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Abstract—Hintikka’s game theoretic semantics for classical
connectives and quantifiers has been generalized to many-valued
logics in various ways. After providing a short overview, we
introduce a new type of semantic games: backtracking games,
where a stack of formulas is used to store information on how
to continue the game even after reaching an atomic formula. We
present backtracking games for the three fundamental t-norm
based logics: Łukasiewicz-, Gödel and Product logic and provide
corresponding adequateness theorems.

I. INTRODUCTION

Already in the late 1960s Jaako Hintikka [15] suggested
to interpret the classical logical connectives and quantifiers
via a game where one player (‘I’) defends a formula against
systematic attacks by another player (‘Nature’ or ‘you’). With
respect to a given interpretation J that decides who is winning
for atomic formulas, I have a winning strategy for a formula F
in the game iff F is true in J . In the 1970s, Robin Giles [12],
in an attempt to justify a particular form of approximate
reasoning, introduced a quite different semantic game that
characterizes infinite-valued Łukasiewicz logic. More recently,
other forms of semantic games for various many-valued logic
have been suggested [4], [10], [11], [7]. We will briefly review
the most important of these games in Section IV. As we will
see, these games deviate rather significantly from Hintikka’s
original game theoretic semantics in various aspects. In this
paper, we introduce a new type of game that largely respects
the structure of Hintikka’s game, but allows for backtracking
when reaching an atomic formula. We will show that different
forms of backtracking and of cumulatively evaluating atomic
formulas during the game leads to characterizations of all three
fundamental t-norm based fuzzy logics: Łukasiewicz logic,
Gödel logic, and Product logic.

II. HINTIKKA’S GAME AND KLEENE-ZADEH LOGIC

Hintikka’s game for classical logic can be presented as
follows. There are two players, called Myself (I) and You, here,
who can both act either in the role of the Proponent P or of
the Opponent O. Initially I act as P and You act as O. My aim
— or, more generally, P’s aim at any state of the game — is to
show that the initial formula is true in a given interpretation J .
Since we are mainly interested in propositional logics, we
will only present propositional game rules, here. (However,
in Section IX we will explain in which manner all our games
can be extended to the first-order level.) More precisely, the
following rules refer to the outermost outermost connective
of the current formula, i.e. the formula that is at stake at the
given state of the game. Together with a role distribution of
the players, the current formula fully determines any state of
the game.

RH∧ : If the current formula is F∧G then O chooses whether
the game continues with F or with G.

RH∨ : If the current formula is F∨G then P chooses whether
the game continues with F or with G.

RH¬ : If the current formula is ¬F , the game continues with
F , except that the roles of the players are switched:
the player who is currently acting as P, acts as O at
the the next state, and vice versa for the current O.

Except for rule RH¬ , the players’ roles remain unchanged. The
game ends when an atomic formula A is hit. The player who
is currently acting as P wins and the other player, acting as
O, loses if A is true in the given model J . We associate pay-
off 1 with winning and pay-off 0 with losing. We also include
the truth constants > and ⊥, with their usual interpretation,
among the atomic formulas. The game starting with formula F
is called the H-game for F under J .

Theorem 1 (Hintikka): A formula F is true in a classical
interpretation J (in symbols: ‖F‖J = 1) iff I have a winning
strategy in the H-game for F under J .

It has been observed, e.g., in [10], [11] the above game
can be straightforwardly adapted to the so-called Kleene-Zadeh
logic KZ. (In [10], [11] we call KZ the ‘weak fragment of
Łukasiewicz logic, but sometimes it is simply referred to as
‘fuzzy logic’ [19]. We prefer to follow the terminology of
[1] and [7], here.) The connectives of KZ arise by extending
an assignment J of either 0 or 1 to atomic formulas to an
assignment of truth values in [0, 1] and defining the following
truth functions.

‖F ∧G‖KZ
J = min(‖F‖KZ

J , ‖G‖KZ
J ),

‖F ∨G‖KZ
J = max(‖F‖KZ

J , ‖G‖KZ
J ),

‖¬F‖KZ
J = 1− ‖F‖KZ

J ,

‖⊥‖KZ
J = 0, and ‖>‖KZ

J = 1.

The rules of H-game are left unchanged, but pay-offs may
now be any values in the unit interval [0, 1].

Definition 1: If a player X of some game has a strategy
that guarantees her a pay-off of at least w, while her opponent
has a strategy that ensures that X’s pay-off is at most w, then
w is called the value for X of the game.

Theorem 2 (see, e.g., [11]): A formula F evaluates to w
in a KZ-interpretation J , i.e., ‖F‖KZ

J = w, iff the value of the
H-mv-game for F under J for Myself is w.

III. T-NORM BASED FUZZY LOGICS

Contemporary mathematical fuzzy logic as documented,
e.g., in [3] highlights the fact that the expressibility of logic KZ



is severely limited. In particular, in contrast to classical logic,
one cannot define implication by F → G =df ¬F ∨G if one
wants to retain F → F as valid. Petr Hájek has prominently
(e.g., in [13] formulated design principles for fuzzy logics that
include the following:

• the truth function for conjunction is a continuous t-
norm; i.e., a monotone, commutative and associative
function ∗ : [0, 1] × [0, 1] → [0, 1], where 1 acts as
identity element,

• as truth function for implication one takes the (unique)
residuum of the t-norm chosen for conjunction,

• negation is defined from implication by setting its right
argument to 0.

While min, the truth function for conjunction in KZ is indeed
a continuous t-norm, its residuum is given by

x⇒G y =

{
1 if x ≤ y
y otherwise.

The corresponding truth function for negation is given by:

x−G y =

{
1 if x = 0
0 otherwise.

The logic with these truth functions, in addition to min for
conjunction and max for disjunction, is called Gödel logic G.

Also multiplication over [0, 1] is a t-norm. Its residuum is

x⇒P y =

{
1 if x ≤ y
y/x otherwise;

−G remains the corresponding truth function for negation,
according to Hájek’s principle. The resulting logic is called
Product logic Π.

Łukasiewicz logic arises from the Ł-t-norm x ∗L y =
max(0, x+ y − 1) and its residuum

x⇒L y =

{
1 if x ≤ y
1− y + x otherwise;

The corresponding truth function for negation is −L(x) =
1 − x. Since min can defined from the Ł-t-norm and its
residuum, as well as from product and its residuum, the logics
Ł and Π each have two conjunctions. Likewise, max can be
expressed. We continue to denote the connectives interpreted
as as min and max by ∧ and ∨ respectively. The t-norm
based or ‘strong’ conjunctions of Ł and Π will be denoted
by &. The signs for the implication and negation connectives
remain → and ¬, respectively. For Ł and Π one can define an
additional ‘strong disjunction’ interpreted as the corresponding
co-t-norm. However we will not use that connective here.

IV. SEMANTIC GAMES FOR FUZZY LOGICS
A BRIEF OVERVIEW

The literature on semantic games for t-norm based fuzzy
logic is mainly focused on Łukasiewicz logic Ł. Already in
the 1970s Robin Giles [12], in an attempt to model reasoning
about dispersive experiments in theory of physics, presented
a game where two players stepwise reduce complex formulas
to simpler ones, like in Hintikka’s game. But unlike in the H-
game, Giles defined a rule for implication that entails that more

than just one formula may have to be considered at a given
state of the game. More precisely, a state of Giles’s game
is given by [F1, . . . , Fm | G1, . . . , Gn], where {F1, . . . , Fm}
is the multiset of formulas currently asserted by You and
{G1, . . . , Gn} is the multiset of formulas currently asserted
by Myself. The game ends if every Fi (1 ≤ i ≤ m) and
Gj (1 ≤ j ≤ n) is atomic. For the definition of pay-
offs Giles associates with each atomic formula a particular
experiment that either ‘succeeds’ or ‘fails’. These experiments
are dispersive, which means that they may yield different
results upon repetition. However, the players assign a fixed
success probability to each experiment and therefore a concrete
value in [0, 1] to each atomic formula. At the end of the game
an associated experiment is performed for each occurrence of
an atomic formula. It is stipulated that each player has to pay
one unit of money to the other player whenever an experiment
associated with an assertion by herself fails. The total payoff
however is not directly identified with the amount of money
gained (or lost) in that manner, but rather given by the risk,
i.e. the expected (average) amount of money transferred to the
other player in total. We will not need to refer to any details
of Giles game here, but refer to [8], [6], [10], where also also
generalizations of the game Łukasiewicz logic are considered.

A different type of semantic game for Łukasiewicz logic
has been introduced in [4]. Like in Hintikka’s game, but unlike
in Giles’s game, a state the game of Cintula and Majer is
determined by a single formula and a distribution of roles to
the two players. However, in contrast to all games mentioned
so far, the rules of the game explicitly refer to some value
from the unit value at each state of the game. It is a win-loose
game without a direct connection between pay-offs and truth
values as in Theorem 2. The game may be seen as modeling
a negotiation about a given value that is to be assigned to a
complex formula, given that we the know the values of atomic
formulas.

Since the games of Giles and of Cintula and Majer deviate
from Hintikka’s original concept of game theoretic semantics
by either considering more than one formula or by an explicit
reference to a (truth) value at any given state, it has been
investigated recently in [7], whether there is a way to stick to
Hintikka’s format of game states (avoiding explicit reference
to values and multiple formulas) in semantic games that char-
acterize logics that extend KZ, like in particular, Łukasiewicz
logic. A positive answer is provided in [7] by considering a rule
for a new binary connective π, where neither the Proponent P
nor the Opponent O chooses whether to continue with F or
with G when the current formula is FπG, but rather a random
choice (made by Nature, so to speak) determines the successor
state. By combining this rule with the possibility to double
payoffs in the game (capped to 1) one obtains a game for Ł.
Similar rules lead to other proper extensions of KZ and even
of Ł,

For Gödel logic G yet another type of semantic game is
presented in [9], where not single formulas but ‘comparison
claims’ F < G or F ≤ G, for arbitrary formulas F and G,
are stepwise reduced by the players to claims where only the
values of atomic formulas in the given interpretation has to be
compared. We will consider two new semantic games for G
in Sections VI and VII, respectively, that arguably are closer
to Hintikka’s original game in spirit and structure.



We are not aware of any semantic game for Product logic P.
(However, in [2], [6] a parameterized game is considered that
can be used to characterize validity, rather than degrees of truth
in a given interpretation, for all three fundamental t-norm based
logics Ł, Π, and G.) In Section VIII we introduce a semantic
game for P by variating a concept introduced in Section VII
for Gödel logic G.

V. A BACKTRACKING GAME FOR Ł

As indicated in the last section, Giles’s game for
Łukasiewicz logic Ł deviates in a number of aspects from
Hintikka’s concept of game theoretic semantics. In particular
there are two multisets of formulas to be considered for the
continuation of the game at a given state. While the games
for Ł presented in [4] and in [7] avoid this feature, those games
also introduce features that are at variance with Hintikka’s
original concept: explicit references to a truth value at every
state of the game or randomized choices, respectively.

In this section we show that Hintikka’s principle of fo-
cusing on a single formula and a role distribution can be
maintained in a game for Ł without introducing randomized
choices or explicit references to truth values in rules associ-
ated with logical connectives. For this purpose we propose
to ‘sequentialize’ the multiple concurrent options for further
moves that are available at any state of Giles’s game. More
precisely, we introduce a stack on which information about an
alternative state is stored (in a first-in first-out manner) when
making particular moves. Initially the stack is empty. Upon
reaching an atomic formula the game only ends if the stack is
empty. Otherwise, the game backtracks to the state (formula
and role distribution) indicated by the top element of the stack.
That stack element is thereby pushed from the stack.

In addition to the stack, we need to keep track of the
preliminary pay-off σP for P. The preliminary pay-off σO
for O is −σP throughout the game. When the game ends the
preliminary pay-off becomes final. Initially, σP = 1. We will
call the resulting variant of Giles’s game backtrack game for Ł
or BŁ-game for short.

The rules for RH∧ , RH∨ , and remain unchanged for the
BŁ-game; no reference to the game stack or to σP and σO
is needed. This implies that the BŁ-game (for Ł) actually is
an extension of the H-mv-game for KZ. The rules for strong
conjunction and implication are as follows:

RŁ
&: If the current formula is F&G then P can choose

either (1) to continue the game with F and to put
G together with the current role distribution on the
stack, or (2) to continue the game with ⊥.

RŁ
→: If the current formula is F → G then O can choose

either (1) to put G on the stack with the current
role distribution and continue the game with F and
inverted roles, or (2) to continue the game with the
top element of the stack. If the stack is empty, the
game ends.

RŁ
at: If the current formula is an atom A then ‖A‖Ł

J − 1 is
added to σP and the same value is subtracted from σO.
The game ends if stack is empty and is continued with
the top element of the stack otherwise.

¬F is treated as F → ⊥.

Again, we speak of the BŁ-game for F under J if the
game starts with the current formula F where initially I am P
and You are O.

Theorem 3: A formula F evaluates to w in an Ł-interpre-
tation J , i.e., ‖F‖Ł

J = w, iff the value of the BŁ-game for F
under J for Myself is w.

Proof: We generalize to BŁ-games that may start with
any formula, role distribution, preliminary pay-offs σP = −σO
and any stack content. We use SI to denote the multiset of
|SI | formulas on the stack where I am assigned the role of P,
and SY to denote the multiset of |SY | formulas on the stack
where You are assigned the role of P. (Note that we ignore the
order of stack elements, but not the number of occurrences of
the same formula on the stack.) We define s(F ) = 1 if F is
atomic, s(¬F ) = s(F )+1, and s(F ◦F ′) = s(F )+s(F ′)+1
for ◦ ∈ {∨,∧,&,→}. We prove the following by induction
on n = s(F ) +

∑
H∈SI∪SY s(H): u is the value for Myself of

the BŁ-game under interpretation J that starts with formula
F and with Myself as P iff

u=σP + ‖F‖Ł
J +

∑
H∈SI

(‖H‖Ł
J − 1)−

∑
H∈SY

(‖H‖Ł
J − 1)

=σP + ‖F‖Ł
J − |SI |+ |SY |+

∑
H∈SI

‖H‖Ł
J −

∑
H∈SY

‖H‖Ł
J .

The theorem follows for σP = 1 and |SI | = |SY | = 0. The
case where You are initially in the role of P is analogous: one
just needs to invert the (preliminary) pay-offs.

At the base case, n = 1, the stack is empty and F is
atomic. Therefore ‖F‖Ł

J − 1 is added to σP. The game ends
at that state and σP + ‖F‖Ł

J − 1 is the pay-off for Myself as
well as the value of the game, as required. (Remember that in
the game for F that we are interested in, we have σP = 1.)

For the induction step we distinguish the following cases:

F is atomic, but n > 1: ‖F‖Ł
J − 1 is added to σP and

the game continues with the formula and role distribution
that forms the top element of the stack. Clearly, the induction
hypothesis is preserved.

F = ¬F ′: The roles are inverted and the game continues
with H and the inverted variant of the induction hypothesis
applies.

F = F ′ ∧ F ′′: We continue either with the game where
F ′ or the game where F ′′ is the initial formula, accord-
ing to O’s choice. Therefore we have to replace ‖F‖Ł

J by
min(‖F ′‖Ł

J , ‖F ′′‖Ł
J ) to obtain the value for P of the original

game from the values for P of the two possible succeeding
games. This clearly matches the truth function for ∧.

F = F ′ ∨ F ′′: like the case for F = F ′ ∧ F ′′, except for
replacing ‖F‖Ł

J by max(‖F ′‖Ł
J , ‖F ′′‖Ł

J ) in the value for P,
since now P herself can choose the successor game.

F = F ′&F ′′: By the induction hypothesis, if ‖F ′‖Ł
J +

‖F ′′‖Ł
J − 1 is ≥ 0 then the value is maximized for P by

choosing option (1): continue with F ′, while putting F ′′ on
the stack. However, if ‖F ′‖Ł

J + ‖F ′′‖Ł
J − 1 is below 0 then P

is better off by continuing the game with ⊥ as new initial for-
mula; i.e., choosing option (2) of rule RŁ

&. Therefore, putting



the two options together, the value for P of the original game
results from the values of the two possible succeeding games
when we replace by ‖F‖Ł

J by max(0, ‖F ′‖Ł
J + ‖F ′′‖Ł

J − 1).
This matches the truth function for &.

F = F ′ → F ′′: If ‖F ′‖Ł
J > ‖F ′′‖Ł

J then the (negative)
contribution of F ′ to the value of the game for O is higher
than the (positive) contribution of F ′′ for O and therefore O
will choose option (1) of rule RŁ

→ and let the game continue
with F ′ and inverted roles, while F ′′ is put on the stack. If, on
the other hand, ‖F ′‖Ł

J ≤ ‖F ′′‖Ł
J then O will choose option (2)

and discard F altogether. In latter case the game continues with
the next formula/role distribution pair on the stack, unless the
stack is empty and the game ends. Combing the two options
we obtain the value for P from her values of the possible
succeeding games as given by the induction hypothesis: we
replace by ‖F‖Ł

J by max(1, 1 − ‖F ′′‖Ł
J + ‖F ′‖Ł

J ). This
matches the truth function for →.

Remark. An alternative way of proving Theorem 3 consists
in transforming Giles’s game into a BŁ-game and vice versa.
However we prefer to present an independent proof here.

VI. A BACKTRACKING GAME FOR G

Like in KZ, but unlike in Ł, we only have to consider min
and max as truth functions for conjunction and disjunction,
respectively, Gödel logic G. In addition the semantics of impli-
cation is specified by ‖F → G‖G

J = ‖G‖G
J if ‖F‖G

J > ‖G‖G
J

and ‖F → G‖G
J = 1 otherwise. Negation is defined by

¬F =df F → ⊥ and therefore does not need separate
consideration. To characterize implication in our backtracking
game format we define the following rule:

RG
→: If the current formula is F → G then the game is

continued with G in the current role distribution and
F is put on the stack together with the inverse role
distribution.

Note that no choice of the players is involved in this rule.
We will present an alternative implication rule with choice in
Section VII. Here, choices remain restricted to conjunctive and
disjunctive formulas, for which the rules RH∧ and RH∨ remain
in place.

RG
at : If the current formula is atomic the game ends if the

stack is empty and is continued with the top element
of the stack otherwise.

Keeping track of pay-off values is more involved than in
the BŁ-game. An (ordered) tree τ of all formula occurrences
visited during the game is built up for that purpose. At a state
where the current formula F is a conjunction or a disjunction
the subformula of F chosen by O or P, respectively, is attached
to τ as successor node to F . If the current formula F is an
implication F ′ → F ′′ then F ′ and F ′′ are attached to τ as
the right and left successor node to F , respectively. When
an atomic formula A is reached then the corresponding leaf
node A is labeled by ‖A‖G

J . To compute the pay-off the values
(labels) at the leaf nodes are finally propagated upwards in τ as
follows. Let F be the non-atomic formula at an internal node
of τ , where each successor node has already been labeled by
a value:

• If F = F ′ → F ′′ than F is labeled by 1 if f ′ ≤ f ′′

and by f ′′ if f ′ > f ′′, where f ′ and f ′′ are the values
that label F ′ and F ′′, respectively.

• If F = F ′ ∨ F ′ or F = F ′ ∨ F ′ than the same value
that labels the successor node of F also labels F itself.

The BG-game for F under J starts with empty stack, the
current formula F (that is also the initial tree τ ) and the role
distribution where I am P and You are O. The pay-off for
Myself in that game is given by the label f of F in τ (computed
as explained above, once the game has ended). The pay-off for
You is −f . (In other words: the BG-game is a zero sum game.)

Theorem 4: A formula F evaluates to w in a G-interpre-
tation J , i.e., ‖F‖G

J = w iff the value of the BG-game for F
under J for Myself is w.

Proof: If F does not contain any occurrences of ∧ or ∨
then the tree τ of the game is just the tree of all subformulas
G of F , with G is labeled by ‖G‖G

J . In particular, the pay-
off for Myself, and therefore the value of the game, coincides
with ‖F‖G

J .

It remains to check that the values labeling formulas of the
form F ′∧F ′′ and F ′∨F ′′ correspond to min(‖F ′‖G

J , ‖F ′′‖G
J )

and max(‖F ′‖G
J , ‖F ′′‖G

J ), respectively. To this aim, we refer
to the polarity πF (G) ∈ {+,−} of a subformula G in F ,
defined recursively as follows:

• πF (F ) = +,

• πF (G ◦G′) = πF (G) = πF (G′) for ◦ ∈ {∧,∨},

• πF (G→ G′) = πF (G′), but πF (G) = − if πF (G→
G′) = + and πF (G) = + if πF (G→ G′) = −.

It is straightforwardly checked by induction that I am P and
you are O in a state with current formula G iff πF (G) = +.
For G = F ′ ∨ F ′′ this implies that I (as P) will choose the
subformula labeled by the bigger (truth) value. On the other
hand, for G = F ′∧F ′′ You (as O) will choose the subformula
labeled by the smaller value. The case where πF (G) = − is
dual: I (as O) will choose the subformula of G = F ′∧F ′′ that
minimizes Your (i.e., P’s) pay-off and therefore maximizes My
(O’s) own pay-off. Likewise, for G = F ′∨F ′′ You (as P) will
choose the subformula with maximal value.

Remark. We may retain rule RH¬ in addition to negation as
defined by ¬A =df A → ⊥. This amount to a game for the
Gödel logic G∼ augmented by involutative negation. G∼ is
considered at various places in the literature (see, e.g., [5]),
but has not yet been considered from a game semantic point
of view.

VII. AN IMPLICIT BACKTRACKING IN A GAME FOR G

The BG −game presented in Section VI is unsatisfying in
a few aspects. As we have already mentioned, no choice of
either player is involved in rule RG

→. In fact, if we focus on
formulas where implication is the only binary connective, the
BG-game can be viewed as just a particular implementation
of the evaluation algorithm for G-formulas. Thus a lot of
the appeal of game semantics is lost. Another drawback is
the comparatively complex way of computing the pay-off. In
this section we seek to address these worries by defining an



alternative semantic game for G where backtracking and thus
the use of a stack is left implicit in the very same way as a
stack for backtracking is implicit in recursive programs: the
stack only gets explicit when the recursion is unraveled.

We use IG(F, ρ) to denote the implicit backtracking game
for logic G (IG-game) for formula F starting with role
distribution ρ and use 〈IG(F, ρ)〉P to denote the value for
P of that game. Of course, IG(F, ρ) also refers to given
interpretation J . However we prefer to keep that reference
implicit in order to simplify notation. Like all other games
described in this paper, the IG-game is zero-sum. given this
clarification, it is sufficient to mention only the pay-off for P
in the following: the pay-off for O is always inverse to that
for P.

The rule for implication in the IG-game is as follows.

R̄G
→: In IG(F → G, ρ) P chooses whether (1) to continue

the game as IG(G, ρ) or (2) to play, in addition to
IG(G, ρ), also IG(F, ρ̂), where ρ̂ denotes the role
distribution that is inverse to ρ. In the latter case the
pay-off for P is 1 if 〈IG(G, ρ)〉P ≥ 〈IG(F, ρ̂)〉P and
−1 otherwise.

Remark. While the formulation of R̄G
→ looks quite different

from that of the rules for the BŁ- or the BG-game, the
difference lies only in the fact that in R̄G

→ we hide details of
implementation. If in choice (2) we insist in playing IG(F, ρ̂)
first and thus putting G with ρ̂ on a stack we obtain a version
of the rule that is analogous to those of the earlier games.

R̄G
at : The pay-off for P at IG(A, ρ) is ‖A‖G

J .

Note that we do not insists that the game ends upon reaching
an atomic formula. Indeed, the pay-off may be preliminary
since it may only refer to a sub-game of the overall game, as
indicated in rule R̄G

→.

The rules for conjunction and disjunction in the IG-game
are virtually identical to RH∧ and RH∨ and can be formulated
as follows:

R̄G
∧: In IG(F ∧ G, ρ) O chooses whether to continue the

game as IG(F, ρ) or as IG(F, ρ).

R̄G
∨: In IG(F ∨ G, ρ) P chooses whether to continue the

game as IG(F, ρ) or as IG(F, ρ).

Remember that no rule for negation is needed be cause we
have ¬F =df F → ⊥.

Theorem 5: A formula F evaluates to w in a G-interpre-
tation J , i.e., ‖F‖G

J = w iff the value of the IG-game for F
under J for Myself is w.

Proof: We show by induction on the complexity of F that
the value 〈IG(F, ρ)〉P for P of IG(F, ρ) is ‖F‖G

J for every
role distribution ρ. (The theorem clearly follows for the role
distribution ρ where I am P and You are O.)

According to rule R̄G
at the pay-off for P is ‖F‖G

J if F is
atomic. Therefore 〈IG(F, ρ)〉P = ‖F‖G

J in this case.

For the induction step we distinguish the following cases:

F = F ′ ∧ F ′′: Since O can choose whether to continue
the game as IG(F ′, ρ) or as IG(F ′′, ρ) and since the pay-
off for O is inverse to that of P we obtain 〈IG(F, ρ)〉P =
min(〈IG(F ′, ρ)〉P , 〈IG(F,′′ ρ)〉P) and therefore, by the in-
duction hypothesis, IG(F, ρ) = min(‖F ′‖G

J , ‖F ′′‖G
J ), as

required.

F = F ′ ∨ F ′′: This case is analogous to that for conjunc-
tion, except that now P can choose how to continue the game.
Therefore 〈IG(F, ρ)〉P = max(〈IG(F ′, ρ)〉P , 〈IG(F,′′ ρ)〉P)
and thus IG(F, ρ) = max(‖F ′‖G

J , ‖F ′′‖G
J ), as required.

F = F ′ → F ′′: If 〈IG(F ′′, ρ)〉P ≥ 〈IG(F ′, ρ̂)〉P then
by rule R̄G

→ the pay-off for P and therefore also 〈IG(F, ρ)〉P
is 1, i.e., optimal for P. Consequently P will choose to continue
the game with the two sub-games IG(F ′′, ρ) and IG(F ′, ρ̂).
By the induction hypothesis we have ‖F ′‖G

J ≤ ‖F ′′‖G
J in

this case, implying ‖F‖G
J = 1, as required. If, on the other

hand, 〈IG(F ′′, ρ)〉P < 〈IG(F ′, ρ̂)〉P then P will maximize
her pay-off by continuing the game as IG(F ′′, ρ). In this case
the induction hypothesis implies that ‖F ′‖G

J > ‖F ′′‖G
J and

therefore 〈IG(F, ρ)〉P = 〈IG(F ′′, ρ)〉P = ‖F ′′‖G
J = ‖F‖G

J ,
again as required.

VIII. AN IMPLICIT BACKTRACKING GAME FOR Π

For Product logic Π one could define a semantic game
with explicit backtracking that is very similar to the BŁ-game
of Section V. Roughly speaking one only needs to change
the propagation of preliminary pay-offs when reaching atomic
formulas: instead of addition and substraction we have to use
multiplication and division, respectively. However, as done in
Section VII for Gödel logic G, we prefer to present such
a game at a more abstract and compact level that leaves to
reference to a game stack and to preliminary pay-offs implicit.

The implicit backtracking game for Π (IΠ-game) for
formula F starting with role distribution ρ is denoted by
IΠ(F, ρ). By 〈IΠ(F, ρ)〉P we denote the value for P of that
game. Again, we suppress the reference to the underlying
interpretation J . Once more describe a zero-sum game and
thus it is sufficient to specify only the pay-off for P explicitly.

The implication rule of the IΠ-game is as follows.

R̄Π
→: In IΠ(F → G, ρ) O chooses whether (1) to end the

game immediately and accept pay-off 1 for P and −1
for herself or (2) to continue by playing IΠ(G, ρ) as
well as IΠ(F, ρ̂), where ρ̂ denotes the role distribution
that inverts ρ. In this latter case we have pay-off
〈IΠ(F → G, ρ)〉P = 〈IΠ(G, ρ)〉P / 〈IΠ(F, ρ̂)〉P.

For strong conjunction &, product is used in P and therefore
the following rule will come without surprise:

R̄Π
&: In IΠ(F&G, ρ) the game splits into the sub-

games IΠ(F, ρ) and IΠ(G, ρ), with total pay-off
〈IΠ(F&G, ρ)〉P = 〈IΠ(G, ρ)〉P · 〈IΠ(F, ρ)〉P.

Negation is left implicit by ¬F =df F → ⊥. The rules for
atomic formulas as well as for F ∧G and F ∨G are exactly
as in the IG-game (Section VII).

Theorem 6: A formula F evaluates to w in a Π-interpre-
tation J , i.e., ‖F‖ΠJ = w iff the value of the IΠ-game for F
under J for Myself is w.



Proof: The proof is very similar to that of Theorem 5;
we show by induction that the value 〈IΠ(F, ρ)〉P for P of the
game IG(F, ρ) is ‖F‖ΠJ for every role distribution ρ.

If F is atomic then the pay-off for P is ‖F‖G
J and therefore

〈IG(F, ρ)〉P = ‖F‖ΠJ .

The induction step is as follows:

F = F ′ → F ′′: If 〈IΠ(F ′′, ρ)〉P < 〈IΠ(F ′, ρ̂)〉P then
〈IΠ(F ′′, ρ)〉P / 〈IΠ(F ′, ρ̂)〉P is greater than 1. This implies
that in this case O achieves a greater pay-off by choos-
ing option (1) in rule R̄Π

→ and end the the game with
the pay-off is 1 for P and thus −1 for O herself. But if
〈IΠ(F ′′, ρ)〉P > 〈IΠ(F ′, ρ̂)〉P then O will choose option (2)
and we obtain 〈IΠ(F, ρ)〉P = 〈IΠ(F ′′, ρ)〉P / 〈IΠ(F ′, ρ̂)〉P.
Finally, if 〈IΠ(F ′′, ρ)〉P = 〈IΠ(F ′, ρ̂)〉P then the choice of O
is immaterial since the pay-off for P will always be 1. Clearly,
the induction hypothesis yields 〈IΠ(F, ρ)〉P = ‖F‖ΠJ in all
three cases.

F = F ′&F ′′: By rule R̄Π
& we obtain 〈IΠ(F, ρ)〉P =

〈IΠ(F ′, ρ)〉P · 〈IΠ(F ′′, ρ)〉P and therefore 〈IΠ(F, ρ)〉P =
‖F ′‖ΠJ · ‖F ′′‖ΠJ = ‖F‖ΠJ by the induction hypothesis.

The cases for F = F ′ ∧ F ′′ and for F = F ′ ∨ F ′′ are
exactly as in Theorem 5.

IX. A REMARK ON GAMES FOR FIRST-ORDER LOGICS

We have only treated propositional fuzzy logics so far,
but want to emphasize that all semantic games presented in
this paper can be straightforwardly generalized to the first-
order level by using Hintikka’s quantifiers rules for the original
semantic game.

(RH∀ ) If the current formula is ∀xF (x) then O chooses a
domain element c; the game continues with F (c).

(RH∃ ) If the current formula is ∃xF (x) then P chooses a
domain element c; the game continues with F (c).

In the many-valued context a slight complication arises with
adequateness of these rules: there might be no domain ele-
ment d such that ‖F (d)‖J = infc∈D(‖F (c)‖J ) or e such that
‖F (e)‖J = supc∈D(‖F (c)‖J ). This observation applies to all
logics considered here: KZ, Ł, G, and Π. The simplest way to
resolve this issue is to restrict attention to so-called witnessed
models [14], where constants that witness all arising infima and
suprema are assumed to exist. A more general solution consists
in adapting the notion of the value of a game (Definition 1) to
optimal payoffs up to some ε.

Definition 2: Suppose that, for every ε > 0, player X has
a strategy that guarantees her a payoff of at least w− ε, while
her opponent has a strategy that ensures that X’s payoff is at
most w + ε, then w is called the value for X of the game.

In [11] the corresponding adequateness of Hintikka’s game
with rules RH∀ and RH∃ for first-order KZ is proved. The same
arguments apply to first-order Ł, G, and Π.

X. CONCLUSION

We have presented semantic games for all three fun-
damental t-norm based fuzzy logics: Łukasiewicz logic Ł,
Gödel logic G, and Product logic Π. In the case of Ł an

adequate version of game theoretic semantics has already been
introduced by Giles [12]. We have shown that a variant of
Giles’s game, that introduces the concept of a game stack for
backtracking, enables one to maintain the focus on a single
formula at any given state, that is characteristic for Hintikka’s
game. This concept can be adapted to G and Π as well.

One may argue that the full power of game theoretic
semantics only becomes apparent if one allows for the possi-
bility that they players may have incomplete information about
previous moves in a run of a game. The results of this paper
may thus be viewed as laying the foundation for investigation
generalizations of fuzzy logics that arise from Ł, G and Π
in the same manner as Hintikka’s and Sandu’s Independence
Friendly logic (IF-logic) [17], [18] arises from classical logic.
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[13] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic
Publishers, 2001.
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