
MUltlog 1.0: Towards an Expert System for
Many-valued Logics? ??

Vienna Group for Multiple-valued Logics???

Technische Universität Wien, Austria

Abstract. MUltlog is a system which takes as input the specification
of a finitely-valued first-order logic and produces a sequent calculus, a
natural deduction system, and a calculus for transforming a many-valued
formula to clauses suitable for many-valued resolution. All generated
rules are optimized regarding their branching degree. The output is in
the form of a scientific paper, written in LATEX.

1 Introduction

Many-valued logics are a generalization of classical logic introduced in the 1920’s
independently by Lukasiewicz and Post. For a long time they were mainly of in-
terest to logicians, who among other problems investigated the axiomatization
of these logics, concentrating primarily on Hilbert-style calculi. Schröter [12] and
Rousseau [10] gave, for the first time, sequent calculi for finitely-valued logics;
they showed that the rules can be generated systematically from the truth tables
of operators and quantifiers. Similar methods can be used to construct natural
deduction systems [3], clause formation rules [1], and tableaux [6] in a fully au-
tomatic manner.

Within the last decade many-valued logics have also attracted attention in
the computer science community. They were discovered as an appropriate tool for
hard- and software verification, artificial intelligence, natural language process-
ing, and several other fields (see [7] for a comprehensive survey). This brought
about the necessity for automatizing deduction in these logics. It turned out
that the axiomatizations mentioned above were not really practicable, as they
produce rules with a maximal branching degree leading to an exploding proof
length. Only recently investigations started on minimizing the branching de-
gree [1, 7, 9, 11, 13].

One of the main activities of the Vienna Group for Multiple-valued Logics
(VGML) is to exploit the algorithmic content of the work done in many-valued

? Supported by FWF grant P10282-MAT.
?? Appeared in: Proc. 13th Int. Conf. on Automated Deduction (CADE’96), LNCS

(LNAI) 1104, pp. 226–230. Springer, 1996.
??? Matthias Baaz, Christian G. Fermüller, Gernot Salzer, and Richard Zach. Technische

Universität Wien, A-1040 Vienna, Austria. E-mail: vgml@logic.tuwien.ac.at

1

logics by implementing it in the MUltlog system, with the ultimate goal of cre-
ating an expert system for many-valued logics. This paper describes the current
state of the MUltlog system as well as future developments.1

2 The many faces of MUltlog

A user of MUltlog has the choice between different interfaces. One is written in
Tcl/Tk (by Andreas Leitgeb) and runs under Unix and X-Windows.2 A second
one (by Wolfram Nix) is written in C for PCs under DOS. A third one (by
Markus Schranz) is written in HTML and Perl, providing access to MUltlog
via WWW: the user fills in some HTML forms and gets the output of MUltlog
as a Postscript file, obviating the need to install it on her own machine. All
three interfaces communicate with MUltlog by an ordinary text file, which can
be viewed as a fourth interface. The next section discusses an example for such
a text file.

3 Specifying a many-valued logic

A many-valued logic is characterized by the truth functions associated with its
propositional operators and quantifiers. More precisely, if W denotes the set of
truth values, then a total function θ̃:Wn 7→ W is associated with each n-ary
operator θ, and a total function λ̃: (2W−{∅}) 7→W with each quantifier λ.3

For finitely-valued logics, θ̃ and λ̃ can be specified by finite tables. The size of
quantifier tables, however, grows exponentially with the number of truth values.
Fortunately, many operators and quantifiers are defined implicitly as greatest
lower or least upper bounds with respect to some (semi-)lattice ordering on the
truth values; conjunction and disjunction as well as universal and existential
quantification fall into this class. For this reason MUltlog offers several possibil-
ities for specifying operators and quantifiers.

Example 1. Consider the specification of the three-valued Gödel logic in the left
part of Fig. 1. Negation (‘neg’) is specified as a mapping, giving for each argu-
ment the corresponding value of the function. Implication (‘imp’) can be given
as a table since it is binary. The remaining operators and quantifiers refer either
1 An early prototype of MUltlog was already presented in [2]. Unfortunately, this im-

plementation turned out to be buggy, and never made it to an official release. The
program died when the program author left the group. The current version of MUlt-
log was written from scratch.

2 The developer of Tcl/Tk, John Ousterhout, is currently porting Tcl/Tk to the var-
ious window systems on PCs, i.e., in the future this interface will also be available
on these platforms.

3 Quantifiers defined this way are called distribution quantifiers. The intuitive meaning
is that a quantified formula (λx)A(x) takes the value λ̃(U) if the instances A(d) take
exactly the elements of U as their values. E.g., the universal quantifier in classical
logic can be defined as ∀̃({t}) = t and ∀̃({f}) = ∀̃({t, f}) = f .

2

Calculi for the Gödel Logic
M. Ultlog

1 Introduction
2 Syntax and Semantics
3 A Sequent Calculus
4 A Natural Deduction Calculus
5 Clause Formation Rules
6 Tableaux
7 Calculi Based On Sets-as-signs
8 Comparison to Other Logics
9 . . .
Acknowledgements
References

logic "G\""odel".

truth_values{f,u,t}.

designated_truth_values{t}.

operator(neg/1,

mapping{(t):f, (u):u, (f):t}).

operator(imp/2, table[f,u,t,

f, t,t,t,

u, f,t,t,

t, f,u,t]).

ordering(linear, "f < u < t").

operator(and/2, inf(linear)).

operator(or /2, sup(linear)).

quantifier(all, induced_by and/2).

quantifier(ex , induced_by or /2).

Fig. 1. Input and output for the three-valued Gödel logic.

directly or indirectly to an ordering called ‘linear’. The operators ‘and’ and
‘or’ are the greatest lower and the least upper bound wrt. to this ordering, and
the two quantifiers are the natural extensions of these two operators.

4 The MUltlog kernel

The kernel of MUltlog is written in Prolog4. Its main task is to compute a certain
conjunctive normal form (CNF) for each combination of operators or quantifiers
with truth values. Once given the CNF, all calculi can be obtained more or less
by syntactic transformations. The problem is not to find any such CNFs: one
particular kind can be immediately obtained from the definition of operators
and quantifiers. However, as mentioned in the introduction, these CNFs are of
a maximal branching degree and therefore do not lead to feasible deduction
systems. MUltlog has to optimize the CNFs regarding the number of conjuncts.
For operators and quantifiers referring to an ordering the matter is easy: provably
optimal CNFs are obtained by instantiating a schema. For all other operators
and quantifiers more complex computations are needed, which involve resolution
and a special inference rule called combination (for a detailed description and
correctness proofs of the employed algorithms see [11]).

Example 2. Consider the logic specified in Example 1. The optimal CNF for
operator ‘imp’ and truth value t is computed as

({f, u}A ∨ {t}B) ∧ ({f}A ∨ {u, t}B)

4 MUltlog has been tested with Paul Tarau’s BinProlog and with SICStus Prolog, but
should be portable to any standard Prolog.

3

which can be interpreted as saying that “imp(A,B) takes the truth value t if
A takes value f or u or B takes value t, and if A takes value f or B takes value
u or t”. The optimal CNF for the universal quantifier and truth value u is com-
puted as

(∀x){u, t}A(x) ∧ (∃x){u}A(x) .

5 The output of MUltlog

The output consists of a style file containing LATEX definitions specific to the
input logic, which is included by a generic document when compiled with TEX.
The style file is generated by DCGs (definite clause grammars) on the basis of the
specification read by MUltlog and the minimized CNFs computed by MUltlog.

Example 3. The right part of Fig. 1 is an outline of the paper generated from
the input in the left part.5 As an example, the section on the sequent calculus
contains introduction rules for every operator/quantifier and truth value, among
them those generated from the CNFs in Example 2:

Γ,Af , Au, Bt Γ,Af , Bu, Bt

Γ, (imp(A,B))t
imp: t

Γ,A(α)u, A(α)t Γ,A(τ)u

((allx)A(x))u
all:u

6 Future Developments

The automatic derivation of optimized calculi is only a fraction of what can be
automatized in many-valued logics. The ultimate goal is to develop an expert
system for many-valued logics covering all of their mechanizable aspects. In
particular, future versions of MUltlog will deal with the following topics.

Correctness and completeness proofs. The paper generated by MUltlog will con-
tain proofs for the correctness and completeness of the computed calculi.

Inclusion of further calculi. MUltlog will compute optimized versions of other
calculi, like tableau systems or negative variants of sequent calculus. This
will require the computation of optimized DNFs. Another extension will
consider variants of calculi based on truth value sets as signs [7].

Cut elimination. MUltlog will construct cut elimination algorithms for multiple-
valued logics [4] and include a corresponding cut elimination theorem into
its output.

Comparison to known logics. MUltlog will be augmented by a database about
already known logics and their properties. Each new input logic will be
compared against it, and appropriate comments and references will be added
to the paper.

5 The headlines in italic typeface are sections to be included in future versions of
MUltlog.

4

Generation of machine-readable output. MUltlog will be linked to an automatic
theorem prover, such that the clause formation rules for a particular logic
are not just included into the paper, but also result in a theorem prover for
that logic. The same holds for the other calculi.

Extension to infinitely-valued logics. In general this extension will not be possi-
ble since infinitely-valued logics show a behavior different from finitely-valued
ones. However, it has been shown that finitely-valued logics can be used to
approximate infinitely-valued logics [5]. Another approach could be to use
mixed integer programming for certain logics [8].

7 Availability

MUltlog 1.0 is available via anonymous ftp from host logic.tuwien.ac.at in
directory pub/MUltlog. For further informations see WWW-page

http://logic.tuwien.ac.at/VGML/MUltlog.html,

or send an e-mail to MUltlog@logic.tuwien.ac.at.

References

1. M. Baaz and C. G. Fermüller. Resolution-based theorem proving for many-valued
logics. J. Symbolic Computation, 19:353–391, 1995.

2. M. Baaz, C. G. Fermüller, A. Ovrutcki, and R. Zach. MULTLOG: A system for
axiomatizing many-valued logics. In A. Voronkov, editor, Logic Programming and
Automated Reasoning (LPAR’93), LNCS 698 (LNAI), pages 345–347. Springer,
1993.

3. M. Baaz, C. G. Fermüller, and R. Zach. Systematic construction of natural deduc-
tion systems for many-valued logics. In Proc. 23rd International Symposium on
Multiple-valued Logic, pages 208–215. IEEE Computer Society Press, Los Alamitos,
May 24–27 1993.

4. M. Baaz, C. G. Fermüller, and R. Zach. Elimination of cuts in first-order finite-
valued logics. J. Inform. Process. Cybernet. (EIK), 29(6):333–355, 1994.

5. M. Baaz and R. Zach. Approximatig propositional calculi by finite-valued logics.
In Proc. 24th International Symposium on Multiple-valued Logic, pages 257–263.
IEEE Press, Los Alamitos, May 25–27 1994.

6. W. A. Carnielli. Systematization of finite many-valued logics through the method
of tableaux. J. Symbolic Logic, 52(2):473–493, 1987.

7. R. Hähnle. Automated Deduction in Multiple-valued Logics. Clarendon Press, Ox-
ford, 1993.

8. R. Hähnle. Many-valued logic and mixed integer programming. Annals of Mathe-
matics and Artificial Intelligence, 12(3,4):231–264, Dec. 1994.

9. R. Hähnle. Commodious axiomatization of quantifiers in multiple-valued logic.
In Proc. 26th International Symposium on Multiple-Valued Logics, Santiago de
Compostela, Spain. IEEE Press, Los Alamitos, May 1996.

10. G. Rousseau. Sequents in many valued logic I. Fund. Math., 60:23–33, 1967.

5

11. G. Salzer. Optimal axiomatizations for multiple-valued operators and quantifiers
based on semi-lattices. In 13th Int. Conf. on Automated Deduction (CADE’96),
LNCS (LNAI). Springer, 1996.

12. K. Schröter. Methoden zur Axiomatisierung beliebiger Aussagen- und Prädikaten-
kalküle. Z. Math. Logik Grundlag. Math., 1:241–251, 1955.

13. N. Zabel. Nouvelles Techniques de Déduction Automatique en Logiques Polyva-
lentes Finies et Infinies du Premier Ordre. PhD thesis, Institut National Poly-
technique de Grenoble, 1993.

6

