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Abstract. This paper presents the program MUltseq, which can be used
to decide the validity of finitely-valued formulas, the consequence relation
in finitely-valued logics, and the validity of equations and quasi-equations
in finite algebras.

1 Introduction

In its core, MUltseq is a generic sequent prover for propositional finitely-valued
logics. This means that it takes as input the rules of a many-valued sequent
calculus as well as a many-sided sequent and searches – automatically or inter-
actively – for a proof of the latter. For the sake of readability, the output of
MUltseq is typeset as a LATEX document.

Though the sequent rules can be entered by hand, MUltseq is primarily in-
tended as a companion for MUltlog, a program that computes – among other
calculi – optimized rules of a sequent calculus from the truth tables and distri-
bution functions of a finitely-valued logic [1, 5, 8].

Provided the input sequent calculus is both correct and complete for the logic
under consideration – which is always the case when the rules were computed by
MUltlog – MUltseq serves as a decision procedure for the validity of sequents and
formulas. More interestingly, MUltseq can also be used to decide the consequence
relations associated with the logic and the sequent calculus. The problem of
deciding whether a particular formula φ is true in all models satisfying a given
set of formulas ∆, i.e., whether φ logically follows from ∆, can be reduced to the
problem of proving that certain sequent that depends only on φ and ∆ is true.
Similarly, as a consequence of the Deduction Detachment Theorem for many-
valued sequents [4, 7], the problem of finding a derivation of a sequent σ from
hypotheses Σ can be reduced to proving a particular set of sequents.

From the algebraic point of view, it is an interesting problem to determine
whether an equation or a quasi-equation is valid in a finite algebra. If we consider
the algebra as a set of truth values and a collection of finitely-valued connectives,
and use an appropriate translation of equations and quasi-equations to sequents,
the problem again reduces to the provability of many-valued sequents [2, 3].
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2 Basic properties and definitions

Let L be a propositional language and let L be a finite L-algebra with domain
L = {v0, . . . , vm−1}. The elements of L are called truth values. A signed formula
is an expression F v where F is a formula over L and v is a truth value. By a
(many-valued) sequent we mean a set of signed formulas.

Definition 1. A sequent is L-true in an interpretation iff it contains a signed
formula F v such that F evaluates to v. A sequent is L-valid iff it is true in every
interpretation over L.

Let D ⊂ L. A finitely-valued logic is a pair 〈L, D〉. The set D is called the
set of designated truth values.

Definition 2. A formula F is true in a finitely-valued logic 〈L, D〉 iff for every
interpretation, it evaluates to a truth-value in D.

3 Examples

To illustrate the use and capabilities of the system we reproduce here some ques-
tions that can be solved by using it. More precisely we reproduce the optimized
rules of the three-valued sequent calculus computed by the system MUltlog for
the three-valued  Lukasiewicz logic and some results concerning sequents, for-
mulas, equations and quasi-equations obtained from these rules by the system
MUltseq.

3.1 Specification of the 3-valued  Lukasiewicz logic

Given the truth tables of the connectives for the 3-valued  Lukasiewicz logic, the
system MUltlog generates the following rules, which are to be used by MUltseq.

% A sequent calculus for 3-valued Lukasiewicz logic
name_of_logic(’Lukasiewicz 3-valued logic’).
truth_values([f,p,t]).
operators([=>,&,v,-]).
% rules
% Implication
op(800, xfx, =>).
rule((A=>B)^f, [[A^t],[B^f]], if).
rule((A=>B)^p, [[A^p,B^p],[A^t,B^f]], ip).
rule((A=>B)^t, [[A^f,A^p,B^t],[A^f,B^p,B^t]], it).
% Conjunction
op(600, yfx, &).
rule((A&B)^f, [[A^f,B^f]], af).
rule((A&B)^p, [[A^p,B^p],[A^p,A^t],[B^p,B^t]], ap).
rule((A&B)^t, [[A^t],[B^t]], at).
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% Disjunction
op(700, yfx, v).
rule((A v B)^f, [[A^f],[B^f]], of).
rule((A v B)^p, [[A^p,B^p],[A^p,A^f],[B^p,B^f]], op).
rule((A v B)^t, [[A^t,B^t]], ot).
% Negation
op(500, fx, -).
rule((-A)^f, [[A^t]], nf).
rule((-A)^p, [[A^p]], np).
rule((-A)^t, [[A^f]], nt).

3.2 Provability of sequents

For each sequent the system computes a derivation. If hypotheses are needed
the sequent is not provable and hypotheses and counter-examples are given.
Moreover, a derivation of the sequent (from axioms or hypotheses) is displayed.

Problem 1. Is the sequent [(A ∧B)f , Ap, (A ∨B)t] provable?

Answer. Yes, it is. Proof of [(A ∧B)f , Ap, (A ∨B)t]:

axiom for A
[Af , Ap, At, Bf , Bt]

[Af , Ap, Bf , (A ∨B)t]

[(A ∧B)f , Ap, (A ∨B)t]

Problem 2. Is the sequent [(A ⊃ B)p, (A ∨ C)t] provable?

Answer. No, it is not. Derivation of [(A ⊃ B)p, (A ∨ C)t]:

hypothesis
[Ap, At, Bp, Ct]

[Ap, Bp, (A ∨ C)t]

hypothesis
[At, Bf , Ct]

[At, Bf , (A ∨ C)t]
[(A ⊃ B)p, (A ∨ C)t]

List of hypotheses: [Ap, At, Bp, Ct], [At, Bf , Ct]
List of counter-examples: [Af , Bf , Cf ], [Af , Bf , Cp], [Af , Bp, Cf ], [Af , Bp, Cp],
[Af , Bt, Cf ], [Af , Bt, Cp], [Ap, Bp, Cf ], [Ap, Bp, Cp], [Ap, Bt, Cf ], [Ap, Bt, Cp].

3.3 Validity of formulas

Given a set of designated truth values and a formula, the system determines
which sequents have to be proved in order to decide if the formula is valid. If
the formula is not valid counter-examples are given.

Problem 3. Let {p} be the set of designated truth values. Is the formula (A ⊃
(B ⊃ A)) valid?
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Answer. The problem is equivalent to proving the following sequent:

[(A ⊃ (B ⊃ A))p] .

No, the formula is not valid.
List of counter-examples: [Af , Bf ], [Af , Bp], [Af , Bt], [Ap], [At, Bf ], [At, Bp],
[At, Bt].

3.4 Validity of equations

Given an equation the system determines which sequents have to be proved in
order to decide if the equation is valid. If the equation is not valid counter-
examples are given.

Problem 4. Is the equation ¬¬A = A valid?

Answer. The problem is equivalent to proving the following sequents:

[Ap, At,¬¬Af ], [Af , At,¬¬Ap], [Af , Ap,¬¬At]

Yes, the equation is valid.

3.5 Validity of Quasi-Equations

Given a quasi-equation the system determines which sequents have to be proved
in order to decide if the quasi-equation is valid. If it is not valid counter-examples
are given.

Problem 5. Is the quasi-equation

A = B,B = C ` A = C

valid?

Answer. Yes, the quasi-equation is valid.

4 Conclusion

The system MUltseq presented in this paper is intended as a tool to gain insights
and better intuitions in the study of particular finitely-valued logics, avoiding
error-prone and complex computations by hand. We hope that its simplicity,
and the fact that no previous knowledge (except the truth tables) of the logic is
needed to experiment, make the system useful for all those researches interested
in these logics. In addition, since equations and quasi-equations have also been
integrated in the general framework, algebraic problems can also be addressed
by the system.

MUltseq is developed by the authors of this abstract within a project titled
“Generic Decision Procedures for Many-Valued Logics”. It is written in a subset
of Prolog compatible with any standard Prolog interpreter. More details as well
as the most recent version of MUltseq can be obtained on the web [6].
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