretation M, we will
speak of an H-mv-game, where the pay-offs match M. A slight complication
arises for quantified formulas in H-mv-games: there might be no element c in

the domain of M such that v
θ[c/x]
M (F (x)) = infd∈D(v

θ[d/x]
M (F (x))) or no domain

element e such that v
θ[e/x]
M (F (x)) = supd∈D(v

θ[d/x]
M (F (x))). A simple way to deal

with this fact is to restrict attention to so-called witnessed models [17], where
constants that witness all arising infima and suprema are assumed to exist. In
other words: infima are minima and suprema are maxima in witnessed models.
A more general solution refers to optimal payoffs up to some ε.

Definition 1. Suppose that, for every ε > 0, player X has a strategy that guar-
antees her a pay-off of at least w − ε, while her opponent has a strategy that
ensures that X’s pay-off is at most w+ ε, then w is called the value for X of the
game.

This notion, which corresponds to that of an ε-equilibrium as known from
game theory, allows us to state the following generalization of Theorem 1.

Theorem 2. A formula F evaluates to vθM(F ) = w in a KZ-interpretation M
with respect to the variable assignment θ iff the H-mv-game for F [θ] with pay-offs
matching M has value w for Myself.

A proof of Theorem 2 can (essentially3) be found in [10].
From the point of view of continuous t-norm based fuzzy logics, as pop-

ularized by Petr Hájek [15, 16], Kleene-Zadeh logic KZ is unsatisfying: while
min is a t-norm, it’s indicated residuum, which corresponds to implication
in Gödel-Dummett logic is not expressible. Indeed, defining implication by
F ⊃ G =def ¬F ∨G (in analogy to classical logic) in KZ, entails that F → F is
not valid, i.e. vM(F → F ) is not true in all interpretations.4 In fact, formulas that
do not contain truth constants are never valid in KZ. Besides Gödel-Dummett

3 A variant of H-games is used in [10] and KZ is called ‘weak  Lukasiewicz logic’ there.
4 We suppress the reference to a variable assignment θ when referring to propositional

connectives.
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logic, the most important fuzzy logic extending KZ arguably is  Lukasiewicz
logic  L. The language of  L extends that of KZ by implication →, strong con-
junction ⊗, and strong disjunction ⊕. The semantics of these connectives is
given by

vM(F → G) = min(1, 1− vM(F ) + vM(G)),
vM(F ⊗ G) = max(0, vM(F ) + vM(G)− 1),
vM(F ⊕G) = min(1, vM(F ) + vM(G)).

In fact all other propositional connectives could by defined in  L, e.g., from →
and ⊥, or from ⊗ and ¬, alone. However, neither → nor ⊗ nor ⊕ can be defined
in KZ.5 The increased expressiveness of  L over KZ is particularly prominent at the
first-order level: while in KZ there are only trivially valid formulas (which involve
the truth constants in an essential manner), the set of valid first-order formulas
in  L is not even recursively enumerable, due to a classic result of Scarpellini [31].

It seems to be impossible to characterize full  Lukasiewicz logic  L by trivial
extensions of theH-game, comparable to the shift fromH-games toH-mv-games.
Before investigating, in Sections 4 and 5, how one can nevertheless generalize the
H-game to extensions of KZ, including  L, without changing the concept of a game
state as solely determined by an (augmented) formula and a role distribution,
we review two types of semantic games for  L that deviate more radically from
Hintikka’s classic game theoretical semantics: explicit evaluation games, due to
Cintula and Majer [4], and Giles’s dialogue and betting game [12, 13].

In [4] Cintula and Majer present a game for  L that conceptually differs from
the H-mv-game by introducing an explicit reference to a value ∈ [0, 1] at every
state of the game. They simply speak of an ‘evaluation game’; but since all
games considered in this paper are games for evaluating formulas with respect
to a given interpretation, we prefer to speak of an explicit evaluation game, or
E-game for short. Like above, we call the players Myself (I) and You, and the
roles P and O. In the initial state I am in the role of P and You are acting as O.
In addition to the role distribution and the current (augmented) formula6, also
a current value ∈ [0, 1] is included in the specification of a game state. We will
not need to refer to any details of E-games, but present the rules for ⊕, ⊗, ¬,
and ∃ here, to assist the comparison with other semantic games:

(RE⊗) If the current formula is (F ⊗ G)[θ] and the current value7 is r then P
chooses a value r̄ ≤ 1− r and O chooses whether to continue the game with
F [θ] and value r + r̄ or with G[θ] and value 1− r̄.

(RE⊕) If the current formula is (F ⊕ G)[θ] and the current value is r then P
chooses r̄ ≤ 1− r and O chooses whether to continue with F [θ] and value r̄
or with G[θ] and value r − r̄.

(RE¬) If the current formula is ¬F [θ] and the current value is r, then O chooses
r̄, where 0 < r̄ ≤ r, and the game continues with F [θ] and value (1− r) + r̄
after a role switch.

5 Therefore KZ is sometimes called the ‘weak (fragment of)  Lukasiewicz logic’.
6 I.e., the current formula, now over the language of  L, augmented by an assignment

of domain elements to free variables.
7 All values mentioned here have to be in [0, 1].
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(RH∃ ) If the current formula is ∃xF (x)[θ] and the current value is r then O
chooses r̄ > 0 and P picks an element c of the domain of M and the game
continues with F (x)[θ[c/x]] and value r − r̄.

The rules for ∧, ∨, ∀ are analogous to the corresponding rules for the H-mv-
game: the current value remains unchanged. Cintula and Mayer [4] do not specify
a rule for implication. However such a rule can be synthesized from the other
rules, given the definability of→ from the other connectives. As soon as the game
reaches an augmented atomic formula A[θ] the game under interpretation M
ends and the player in the current role of P wins (and the opposing player loses) if
vθM(A) ≥ r. Otherwise the current O wins and the current P loses. Compared to
Theorems 1 and 2, the adequateness theorem for the E-game shows a somewhat
less direct correspondence to the standard semantics of  L.

Theorem 3 (Cintula/Mayer). I have a winning strategy in the E-game under
M starting with F [θ] and value r iff vθM(F ) ≥ r.

A game based interpretation of  L that arguably deviates even more radically
from H-games than E-games was presented by Giles already in the 1970s [12, 13].
In fact Giles did not refer to Hintikka, but rather to the dialogue games suggested
by Lorenzen [23, 24] as a foundation for constructive reasoning. Initially Giles
proposed his game as a model of logical reasoning within theories of physics;
but later he motivated the game explicitly as an attempt to provide “tangible
meaning” for fuzzy logic [14]. We briefly review the essential features of Giles’s
game, in a variant called G-game, that facilitates comparison with the other
semantic games mentioned in this paper. Again we use Myself (I) and You as
names for the players, and refer to the roles P and O. Unlike in H-, H-mv- or
E-games, a game state contains more that one current formula, in general. More
precisely a state of a G-game is given by

[F1[θ1], . . . , Fm[θm] | G1[θ′1], . . . , Gn[θ′n]] ,

where {F1[θ1], . . . , Fm[θm]} is the multiset of augmented formulas currently as-
serted by You, called your tenet, and {G1[θ′1], . . . , Gn[θ′n]} is the multiset of
augmented formulas currently asserted by Myself, called my tenet. At any given
state an occurrence of a non-atomic augmented formula H[θ] is picked arbitrarily
and distinguished as current formula.8 If H[θ] is in my tenet then I am acting
as P and You are acting as O. Otherwise, i.e. if H[θ] is in your tent, I am O
and You are P. States that only contain atomic formulas are called final. At
non-final states the game proceeds according to the following rules:

(RG∧) If the current formula is (F ∧ G)[θ] then the game continues in a state
where the indicated occurrence of (F ∧ G)[θ] in P’s tenet is replaced by
either F [θ] or by G[θ], according to O’s choice.

8 It turns out that the powers of the players of a G-game are not depended on the
manner in which the current formula is picked at any state. Still, a more formal
presentation of G-games will employ the concepts of a regulation and of so-called
internal states in formalizing state transitions. We refer to [7] for details.
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(RG∨) If the current formula is (F ∨ G)[θ] then the game continues in a state
where the indicated occurrence of (F ∨ G)[θ] in P’s tenet is replaced by
either F [θ] or by G[θ], according to P’s choice.

(RG→) If the current formula is (F → G)[θ] then the indicated occurrence of
(F → G)[θ] is removed from P’s tenet and O chooses whether to continue
the game at the resulting state or whether to add F [θ] to O’s tenet and G[θ]
to P’s tenet before continuing the game.

(RG∀ ) If the current formula is (∀xF (x))[θ] then O chooses an element c of the
domain of M and the game continues in a state where the indicated occur-
rence of (∀xF (x))[θ] in P’s tenet is replaced by F (x)[θ[c/x]].

(RG∃ ) If the current formula is (∃xF (x))[θ] then P chooses an element c of the do-
main ofM and the game continues in a state where the indicated occurrence
of (∀xF (x))[θ] in P’s tenet is replaced by F (x)[θ[c/x]].

No rule for negation is needed if ¬F is defined as F → ⊥. Likewise, rules for
strong conjunction ⊗ and ⊕ can either be dispensed with by treating these con-
nectives as defined from the other connectives or by introducing corresponding
rules. (See [5, 7] for a presentation of rules for strong conjunction.) If no non-
atomic formula is left to pick as current formula, the game has reached a final
state

[A1[θ1], . . . , Am[θm] | B1[θ′1], . . . , Bn[θ′n]] ,

where the Ai[θi] and Bi[θ
′
i] are atomic augmented formulas. With respect to an

interpretation M (i.e, an assignment of truth values to all atomic augmented
formulas) the pay-off for Myself at this state is defined as

m− n+ 1 +
∑

1≤i≤n

vθM(Bi)−
∑

1≤i≤m

vθM(Ai).

(Empty sums are identified with 0.) These pay-off values are said to match M.
Just like for H-mv-games, we need to take into account that suprema and

infima are in general not witnessed by domain elements. Note that Definition 1
does not refer to any particular game. We may therefore apply the notion of the
value of a game to G-games as well. A G-game where my tenet at the initial
state consists of a single augmented formula occurrence F [θ], while your tenet
is empty, is called a G-game for F [θ]. This allows us to express the adequateness
of G-games for  Lukasiewicz logic in direct analogy to Theorem 2.

Theorem 4 (essentially Giles9). A formula F evaluates to vθM(F ) = w in a
 L-interpretation M with respect to the variable assignment θ iff the G-game for
F [θ] with pay-offs matching M has value w for Myself.

At this point readers familiar with the original presentation of the game
in [12, 13] might be tempted to protest that we have skipped Giles’s interesting

9 Giles [12, 13] only sketched a proof for the language without strong conjunction. For
a detailed proof of the propositional case, where the game includes a rule for strong
conjunction, we refer to [7].
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story about betting money on the results of dispersive experiments associated
with atomic assertions. Indeed, Giles proposes to assign an experiment EA to
each atomic formula A10. While each trial of an experiment yields either “yes” or
“no” as its result, successive trials of the same experiment may lead to different
results. However for each experiment EA there is a known probability 〈A〉 that
the result of a trial of EA is negative. Experiment E⊥ always yields a negative
result; therefore 〈⊥〉 = 1. Similarly 〈>〉 = 0. For each occurrence (‘assertion’) of
an atomic formula in a player’s final tenet, the corresponding experiment is run
and the player has to pay one unit of money (say 1€) to the other player if the
result is negative. Therefore Giles calls 〈A〉 the risk associated with A. For the
final state [A1, . . . , Am | B1, . . . , Bn] the expected total amount of money that I
have to pay to You (my total risk) is readily calculated to equal( ∑

1≤i≤m

〈Ai〉 −
∑

1≤i≤n

〈Bi〉
)
€.

Note that the total risk at final states translates into the pay-off specified above
for G-games via vθM(A) = 1 − 〈A〉. To sum up: Giles’s interpretation of truth
values as inverted risk values associated with bets on dispersive experiments is
totally independent from the semantic game for the stepwise reduction of com-
plex formulas to atomic sub-formulas. In principle, one can interpret the pay-off
values also for theH-mv-game as inverted risk values and speak of bets on disper-
sive experiments at final states also there. The only (technically inconsequential)
difference to the original presentation is that one implicitly talks about expected
pay-off (inverted expected loss of money), rather than of certain pay-off when
the betting scenario is used to interpret truth values.

Table 1 provides a summary of the general structure of the games reviewed in
this section (where ‘formula’ means ‘augmented formula’ in the first-order case).

Table 1. Comparison of some semantic games

game state determined by pay-offs

H-game single formula + role distribution bivalent

H-mv-game single formula + role distribution many-valued

E-game single formula + role distribution + value many-valued

G-game two multisets of formulas many-valued

3 Generalized propositional rules for the H-mv-game

At a first glimpse the possibilities for extending H-mv-games to logics more
expressive than KZ look very limited if, in contrast to E-games and G-games, we
insist on Hintikka’s principle that a state of the game is fully determined by a

10 Giles ignores variable assignments, but stipulates that there is a constant symbol for
every domain element. Thus only closed formulas need to be considered.

8



formula11 and a distribution of the two roles (P and O) to the two players. One
can come up with a more general concept of propositional game rules, related
to those described in [6] for connectives defined by arbitrary finite deterministic
and non-deterministic matrices. In order to facilitate a concise specification of
all rules of that type, we introduce the following technical notion.

Definition 2. An n-selection is a non-empty subset S of {1, . . . , n}, where each
element of S may additionally be marked by a switch sign.

A game rule for an n-ary connective � in a generalized H-mv-game is specified
by a non-empty set {S1, . . . , Sm} of n-selections. According to this concept, a
round in a generalized H-mv-game consists of two phases. The scheme for the
corresponding game rule specified by {S1, . . . , Sm} is as follows:

(Phase 1): If the current formula is �(F1, . . . , Fn) then O chooses an n-selection
Si from {S1, . . . , Sm}.

(Phase 2): P chooses an element j ∈ Si. The game continues with formula Fj ,
where the roles of the players are switched if j is marked by a switch sign.

Remark 1. A variant of this scheme arises by letting P choose the n-selection Si
in phase 1 and O choose j ∈ Si in phase 2. But note that playing the game for
�(F1, . . . , Fn) according to that role inverted scheme is equivalent to playing the
game for ¬ � (¬F1, . . . ,¬Fn) using the exhibited scheme.

Remark 2. The rules RH∧ , RH∨ , and RH¬ can be understood as instances of the
above scheme:
– RH∧ is specified by {{1}, {2}},
– RH∨ is specified by {{1, 2}}, and
– RH¬ is specified by {{1∗}}, where the asterisk is used as switch mark.

Theorem 5. In a generalized H-mv-game, each rule of the type described above
corresponds to a connective that is definable in logic KZ.

Proof. The argument for the adequateness of all semantic games considered in
this paper proceeds by backward induction on the game tree.

For (generalized)H-mv-games the base case is trivial: by definition P receives
pay-off vM(A) and O receives pay-off 1−vM(A) if the game ends with the atomic
formula A.

For the inductive case assume that the current formula is �(F1, . . . , Fn) and
that the rule for � is specified by the set {S1, . . . , Sm} of n-selections, where
Si = {j(i, 1), . . . , j(i, k(i))} for 1 ≤ i ≤ m and 1 ≤ k(i) ≤ n. Remember that
the elements of Si are numbers ∈ {1, . . . , n}, possibly marked by a switch sign.
For sake of clarity let us first assume that there are no switch signs, i.e. no
role switches occur. Let us say that a player X can force pay-off w if X has
a strategy that guarantees her a pay-off ≥ w at the end of the game. By the

11 Since we focus on the propositional level, we will drop all explicit reference to variable
assignments in Sections 3 and 4. However all statements remain valid if one replaces
‘formula’ by ‘formula augmented by a variable assignment’ throughout these sections.
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induction hypothesis, P can force pay-off vM(G) for herself and O can force pay-
off pay-off 1 − vM(G) for himself if G is among {F1, . . . , Fn} and does indeed
occur at a successor state to the current one; in other words, if G = Fj(i,`) for
some i ∈ {1, . . . ,m} and ` ∈ {1, . . . , k(i)}. Since O chooses the n-selection Si,
while P chooses an index number in Si, P can force pay-off

min
1≤i≤m

max
1≤`≤k(i)

vM(Fj(i,`))

at the current state, while O can force pay-off

max
1≤i≤m

min
1≤`≤k(i)

(1− vM(Fj(i,`))) = 1− min
1≤i≤m

max
1≤`≤k(i)

vM(Fj(i,`)).

If both players play optimally these pay-off values are actually achieved. There-
fore the upper expression corresponds to the truth function for �. Both expres-
sions have to be modified by uniformly substituting 1−vM(Fj(i,`)) for vM(Fj(i,`))
whenever j(i, `) is marked by a switch sign in S1 for 1 ≤ i ≤ m and 1 ≤ k(i) ≤ n.

To infer that the connective � is definable in logic KZ it suffices to observe
that its truth function, described above, can be composed from the functions
λx(1−x), λx, ymin(x, y), and λx, ymax(x, y). But these functions are the truth
functions for ¬, ∧, and ∨, respectively, in KZ. �

4 Random choice connectives

In Section 2, following Giles, we have introduced the idea of expected pay-offs in
a randomized setting. However, Giles applied this idea only to the interpretation
of atomic formulas. For the interpretation of logical connectives and quantifiers
in any of the semantic games mentioned in Section 2 it does not matter whether
the players seek to maximize expected or certain pay-off or, equivalently, try
to minimize either expected or certain payments to the opposing player. In [8,
10] we have shown that considering random choices of witnessing constants in
quantifier rules for Giles-style games, allows one to model certain (semi-)fuzzy
quantifiers that properly extend first-order  Lukasiewicz logic. In this section we
want to explore the consequences of introducing random choices in rules for
propositional connectives context of Hintikka-style games.

The results of Section 3 show that, in order to go beyond logic KZ with
Hintikka-style games, a new variant of rules has to be introduced. As already
indicated, a particularly simple type of new rules, that does not entail any change
in the structure of game states, arises from randomization. So far we have only
considered rules where either P or O chooses the sub-formula of the current
formula to continue the game with. In game theory one often introduces Nature
as a special kind of additional player, who does not care what the next state looks
like, when it is her time to move and therefore is modeled by a uniformly random
choice between all moves available to Nature at that state. As we will see below,
introducing Nature leads to increased expressive power of semantic games. In
fact, to keep the presentation of the games simple, we prefer to leave the role
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of Nature only implicit and just speak of random choices, without attributing
them officially to a third player. The most basic rule of the indicated type refers
to a new propositional connective π and can be formulated as follows.12

(RRπ ) If the current formula is (FπG) then a uniformly random choice deter-
mines whether the game continues with F or with G.

Remark 3. Note that no role switch is involved in the above rule: the player
acting as P remains in this role at the succeeding state; likewise for O.

We call the H-mv-game augmented by rule (RRπ ) the (basic) R-game. We claim
that the new rule gives raise to the following truth function, to be added to the
semantics of logic KZ:

vM(FπG) = (vM(F ) + vM(G))/2.

KZ(π) denotes the logic arising from KZ by adding π. To assist a concise formu-
lation of the adequateness claim for the R-game we have to adapt Definition 1
by replacing ‘pay-off’ with ‘expected pay-off’. In fact, since we restrict attention
to the propositional level here, we can use the following simpler definition.

Definition 3. If player X has a strategy that leads to an expected pay-off for her
of at least w, while her opponent has a strategy that ensures that X’s expected
pay-off is at most w, then w is called the expected value for X of the game.

Theorem 6. A propositional formula F evaluates to vM(F ) = w in a KZ(π)-
interpretation M iff the basic R-game for F with pay-offs matching M has
expected value w for Myself.

Proof. Taking into account that vM(F ) coincides with the value of the H-mv-
game matching M if F does not contain the new connective π, we only have to
add the case for a current formula of the form GπH to the usual backward induc-
tion argument. However, because of the random choice involved in rule (RRπ ), it
is now her expected pay-off that P seeks to maximize and O seeks to minimize.

Suppose the current formula is GπH. By the induction hypothesis, at the
successor state σG with current formula G (the player who is currently) P can
force13 an expected pay-off vM(G) for herself, while O can force an expected
pay-off 1− vM(G) for himself. Therefore the expected value for P for the game
starting in σG is vM(G) for P. The same holds for H instead of G. Since the
choice between the two successor states σG and σH is uniformly random, we
conclude that the expected value for P for the game starting with GπH is the
average of vM(F ) and vM(G), i.e. (vM(F )+vM(G))/2. The theorem thus follows
from the fact that I (Myself) am the initial P in the R-game for F . �

Since the function λx, y(x+ y)/2 cannot be composed solely from the func-
tions λx(1 − x), λx, ymin(x, y), λx, ymax(x, y) and the values 0 and 1, we can
make the following observation.

12 A similar rule is considered in [33] in the context of partial logic.
13 We re-use the terminology introduced in the proof of Theorem 5, but applied to

expected pay-offs here.
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Proposition 1. The connective π is not definable in logic KZ.

But also the following stronger fact holds.

Proposition 2. The connective π is not definable in  Lukasiewicz logic  L.

Proof. By McNaughton’s Theorem [26] a function f : [0, 1]n → [0, 1] corresponds
to a formula of propositional  Lukasiewicz logic iff f is piecewise linear, where
every linear piece has integer coefficients. But clearly the coefficient of (x+ y)/2
is not an integer. �

Remark 4. We may also observe that, in contrast to  L, not only 0.5 =def ⊥π>,
but in fact every rational truth constant that has a finite representation in the
binary system is definable in logic KZ(π),

Conversely to Proposition 2 we also have the following.

Proposition 3. None of the connectives ⊗, ⊕, → of  L can be defined in KZ(π).

Proof. Let Ψ denote the set of all interpretations M, where 0 < vM(A) < 1
for all propositional variables A. The following claim can be straightforwardly
checked by induction.

For every formula F of KZ(π) one of the following holds:
(1) 0 < vM(F ) < 1 for all M∈ Ψ , or
(2) vM(F ) = 1 for all M∈ Ψ , or
(3) vM(F ) = 0 for all M∈ Ψ .

Clearly this claim does not hold for A ⊗ B, A ⊕ B, and A → B. Therefore the
connectives ⊗, ⊕, → cannot be defined in KZ(π). �

In light of the above propositions, the question arises whether one can come
up with further game rules, that, like (RRπ ), do not sacrifice what we above called
Hintikka’s principle, i.e., the principle that game state is determined solely by
a formula and a role distribution. An obvious way to generalize rule (RRπ ) is to
allow for a (potentially) biased random choice:

(RRπp) If the current formula is (FπpG) then the game continues with F with
probability p, but continues with G with probability 1− p.

Clearly, π coincides with π0.5. But for other values of p we obtain a new con-
nective. However, it is straightforward to check that Proposition 3 also holds if
replace π by πp for any p ∈ [0, 1].

Interestingly, there is a fairly simple game based way to obtain a logic that
properly extends  Lukasiewicz logic by introducing a unary connective D that
signals that the pay-off values for P is to be doubled (capped to 1, as usual) at
the end of the game.

(RRD ) If the current formula is DF then the game continues with F , but with
the following changes at the final state. The pay-off, say x, for P is changed
to max(1, 2x), while the the pay-off 1−x for O is changed to 1−max(1, 2x).
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Remark 5. Instead of explicitly capping the modified pay-off for P to 1 one may
equivalently give O the opportunity to either continue that game with doubled
pay-off for P (and inverse pay-off for O herself) or to simply end the game at
that point with pay-off 1 for P and pay-off 0 for O herself.

Let us use KZ(D) for the logic obtained from KZ by adding the connective D
with the following truth function to KZ:

vM(DF ) = min(1, 2 · vM(F )).

Moreover, we use KZ(π,D) to denote the extension of KZ with both π and D
and call the R-game augmented by rule (RRD ) the D-extended R-game.

Theorem 7. A propositional formula F evaluates to vM(F ) = w in a KZ(π,D)-
interpretation M iff the D-extended R-game for F with pay-offs matching M
has expected value w for Myself.

Proof. The proof of Theorem 6 is readily extended to the present one by consid-
ering the additional inductive case of DG as current formula. By the induction
hypothesis, the expected value for P of the game for G (under the same interpre-
tation M) is vM(G). Therefore rule (RRD ) entails that the expected value for P
of the game for DG is max(1, 2 · vM(G)). �

Given Proposition 3 and Theorem 7 the following simple observation is of
some significance.

Proposition 4. The connectives ⊗, ⊕ and → of  L are definable in KZ(π,D).

Proof. It is straightforward to check that the following definitions in KZ(π,D)
match the corresponding truth functions for  L: G⊕F =def D(GπF ), G⊗F =def

¬D(¬Gπ¬F ), G→ F =def D(¬GπF ). �

Remark 6. Note that Proposition 4 jointly with Theorem 7 entails that one
can provide game semantics for (an extension of)  Lukasiewicz without dropping
“Hintikka’s principle” as done in E-games and in G-games.

Remark 7. The definitions mentioned in the proof of Proposition 4 give rise
to corresponding additional rules for the D-extended R-game. E.g., for strong
disjunction we obtain:

(RR⊕ ) If the current formula is G⊕F then a random choice determines whether
to continue the game with F or with G. But in any case the pay-off for P is
doubled (capped to 1), while the pay-off for O remains inverse to that for P.

By further involving role switches similar rules for strong conjunction and for
implications are readily obtained.

It remains to be seen whether these rules can assist in arguing for the plausi-
bility of the corresponding connective in intended application scenarios. But in
any case, it is clear that, compared to the sole specification of truth functions, the
game interpretation provides an additional handle for assessing the adequateness
of the  Lukasiewicz connectives for formalizing reasoning with graded notions and
vague propositions.
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Like (RRπ ), also rule (RRD ) can be generalized in an obvious manner:

(RRMc
) If the current formula is McF then the game continues with F , but with

the following changes at the final state. The pay-off, say x, for P is changed
to max(1, c·x), while the the pay-off 1−x for O is changed to 1−max(1, c·x).

The enrichment of KZ(π,D) by further instances of πp and Mc leads to rather
expressive propositional fuzzy logics, related to, e.g., to Rational  Lukasiewicz
Logic and to divisible MV-algebras [11]. But lack of space prevents us from
taking up this route, here.

5 Random witnesses for quantifiers

The idea of allowing for random choices of witnessing elements in quantifier rules
— instead of O’s choice of a witness for a universally quantified statement and
P’s choice of a witness for an existentially quantified statement — has already
been introduced in [8, 10]. But the corresponding rules there refer to Giles’s game
instead of the H-game and make essential use of the possibility to add more than
one formula to the state of a G-game. Moreover, attention has been restricted to
so-called semi-fuzzy quantifiers in a two-tiered language variant of  Lukasiewicz
logic, where the predicates in the scope of such a quantifiers are crisp. Here, we
lift that restriction and moreover want to retain Hintikka’s principle of game
states as being determined by a single (augmented) formula and a current role
distribution.

In picking a witness element randomly, we may in principle refer to any given
distribution over the domain. However, as convincingly argued, e.g., in [30], the
meaning of quantifiers must remain invariant under isomorphism, i.e., under per-
mutations of domain elements, if those quantifier are to be conceived as logical
particles. This principle entails that the random choice of witnessing elements
has to refer to the uniform distribution over the domain. However, as is well
known, only finite domains admit uniform distributions. The restriction to fi-
nite domains is moreover well justified by the intended applications that largely
model linguistic phenomena connected to gradedness and vagueness. As a wel-
come side effect of this restriction, we may drop the more involved notion of a
value of a game as arising from approximations of pay-offs (Definition 1) and,
like in Section 3 for propositional logics, may define the value of a game as in
Definition 3.

The rule for the simplest quantifier (denoted by Π) that involves a random
witness element is as follows.

(RRΠ) If the current formula is (ΠxF (x))[θ] then an element c from the (finite)
domain ofM is chosen randomly and the game continues with F (x)[θ[c/x]].

In analogy to case of (RRπ ) a truth function for Π can be extracted from this
rule (where |D| is the cardinality of the domain D of M):

vθM(ΠxF (x)) =
∑
c∈D

v
θ[c/x]
M (F (x))

|D|
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By KZ(Π) we refer to the logic KZ augmented by the quantifier Π. The proof
of the corresponding adequateness statement is analogous to that of Theorem 6
and is therefore left to the reader.

Theorem 8. A formula F evaluates to vM(F ) = w in a KZ(Π)-interpre-
tationM iff the R-game for F , extended by rule (RRΠ), with pay-offs matchingM
has expected value w for Myself.

Remark 8. Like the propositional connective π, the quantifier Π can be seen as
an ‘averaging operator’, that provides explicit access to the (uniform) average
of the values of the sub-formulas or instances of a formula FπG or ΠxF (x),
respectively.

Remark 9. Obviously one may extend not just KZ, but also the extensions of
KZ discussed in Section 3 with the random choice quantifier Π. This leads to
first-order logics that are strictly more expressive than  Lukasiewicz logic  L.

In [10] it is demonstrated how random choices of witness elements allow for
the introduction of different (infinite) families of semi-fuzzy quantifiers that are
intended to address the problem to justify particular fuzzy models of informal
quantifier expressions like ‘few’, ‘many’, or ‘about half’. As already mentioned
above, the corresponding quantifier rules in [10] (like those in [8]) employ Giles’s
concept of referring to multisets of formulas asserted by P and by O, respectively,
at any given state of the game. However, even without sacrificing Hintikka’s
principle by moving to G-games or to E-games, one can come up with new
quantifier rules. For example, one may introduce a family of quantifiers Π̂n by
the following parameterized game rule:

(RR
Π̂n

) If the current formula is (Π̂nxF (x))[θ] then n elements c1, . . . , cn from

the domain ofM are chosen randomly. P then chooses some c ∈ {c1, . . . , cn}
and the game continues with F (x)[θ[c/x]].

A dual family of quantifiers is obtained by replacing P by O in rule (RR
Π̂n

).Yet
another type of quantifiers arises by the following rule:

(RR
Π̃n

) If the current formula is (Π̃xF (x))[θ] then an element c1 from the do-
main of M is chosen randomly. P decides whether to continue the game
with F (x)[θ[c1/x]] or to ask for a further randomly chosen element c2. This
procedure is iterated until an element ci, where 1 < i ≤ n is accepted by P.
(cn has to be accepted if none of the earlier random elements was accepted.)
The game then continues with F (x)[θ[ci/x]].

Again, variants of this rule are obtained by replacing P with O in (RR
Π̃n

), possibly

only for certain i ∈ {1, . . . , n}.
Truth functions corresponding to the above rules are readily computed by

applying elementary principles of probability theory. We will not work out these
examples here and leave the systematic investigation of logics arising from en-
riching the H-mv-game or the R-game in the indicated manner to future work.
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6 Conclusion

We began our investigations by observing (in Section 2) that Hintikka’s well
known game semantics for classical first-order logic (here referred to as H-game)
can be straightforwardly generalized to the H-mv-game, where the pay-off values
are taken from the unit interval [0, 1] instead of just {0, 1}. Following [1], we call
the resulting basic fuzzy logic Kleene-Zadeh logic KZ. At least two alternative
types of semantic games, called E-game and G-game here, can be found in the
literature (see, e.g., [4, 12, 5, 9, 7] ). These games provide alternative semantics
for  Lukasiewicz logic  L, which is considerably more expressive than KZ. Both,
the E-game and the G-game, deviate quite drastically from the H-mv-game (and
therefore also from the H-game) in their underlying concept of a game state.
In this paper, we have explored the power of semantic games that adhere of
‘Hintikka’s principle’, by which we mean the principle that each state of a game
is determined by a single formula (possibly augmented by a variable assignment)
and a role distribution (telling us who of the two players is currently acting as
Proponent P and who is currently acting as Opponent O). In Section 3 we have
shown that adding rules that instantiate a fairly general scheme of possible rules
to the H-game does not give rise to logics that are more expressible than KZ.
However introducing random choices in game rules, either as an alternative or
in addition to choices made by P or by O, leads to various proper extensions
of KZ, as we have seen in Section 4 for propositional logics and in Section 5 for
the first-order level. In particular, the combination of the basic random choice
connective π with a unary connective that signals doubling of pay-offs for P
(capped to 1) allowed us to characterize a logic, in which all connectives of  L
are definable. A more complete and systematic exploration of the rich landscape
of new connectives and quantifiers that can be defined for ‘randomized’ H-mv-
games is an obvious topic for future research.

We conclude with a brief remark on the relation between our ‘randomized
game semantics’ and ‘equilibrium semantics’ for H-games with imperfect infor-
mation. We have only considered games of perfect information in this paper:
the players always know all previous moves and thus have full knowledge of
the current state of the game. However, the full power of Hintikka’s game se-
mantics arises from admitting that players may not be aware of all previous
moves. This leads to Independence Friendly logic (IF-logic), where occurrences
of quantifiers and connectives in a formula may be ‘slashed’ with respect to
other such occurrences to indicate that the moves in the game that refer to
those slashed occurrences are unknown to the current proponent. E.g., the for-
mula F = (G∨/{∧}H)∧(H∨/{∧}G) refers to an H-game, where the choice by P
of either the conjunct G ∨/{∧} H or H ∨/{∧} G is unknown to O when O has
to choose either the right or the left disjunct of the remaining current formula.
In [25] and in [32], Sandu and his colleagues present so-called equilibrium seman-
tics for IF-logic, where mixed strategies forH-games with incomplete information
induce intermediate expected pay-off values in [0, 1], even if each atomic formula
is evaluated to either 0 or 1. It is readily checked that the corresponding value
for the above formula F is (vM(G) + vM(H))/2, where vM(G) and vM(H) are
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the values for G and H, respectively. In other words, we can simulate the effect
of the random choice that induces our new connective π by the IF-formula F ,
and vice versa: π simulates effects of imperfect knowledge in games with classical
pay-offs. Clearly, the connections between equilibrium semantics and (extended)
R-games deserves to be explored in more detail in future work.

Finally, we suggest that the results of this paper — in addition to the earlier
results of Giles [12–14], Cintula/Majer [4], as well as Fermüller and co-authors [5,
7, 8, 10] — may serve as a basis for discussing to what extent and in which
manner the game semantic approach to fuzzy logic addresses the important
challenge of deriving truth functions for fuzzy connectives and quantifiers from
basic semantic principles and thus to guide the fuzzy modeler’s task in many
application scenarios.
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3. P. Cintula, P. Hájek, and C. Noguera, editors. Handbook of Mathematical Fuzzy
Logic. College Publications, 2011.

4. P. Cintula and O. Majer. Towards evaluation games for fuzzy logics. In O. Majer,
A.-V. Pietarinen, and T. Tulenheimo, editors, Games: Unifying Logic, Language,
and Philosophy, pages 117–138. Springer, 2009.

5. C.G. Fermüller. Revisiting Giles’s game. In O. Majer, A.-V. Pietarinen, and
T. Tulenheimo, editors, Games: Unifying Logic, Language, and Philosophy, Logic,
Epistemology, and the Unity of Science, pages 209–227. Springer, 2009.

6. C.G. Fermüller. On matrices, Nmatrices and games. Journal of Logic and Com-
putation, page to appear, 2013.

7. C.G. Fermüller and G. Metcalfe. Giles’s game and the proof theory of  Lukasiewicz
logic. Studia Logica, 92(1):27–61, 2009.

8. C.G. Fermüller and C. Roschger. Randomized game semantics for semi-fuzzy quan-
tifiers. In S. et.al. Greco, editor, Advances in Computational Intelligence, volume
300 of Communications in Computer and Information Science, pages 632–641.
Springer, 2012.

9. C.G. Fermüller and C. Roschger. From games to truth functions: A generalization
of Giles’s game. Studia Logica, 2013. to appear.

10. C.G. Fermüller and C. Roschger. Randomized game semantics for semi-fuzzy quan-
tifiers. Logic Journal of the IGPL, to appear.

11. Brunella Gerla. Rational  lukasiewicz logic and DMV-algebras. arXiv preprint
arXiv:1211.5485, 2012.

12. R. Giles. A non-classical logic for physics. Studia Logica, 33(4):397–415, 1974.
13. R. Giles. A non-classical logic for physics. In R. Wojcicki and G. Malinkowski,

editors, Selected Papers on  Lukasiewicz Sentential Calculi, pages 13–51. Polish
Academy of Sciences, 1977.

17



14. R. Giles. Semantics for fuzzy reasoning. International Journal of Man-Machine
Studies, 17(4):401–415, 1982.
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